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ABSTRACT

Multilingual generative models obtain remarkable cross-lingual capabilities
through pre-training on large-scale corpora. However, they still exhibit a per-
formance bias toward high-resource languages, and learn isolated distributions of
sentence representations across languages. To bridge this gap, we propose a sim-
ple yet effective alignment framework exploiting pairs of translation sentences.
It aligns the internal sentence representations across different languages via mul-
tilingual contrastive learning and aligns model outputs by answering prompts in
different languages. Experimental results demonstrate that even with less than 0.1
‰ of pre-training tokens, our alignment framework significantly boosts the cross-
lingual abilities of generative models and mitigates the performance gap. Further
analysis reveals that it results in a better internal multilingual representation dis-
tribution of multilingual models.

1 INTRODUCTION

Multilingual generative language models achieve impressive universality across many languages by
pre-training on large-scale unsupervised multilingual corpora (Liu et al., 2020; Xue et al., 2021; Lin
et al., 2022; Scao et al., 2022; Soltan et al., 2022; OpenAI, 2022). However, models still show a
strong language bias toward high-resource languages (Asai et al., 2023), even the state-of-the-art
multilingual generative models like GPT-4, exhibiting a 27.5% relative performance gap between
English and Telugu in MMLU (OpenAI, 2023). This challenge partly arises from the significant
linguistic resource imbalance among languages, which is hard to address solely through corpus
scaling or balancing. Given such a model with language bias and the huge cost of re-training, how
can we improve its cross-language capabilities and alleviate the language bias using limited data?

Through visualizing the sentence representations in the multilingual generative model by mean pool-
ing, we find that there is a distinct gap between the sentence representation distributions for differ-
ent languages like Figure 1(a) (the multilingual ones are shown in Appendix B.3). This is similar
to learning representations for each language separately in the model, which is more challenging
for multilingual models to transfer the knowledge learned from other languages. It is interesting to
investigate whether the cross-lingual ability of multilingual generative models will be promoted by
learning a better-aligned representation distribution.

To address the above issues, we propose a cross-lingual alignment framework named Align aFter
Pre-train (AFP), which aims to exploit translation pairs to narrow the gap between languages in the
multilingual generation model. To be specific, our method can be divided into the following two
modules: 1) Multilingual Contrastive Learning (MCL) on internal representations: we treat a
pair of translation sentences between two languages as the positive example for contrastive learning,
and pull the sentence representations in two languages to be closer within the multilingual generated
model. This method intends to reduce the differences between languages from the internal repre-
sentations of the model. 2) Cross-lingual Instruction Tuning (CIT) on the outputs: models must
learn to answer in the target language given a prompt from the source language. It requires models
to obtain a better cross-lingual understanding and generation ability.

After extensive experiments and evaluation, it can be found that AFP greatly improves the perfor-
mance of multilingual generative models, including XGLM and BLOOM, in cross-lingual natural
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Figure 1: (a, b) Our method aligns the internal EN-ZH sentence representations of XGLM564M,
which are shown in t-SNE. (c) And it also mitigates the performance gap on XNLI.

language inference, multilingual reasoning, and other tasks using less than 1M parallel samples. The
performance gap between languages is much mitigated, e.g., the relative performance gap reduces
6.53% in 0-shot performance of XNLI between English and Chinese (Figure 1(c)). Our method also
advances the performance on unseen languages for models, e.g., the Chinese performance of Llama,
which is pre-trained on the corpus mainly in English (Touvron et al., 2023a;b). Further analysis re-
veals that the alignment between languages in the model has been improved as illustrated in Figure
1(b) after training via AFP. In addition, experimental results show that the cross-lingual instruction
tuning task improves cross-lingual capabilities more than the multilingual instruction tuning task
with the same parallel samples.

To sum up, our contribution lies in two aspects:

• We propose a simple yet effective cross-lingual alignment framework named AFP, includ-
ing the internal representation alignment (MCL) and output alignment (CIT), to exploit
the parallel corpus. Quantitive analysis shows that the internal multilingual representation
distributions have been improved after using AFP.

• Experimental results demonstrate that our method greatly improves the cross-lingual ability
of generative models, including multilingual ones and models pre-trained on English cor-
pus, by using less than 1M parallel samples. After alignment, models can also be applied
with other methods to enhance performance further.

2 ALIGNING MULTILINGUAL REPRESENTATIONS AND OUTPUTS OF
GENERATIVE MODELS

As shown in Figure 2, our framework AFP contains the following two modules: 1) Multilingual
contrastive learning (Section 2.1), which aims to align the internal representations of models across
different languages. 2) Cross-lingual Instruction Tuning (Section 2.2), which requires models to
align the outputs between different languages.

2.1 MULTILINGUAL CONTRASTIVE LEARNING

To align the internal multilingual representation of models, we exploit the contrastive learning
method, which is generally found effective in aligning the representations from different modalities
in multi-modal work (Radford et al., 2021; Xu et al., 2021; Liang et al., 2022). Hence, translation
pairs are regarded as positive instances with closely aligned semantics in multilingual contrastive
learning, and we pull their internal representations closer. The other sentences in the same batch are
taken as the negative samples for the translation pair.

