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ABSTRACT

The universal approximation property is fundamental to the success of neural net-
works, and has traditionally been achieved by networks without any constraints
on their parameters. However, recent experimental research proposed an innova-
tive permutation-based training method, which can achieve desired classification
performance without modifying the exact values of the weights. In this paper,
we prove that the permutation training method can guide a ReLU network to ap-
proximate one-dimensional continuous functions. Our numerical results under
more diverse scenarios also validate the effectiveness of the permutation training
method in regression tasks. Moreover, the notable observations during weight per-
mutation suggest that permutation training can provide a novel tool for describing
network learning behavior.

1 INTRODUCTION

The universal approximation property (UAP) of neural networks is a cornerstone in the theoretical
guarantee of deep learning, proving that even the simplest two-layer feedforward networks can ac-
curately approximate any continuous function (Cybenko, 1989; Hornik et al., 1989; Leshno et al.,
1993). This fascinating ability allows neural networks to replace critical, challenging components in
existing frameworks to enhance efficiency (Mnih et al., 2013; Goodfellow et al., 2014; Raissi et al.,
2019). Despite the extensive study in various settings, existing research on the UAP rarely imposes
restrictions on the network parameters. However, in certain application scenarios, constraints posed
by some specific requirements are essential (Nugent, 2005; Kosuge et al., 2021a).

As a constrained scenario, Qiu & Suda (2020) empirically showed that, without altering the exact
value of network weights, only permuting the initialized weight vector can achieve comparable or
better performance for image classification tasks. This unique property makes the permutation-
based training method attractive for specific hardware applications, such as fixed-weight accelerator
(Kosuge et al., 2021a). It can also facilitate the implementation of physical neural networks (Nugent,
2005; Feldmann et al., 2021) (see App. A for details). Motivated by this impressive result, we are
intrigued to investigate whether this permutation training method still possesses UAP.

In this paper, we theoretically establish the UAP of a permutation-trained network with rectified
linear unit (ReLU) activation functions for any one-dimensional continuous function. To address
the non-trivial challenge posed by the permutation training setting, the key idea of our proof is a
four-pair construction of the step function approximators, which helps us to approach the targeted
continuous function with a piecewise constant function (Stein & Shakarchi, 2009). Additionally, a
processing method is proposed to eliminate the impact of the remaining weights.

Moreover, our numerical experiments not only validate the theoretical results but also demonstrate
the widespread existence of the UAP of permutation training in diverse initializations. The patterns
observed during permutation training also highlight its potential in describing learning behavior, re-
lating to topics like the pruning technique (Frankle & Carbin, 2019) and continual learning (Maltoni
& Lomonaco, 2019; Zeng et al., 2019). We summarize the main findings of this paper below:

• We prove the UAP of permutation-trained networks with equidistant initialization and pair-
wise random initialization to one-dimensional continuous functions.

• We conduct numerical experiments of regression problems under various generalized set-
tings, identifying the common occurrence of the UAP of permutation training.

1



Under review as a conference paper at ICLR 2024

• By observing the permutation patterns, we find that permutation training could potentially
serve as a new approach to describe the detailed network learning behaviors.

Related works. The UAP has been extensively studied in various settings, leading to many effi-
cient applications. It is well known that fully connected networks are universal approximators for
continuous functions (Cybenko, 1989; Hornik et al., 1989; Leshno et al., 1993). Additionally, the
UAP of continuous functional and operator are presented by Chen & Chen (1995), giving rise to the
operator learning formalisms such as DeepONet (Lu et al., 2021). However, the traditional UAP is
suited to wide networks where the weights are freely adjusted. Our configuration is focused on a
specific approach that only allows permuting weights.

Permutation is crucial in deep learning and closely relates to permutation equivariant or invariant
networks (Cohen & Welling, 2016), designed to learn from symmetrical data (Zaheer et al., 2017;
Lee et al., 2019). It is also evident in graph-structured data which inherently exhibit permutation
invariance (Maron et al., 2019; Satorras et al., 2021). However, these works mainly concern issues
with intrinsic symmetry, while permutation training is not limited to these scenarios.

As for the weight permutation attempts, Qiu & Suda (2020) empirically proposed the first (to
our knowledge) weight-permuted training method, which exhibits comparable classification per-
formance and has been practically applied as a fixed-weight accelerator (Kosuge et al., 2021a;b). A
further discussion about this method’s advantages in hardware implementation is given in App. A.
Our work provides theoretical guarantees of this method and considers some regression tasks nu-
merically. Additionally, Scabini et al. (2022) improved the initialization by rewiring neurons from
the perspective of computer networks, but the training methods are unchanged.

Permutation training is also closely related to the permutation symmetry and linear mode connec-
tivity (LMC) (Frankle et al., 2020; Entezari et al., 2021). The LMC suggests that after a proper
permutation, most SGD solutions under different initialization will fall in the same basin in the loss
landscape. Similarly, our permutation training also seeks a permutation to effectively improve per-
formance. Therefore, the search algorithm utilized in LMC (Jordan et al., 2023; Ainsworth et al.,
2023) can serve as a reference for the permutation training algorithm, and vice versa. Moreover, it
would be interesting to explore the LMC between different permutation training solutions.

Outline. We state the main result in Sect. 2, which includes ideas to derive the main result. In Sect.
3, we provide a detailed construction of the proof. The numerical results of permutation training are
presented in Sect. 4, along with the observation of permutation behavior during the training process.
Finally, the conclusion is provided in Sect. 5. All formal proof of the theorems is in the Appendix.

2 NOTATIONS AND MAIN RESULTS

2.1 NERUAL NETWORKS ARCHITECTURE

We start with a two-layer feed-forward ReLU network withN hidden neurons in even numbers (i.e.,
N = 2n). It has the form of a linear combination of ReLU basis functions (noted as ReLU(z) =

max{z, 0}) as f(x) =
∑N

i=1 aiReLU(wi · x + bi) + c. Particularly, we focus on approximating
one-dimensional functions, so all weights are scalars (wi, bi, ai, c ∈ R). Since ReLU activation is
positively homogeneous (i.e., ReLU(γx) = γReLU(x) for all γ > 0), we consider a simplified
homogeneous case with wi = ±1, and utilize n to divide the basis functions into two parts as

ϕ±i (x) = ReLU
(
± (x− bi)

)
, i = 1, 2, ..., n, (1)

where the biases {bi}ni=1 determine the location of basis functions. Then we introduce a one-
dimensional linear layer. It will be shown later that while this layer is not essential for achieving
UAP, it does simplify the proof and offer practical value. The network’s output function fNN gives

fNN(x) = α+ γ

n∑
i=1

[
piϕ

+
i (x) + qiϕ

−
i (x)

]
, (2)

where {pi, qi}ni=1 are the coefficients of the basis functions and α, γ are scaling factors. This form
corresponds to a three-layer network, where {pi, qi}ni=1 and {α, γ} are the parameters in the second
hidden layer and output layer, respectively.
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2.2 WEIGHT CONFIGURATION AND MAIN THEOREMS

Without loss of generality, we consider the target continuous function f∗ ∈ C([0, 1]). During the
permutation training process, we hold the initial value of the second hidden layer’s weight vector
θ(n) = (pi, qi)

n
i=1 and only update the order relationship of its components, leading to the following

configuration: the weight vector θ(n) is permuted from a predetermined vector W (n) ∈ R2n. We
first focus on a simple scenario with equidistantly distributed locationB(n) and pairwise coefficients
W (n). The UAP of a permutation-trained network to continuous functions can be stated as follows:

Theorem 1 (UAP with a linear layer). For any function f∗(x) ∈ C([0, 1]) and any small number
ε > 0, there exists a large even number n ∈ Z+, and α, γ ∈ R for fNN in Eq. (2) with equidistantly
distributed B(n) =

(
0, 1

n−1 , · · · , 1
)
=: (bi)

n
i=1 and corresponding W (n) = (±bi)ni=1, along with

a permuted weight vector θ(n) = τ(W (n)), such that |fNN(x)− f∗(x)| ≤ ε for all x ∈ [0, 1].

The intuition of this result comes from the rich expressive possibility of permutation training since
there are (2n)! different permutations for W (n) 1. Next, we enhance the result in Theorem 1 to a
purely permuted situation, suggesting the UAP can be achieved without changing α, γ as

Theorem 2 (UAP without the linear layer). Let α = 0, γ = 1. For any function f∗(x) ∈ C([0, 1])
and any small number ε > 0, there exists a large even number n ∈ Z+ for fNN in Eq. (2) with
equidistantly distributed B(n) = (bi)

n
i=1 and W (n) = (±bi)ni=1, along with a permuted weight

vector θ(n) = τ(W (n)) such that |fNN(x)− f∗(x)| ≤ ε for all x ∈ [0, 1].

Although Theorem 1 can be viewed as a corollary of Theorem 2, the proof process will reveal
the practical usefulness of learnable α, γ in reducing the required network width to achieve UAP.
Moreover, the result can be generalized to the scenario with random initialization, which is stated as

Theorem 3 (UAP for randomly initialized parameters). Given a probability threshold δ ∈ (0, 1),
for any function f∗(x) ∈ C([0, 1]) and any small number ε > 0, there exists a large even number
n ∈ Z+, and α, γ ∈ R for fNN

r in Eq. (2) with randomly initialized B(n)
r ∼ U [0, 1]n and pairwisely

randomly initialized W (n)
r = (±pi)ni=1, pi ∼ U [0, 1], along with a permuted weight vector θ(n) =

τ(W
(n)
r ), such that with probability 1− δ, |fNN

r (x)− f∗(x)| ≤ ε for all x ∈ [0, 1].