Formally, to align the l-th layer of model f(θ), the sentence representations (hi, h
+
i ) is calculated

as follows:
hi = g(fl(si; θ)), h

+
i = g(fl(s

+
i ; θ)) (1)

where fl(·) represents the output from the l-th layer, g(·) is the pooling method to obtain the sentence
representation for decoder models, e.g., mean pooling or max pooling, and (si, s

+
i ) is a parallel

sample from D = {(s1, s+1 ), ..., (sn, s+n )}. We determine the specific layer to align according to
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Figure 2: Illustration of how to align the internal representations and outputs of multilingual gen-
erative models in AFP. (I) Given a translation parallel sample as the positive sample, multilingual
contrastive learning pulls their representations together and pushes apart the ones from other sam-
ples. (II) Multilingual generative models are required to answer in the target language to align the
outputs across languages.

the performance of models on the dev set, and we find that the first layer after embedding comes to
better performance (please refer to Section 3.2.2 for more details). Then, the training objective of
Multilingual Contrastive Learning (MCL) is:

LMCL(θ) = E
(si,s

+
i )∼D

[
−log

(
esim(hi,h

+
i )/τ∑

j e
sim(hi,hj)/τ

)]
(2)

where sim(·) is used to determine the similarity between representations, which is cosine similarity
in this work, hj is the sentence representation of sj in the mini-batch containing (si, s

+
i ), and τ is a

temperature hyper-parameter.

2.2 CROSS-LINGUAL INSTRUCTION TUNING

To further align the output of multilingual generative models, we introduce a method named Cross-
lingual Instruction Tuning (CIT), which imposes models to respond in the target language given
the source language as the context. It is more difficult than the multilingual instruction tuning task,
which prompts and answers in the same language for each sample, and requires a better cross-lingual
understanding and generation ability for multilingual generative models.

Specifically, given a pair of context and response (cai , r
a
i ) from a Dataset Da in the same language

a, e.g., an English instruction tuning dataset like FLAN or Alpaca (Wei et al., 2022; Wang et al.,
2023; Taori et al., 2023), response rai is first translated into the target language b by the translator
ta→b(·). We append a prompt pb informing the target language b, e.g., “Answer in German” in
Figure 2, at the end of context to construct the training sample

(
ca→b
i = cai + pb, rbi = ta→b(rai )

)
for CIT. Therefore, the loss function of CIT for the multilingual generative model f(θ) comes to:

LCIT(θ) = E
(cai ,r

a
i )∼Da

∑
j

−log
(
P(rbij |ca→b

i , rbi,<j ; θ)
) (3)

where the target language b has the possibility psrc ∈ [0, 1] to be set the same as the source language
a, which is a hyper-parameter and investigated in Section 3.2.3. When the target language is always
the source language of the context (psrc = 1), it degenerates into the normal multilingual instruction
finetuning method.

With the two modules of aligning methods mentioned before, Multilingual Contrastive Learning
(MCL) and Cross-lingual Instruction Tuning (CIT), we obtain the following final loss function of
our alignment framework AFP:

LAFP(θ) = LMCL(θ) + αLCIT(θ) (4)

where α ∈ R+
0 is a hyper-parameter to balance the two methods.
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3 EXPERIMENTS

3.1 EXPERIMENTS SETTINGS

Parallel Corpus To cover more parallel samples from different domains and languages, we adopt
a multilingual instruction tuning dataset named Bactrian-X (Li et al., 2023), which is translated into
52 languages from Alpaca (Taori et al., 2023) and Dolly (Conover et al., 2023) by Google Translate,
and a multilingual machine translation dataset, OPUS-100 (Zhang et al., 2020), to align the models
evaluated. Only 100k parallel samples are selected from OPUS-100 in our experiments to match the
amount of Bactrian-X, which contains 67k samples for each language. The number of tokens used
is about 20M, which is nearly 0.05 ‰ of tokens used in the pre-training of BLOOM (Scao et al.,
2022).

Language models We apply AFP on two multilingual generative model structures, XGLM (Lin
et al., 2022) and BLOOM (Scao et al., 2022), across three different parameter amounts. They are
both pre-trained on large-scale unsupervised multilingual corpora with a more balanced sampling
method across languages. Llama (Touvron et al., 2023a), which is mainly pre-trained on English
corpus, is also included for comprehensive evaluation. Training settings and hyperparameters are
reported in Appendix A.

Multilingual Tasks We evaluate the performance of models on the following benchmarks:

• Natural Language Inference We use XNLI (Conneau et al., 2018) in this task.

• Paraphrase Detection PAWS-X (Yang et al., 2019) is evaluated for this task.

• Reasoning We adopt XCOPA (Ponti et al., 2020), XStoryCloze (Lin et al., 2022) and
XWinograd (Tikhonov & Ryabinin, 2021) in this task.

• Machine Translation For this task, we use FLORES-101 (Goyal et al., 2022).

The detailed descriptions and prompt formats for each task during evaluation are presented in Ap-
pendix C. We kept the same prompt formats across all multilingual generation models for a fair
comparison.

3.2 BILINGUAL RESULTS AND ANALYSES

To make a comprehensive analysis of the influence on performance and representations in models,
we first conduct bilingual alignment experiments in English and Chinese. Then we extended it to
the multilingual alignment condition (Section 3.3).

Table 1 shows the experimental alignment results on EN-ZH parallel samples. These generative
models, including three architectures with different amounts of parameters, are generally improved
by our method. The average improvement is up to 3.31 using only 167k parallel samples, and
the models with 7B parameters surpass the GPT-3 with comparable parameters after alignment.
Specifically, models improve 4.28% on the first two natural language understanding tasks (XNLI
and PAWS-X), and 2.67% on the other three reasoning tasks. After alignment using AFP, BLOOM
shows a better performance than the BLOOMZ model with the same amount of parameters, which
is fine-tuned on 78M multilingual instructions (Scao et al., 2022).

It is interesting to find that the model Llama pre-trained on mainly English corpus, also obtains
improvement after bilingual alignment using AFP. The performance on the unseen language Chinese
is even comparable with the one pre-training on an additional 20GB Chinese corpus (Cui et al.,
2023). This result further proves the effectiveness of our method. We assume that this performance
gain may benefit from better-aligned multilingual representations in models, which promotes the
transfer of knowledge learned in the English corpus.

In addition to cross-lingual understanding and reasoning abilities, the multilingual generation ability
of models has been improved. The bilingual translation results of XGLM models are reported in
Table 2. Models not only obtain a better cross-lingual generation ability, but also show a more
balanced generation performance than the vanilla ones between both directions. It is interesting to
find that the average performance of models in the zero-shot condition improves from 0.1 to 4.2
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Table 1: In-context learning results of models across different parameter scales on 5 datasets. The
Average improvement is 3.31%, where 4.28% on the first two tasks and 2.67% on reasoning tasks.
‡ uses an additional 20GB Chinese corpus for pre-training. For a fair comparison, all results are
obtained from the same in-context learning template illustrated in Appendix C.

XNLI PAWS-X XCOPA XStoryCloze XWinograd

Model EN-0/5 ZH-0/5 EN-0/5 ZH-0/5 EN-0/5 ZH-0/5 EN-0/5 ZH-0/5 EN-0/5 ZH-0/5 Avg

GPT-36.7B 55.3/52.8 42.4/45.960.6/59.753.2/54.173.6/74.5 55.0/57.7 73.6/74.555.9/54.564.6/68.171.5/72.2 61.0

XGLM564M 45.5/41.2 37.6/35.650.4/46.650.9/47.856.4/59.6 52.8/52.2 59.6/60.854.3/52.954.8/56.767.1/66.9 52.5

+AFP 48.1/46.5 41.6/42.5 54.2/53.8 53.2/52.8 62.0/62.2 59.0/58.8 62.2/62.5 56.3/56.1 55.6/59.0 67.5/67.3 56.1

XGLM1.7B 47.6/42.9 39.0/39.351.0/52.451.1/48.862.4/64.0 56.4/57.8 62.7/64.556.3/56.357.2/60.068.3/68.5 55.3

+AFP 48.3/46.9 43.1/43.7 55.2/55.7 54.5/53.8 66.8/68.8 61.4/61.6 65.5/66.7 59.3/59.6 58.8/64.7 68.7/69.6 58.6

XGLM7.5B 54.1/49.9 45.4/44.258.9/56.352.9/55.869.4/74.6 62.4/63.2 69.2/73.759.5/59.262.8/66.473.8/73.2 61.2

+AFP 55.0/54.7 48.0/48.8 64.8/61.2 57.8/56.4 72.2/75.6 64.4/66.8 72.0/74.7 62.7/63.4 65.2/68.2 75.8/74.0 64.1

BLOOMZ560M 43.8/44.5 41.5/40.752.4/51.254.1/52.954.8/57.2 52.0/52.8 61.2/61.7 56.4/55.054.8/55.462.3/65.1 53.5

BLOOM560M 44.4/40.4 41.1/40.350.5/52.349.0/49.453.0/57.4 49.8/54.0 55.2/58.257.9/53.254.3/55.663.9/64.9 52.2

+AFP 50.7/46.4 47.5/44.8 58.2/57.5 54.9/54.8 57.8/58.4 52.6/55.4 57.0/59.0 59.7/58.3 56.3/57.2 64.7/65.2 55.8

BLOOMZ1.7B 50.3/51.2 48.0/46.257.1/53.454.4/52.358.0/58.0 55.2/56.8 66.4/68.959.8/62.359.0/61.666.1/67.7 57.6

BLOOM1.7B 50.4/44.4 47.6/46.147.7/52.152.9/51.155.8/58.2 52.4/54.6 64.2/67.360.1/60.656.1/59.367.9/65.9 55.7

+AFP 52.9/51.3 49.8/48.8 61.0/58.0 56.9/56.0 60.8/61.6 55.4/58.2 66.4/69.0 63.3/63.3 59.3/60.7 68.3/66.1 59.4

BLOOMZ7.1B 51.1/52.0 49.7/48.063.6/62.256.9/56.161.2/62.4 57.6/59.8 73.7/76.9 62.1/63.9 64.1/66.9 66.1/68.5 61.1

BLOOM7.1B 54.0/48.7 48.1/47.559.9/60.453.2/51.458.0/58.8 54.0/54.8 70.4/73.564.3/64.860.6/63.871.4/67.7 59.3

+AFP 55.8/54.3 50.2/50.4 66.5/64.5 58.7/56.8 62.0/62.8 58.2/61.0 72.9/75.6 68.0/68.6 62.9/66.2 73.0/70.8 63.0

Bactrian-X7B 53.0/53.3 44.6/44.168.7/63.456.7/53.676.8/85.8 54.4/55.2 79.5/83.355.9/57.075.0/80.666.3/66.1 63.7