2.3 PROOF IDEAS

To identify the UAP of our network (2) inC([0, 1]), we employ a piecewise constant function, which
is a widely-used continuous function approximator (Stein & Shakarchi, 2009), and can be expressed
as a summation of several step functions. Next, we demonstrate that our networks can approximate
each step function. In this spirit, our constructive proof includes three steps:

1. Approach the target function f∗ by a piecewise constant function g;

2. Approximate each step function of g by a subnetwork of fNN with permuted coefficients;

3. Annihilate the unused basis functions and coefficients of fNN.

Thanks to the Stone-Weierstrass theorem in function approximation theory (Stone, 1948), step 1 can
be achieved by dividing the range of f∗ with a uniform height to construct each step functions fs
(see Fig. 1(a)). The statement is outlined below (refer to App. B for detailed definition and proof),

Lemma 1. For any function f∗(x) ∈ C([0, 1]) and any small number ε > 0, there is a piecewise
constant function g(x) with a uniform height ∆h ≤ ε, such that |g(x)−f∗(x)| ≤ ε for all x ∈ [0, 1].

The execution of step 2 is inspired by the divide-and-conquer algorithm in computer science
(Hopcroft et al., 1983) and the multi-grid method in numerical analysis (Hackbusch, 2013). Suppose
that the piecewise constant function g in Lemma 1 is a summation of J step functions {fsj}Jj=1, we
partition the basis functions B(n) also into J subgroups as B(n) = ∪Jj=1Bj . Each subgroup Bj

contains bi distributed over the entire domain, instead of localized bi (see Fig. 1(b)). This allows
each subgroup to approach fs at arbitrary locations using the same construction.

1Fig. 7 in App. M intuitively shows various kinds of fNN(x) under different permutations.
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Figure 1: Main idea of the construction. (a) Approximate the continuous function f∗ by a piecewise
constant function g which is further approximated by permuted networks fNN. (b) Partition of
basis functions. (c) The step function approximator fNN

s constructed by four-pair of basis functions
located at b1, b2, b3, b4. (d) Summing pseudo-copies to adjust the heights of resulting function f́NN

s .

Then, for every subgroup Bj , we construct a step function approximator fNN
sj to approximate fsj ,

then sum them up to approach g. A core technique of this construction is utilizing four pairs of
basis functions {±bi}4i=1 (shown in Fig. 1(c)), along with a one-to-one correspondence between
coefficients and biases (i.e., {pi, qi}4i=1 = {±bi}4i=1) to meet the permutation training setting, where
each coefficient is used only once. This construction can also prevent conflict between different Bj .

It is important to note that step 3 is necessary to achieve the desired construction. A crucial chal-
lenge of permutation training is that we must assign every parameter, rather than just pick up the
wanted parameters and discard the rest. Therefore, it is essential to eliminate the remaining network
parameters after step 2 to prevent the potential accumulation of errors. We solve this problem by a
processing method that reorganizes them into a linear function with controllable slope and intercept.

To further enhance the conclusion of Theorem 1 to Theorem 2, we introduce a technique called
pseudo-copy, which can achieve UAP without the linear layer. By refining the parameters distribu-
tion, several pseudo-copies f́NN

s of the original approximator fNN
s can be produced with a control-

lable error (see Fig. 1(d)). The final height can then be adjusted by stacking these copies together,
making the scale parameters α, γ in Theorem 1 removable.

Extending the UAP to the random initializations is justified by that as the width increases, the param-
eters randomly sampled from uniform distributions become denser, thus approaching the equidistant
case. Therefore, a sufficiently wide network has a high probability of finding a subnetwork that is
close enough to the network with UAP in the equidistant case. Then this subnetwork can also achieve
UAP due to its continuity. The remaining part of the network can be eliminated by step 3.

3 UAP OF PERMUTATION-TRAINED NETWORKS

This section provides a detailed construction of the approximator with weight-permuted networks
in the equidistant case, along with an estimation of the convergent rate of approximation error. The
extension to the scenario with random initialization is also thoroughly discussed.

3.1 THE FOUR-PAIR CONSTRUCTION OF STEP FUNCTION APPROXIMATORS

We start with the equidistant case, and consider four pairs of basis functions {ϕ±i }4i=1 in Eq. (1) and
coefficients {pi, qi}4i=1 = {±bi}4i=1, where b1 ≤ b2 ≤ b3 ≤ b4 along with a symmetric distance
d = b2 − b1 = b4 − b3. The step function approximator fNN

s has a piecewise linear form as

fNN
s (x) =

4∑
i=1

piϕ
+
i (x) +

4∑
i=1

qiϕ
−
i (x). (3)
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To ensure a local error of the approximator, we appeal fNN
s to be x-independent outside the interval

[b1, b4]. As a result, the coefficients pi, qi must satisfy
∑4

i=1 pi =
∑4

i=1 qi = 0, which implies the
correspondence between {pi, qi}4i=1 and {±bi}4i=1 as{

p1 = −b1, p2 = +b2, p3 = +b3, p4 = −b4,
q1 = +b4, q2 = −b3, q3 = −b2, q4 = +b1.

(4)

and the detailed expression of fNN
s is given in Eq. (9) at App. C. Notice that fNN

s is monotone and
centrally symmetric about the point x = b2+b3

2 . So the abstract value of the two constant pieces
x < b1 and b4 ≤ x are the same. Then the height h of fNN

s gives

h = 2(b21 − b22 − b23 + b24) = 4(b2b3 − b1b4) = 4d(b4 − b2). (5)

Along with a shifting scale h/2, it can approach step function fs(x) = hχ(x− s) with s ∈ [b1, b4],
where χ(z) = 1 when z > 0 and χ(z) = 0 otherwise (see Fig. 1(c)). An example is plotted in Fig.
8 in App. M. It is obvious that the error ∥

(
fNN
s + h/2

)
− fs∥L∞ has a trivial bound h.

3.2 ANNIHILATE THE UNUSED PART OF THE NETWORK

After constructing step function approximators, the remaining parameters must be suitably arranged
to eliminate their impact. Notice that a pair of basis functions ϕ±i at each location bi are either
used together or not at all. Therefore, for each unused pair of ϕ±i and the corresponding coefficients
±pi, we can form a linear function aiℓi, where ℓi(x) := piϕ

+
i (x) − piϕ

−
i (x) = pix − pibi along

with a freely adjusted sign ai = ±1. The goal then is to choose a proper sign a = {ai}ni=1 for
each ℓi to control ∥Sℓ∥L∞ in [0, 1], where Sℓ(x) :=

∑n
i=1 aiℓi(x) is the summed function. It

can be achieved by bounding the slope
∑n

i=1 aipi with respect to a, which becomes a problem of
organizing addition and subtraction operations within a given series to reduce the final result.The
following lemma provides a solution with an upper bound related to the largest gap in the series.
Lemma 2. For an even number n̄ and a sequence of real number {ci}n̄i=1 with ci ∈ [0, 1], i =

1, 2, · · · , n̄, there exists a combination of sign {ai}n̄i=1 with ai = ±1, such that 0 ≤
∑n̄

i=1 aici ≤
∆c, where ∆c = maxi |ci+1 − ci| is the largest gap between the elements in {ci}n̄i=1.

We prove the Lemma 2 by proposing a certain processing method (refer to App. D). As the network
width increases, the distribution of pi will become more dense, causing the largest gap ∆p → 0,
thus the error introduced by the unused part can be arbitrarily small. Notice that the only assumption
of this method is the pairwise initialization of coefficients like (±pi)ni=1, enabling the extension to
random initializations. Besides, it also permits generalization to deeper networks by constructing an
identity function and eliminating the remaining parts. Further details can be found in App. D.

3.3 APPROXIMATE PIECEWISE CONSTANT FUNCTIONS

Now we briefly discuss how to permute equidistant coefficientsW (n) in fNN(x) =
∑J

j=1 f
NN
sj (x) to

approximate piecewise constant function g(x) =
∑J

j=1 aj∆hχ(x− sj) in Lemma 1 with accuracy
ε, where aj = ±1 and ∆h < ε/2. The detailed proof is provided in App. E. We choose n sufficiently
large to ensure that every approximator aj [fNN

sj (x) + h
2 ] can approximate fsj (x) = ajhχ(x − sj)

with error h. Since the height h in Eq. (5) may not equal ∆h, a multiplying factor γ = ∆h/h is
needed. Similarly, the accumulated h/2 shifting in each fNN

sj requires another scaling parameter α.
Then the whole approximation, along with Lemma 1, allow us to prove the Theorem 1 since∣∣fNN(x)− g(x)

∣∣ = ∣∣∣∣∣α+ γ

n∑
i=1

[
piϕ

+
i (x) + qiϕ

−
i (x)

]
− g(x)

∣∣∣∣∣ ≤ ∆h < ε/2, ∀x ∈ [0, 1]. (6)

Next, we achieve UAP without the scaling parameters α, γ. The shifting scale α can become small
enough by constructing a constant function with a similar height (see App. F). To handle the mis-
match between h and ∆h, we introduce the pseudo-copy technique, which stacks M copies of fNN

s
to reach the height ∆h = Mh (see Fig. 1(d)). However, the copies’ locations cannot be identical
since the biases B(n) are uniquely assigned. Therefore, we refine the biases M -times and partition
it into M subgroups as B(Mn) = ∪Ml=1Bl like Fig. 1(b). The pseudo-copy f́NN

sl
is then organized on
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each Bl, respectively. Since the pseudo-copies are very close to the original one, the refined approx-
imation error ∥f́NN

sl
− fs∥L∞ can also be controlled (refer to App. G). Theorem 2 can be proved as

below, which indicates that constructing pseudo-copies requires a much larger network.

|f́NN(x)− g(x)| =

∣∣∣∣∣
Mn∑
i′=1

[pi′ϕ
+
i′ (x) + qi′ϕ

−
i′ (x)]− g(x)

∣∣∣∣∣ ≤ ∆h < ε/2, ∀x ∈ [0, 1]. (7)

3.4 ESTIMATE THE APPROXIMATION RATE

Here we estimate the approximation rate roughly by the L2 error Es of approximating single step
function fs(x) = hχ(x − s) by fNN

s (x). Start with our four-pair construction in Eq. (3), assume
s = (b2 + b3)/2 and rewrite the relations b1 = s − k2, b2 = s − k1, b3 = s + k1, b4 = s + k2,
where 0 < k1 ≤ k2, then the error of single approximator gives (see App. H for details and a similar
estimation for pseudo-copies)

e2s =

∥∥∥∥(fNN
s +

h

2

)
− fs

∥∥∥∥2
L2

=
8

3
(k1 − k2)2

(
k31 + 3k21k2 + 2k1k

2
2 + k32

)
≤ 56

3
d2k32. (8)

In our step function approximator in Eq. (4), the k2 can be chosen as k2 ∼ O(d), which implies
es ∼ O(d5/2). However, the height h in Eq. (5) also gives h ∼ O(d2). To approximate the step
function fs with height ∆h ∼ O(1), the number of stacked pseudo-copy must satisfy M = ∆h

h ∼
O(d−2). Hence the final error is estimated as Es = Mes ∼ O(d1/2). Recall that d = 1

2n−1 , we
have Es ∼ O(n−1/2), which means the approximation rate is roughly 1/2 order with respect to the
network width. We will verify this rate by the experimental results in Sect. 4.