ZH-Alpaca‡7B 51.7/52.9 47.2/46.267.6/62.857.2/54.873.2/83.8 57.6/60.8 76.6/79.3 57.4/58.3 71.4/74.8 67.9/68.5 63.0

Llama7B 54.5/49.0 45.9/44.967.8/64.255.4/53.174.6/84.2 55.8/57.4 77.0/80.755.0/55.572.3/79.466.1/65.5 62.9

+AFP 55.9/54.1 47.6/48.4 70.0/64.3 58.6/56.1 78.4/86.8 57.2/60.0 79.9/84.0 56.8/57.6 76.4/83.0 66.7/67.7 65.5

Table 2: Translation results on FLORES-101 devtest set.
EN→ZH ZH→EN Avg

Model 0 1 5 10 0 1 5 10 0 1 5 10

XGLM564M 0.0 1.0±0.4 4.2±0.5 4.2±0.5 0.0 6.4±0.6 8.1±0.4 8.3±0.5 0.0 3.7±0.5 6.0±0.4 6.3±0.4

+AFP 2.0 4.2±0.3 5.3±0.3 5.9±0.2 5.3 8.7±0.6 9.0±0.5 9.2±0.4 3.7 6.5±0.5 7.2±0.3 7.6±0.3

XGLM7.5B 0.0 13.6±1.1 13.8±0.9 13.9±0.7 0.1 19.2±0.7 19.5±0.8 20.1±0.4 0.1 16.4±0.8 16.7±0.6 17.0±0.4

+AFP 2.5 14.5±0.8 14.8±0.6 15.0±0.6 6.7 19.5±0.6 19.6±0.5 20.3±0.3 4.6 17.0±0.6 17.2±0.5 17.7±0.4

BLEU on average, which may come from the fact that the target language format of prompt used in
cross-lingual instruction tuning is similar to the one in the machine translation task.

3.2.1 AFP BRINGS BETTER BILINGUAL REPRESENTATIONS

Visualization of sentence representations. Given 1k EN-ZH translation parallel samples, we vi-
sualize the sentence representations of XGLM564M and BLOOM560M, which are obtained by the
mean pooling method using the representations for each token in one sentence. In the vanilla mod-
els, there is a distinct separation between sentence representations from different languages (Figure
1(a) and 3(a)). However, the ones after alignment using AFP come to be more aligned and uniform
(Figure 1(b) and 3(b)), which means our method promotes the representation of the model to be
better-aligned from a qualitative point of view.

Alignment and uniformity. The distribution of multilingual representations is quantified by the
two metrics, alignment and uniformity proposed by Wang & Isola (2020), for further analysis.
Specifically, the alignment score measures the expected distance between the representations of
positive samples, which are translation parallel samples for multilingual generative models, and is
calculated as follows:

Lalign
△
= E

(x,x+)∼Dpos

∥∥f(x)− f(x+)
∥∥2 (5)
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where Dpos is the distribution of positive samples.

In contrast, uniformity reflects the degree of uniformly distributed for representations:

Luniform
△
= log E

x,y
i.i.d.∼ D

e−2∥f(x)−f(y)∥2

(6)

where x and y are randomly sampled from the distribution D. Therefore, The smaller Lalign and
Luniform are, the better representations models learn.

Figure 3(c) illustrates the deviation of Lalign and Luniform for XGLM564M using different training
methods on the same training data. The initial 5000 steps are visualized, one point for every 500
steps. We can find that the metrics are both decreasing using AFP, while the bilingual pre-training
only improves the uniformity of representations. The results further prove that our method improves
the multilingual representations within the multilingual generative models.
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Figure 3: (a, b) The t-SNE visualization of the original and aligned internal EN-ZH sentence rep-
resentations of BLOOM560M; (c) The deviation of Luniform-Lalign for XGLM564M during training
process with different multilingual training methods. The smaller these two metrics are, the better
representations models learn. “BPre” and “BIT” denote bilingual pretraining and bilingual instruc-
tion tuning, respectively.

3.2.2 MULTILINGUAL CONTRASTIVE LEARNING ON BOTTOM LAYER PERFORMS BETTER

Figure 4(a) presents the impact of different layers applied by contrastive learning on the 5 cross-
lingual datasets (XNLI, PAWS-X, XCOPA, XStoryCloze, and XWinograd). The average perfor-
mance of models shows a trend of decreasing first and then increasing, which changes at the 10th
layer for XGLM564M or the 17th layer for BLOOM560M. And the first transformer layer is better
for both models when using multilingual contrastive learning. As a result, multilingual contrastive
learning is applied to the first layer after the embedding layer by default.
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Figure 4: Effects of the target layer of MCL (a) and the psrc of CIT (b) on 5 EN-ZH datasets.

3.2.3 CROSS-LINGUAL INSTRUCTION TUNING OR MONOLINGUAL INSTRUCTION TUNING?

As shown in Figure 4(b), monolingual instruction tuning for each language (psrc = 1) is inferior to
cross-lingual instruction tuning (psrc < 1) for the models evaluated. Moreover, the result becomes
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Table 3: In-context learning performance on NLI and Reasoning datasets across 5 languages.
“High”, “Medium” and “Low” denotes the available amount of linguistic resources. † denotes the
unseen language in the pre-training corpus of BLOOM. Following Lin et al. (2022), the prompt
template is written in English for all languages evaluated.