3.5 GENERALIZE TO THE RANDOM INITIALIZATIONS

In extending the UAP to the common scenario involving random initializations, the basic proof
ideas remain unchanged. However, constructing of step function approximators in Eq. (3) becomes
invalid because the desired basis function cannot be located accurately. Nevertheless, the randomly
sampled basis functions will become more dense upon increasing width, leading to a high probability
of finding basis functions that closely match the required location.

Therefore, we can first apply the UAP in the equidistant case to obtain a network fNN in Eq. (2),
which exhibits approximation power. Then, within a randomly initialized network of sufficient
width, we find a subnetwork fNN

sub that can be regarded as randomly perturbed from fNN. If this
perturbation is small enough, the subnetwork fNN

sub will also possess approximation power.

Notice that this declaration can hold for totally random coefficients W (n)
r ∼ U [0, 1]2n. However,

eliminating the unused parameters by the process discussed in Sect. 3.2 requires a pairwise form
such as W (n)

r = (±pi)ni=1. Therefore, we restrict our result to the case in Theorem 3. The detailed
proof along with an estimation of the probability introduced by randomness are given in App. I.

4 EXPERIMENTS

This section presents numerical evidence to support and validate the theoretical proof. An interesting
observation of permutation behaviors also highlights the theoretical potential of this method.

4.1 THE ALGORITHM IMPLEMENTATION OF PERMUTATION TRAINING

In the implementation of permutation training, guidance is crucial in finding the ideal order rela-
tionship of the weights. The lookahead permutation (LaPerm) algorithm proposed in Qiu & Suda
(2020) introduces an k-times Adam-based free updating (Kingma & Ba, 2015), where the learned
relationship can then serve as a reference for permuting. To ensure the performance, the weights are
permuted after every k epoch. Apart from the fixed permutation period k chosen by Qiu & Suda
(2020), we also consider a relaxed algorithm with a gradually increased k to learn sufficient infor-
mation for the next permutation. The impact of k’s value on convergence behavior is evaluated to be
negligible (see App. N). See App. J for a discussion of the original and relaxed LaPerm algorithms.
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4.2 EXPERIMENTAL SETTING OF FUNCTION APPROXIMATION TASKS

Now we carry out experiments for some regression problems to justify our theoretical results. We
consider a three-layer network in Eq. (2), where the first hidden layer’s parameters are fixed to form
the ReLU basis functions {ϕ±i }ni=1 in Eq. (1), and the weights θ(n) of the second hidden layer are
trained by permutation. Moreover, α, γ in the output layer are freely trained scaling factors to reduce
the required network width. All the experiments below are repeated 10 times with different random
seeds, and the error bars mark the range of the maximum and minimum values. Refer to App. L for
the detailed experimental environment and setting for each case.

4.3 APPROXIMATING THE ONE-DIMENSIONAL CONTINUOUS FUNCTIONS

For one-dimensional cases, we utilize a 1-2n-1-1 network architecture with random initializa-
tions discussed in Theorem 3. The approximation targets are typical continuous functions y =
− sin(2πx), and 3-order Legendre polynomial y = 1

2 (5x
3 − 3x), where x ∈ [−1, 1]. A more com-

plicated case about a Fourier series with random coefficients, along with the results of the equidis-
tant scenario, are presented in App. Q. The numerical result illustrated in Fig. 2 exhibits a clear
convergence behavior upon increasing n. Our relaxed LaPerm algorithm doesn’t show a significant
advantage, potentially due to the preliminary attempt of exponentially increasing k. This suggests
a need for advanced relaxation schemes, such as a self-adjusted strategy (Qiao et al., 2011). Fur-
thermore, the L∞ error exhibits a 1/2 convergence rate with respect to n. Although the theoretical
estimation in Sect. 3 is based on L2 norm, we indeed observe that it also holds for L∞ error.
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Figure 2: Approximating one-dimensional continuous function (a): y = − sin(2πx) and (b): y =
1
2 (5x

3−3x) with randomly initialized network, where x ∈ [−1, 1]. The inset in each panel presents
the target function as lines and an example of the approximation result as dots.

4.4 THE PERFORMANCE OF VARIOUS RANDOM INITIALIZATIONS

Here we discuss the impact of initialization on performance, which is more crucial for permutation
training due to the weights’ lack of positional flexibility. Here we utilize the case in Fig. 2(a) to con-
sider 8 different random initialization methods. Fig. 3 shows that the UAP in permutation-trained
networks is not limited in the setting considered by our theorems. The converged random cases fol-
lowed the pairwise initialization outperform the equidistant scenario, demonstrating the well-known
advantages of random initializations. However, some commonly used random initializations, such
as Xavier’s uniform initialization UX (Glorot & Bengio, 2010), and He’s uniform and normal initial-
izations UH and NH (He et al., 2015), fail to show convergence behavior. These results emphasize
the incompatibility between the existing initializations and the permutation training setting.

Further insight can be found by comparing the results in pairs. We first focus on totally and pair-
wisely randomly initializing W (n) from uniform distribution U [−1, 1], which are labeled as case 1
and 2, respectively. Apart from the clear dominance of pairwise case 1, the total case 2 also shows a
certain degree of approximation power. Next, for a randomly initialized B(n), in case 3 we let W (n)

have a strict correspondence like the equidistant case, while in case 4 W (n) is initialized separately.
The almost equivalent results indicate that the correspondence between B(n) and W (n) in Eq. (3)
may not be necessary in random cases. Moreover, we apply the standard UH for W (n) in case 5

7



Under review as a conference paper at ICLR 2024

10 20 40 80 160 320 640 1280
n

10 2

10 1

100

L
∞

 e
rr

or

1/2 order
Equidistant
Random 1: W (n) ∼U [−1, 1]2n

Random 2: W (n) ∼U±[−1, 1]n

Random 3: B (n) ∼U [−1, 1]n, W (n) =
{
B (n), −B (n)

}
Random 4: B (n) ∼U [−1, 1]n, W (n) ∼U±[−1, 1]n

Random 5: B (n) ∼U [−1, 1]n, W (n) ∼U±H[−1, 1]n

Random 6: B (n) ∼UH[−1, 1]n, W (n) ∼U±H[−1, 1]n

Random 7: B (n) ∼UX[−1, 1]n, W (n) ∼U±X[−1, 1]n

Random 8: B (n) ∼NH[−1, 1]n, W (n) ∼N±
H[−1, 1]n1 1x

1

1

y

Random 2: n= 160

Figure 3: The performance of randomly initialized parameters to approximate y = − sin(2πx),
where x ∈ [−1, 1]. The pairwise random distribution of W (n) = (±pi)ni=1, pi ∼ U [−1, 1] is
noted as W (n) ∼ U±[0, 1]n, and the same applies to U±

X [0, 1]n and N±
H [0, 1]n. The error bars are

omitted for conciseness. The inset panel presents the target function as lines and an example of the
approximation result as dots.

and also for B(n) in case 6. It shows that case 5 achieves the best accuracy for larger networks
(n > 320), while case 6 exhibits unexpected deterioration, which may be attributed to the mismatch
of the scale inB(n). Finally, the default choicesNH and UX in cases 7 and 8 both yield surprisingly
poor performance, underscoring the need for new initializations suitable to permutation training.

4.5 OBSERVATION OF THE PERMUTATION-ACTIVE PATTERNS

This section aims to explore the theoretical potential of permutation training in describing network
learning behavior. Based on the significant correlation between permutation and learning behavior
as evidenced by Qiu & Suda (2020) and our investigation, we hypothesize that the permutation-
active components of the weight vector play a crucial role in the training process. Therefore, by
identifying and tracing the permutation-active part of weights, a novel tool that provides insights
into learning behavior can be achieved, which also facilitates visualization and statistical analysis.

As a preliminary attempt, we illustrate the permutation behavior of the coefficients θ(n) in Fig. 4.
The components that participated in the permutation are visually highlighted in dark green. The
behavior clearly demonstrated that the order relationship evolves synchronously with the learning
process, agreeing with the observation in Qiu & Suda (2020).
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Figure 4: The permutation behavior in the first 400 permutation iteration in approximating y =
− sin(2πx) by equidistantly initialized network with n = 640. (a) The distribution of the active
components (denoted by dark green color). (b) The frequency distribution illustrates the variation in
the total count of active components in each permutation. (c) The corresponding loss behavior.