XNLI XCOPA

High Medium Low High Medium Low

Model EN-0/5 ZH-0/5 TH†-0/5 TR†-0/5 SW-0/5 EN-0/5 ZH-0/5 TH†-0/5 TR†-0/5 SW-0/5 Avg

GPT-36.7B 55.3/52.8 42.4/45.938.5/36.640.5/38.434.8/33.9 73.6/74.5 55.0/57.753.7/54.453.4/53.052.3/52.1 49.9

XGLM564M 45.5/41.2 37.6/35.640.8/35.040.2/34.937.5/34.7 56.4/59.6 52.8/52.255.4/54.252.8/51.851.8/51.6 46.1

+AFP 48.0/46.3 42.8/42.7 42.8/43.3 40.4/42.9 38.9/40.0 60.6/61.4 59.0/59.4 59.0/60.0 56.6/56.0 57.6/55.6 50.7

XGLM1.7B 47.6/42.9 39.0/39.340.9/37.640.0/38.137.8/37.6 62.4/64.0 56.4/57.858.4/59.453.6/52.854.4/52.8 48.6

+AFP 48.5/47.7 43.6/44.2 43.2/44.0 42.5/41.8 41.0/40.4 65.4/66.2 60.8/61.6 62.2/60.4 57.6/57.0 59.2/59.6 52.3

XGLM7.5B 54.1/49.9 45.4/44.245.2/43.644.7/39.544.3/39.6 69.4/74.6 62.4/63.262.0/62.456.6/58.458.2/57.2 53.7

+AFP 55.8/54.1 50.6/48.8 48.1/47.2 46.7/44.1 46.1/44.2 71.4/75.0 66.8/66.6 63.2/64.4 61.8/62.0 62.2/62.8 57.1

BLOOMZ560M 43.8/44.5 41.5/40.737.8/39.235.6/35.935.8/35.8 54.8/57.2 52.0/52.852.6/52.552.6/51.852.0/52.4 46.1

BLOOM560M 44.4/40.4 41.1/40.333.4/35.134.5/34.135.7/34.5 53.0/57.4 49.8/54.050.8/51.852.8/52.651.2/52.0 44.9

+AFP 48.4/46.5 47.4/44.1 39.8/40.5 39.7/39.4 40.1/40.8 56.0/58.4 52.4/54.4 53.8/53.4 54.6/54.8 52.2/53.4 48.5

BLOOMZ1.7B 50.3/51.2 48.0/46.238.4/36.837.1/37.438.3/38.7 58.0/58.0 55.2/56.852.4/53.852.2/54.650.8/50.2 48.2

BLOOM1.7B 50.4/44.4 47.6/46.137.9/35.736.9/35.036.3/36.7 55.8/58.2 52.4/54.651.2/52.053.4/54.252.2/53.6 47.2

+AFP 52.1/51.3 49.1/47.1 41.2/41.8 40.1/41.3 41.1/42.5 60.2/60.4 55.4/58.8 54.2/54.6 55.6/56.0 53.6/55.0 50.6

BLOOMZ7.1B 51.1/52.0 49.7/48.040.9/37.639.8/36.139.2/39.7 61.2/62.4 57.6/59.853.2/51.655.0/54.253.6/52.2 49.7

BLOOM7.1B 54.0/48.7 48.1/47.539.5/37.438.2/35.037.7/38.9 58.0/58.8 54.0/54.852.6/52.853.8/53.453.2/54.6 48.6

+AFP 55.7/52.5 50.1/50.2 43.7/43.2 43.0/43.4 42.2/43.1 62.6/62.8 58.2/60.4 55.6/55.2 56.4/56.6 55.0/55.8 52.3

suboptimal when all samples are transferred into the cross-lingual format (psrc = 0). We empirically
set the psrc to 0.5 in the cross-lingual instruction tuning task.

3.3 MULTILINGUAL RESULTS

In addition to the bilingual alignment, AFP can be applied to align the models in multilingual con-
ditions. English is first chosen as the bridge of alignment for the dominance performance in multi-
lingual generative models. That is, the input parallel samples of AFP are selected from the EN-XX
corpus, e.g., EN-ZH and EN-TH, to pull the representations and outputs of models in other lan-
guages closer to the ones in English. We also investigate the other alignment methods like pair-wise
alignment in Section 3.3.1, which shows an inferior performance.

Table 3 reports the results of alignment between 5 languages from different language families (De-
tails are reported in Appendix D), where the performance of models on the NLI and reasoning tasks
is consistently improved from high-resource languages to the less-represented language Swahili.
Moreover, models with AFP obtain a more balanced performance distribution. Taking XGLM mod-
els as an example, the variance of performance across 5 languages decreases from 3.32% to 2.83%
on average. It is noted that AFP advances the performance of BLOOM in the two unseen languages,
Thai (TH, +3.9%) and Turkish (TR, +3.92%).

Multilingual generative models also obtain a performance gain (+0.75 BLUE) in the multilingual
machine translation task after alignment (Table 4). It can also find a more balanced performance
distribution across languages, where the average variance reduction is 0.4 for the models evaluated.