Specifically, the distribution of the active components shows significant patterns, which can be clas-
sified into four stages (marked in red dash lines in Fig. 4). The loss declines sharply in the initial
stage, while only the components with medium value are permuted. Once loss reaches a plateau in
the second stage, more components are involved in permutation, evidencing the role of permutation
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in propelling the training. As loss starts to decline again, the permutation frequency correspondingly
diminishes. Interestingly, the slower loss decrease gives rise to a ribbon-like pattern, akin to the lo-
calized permutations reported by Qiu & Suda (2020). This is possibly due to slow updates failing
to trigger a permutation. This observation may support the existence of inherent low-dimensional
structures within the permutation training dynamics, potentially linked to mathematical depiction of
permutation groups, such as cycle decomposition (Cameron, 1999) and Fourier bases for permuta-
tion (Huang et al., 2009). Finally, the permutation’s saturation stage aligns with the stationary state
of loss convergence. We believe these inspiring phenomena deserve further exploration.

5 CONCLUSION AND DISCUSSION

As a constrained training method, permutation training exhibits unique properties and practical po-
tential (see App. A). To verify its efficacy, we prove the UAP of permutation-trained networks with
equidistant initialization and pairwise random initialization for one-dimensional continuous func-
tions. The key idea is a four-pair construction of step function approximators in Fig. 1, along with
a processing method to eliminate the impact of the remaining parameters. Our experimental results
not only confirm the theoretical declarations (see Fig. 2), but also validate the approximation power
for various random initializations in Fig. 3, establishing the prevalence of the UAP of permutation
training. The discovery that certain commonly used initializations fail to achieve UAP also raises an
intriguing question about the systematical characterization of initializations that satisfy UAP.

The generalizability of our results holds significant importance. Extending to networks equipped
with leaky-ReLU can be straightforward (refer to App. O for numerical evidence). Our approach
also facilitates implementations within other architectures (see App. P for detailed discussion).
However, extending our results to the high-dimensional scenario still faces some theoretical chal-
lenges, although some preliminary experimental attempts have been made for two-dimensional in-
puts (see App. K). One potential approach is similar to the discussion in Sect. 3.5, but here we can
directly seek the subnetwork as a random perturbation from the network with conventional UAP in
high dimensions. To achieve this, however, the processing method in Sect. 3.2 must be generalized
from pairwise to total random initializations. We plan to address this problem in future work.

Our observation in Sec. 4.5 suggests that permutation training is a novel tool to shed light on network
learning behavior. It corresponds well with the training process and has systematical mathematical
descriptions (Cameron, 1999; Huang et al., 2009). Specifically, the patterns observed in Fig. 4 can
intuitively justify some weight categorization strategies, leading to potential benefits for consolidat-
ing the crucial weights for previous tasks (Maltoni & Lomonaco, 2019), or pruning to find the ideal
subnetwork in the lottery ticket hypothesis (Frankle & Carbin, 2019). Additionally, the existing
permutation training algorithm can be viewed as applying an order-preserving projection from the
free training results to the initial weight value, sharing the same form as weight projection methods
in continual learning (Zeng et al., 2019).

This work is expected to facilitate the practical applications of permutation training. However, some
issues still exist and deserve further investigation. Notably, existing initializations derived from the
free training situation, such as He’s normal initialization, perform poorly with permutation training
in Fig. 3, emphasizing the need for developing more compatible initializations. This could pave the
way to effectively training higher-dimensional and deeper networks by weight permutation, thereby
meeting the practical requirements. Further, the permutation training itself also has the potential to
serve as an initialization protocol (Scabini et al., 2022).

The existing attempts at algorithm implementations guide the permutation by Adam-based inner
loops, thus incurring undesirable external computation costs. However, if the order relationships
can be learned through other time-saving approaches, such as the learn-to-rank formalism (Cao
et al., 2007), or permutation search algorithms in the study of LMC (Jordan et al., 2023; Ainsworth
et al., 2023), the benefits of permutation training will be actualized in practice. Importantly, our
proof is independent of algorithm implementations, which is expected to inspire and motivate the
development of more advanced algorithms.

Overall, we believe that the UAP of permutation-trained networks underscores the profound, yet
undiscovered insights into how the weight encodes the learned information, highlighting the impor-
tance of further exploration in this field.
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APPENDIX

A PERMUTATION TRAINING’S ADVANTAGES IN HARDWARE
IMPLEMENTATION

This section gives a detailed discussion about the practical potential of permutation training on
specific hardware implementations, which also highlights the limitation of the current CPU or GPU-
based hardware in fully unleashing its hardware-friendly properties.

Although permutation training can achieve comparable or even slightly better performance for im-
age classification tasks (Qiu & Suda, 2020), this method may not take a significant advantage in
terms of purely performance comparison on current CPU or GPU-based hardware, compared with
the conventional free-training methods such as Adam (Kingma & Ba, 2015). This is mainly due to
the strong constraints posed by the extreme setting of permutation training. Besides, these general-
purpose architectures have not been specifically fine-tuned for this method, which is further com-
pounded by the lack of appropriate algorithms and initialization as discussed in Sect. 5.

However, we believe it is highly suitable for the design of physical neural networks (Nugent, 2005).
The benefits stem from the fact that in the realm of physical neural networks, reconnecting the
neurons is sometimes more convenient than changing the exact value. Therefore, permutation train-
ing may inspire alternative physical weight connection implementations, such as using fixed-weight
devices controlled by a permutation circuit (Qiu & Suda, 2020).

One promising application focuses on reconfigurability, since building large physical neural net-
works while ensuring reconfigurability is challenging (Nugent, 2005). The permutation circuit en-
ables the deployment and production of reconfigurable physical neural networks at a lower cost.
Such an approach has a close connection with the realm of continual learning (Maltoni & Lomonaco,
2019), and has already been applied to a fixed-weight network accelerator (Kosuge et al., 2021a;b).

Another kind of potential application scenario is the physical neural networks with an explicit struc-
ture to store the weight value, such as the integrated photonic tensor core, a computing chip with
specialized architecture (Feldmann et al., 2021). This design has been successfully employed by
international commercial companies in their photonic computing products. In each photonic tensor
core, an array of phase-change cells are organized to separately store each element of the weight
matrix, with their values adjusted through optical modulation of the transmission states of the cells.
However, permutation training indicates that, in addition to changing the exact value, it is feasible to
connect each cell with the permutation circuit for convenient reconnections. Therefore permutation
training can facilitate the learning process.

B PROOF OF LEMMA 1

The complete statement of Lemma 1 is as follows.

Lemma 1. For any function f∗(x) ∈ C([0, 1]) and any small number ε > 0, there is a piecewise
constant function g(x) with a common jump ∆h ≤ ε,

g(x) = ∆h

J∑
j=1

αjχ(x− sj), αj ∈ {−1,+1}, J ∈ Z+,

such that |g(x)− f∗(x)| ≤ ε for all x ∈ [0, 1]. Here χ(x) is the standard step function

χ(x) =

{
0, x < 0,
1, x ≥ 0.

Proof. The function g(x) can be constructed explicitly. According to the Stone-Weierstrass theorem
(Stone, 1948), we can assume f∗ to be a polynomial function for simplicity. Let the range of f∗ be
covered by an interval [β1∆h, β2∆h] with two integers β1, β2 ∈ Z. Then take sj as the values such
that f∗(sj) = (k + 0.5)∆h for some k ∈ Z. The sign of αj is determined according to the values
of f∗(x) on [sj−1, sj+1]. It is easy to verify such construction satisfies our requirements.
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C EXPLICIT EXPRESSION OF STEP FUNCTION APPROXIMATOR fNN
s

By substituting the choice of coefficients {pi, qi}4i=1 in Eq. (4) into Eq. (3) of fNN
s , the piecewise

form gives

fNN
s (x) =



2b1b4 − 2b2b3 −1 ≤ x < b1,

(−b1 + b4)x+ b21 + b1b4 − 2b2b3 b1 ≤ x < b2,

(−2b1 + 2b2)x+ b21 − b22 + b1b4 − b2b3 b2 ≤ x < b3,

(−b1 + b4)x+ b21 − b22 − b23 + b1b4 b3 ≤ x < b4,

b21 − b22 − b23 + b24 b4 ≤ x ≤ 1.

(9)

Although it was suggested by Cai et al. (2021) that a step function could be expressed as a combina-
tion of two ReLU basis functions, this approach is unsuitable for the approximation of the piecewise
constant function g in Lemma 1. The reason is as below.

Note a step function at x = s with height hs as fs(x) = hsχ(x − s). Then fs can be well
approximated by f̃s , which is a linear combination of two ReLU bases,

f̃s(x) =
hs
2ϵ

[ReLU(x− bi)− ReLU(x− bj)],

where ϵ is the error tolerance, and the biases are bi = s− ϵ and bj = s+ ϵ, respectively. Although
the construction of f̃s is similar to our network (2), it is not entirely suitable for us because the
coefficients are fully determined by the height of fs. Since our coefficients differ initially, this
method can not approach several step functions of the same height, which hinders approximating
the continuous functions with corresponding step functions.

D ELIMINATE THE IMPACT OF UNUSED PARAMETERS IN NETWORKS

Here we aim to eliminate the impact of the unused part in the network. Firstly we consider the
equidistant case with W (n) = (±bi)ni=1. Suppose that there is a total n̄ pair of unused basis func-
tions, where n̄ is an even number. Notice that at each location bi, we have a pair of basis functions
ϕ±i , which are either used together or not at all. Therefore, for each unused pair of basis functions
ϕ±i and the corresponding weights ±bi, we can form a linear function aiℓi(x) where

ℓi(x) := biϕ
+
i (x)− biϕ

−
i (x) = bix− b2i , (10)

and the sign ai = ±1 can be freely adjusted. The goal is to choose a proper sign a = {ai}n̄i=1 for
each linear function ℓi to control maxx∈[0,1] |Sℓ(x)|, the L∞-norm of the resulting function after
taking a sum, where

Sℓ(x) =
n̄∑

i=1

aiℓi(x) =

n̄∑
i=1

aibix−
n̄∑

i=1

aib
2
i . (11)

This problem is equivalent to controlling the slope of the resulting function
∑n̄

i=1 aibi with respect to
a when bi ∈ [0, 1], since it will simultaneously lead to an upper bound of the intercept

∑n̄
i=1 aib

2
i .