3.3.1 ENGLISH AS A BRIDGE OR PAIRWISE ALIGNMENT?

Besides adopting English as a bridge to align multilingual representations, we also investigate the
pairwise alignment policy, which is aligned by languages in pairs. For example, assuming to align
the representations of English (EN), Chinese (ZH), and Thai (TH), the former policy comes to two
parallel samples for input, which are EN-ZH and EN-TH, while the latter has three parallel samples:
EN-ZH, EN-TH, and ZH-TH.
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Table 4: Few-shot multilingual machine translation results on FLORES-101 devtest set. The vari-
ance of performance across the input or output languages is marked in the subscript.

Model EN ZH TH TR SW Avg

Avg translate from
the language

XGLM564M 4.8±0.8 2.1±1.7 2.2±1.8 2.2±1.8 1.1±0.9 2.5±1.7

+AFP 5.2±0.4 2.7±1.5 2.8±1.7 2.7±1.6 2.6±0.8 3.2±1.4

XGLM7.5B 16.3±2.2 10.0±6.5 11.0±7.0 10.0±7.3 14.0±9.8 12.3±7.5

+AFP 16.9±1.7 11.1±6.0 11.6±6.8 11.1±6.9 14.7±9.2 13.1±7.0

Avg translate to
the language

XGLM564M 7.4±0.7 1.3±1.0 1.4±1.1 1.4±0.9 0.9±0.7 2.5±1.7

+AFP 8.4±0.3 1.6±0.8 1.8±1.1 2.3±0.8 1.9±0.6 3.2±1.4

XGLM7.5B 24.3±3.3 8.0±2.9 11.0±4.3 9.6±3.7 8.5±5.7 12.3±7.5

+AFP 24.4±3.0 10.0±2.2 11.8±3.9 10.3±3.2 9.0±5.4 13.1±7.0

Table 5: Results of different alignment methods.
Model EN ZH TH TR SW Avg

XGLM564M 50.7 44.6 46.4 44.9 43.9 46.1

w/ EN as a bridge 54.1 51.0 51.3 49.2 48.0 50.7
w/ Pairwise alignment 52.7 50.5 50.4 49.5 48.4 50.3

BLOOM560M 48.8 46.3 42.8 43.5 43.4 45.0

w/ EN as a bridge 52.3 49.6 46.9 47.1 46.6 48.5
w/ Pairwise alignment 51.6 48.9 46.5 46.3 46.8 48.0

Table 6: Prompt with semantic aligned demos.

Model EN ZH TH TR SW Avg

XGLM7.5B + AFP 64.1 58.2 55.7 53.7 53.8 57.1

w/ Semantic aligned demos 64.4 58.7 55.8 55.8 54.0 57.7

BLOOM7.1B + AFP 58.4 54.7 49.4 49.9 49.0 52.3

w/ Semantic aligned demos 58.9 54.8 49.5 50.2 49.2 52.5

The results of five languages alignment experiments on XNLI and XCOPA are reported in Table 5.
The pairwise alignment policy performs consistently better in the low-resource language Swahili,
although its average improvement is inferior to that when adopting English as a bridge.

3.3.2 COMBINATION WITH OTHER CROSS-LINGUAL METHODS

After alignment, multilingual generative models can use other cross-lingual methods for further im-
provement. We take a method named semantic alignment for an example, which is able to promote
the cross-lingual ability using semantic aligned demos in prompt (Tanwar et al., 2023). As shown in
Table 6, models obtain a further 0.4% improvement in the multilingual NLI and reasoning tasks on
average.

3.4 EXTENDED TO ALIGNMENT IN 52 LANGUAGES

Based on the above analyses, we extend the alignment to all 52 languages in the Bactrain-X dataset
by adopting English as a bridge (information about all languages used is reported in Appendix
D). As shown in Table 7, models obtain a 2.6% improvement in 5 multilingual tasks on average,
and mitigate the variance across languages. It is also noted that the performance of BLOOM7.1B
on unseen languages among 5 datasets is improved by 2.8% using only parallel samples via our
alignment framework, which may come from the knowledge transferred from other languages after
alignment.

Table 7: In-context learning results of models on 5 datasets across all languages. The variance of
performance across languages is marked in the subscript. All results are reported in Appendix B.4.

XNLI PAWS-X XCOPA XStoryCloze XWinograd

Model 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot Avg

XGLM7.5B 45.6±3.4 43.6±3.1 54.7±3.1 55.1±1.6 58.9±5.0 60.4±5.7 60.6±3.9 60.5±5.0 63.9±5.1 64.7±4.2 55.3±8.5

+AFP 47.5±3.3 47.7±3.0 57.7±2.3 57.5±1.4 61.3±4.5 62.4±5.7 62.4±3.7 63.5±4.9 65.5±4.8 66.7±4.1 57.8±8.0

BLOOMZ7.1B 44.1±4.0 43.5±4.6 57.8±2.6 56.6±2.9 53.1±5.3 54.6±5.5 58.9±6.7 61.0±7.4 60.0±4.9 60.4±5.9 54.2±8.3

BLOOM7.1B 43.3±5.5 42.5±4.7 54.5±3.1 53.5±3.6 52.3±4.7 53.3±4.0 57.3±6.2 59.2±7.2 59.0±6.2 59.2±5.2 52.0±8.2

+AFP 45.4±4.5 45.9±3.9 58.1±2.6 56.1±3.1 55.0±3.7 55.1±3.9 61.3±6.0 62.5±7.2 61.1±5.8 60.5±5.2 54.7±8.0
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3.5 ABLATION STUDY

To take a deep look into the improvements contributed by AFP, we conduct an ablation study on the
5 datasets of bilingual tasks using XGLM564M and BLOOM560M (Table 8).