Therefore, the problem transforms into how to organize addition and subtraction operations of a
given series of numbers to reduce the abstract value of the final result. Lemma 2 provides a solution
with an upper bound related to the distance between the basis functions.

Proof of Lemma 2. The basic idea is applying the Leibniz’s test (known as alternating series test)
(Rudin, 1953) in mathematical analysis, which guarantees that an alternating series that decreases in
absolute value is bounded by the leading term. However, utilizing Leibniz’s test directly to {ci}n̄i=1

can only get a trivial upper bound
∑n̄

i=1 aibi ≤ c1 ≤ 1. Therefore, we need to first subtract them
pairwise to obtain a new sequence, where each element represents the gap between the elements in
{ci}n̄i=1, and then apply the Leibniz’s test to get the desired bound.
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Firstly we assume 1 ≥ c1 ≥ c2 ≥ · · · ≥ cn̄ ≥ 0, and note n̄ = 2ñ since it is an even number,
which is guaranteed from that n̄ is an even number, and the number of basis functions used in our
construction is always a multiple of 4. Then we can define a new series {ri}ñi=1 as

ri = c2i−1 − c2i, i = 1, 2, · · · , ñ.

Then we rearrange {ri}ñi=1 in descending order to have {r′i}ñi=1, and alternatively use addition and
subtraction operations on each element, leading to the result as

Sñ = r′1 − r′2 + r′3 − r′4 + · · · ≤ r′1 ≤ ∆c

Since ci ∈ [0, 1], i = 1, 2, · · · , n̄, the series {r′i}ñi=1 is bounded by 1, such that r′i → 0 as i → ∞.
Therefore, according to Leibniz’s rule, we know that Sñ can be bounded by r′1 ≤ ∆c.

Notice that r′1 may not necessarily equal ∆c since the biggest gap can possibly occur at the even-
numbered intervals. An example is for {ci}4i=1 = {100, 99, 2, 1}, the corresponding {ri}2i=1 =
{1, 1}, thus S2 < r′1 = 1 while ∆c = 97.

Next, for a sequence {ci}ni=1 without certain order and signs, we can rearrange them into a new
sequence {c′i}ni=1 in descending order of their value, and then perform the same operation as before.

Thanks to Lemma 2, we can construct a linear function with a controllable slope and intercept by
the unused part of the network. To estimate the error corresponding to the summation function Sℓ
in Eq. (11), we rewriting Sℓ = βx+ η, and note the L∞ error by

Eu(β, η) = max
x∈[0,1]

|Sℓ(x)| ≤ |β|+ |η|, β ∈ [0,∆b], η ∈ [−∆b2, 0]. (12)

Then it has the following upper bound as

Eu ≤ ∆b(1 + ∆b). (13)

As the network width increases, the basis function will become more dense, leading to ∆b→ 0 thus
Eu → 0.

For the case with randomly initialized weights W (n)
r = (±pi)ni=1, the basis functions ϕ±i located

at bi are equipped with weights ±pi to ensure that |bi − pi| =: δi to be small enough. A possible
method is to arrange both {bi}n̄i=1 and {pi}n̄i=1 in descending order and then pair the elements
at corresponding positions. Notice that pi and bi utilized by the subnetwork fNN

sub are also very
close to each other. Consequently, for a sufficiently large n̄, it is a high probability for each δi to
be small enough. because for any small number ε̄, the probability of δi ≤ ε̄, i = 1, 2, · · · , n̄ is
[1− (1− 2ε̄)n̄]n̄ ≤ 1− (1− 2ε̄)n̄

2

.

Therefore, the resulting linear function has a similar form to Eq. (10) as aiℓri , where

ℓri (x) := piϕ
+
i (x)− piϕ

−
i (x) = pix− pibi,

and the corresponding problem in Eq. (11) gives ∥Srℓ ∥L∞ , where

Srℓ (x) =
n̄∑

i=1

aiℓ
r
i (x) =

n̄∑
i=1

aipix−
n̄∑

i=1

aipibi

=

n̄∑
i=1

aipix−
n̄∑

i=1

aip
2
i +

n̄∑
i=1

aipiδi

=: βrx+ ηr

Thus by applying Lemma 2 to the series {pi}n̄i=1, we can get a choice of a0i , i = 1, 2, · · · , n, which
can bound the slope βr as

0 ≤ βr =

n̄∑
i=1

a0i pi ≤ ∆p (14)
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where ∆p is the largest gap between the elements in {pi}n̄i=1. For the intercept ηr, we apply sum-
mation by parts as

|ηr| ≤

∣∣∣∣∣−
n̄∑

i=1

a0i p
2
i

∣∣∣∣∣+
∣∣∣∣∣

n̄∑
i=1

a0i piδi

∣∣∣∣∣
≤ ∆p2 +

∣∣∣∣∣∣δn̄An̄ −
n̄−1∑
j=1

Aj(δj+1 − δj)

∣∣∣∣∣∣ ,
≤ ∆p2 + ε̄∆p+

n̄−1∑
j=1

|Aj | |δj+1 − δj |.

(15)

where Aj =
∑j

i=1 a
0
i (bi + ri), and An̄ = βr ≤ ∆p.

Here, we utilize Dirichlet’s test (Rudin, 1953) to control the last term on the right-hand side of Eq.
(15), which firstly requires an upper bound of Aj , j = 1, 2, · · · , n̄− 1. According to our processing
method in Lemma 2, it satisfies

|Aj | ≤ ∆p+ 1, j = 1, 2, · · · , n̄− 1.

since when j is even, |Aj | ≤ |An̄| ≤ ∆p. And for odd j, |Aj | ≤ |Aj−1|+|ajpj | ≤ ∆p+maxi |pi| =
∆p + 1. Next, since only a finite number of terms are being summed in Eq. (15), we can always
rearrange the summation to ensure that the rearranged series {δj′}n̄j′=1 is monotonically decreasing,
Therefore, by Dirichlet’s test, we have

|ηr| ≤ ∆p2 + ε̄∆p+

n̄−1∑
j′=1

|Aj′ | |δj′+1 − δj′ |

≤ ∆p2 + ε̄∆p+ (∆p+ 1)

n̄−1∑
j′=1

(δj′+1 − δj′) (16)

≤ ∆p2 + ε̄∆p+ (∆p+ 1)2ε̄ = ∆p2 +∆p(1 + 2ε̄) + 2ε̄ =: ∆ηr

Along with the estimation in Eq. (14) and (16), we can write the L∞ error similarly with Eq. (12)
as

Eu,r(βr, ηr) = max
x∈[0,1]

|Srℓ (x)| ≤ |βr|+ |ηr|, βr ∈ [0, ∆p], ηr ∈ [−∆ηr, ∆ηr].

Then it has the following upper bound as

Eu,r ≤ ∆p+∆p2 +∆p(1 + 2ε̄) + 2ε̄ = I + J , (17)

where

I = 2ε̄,

J = ∆p
[
∆p+ (2 + 2ε̄)

]
.

Notice that I depends solely on ε̄, while J has a common factor ∆p. Therefore, we can choose ε̄ to
ensure that I is small enough, then as the network width increases, the basis function will become
more dense, leading to ∆p→ 0 thus e2u,r can be arbitrarily small.

Additionally, this linear function construction also enables extending the UAP to deeper networks,
which is not very obvious when using permutation training. Notice that we can construct an identity
function y = x by a pair of basis functions ϕ±i as y = piϕ

+
i (x)− piϕ

−
i (x), where bi = 0, pi = 1. It

enables us to approach identity functions with subsequent layers, thus the situation of deep networks
is equivalent to the cases discussed in this paper. As a result, we can achieve UAP in deep networks.

E DETAILED PROOF OF THEOREM 1

For the piecewise constant function g =
∑J

j=1 fsj discussed in Lemma 1, we can denote the j-th
step function in g as fsj (x) = ajhχ(x− sj) with sj ∈ [bkj

, bkj+1), aj = ±1, where j = 1, · · · , J .
Then we consider the smallest distance among different step functions in g as a crucial parameter

δ0 = min
j=1,··· ,J−1

|sj − sj−1|.

16
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Therefore, we can choose n sufficiently large to ensure the distance between basis functions δ =
1

2n−1 <
δ0
8 to avoid the conflict between step function approximators.

For each fsj = ajhχ(x − sj), the approximator fNN
sj in (3) are constructed. We choose the basis

functions {ϕ±k }4k=1 corresponding to k ∈ {kj − 1, kj , kj + 1, kj + 2}. Under the configuration
principle in (4), we have aj [fNN

sj (x) + h
2 ] to approximate fsj (x) = ajhχ(x − sj) with error h =

8d2 = 8δ2. Note that fNN
sj (x) + h

2 = fsj (x) if x /∈ [bkj−1, bkj+2], where the intervals do not
intersect since δ < δ0/8 is small enough. As a result, we have∣∣∣∣∣∣

J∑
j=1

aj

[
fNN
sj (x) + h

2

]
−

J∑
j=1

ajhχ(x− sj)

∣∣∣∣∣∣ ≤ h, ∀x ∈ [0, 1]. (18)

Denote K = {1, 2, ..., n} as the index of the location B(n), and Kused = ∪Jj=1{kj − 1, kj , kj +
1, kj + 2} for the basis functions used by approximators. Then the Eq. (18) can be rewritten as∣∣∣∣∣ ∑

k∈Kused

[
pkϕ

+
k (x) + qkϕ

−
k (x)

]
+
h

2
J ′ − h

∆h
g(x)

∣∣∣∣∣ ≤ h,
where J ′ =

∑J
j=1 aj < J . Besides, a large enough n can also ensure that the error introduced by

the unused parameters

Eu = max
x∈[0,1]

∣∣∣∣∣∣
∑

k∈K/Kused

[pkϕ
+
k (x) + qkϕ

−
k (x)]

∣∣∣∣∣∣ ≤ h.
Therefore, the whole approximation reads∣∣fNN(x)− g(x)

∣∣
≤

∣∣∣∣∣∆h2h ∑
k∈Kused

[
pkϕ

+
k (x) + qkϕ

−
k (x)

]
+

∆h

2

(
J ′

2
− C

h

)
− g(x)

∣∣∣∣∣+ ∆h

2h
Eu ≤ ∆h, ∀x ∈ [0, 1].