The in-context learning abilities of the models decrease when only multilingual contrastive learning
(MCL) is used. It may arise from the next word prediction ability of the model at the top layer
is affected by the MCL applied to the bottom layer. Using the same data, both casual language
modeling (CLM, +1.1%) and cross-lingual instruction tuning (CIT, +2.0%) can improve multilingual
generative models, while the latter can promote it more. In addition, the performance of the models
can be further improved after combining MCL and CIT, which is the proposed alignment framework
AFP.

Table 8: Ablation study of different training methods on 5 datasets for XGLM564M and BLOOM560M.

Model 0-shot 3-shot 5-shot

XGLM564M 52.94±0.54 51.71±0.90 52.03±0.89

w/ MCL 50.23±0.43 48.66±0.51 48.60±0.49

w/ CLM 54.51±0.57 53.27±0.77 52.60±0.52

w/ CIT 55.31±0.55 54.02±0.63 53.58±0.64

w/ AFP 55.97±0.48 55.50±0.55 56.15±0.43

Model 0-shot 3-shot 5-shot

BLOOM560M 51.91±0.43 52.63±0.51 52.57±0.53

w/ MCL 52.68±0.34 52.01±0.43 51.67±0.55

w/ CLM 53.22±0.52 53.35±0.52 53.43±0.57

w/ CIT 54.71±0.43 54.02±0.47 54.13±0.46

w/ AFP 55.94±0.21 55.04±0.32 55.70±0.31

4 RELATED WORK

4.1 MULTILINGUAL GENERATIVE LANGUAGE MODEL

Through unsupervised pre-training on the large-scale multilingual corpus, generative language mod-
els obtain impressive multilingual abilities, e.g., multilingual machine translation (Liu et al., 2020),
cross-lingual natural language understanding (Xue et al., 2021) and cross-lingual in-context learn-
ing (Lin et al., 2022; Scao et al., 2022; Anil et al., 2023). Most of them extended the pre-training
method developed for the monolingual corpus (Lewis et al., 2020; Raffel et al., 2020) and relied on
a balanced sampling method across languages, while a significant performance gap between high-
resource languages and low-represented languages persists in the pre-trained model (Asai et al.,
2023). Different from the unsupervised pre-training on the multilingual corpus, this work attempts
to alleviate the performance gap across languages by cross-lingual alignment using parallel samples.

4.2 CONTRASTIVE LEARNING IN NATURAL LANGAUGE PROCESSING

Most of the work in NLP adopted contrastive learning to improve the representation of sentences
in the language model, including SentenceBERT (Reimers & Gurevych, 2019) and SimCSE (Gao
et al., 2021). Specifically, contrastive learning is often applied to the representation of encoder for
sentences (Pan et al., 2021), while it is less explored how to promote the representation of decoder
models. In this work, we try to improve the internal multilingual representation of the Transformer
decoder by multilingual contrastive learning rather than the encoder of Transformers (Vaswani et al.,
2017).

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed a simple yet effective multilingual alignment framework, including in-
ternal multilingual representations alignment and cross-lingual outputs alignment methods. Experi-
mental results show that this framework improves both the internal representations and cross-lingual
capabilities of generative models across various scales.

Beyond aligning different languages, our framework can be extended to align the internal represen-
tations and outputs across different modalities in the multi-modal generative models by replacing
parallel samples. However, it is noted that the current framework relies on labeled training data for
alignment. Future works can focus on the unsupervised multilingual alignment method for language
models.
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6 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we report the hyper-parameters in Appendix A and the prompt templates
used in all experiments in Appendix C. Considering the randomness of in-context learning, espe-
cially the few-shot one, all experiments are repeated under three random seeds, and the average
performance is reported. Codes and weights will be made public after review to advocate future
research.
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A HYPERPARAMETERS

To align the representations and outputs of multilingual generative models, we adopt AdamW
(Loshchilov & Hutter, 2019) optimizer, where β1 = 0.9 and β2 = 0.999, and a learning rate of
1e-5. The temperature τ is set to 0.05 in the multilingual contrastive learning task. Mixed precision
training and ZeRO are applied to speed up the training process and save memory used (Micikevicius
et al., 2018; Rasley et al., 2020). The number of training steps is empirically set to 10k with a batch
size of 128. All experiments are conducted on a GPU server with 8*A100 80GB RAM.

B ADDITIONAL RESULTS

B.1 POOLING METHODS

Given representations for each token in the sentence, there are three general methods, the last token
representation, max pooling and mean pooling, to obtain the representation of this sentence. Fig-
ure 5(a) illustrates the results of XGLM564M under different pooling methods using AFP. It can be
found that the last token and mean pooling perform better, and our method is less sensitive to the
pooling method chosen. Thus, these two methods are used in AFP and are selected according to the
performance of the development set.

B.2 WEIGHT OF CROSS-LINGUAL INSTRUCTION TUNING

We find that the weight α of cross-lingual instruction tuning in Eq. (4) affects the multilingual
performance of models. The average performance of XGLM564M on 5 datasets with different α is
presented in Figure 5(b), where models perform better than the other values evaluated when α is set
to 1.5. Therefore, we only consider a limited hyperparameter sweep for each multilingual generative
model with α ∈ {1, 1.5, 2}.