(19)

where we set ∆h < ε, α = ∆h
2 (J

′

2 −
C
h ), γ = ∆h

2h . This allows us to prove the Theorem 1.

Proof of Theorem 1. According to Lemma 1, there is a piecewise constant function g(x) with a
constant height ∆h ≤ ε/2 such that |g(x) − f∗(x)| ≤ ε/2. Using the construction (19), we have
|g(x)− fNN(x)| ≤ ε/2. Then we have |fNN(x)− f∗(x)| ≤ ε for all x ∈ [0, 1].

F THE CONSTRUCTION OF CONSTANT FUNCTION APPROXIMATORS

In the equidistant case, we can construct a step function approximator to provide the necessary shift
for each fNN

s = C. It also offers another method to eliminate the impact of the unused part of the
network.

Following the same form in Eq. (3), a constant function approximator fNN
c = C for some constant

C can be constructed. The coefficients {pi, qi}4i=1 are set to equalize the height of the two constant
pieces x < b1 and b4 ≤ x, leading to −

∑4
i=1 pibi =

∑4
i=1 qibi. A choice that satisfied these

relationships is {
p1 = −b1, p2 = +b2, p3 = +b3, p4 = −b4,
q1 = +b1, q2 = −b2, q3 = −b3, q4 = +b4.

(20)

It gives a representation of constant C = 2d(b4 − b2). The symmetry of coefficients vanishes the
approximation error, i.e., ∥fNN

c −fc∥∞ = 0. We can then create a negative constant−C by changing
the sign of pi, qi in Eq. (20). Since there are 2n basis functions in total, we can choose {±bi}4i=1
to form a step function approximator, then select another odd or even number of sets for the shifting
scale, leaving the unused bi in pairs to offset with each other.
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G DETAILED PROOF OF THEOREM 2

Now we move to the case of fixed γ = 1, α = 0 by refining the previous construction. Note that the
construction in the proof of Theorem 1 needs α = ∆h

2 (J
′

2 −
C
h ) and γ = ∆h

2h , where h = 8δ2 < δ0
can be choosed much smaller than ∆h, leading to a large scaling factor γ ≫ 1. Since ∆h and
δ = 1

2n−1 have some flexibility, we can adjust γ to be an integer M ∈ Z+, i.e. ∆h = 2Mh. It
implies that we can stack fNN

sj (x) in Eq. (3) M times (instead of multiplying by γ) to match the
desired height. Notice that each basis function is used uniquely, here we create some pseudo-copies
of fNN

sj (x), which are not entirely equal but very close. The approach is constructed as follows.

Following the previous discussion we construct each fNN
sj with ∆h = 2Mh, h = 8δ2 and δ = 1

2n−1 .
Then we control M = 2m+ 1 as an odd number and refine the basis functions from fNN

sj to f́NN
sj by

changing n to n′ = 2mn + n −m such that δ′ = 1
2n′−1 = δ

M . Next, we divide the refined basis
functions f́NN

sj into M groups, and organize them following the configuration of fNN
sj along with the

required shift. Then we haveM pseudo-copies of fNN
sj (x) denoted by f́NN

sj ,l
(x), l = 1, 2, ..,M . These

pseudo-copies have the same height and their summation approximates fsj (x) as well asMfNN
sj (x).

Similarly, we can also choose a sufficiently large n to ensure that

E′
u = max

x∈[0,1]

∣∣∣∣∣∣
∑

k′∈K′/K′
used

[pk′ϕ+k′(x) + qk′ϕ−k′(x)]

∣∣∣∣∣∣ ≤ ∆h

2
.

Consequently, we have

|f́NN(x)− g(x)| =

∣∣∣∣∣∣
∑

k′∈K′
used

[pk′ϕ+k′(x) + qk′ϕ−k′(x)] + C ′ − g(x)

∣∣∣∣∣∣+ E′
u ≤ ∆h, ∀x ∈ [0, 1].

(21)

Here the constant C ′ comes from the construction of the constant function approximators, which
can be small enough for a sufficiently wide network. If C ′ < ∆h, then omitting C ′ will not affect
the approximation result.

Proof of Theorem 2. Similar to the proof of Theorem 1, using the refined construction in Eq. (21),
we can finish the proof.

H ESTIMATING THE APPROXIMATION RATE IN SECTION 3.4

This section gives a detailed estimation of the step function approximation error in Eq. (8). The
piecewise form of step function approximator fNN

s in Eq. (9) enables us to subdivide the error into
four parts like

e2s =

∥∥∥∥(fNN
s +

h

2

)
− fs

∥∥∥∥2
L2

=

∫ 1

0

∣∣∣∣[fNN
s (x) +

h

2

]
− fs(x)

∣∣∣∣2 dx
=

∫ s

b1

∣∣∣∣fNN
s (x) +

h

2

∣∣∣∣2 dx+

∫ b4

s

∣∣∣∣fNN
s (x)− h

2

∣∣∣∣2 dx
=A+ B + C +D,

(22)

where

A =

∫ b2

b1

∣∣(−b1 + b4)x+ b21 + b1b4 − 2b2b3 − (2b1b4 − 2b2b3)
∣∣2 dx,

B =

∫ s

b2

∣∣(−2b1 + 2b2)x+ b21 − b22 + b1b4 − b2b3 − (2b1b4 − 2b2b3)
∣∣2 dx,

C =
∫ b3

s

∣∣(−2b1 + 2b2)x+ b21 − b22 + b1b4 − b2b3 + (2b1b4 − 2b2b3)
∣∣2 dx,

18
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D =

∫ b4

b3

∣∣(−b1 + b4)x+ b21 − b22 − b23 + b1b4 − (b21 − b22 − b23 + b24)
∣∣2 dx.

Before calculating the integral in (22) separately, beware that the {bi}4i=1 are chosen to be symmet-
rical on both sides of the jump point x = s as

b1 = s− k2, b3 = s+ k1, (23)
b2 = s− k1, b4 = s+ k2, (24)

which makes the integral range of error also symmetrical about the jump point (i.e., A = D and
B = C). So we only need to calculate the first two parts, which give

A =

∫ b2

b1

∣∣(−b1 + b4)x+ b21 − b1b4
∣∣2 dx

=

[
(−b1 + b4)x+ b21 − b1b4

]3
3(−b1 + b4)

∣∣∣∣∣
b2

b1

= −1

3
(b1 − b2)3(b4 − b1)2,

and

B =

∫ s

b2

∣∣(−2b1 + 2b2)x+ b21 − b22 − b1b4 + b2b3
∣∣2 dx

=

[
(−2b1 + 2b2)x+ b21 − b22 − b1b4 + b2b3

]3
3(−2b1 + 2b2)

∣∣∣∣∣
s

b2

= −1

6
(b1 − b2)2(b2 − b3)

[
12b21 + b22 + 4b2b3 + 7b23 − 6b1(b2 + 3b3)

]
.

Thus the error gives

e2s = −1

3
(b1 − b2)2

[
8b31 − b32 − b22b3 + b2b

2
3 − 7b33 − 4b21(b2 + 5b3) + 4b1(b

2
2 + 5b23)

]
.

By applying the relation in Eq. (23) and considering d = k2 − k1, we get the form in Eq. (8).

Next, we estimate the error of our pseudo-copy f́NN
sl

. The triangle inequality is adopted to estimate
the overall approximation error of these stacked {f́NN

sl
}Ml=1 to a predetermined step function, i.e.,

es =

∥∥∥∥∥
(

M∑
l=1

f́NN
sl

+
h

2

)
− fs

∥∥∥∥∥
2

≤
M∑
l=1

∥∥∥∥(fNN
sl

+
h

2M

)
− 1

M
fs

∥∥∥∥
2

=:

M∑
l=1

esl . (25)

Now we focus on the approximation error esl of each fNN
sl

to the fs/M . However, the result in Eq.
(8) cannot be directly adopted since it only holds for the symmetry case (23), which is unlikely to be
satisfied by each fNN

sl
due to uniquely utilized biases. Instead, we can choose biases that are nearly

symmetrical, with some mismatch measured by ∆s. Therefore, the relation of the mismatched
biases {b̃i}4i=1 in Eq. (23) is transformed into

b̃1 = (s+∆s)− k2, b̃3 = (s+∆s) + k1,

b̃2 = (s+∆s)− k1, b̃4 = (s+∆s) + k2.
(26)

Based on Eq. (9), it’s clear that this transformation is equivalent to shifting fNN
s (x) to fNN

s (x−∆s).
Consequently, each esl in Eq. (25) is estimated by a similar form used in Eq. (22), given by

e2si =

∫ 1

−1

∣∣∣∣[fNN
si (x−∆s) +

h

2M

]
− 1

M
fs(x)

∣∣∣∣2 dx
=

∫ s

b1+∆s

∣∣∣∣fNN
si (x−∆s) +

h

2M

∣∣∣∣2 dx+

∫ b4+∆s

s

∣∣∣∣fNN
si (x−∆s)− h

2M

∣∣∣∣2 dx,
(27)
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where the integral range [b1 + ∆s, b4 + ∆s] is not symmetrical about x = s due to the mismatch.
However, since ∆s is small, we can assume that b2 + ∆s ≤ s ≤ b3 + ∆s, then follow the similar
procedure as used in Eq. (22) to divide the error in Eq. (27) into four parts. Thanks to the integration
by substitution, the integral over [b1 +∆s, b2 +∆s] and [b3 +∆s, b4 +∆s] is identical to the first
and last part A and D in Eq. (22), respectively. Therefore, we only need to evaluate the integral
over the middle interval [b2 +∆s, b3 +∆s]. Considering the relationship (23) and d = k2− k1, we
obtain the following expression

e2si =A+

∫ s

b2+∆s

∣∣(−2b1 + 2b2)(x−∆s) + b21 − b22 − b1b4 + b2b3
∣∣2 dx

+

∫ s

b2+∆s

∣∣(−2b1 + 2b2)(x−∆s) + b23 − b24 + b1b4 − b2b3
∣∣2 dx+D

=
8

3
(k1 − k2)2

[
k31 + 3k21k2 + 2k1k

2
2 + k32 + 3∆s2(k1 + k2)

]
=− 8

3
d2
(
d3 − 6d2k2 + 11dk22 − 7k32 + 3d∆s2 − 6k2 ∆s

2
)
.

Since ∆s can be assumed to be small asO(d), we can obtain an estimation similar to Eq. (8), where
esi ∼ O(d5/2).

I DETAILED PROOF OF THEOREM 3

In the extension of our equidistant situation to the commonly used random initializations, the basic
proof ideas remain unchanged, but the error introduced by randomness must be carefully controlled.
The estimation of the equidistant case is based on the symmetry construction of the step function ap-
proximator, which is invalid with random initializations because we can’t always locate the desired
basis function accurately. However, as the width increases, the randomly sampled basis functions
will become denser, thus approaching the equidistance case. Therefore, we can argue that for a suf-
ficiently wide network, it is highly possible to find a basis function that closely matches the location
required for the construction of step function approximators.

The proof begins with applying Theorem 1, which indicates that for any error threshold ε and con-
tinuous function f∗, there is an equidistantly initialized network fNN in Eq. (2) with parameters
B

(n)
∗ = (bi)

n
i=1 and W (n)

∗ = (±bi)ni=1, such that

∥fNN − f∗∥L∞ < ε/6.

Next, for a sufficiently wide network initialized randomly from uniform distributions, we can find a
subnetwork fNN

sub with parameters {B(n)
r ,W

(n)
r }, which can be viewed as randomly perturbed from

fNN as

B(n)
r = (bi + rBi )ni=1, W (n)

r =
(
± (bi + rWi )

)n
i=1

,

where rBi ∼ U [−∆rB ,∆rB ]n, rWi ∼ U [−∆rW ,∆rW ]2n measured the perturbation, and ∆rB ,
∆rW are the maximum allowable disturbance range of B(n)

∗ and W (n)
∗ , respectively. Consequently,

for sufficiently small ∆rW , ∆rB , the subnetwork will also process the approximation power, and
the approximation error Es,r gives

Es,r := ∥fNN
sub − f∗∥L∞ < ε/3. (28)

Therefore, for the case ∆r := ∆rB = ∆rB , the probability of finding at least one basis function
in the interval [bi − ∆r, bi + ∆r] is 1 − (1 − 2∆r)n/4J , because for each step function, we have
n/J uniformly distributed basis functions, where J is the number of step function that needs to be
approximated. It also holds for the probability of coefficients W (n)

r . Thus, under the probability of
[1− (1− 2∆r)n/4J ]8, we can construct a similar step function approximator fNN

s,r like Eq. (3) using
the basis functions located at {bi + ri}4i=1. Hence the approximator of the target function f∗ can be
achieved with the probability of

P
[
Es,r < ε/3

]
= [1− (1− 2∆r)n/4J ]8J ≤ 1− (1− 2∆r)2n. (29)
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To be consistent with the setting in Theorem 3, where B(n)
r ∼ U [0, 1]n and W (n)

r = (±pi)ni=1,
pi ∼ U [0, 1], we can impose further constraints on the parameters near the boundary of [0, 1] to
prevent them from exceeding the range of [0, 1]. The formal proof is given as follows.

Proof of Theorem 3. For any ε > 0 and f∗ ∈ C[0, 1], we can choose a small ∆r = ε̄ to ensure that

1. Es,r < ε/3 based on Eq. (28);

2. I < ε/3 based on Eq. (17).

Then let n sufficiently large to enable that

1. P
[
Es,r < ε/3

]
≥ 1− δ based on Eq. (29);

2. J < ε/3 based on Eq. (17).

Hence, the overall approximation error of our network fNN
r with random initialization to the target

function f∗ can be

|fNN
r (x)− f∗(x)| ≤ Es,r + Eu,r ≤ Es,r + I + J < ε, x ∈ [0, 1]. (30)

Hence we can finish the proof.

J ADAM-BASED LAPERM ALGORITHM

Here we briefly introduce the Original Adam-based LaPerm algorithm with a fixed permutation
period k in Qiu & Suda (2020). The pseudocode is shown in Algorithm 1.

Algorithm 1 Original Adam-based LaPerm algorithm
Require: Loss function L, initial weights W , training set DT

Require: Permutation period k, Maximum training epoch Me

Require: Inner optimizer Adam
θ0 =W // Initialize the weights
for t = 1, 2, . . . ,Me do
θt ← Adam(L, θt−1, DT ) // Free training by Adam
if k divides t then
θt ← τt(W ) // Apply the permutation

end if
end for

This algorithm rearranges the initial weightsW guided by the order relationship of θt, so the trained
weights will hold the initial value for all t = 1, 2, . . . ,Me. Therefore, it can be regarded as a
permutation of the initial weights W .

Moreover, we propose an alternative permutation algorithm based on a simple intuition. Since the
permutation requires the order relationships encoded by the training process, the permutation should
be applied after learning a certain amount of information. To achieve this, we gradually increase the
permutation period k during training to match it with the slower weight update induced by a decaying
learning rate of the optimizer. It will guarantee that sufficient information is learned to guide the
next permutation.

In this way, we propose a relaxed LaPerm algorithm, which allows for an adjustable k that exponen-
tially increases during the training process with a coefficient γk. The pseudocode for this algorithm
is shown in Algorithm 2.
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Algorithm 2 Relaxed LaPerm algorithm
Require: Loss function L, initial weights W , training set DT

Require: Permutation period k, Maximum training epoch Me, exponential decay coefficient γk
Require: Inner optimizer Adam
θ0 =W // Initialize the weights
for t = 1, 2, . . . ,Me do
θt ← Adam(L, θt−1, DT ) // Free training by Adam
if k divides t then
θt ← τt(W ) // Apply the permutation
k ← k/(γk)

t // Adjust the period k
end if

end for

K APPROXIMATING THE TWO-DIMENSIONAL CONTINUOUS FUNCTIONS

As a natural extension, we consider a two-dimensional functions z = − sinπxy, where (x, y) ∈
[−1, 1]× [−1, 1], starting with the construction of basis functions like ϕ±i (x) in Eq. (1). Recall that
in the one-dimensional case, the two subsets of basis ϕ±i (x) correspond the two opposite directions
along the x-axis. Therefore, at least four directions are required to represent a function defined on
the xy-plane, of which two are parallel to the x-axis as ϕ±i (x, ·) = ReLU(±(x−bi)) and ϕ±j (·, y) =
ReLU(±(y − bj)) for y-axis, respectively. Furthermore, inspired by the lattice Boltzmann method
in fluid mechanics (Chen & Doolen, 1998), we introduce another four directions as ψ±±

k (x, y) =
ReLU(±x±y−bk). So the whole basis functions are divided into eight subsets, each corresponding
to a different direction (see Fig. 5(b)). Also, the range of biases is essential since the distribution
of ψ±±

k (x, y) must be at least
√
2-times wider to cover the entire domain. Here we set the biases

to range in varying directions with a uniform scaling factor, providing flexibility in dealing with the
unwanted coefficients.

Figure 5: (a) Approximating two-dimensional continuous function z = − sinπxy, where x, y ∈
[−1, 1]× [−1, 1]. The inset panel presents the target function surface and an example of the approx-
imation result as dots. (b) The two-dimensional basis function settings.

Accordingly, we utilize a 2-8n-1-1 network architecture and follow the same setting as before (refer
to App. L). The results depicted in Fig. 5(a) also show good approximation power. However, the
1/2 convergence rate in previous cases cannot be attained here. We hypothesize that this is due to
our preliminary eight-direction setting of the basis functions. This degeneration indicates the chal-
lenge of extending our theoretical results to higher dimensions. Further research will address this
difficulty by considering more appropriate high-dimensional basis function setups. One possible
solution is utilizing ReLU-generalized multi-variable activation functions such as the Maxout acti-
vation function Goodfellow et al. (2013), which would provide more flexibility to our approximator
construction. Another promising way is allowing the fixed weights in the first hidden layer to be
permuted, which is not applicable for scalar input but may be helpful in high-dimensional cases.

Moreover, as discussed in Sect. 4.4, the mismatch between the existing implementations and the
permutation setting poses numerical challenges of permutation training in higher dimensions. The
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performances are significantly affected by the algorithm implementations and initialization settings,
both of which need further investigation and are beyond the scope of this work. We hope our
work can inspire and motivate the development of more sophisticated implementations specific to
permutation training.

The permutation training, as a numerical algorithm, can be directly applied to high-dimensional
cases, even if it requires a significantly larger network width. Using a similar numerical setting,
we can also approximate functions with three-dimensional inputs. Here we consider f(x, y, z) =
sin 3x · cos y · sin 2z, where (x, y, z) ∈ [−1, 1]3. The results plotted in Fig. 6 demonstrate a certain
degree of approximation power. However, a degeneration convergence rate from 1/2 to 1/6 also
indicates the theoretical limitations of the current construction.

(b)(a)

Figure 6: Approximating three-dimensional continuous function f(x, y, z) = sin 3x · cos y · sin 2z,
where (x, y, z) ∈ [−1, 1]3. (a) The convergence behavior under random seed 2022. (b) The three-
dimensional illustration of the target function, where the function value f(x, y, z) is plotted by the
corresponding color in the color bar.

L THE EXPERIMENTAL SETTING

To establish the convergence property upon increasing the width of the network, we sample the
training points randomly and uniformly in [−1, 1], along with equidistantly distributed test points.
The maximum training epoch is sufficiently large to ensure reaching the stable state. For the two-
dimensional case, we set the basis functions at a larger domain than the functions to ensure accuracy
near the boundary. The scale is measured by Tb, which means the biases are in [−1− Tb, 1 + Tb] in
each dimension. The detailed choice is in Table 1.

Table 1: Hyperparameters setting.
Hyperparameters 1D

Architectures 1-2n-1-1
k 5
Batch size 16
# training points 1600
# test points 400
Tb 0

n {10, 20, 40, 80, 160, 320}
# epoch 6400
Learning rate (LR) 1e-3
Multiplicative factor of LR decay 0.998
Multiplicative factor of k increase 10

√
1.002

The experiments are conducted in NVIDIA A100 Tensor Core GPU with a 40GB PCIe interface.
However, our code is hardware-friendly since each case only consumes approximately 2GB of mem-
ory. The code implementation uses torch.multiprocessing in PyTorch 2.0.0 with ten different random
seeds, namely 2022, 3022, · · · , 12022. Additionally, the training data of each case is sampled under
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the random seed 2022 to ensure that they are comparable. The choice of hyperparameters in the
multi-dimensional cases is listed in Table 2.

Table 2: Hyperparameters setting of multi-dimensional cases.
Dimensions

Hyperparameters 2D 3D

Architectures 2-8n-1-1 3-26n-1-1
k 5 20
Batch size 128 640
Tb 0.75
# training points 51200
# test points 12800

n {10, 20, 40, 80, 160, 320}
# epoch 6400
Learning rate (LR) 1e-3
Multiplicative factor of LR decay 0.998
Multiplicative factor of k increase 10

√
1.002

M SAMPLE OF PERMUTED NETWORKS

Fig. 7 gives an example of the represented functions with different permutations, which provides a
first impression of the output functions of permuted networks. Here the weights W (n) in the second
hidden layer will be initialized in various ways.
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Ascending: W (n) = (−1, , 1)

Descending: W (n) = (1, , − 1)

Random 1
Random 2
Random 3

Figure 7: The initial function fNN
s with different initial order in W (n), whose order is arranged as

ascending, descending, and random using different random seeds 2022, 2046, 4096, respectively.

Fig. 8 gives an example of the step function approximator fNN
s of a target function fs.

N THE IMPACT OF PERMUTATION PERIOD k’S VALUE ON CONVERGENCE
BEHAVIOR

As a hyperparameter, the choice of permutation period k during the implementation of LaPerm
algorithms has the possibility to affect the convergence behavior. Qiu & Suda (2020) reported an
unambiguous correlation between the value of k and the final accuracy (refer to Fig. 6 in Qiu &
Suda (2020)). Generally, a larger k is associated with slightly higher accuracy of single permutation
training result, thus in our experiments, the weights are permuted after each k epoch. Fig. 9 evaluates
the impact of k’s value on convergence behavior, whose results suggest that this effect remains
negligible.
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Figure 8: Approximating the step function fs at s = 0.3 with a height h = 0.12 by fNN
s in Eq. (3),

where b1 = 0.1, b2 = 0.2, b3 = 0.4, b4 = 0.5.
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Figure 9: Approximating one-dimensional continuous function y = a0+a1 sin(πx)+a2 cos(2πx)+
a3 sin(3πx) with equidistantly initialized network, where x ∈ [−1, 1], and the value of permutation
period k = 1, 3, 5, 10, 20, respectively. The inset in each panel presents the target function as lines
and an example of the approximation result as dots.
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O GENERALIZE TO THE NETWORKS EQUIPPED WITH LEAKY-RELU

Extending our outcomes to leaky-ReLU can be straightforward. This is because of the two crucial
techniques deployed in our proof, specifically, constructing the step function approximators and
eliminating the unused parameters, both of which can be readily applied to the leaky-ReLU.

Since our two-direction setting of basis function ϕ± in Eq. (1) can impart leaky-ReLU with symme-
try equivalent to ReLU, it’s feasible to construct a similar step function approximator by rederiving
the relevant coefficient pi, qi. Furthermore, the existing eliminating method can be directly em-
ployed for leaky-ReLU, due to the capacity to reorganize a pair of leaky-ReLU basis functions into
linear functions for further processing.

As an initial attempt, we numerically examine the networks equipped with leaky-ReLU by only
changing the activation function in the case of Fig. 2(a). The results plotted in Fig. 10 provide clear
evidence of the approximation power of networks equipped with leaky-ReLU.
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Figure 10: Approximating one-dimensional continuous function y = − sin(2πx) with equidistantly
initialized network equipped with leaky-ReLU, where x ∈ [−1, 1]. The inset in each panel presents
the target function as lines and an example of the approximation result as dots.

Nonetheless, the approximation based on leaky-ReLU may result in different constants during the
proof, leading to potential discrepancies in details like the approximation order when compared with
the ReLU-based conclusions.

P EXTENDING THE RESULTS TO MORE COMPLICATED ARCHITECTURES

Here we discuss how to extend our UAP result to the networks with deeper architecture, residual
connections, or sparse initializations. Our work follows the conventional setting of free training
UAP study and primarily focuses on shallow fully connected networks. This is based on the premise
that the conclusions can be readily extended to scenarios involving deeper networks or those incor-
porating residual connections.

As for deep networks, the application of permutation training may inhibit a direct extension of the
previous methodology. However, our approach facilitates a direct implementation within deeper
networks. Note that we can construct an identity function y = x using a pair of basis functions
y = piϕ

+
i (x) + qiϕ

−
i (x), where bi = 0, pi = 1, qi = −1. This process enables us to utilize identity

functions within subsequent layers by adding a certain pair of parameters. Consequently, the deep
networks scenario parallels the cases discussed in this paper, which allows us to realize UAP within
deep networks.

The case of networks with residual connections can be addressed following the conventional way.
Denoting a residual block as xk+1 = F (xk) + xk, where xk and xk+1 are the inputs and outputs,
respectively, along with the fully connected subnetwork F . The problem can be transfigured into
learning xk+1 − xk, the difference between inputs and outputs, with a network F , thereby can be
solved by our proved UAP results.

26



Under review as a conference paper at ICLR 2024

Additionally, this paper’s conclusions could be extended to sparse initialization scenarios, an area
where permutation training shows significant advantages (see Fig. 6(e) in Qiu & Suda (2020)). In
our future research, we aim to theoretically depict this immense potential. On an intuitive level,
our proof can explain the advantages of permutation training in sparsity scenarios. Notice that a
primary challenge of permutation training is managing unused basis functions. However, in sparse
situations, we can conveniently deal with these remaining basis functions simply by assigning them
a zero coefficient, thereby facilitating the approximation process.

Q SUPPLEMENTARY FIGURES FOR ONE-DIMENSIONAL CASES

Apart from the pairwise random initializations presented in Fig. 2, we also conduct the experiments
under the equidistant scenario related to Theorem 1. The results are plotted in Fig. 11, and the
reference dash lines are in the same position as in Fig. 2 for the convenience of comparison. It can
be found that the randomly initialized cases exhibit some performance advantages, especially in the
convergence rate.
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Figure 11: Approximating one-dimensional continuous function (a): y = − sin(2πx) and (b): y =
1
2 (5x

3 − 3x) with equidistantly initialized network, where x ∈ [−1, 1]. The inset in each panel
presents the target function as lines and an example of the approximation result as dots.

Next, we consider a more complicated example with some multiscale behaviors by choosing a
fourth-order Fourier series with random coefficients like

y = a0 + a1 sin(πx) + a2 cos(2πx) + a3 sin(3πx), x ∈ [−1, 1], (31)

where the coefficients are randomly chosen in [0.1] as {0.3958, 0.9219, 0.7588, 0.3811} from the
random seed 2022. The approximation results are plotted in Fig. 12, which again shows the ap-
proximation ability of the complicated continuous function. The hyperparameters are set as Table 3,
where the values highlighted in bold are chosen to be different from the case in Table 1.

40 80 160 320 640 1280
n

10 2

10 1

100

L
∞

 e
rr

or

1/2 order
Original
Relaxed

1 1x

1

0

1

2

y

n= 160

(a): Random initialization
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(b): Equidistant initialization

Figure 12: Approximating one-dimensional continuous function y = a0 + a1 sin(πx) +
a2 cos(2πx) + a3 sin(3πx) with (a): pairwisely randomly initialized and (b): equidistantly ini-
tialized network, where x ∈ [−1, 1]. The inset in each panel presents the target function as lines and
an example of the approximation result as dots.
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Table 3: Hyperparameters setting of Fig. 12.
Hyperparameters

Architectures 1-2n-1-1
k 20
Batch size 16
# training points 12800
# test points 3200
Tb 0

n {40, 80, 160, 320, 640, 1280}
# epoch 6400
Learning rate (LR) 1e-3
Multiplicative factor of LR decay 0.998
Multiplicative factor of k increase 10

√
1.002
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