13

https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://aclanthology.org/2021.emnlp-main.544
https://aclanthology.org/2021.naacl-main.41
https://aclanthology.org/2021.naacl-main.41
https://aclanthology.org/D19-1382
https://aclanthology.org/2020.acl-main.148


Under review as a conference paper at ICLR 2024

XNLI PAWS-X XCOPA XStoryCloze XWinograd Avg
40

45

50

55

60

65

70
Max
Last
Mean

(a)

0 0.5 1 1.5 2 2.5

50

52

54

56

CIT( = + )

(b)

Figure 5: Results of different pooling methods (a) and weights of CIT (b) on 5 EN-ZH datasets
using XGLM564M.

B.3 DISTRIBUTION OF MULTILINGUAL REPRESENTATIONS

Figure 6 illustrates the distributions of 5 languages sentence representations from the vanilla XGLM
models and the aligned ones via t-SNE. We can find that there is a distinct gap between the sentence
representations from different languages in the vanilla models (Figure 6(a)-6(c)). After alignment,
the multilingual sentence distributions of models are better aligned between languages across differ-
ent scales (Figure 6(d)-6(f)). The alignment and uniformity across languages in XGLM7.5B is not as
good as the first two models, which may arise from the limited parallel samples used.
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Figure 6: Distribution of multilingual sentence representations in XGLM.(Vanilla:(a)-(c),
Aligned:(d)-(f), shown in t-SNE)

B.4 PERFORMANCE ON MULTILINGUAL DATASETS

All results of XGLM7.5B, BLOOMZ7.1B, and BLOOM7.1B on the 5 multilingual datasets are reported
in Tabel 9-13.
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Table 9: In-context learning results on XNLI across all languages. “High”, “Medium” and “Low”
denotes the available amount of linguistic resources. † denotes the unseen language in the pre-
training corpus of BLOOM.

High Medium Low

Model #shot EN DE† ES FR RU† ZH AR BG† EL† TH† TR† VI HI SW UR Avg

XGLM7.5B
0 54.1 42.5 39.9 49.9 45.0 45.4 46.4 48.9 45.4 45.2 44.7 47.2 43.2 44.3 42.1 45.6

5 49.9 43.1 48.5 45.8 42.5 44.2 41.9 43.8 45.6 43.6 39.5 46.1 42.2 39.6 38.2 43.6

XGLM7.5B +AFP
0 54.8 44.6 41.9 51.3 48.4 50.6 48.8 48.8 47.2 48.6 47.4 47.7 44.4 45.3 42.6 47.5
5 51.7 48.2 50.7 51.0 47.1 48.9 47.5 47.3 48.8 49.3 45.5 50.2 44.9 43.7 40.2 47.7

BLOOMZ7.1B
0 51.1 43.7 41.4 48.0 42.3 49.7 48.2 40.3 39.7 40.9 39.8 48.7 45.6 39.2 42.9 44.1

5 52.0 45.3 43.2 50.2 41.6 48.0 45.9 41.3 38.0 37.6 36.1 47.7 45.4 39.7 40.1 43.5

BLOOM7.1B
0 54.0 39.2 41.5 51.7 41.3 48.1 47.4 37.8 36.3 39.3 38.9 48.9 47.4 37.7 39.9 43.3

5 48.7 43.5 42.8 50.3 39.1 47.5 45.7 40.7 35.1 37.4 35.0 48.0 44.1 38.9 40.4 42.5

BLOOM7.1B +AFP
0 55.0 42.2 43.8 52.7 42.4 48.1 50.0 40.3 40.4 42.3 41.6 50.0 45.3 42.0 45.1 45.4
5 53.3 44.5 44.1 51.9 44.1 49.8 49.2 42.4 42.3 41.9 41.3 50.7 47.0 42.4 44.1 45.9

Table 10: In-context learning results on PAWS-X across all languages. “High” and “Medium”
denotes the available amount of linguistic resources. † denotes the unseen language in the pre-
training corpus of BLOOM.

High Medium

Model #shot EN DE† ES FR ZH JA† KO† Avg

XGLM7.5B
0 58.9 58.0 57.3 54.0 52.9 50.3 51.6 54.7

5 56.3 56.1 56.6 55.8 55.8 53.3 52.2 55.1

XGLM7.5B +AFP
0 61.4 58.2 58.2 59.4 57.5 56.2 53.4 57.7
5 59.4 59.0 57.4 58.1 57.6 56.3 54.9 57.5

BLOOMZ7.1B
0 63.6 57.9 58.5 57.4 56.9 55.7 54.8 57.8

5 62.2 56.9 57.3 57.1 56.1 54.7 51.8 56.6

BLOOM7.1B
0 59.9 54.7 57.7 54.0 53.2 52.0 50.3 54.5

5 60.4 54.4 54.9 54.9 51.4 50.4 48.5 53.5

BLOOM7.1B +AFP
0 62.4 59.3 59.6 59.2 56.2 56.1 54.2 58.1
5 62.3 56.2 55.8 58.0 53.2 54.9 52.5 56.1

Table 11: In-context learning results on XCOPA across all languages. “High”, “Medium”, “Low”
and “Ex-Low” denotes the available amount of linguistic resources. † denotes the unseen language
in the pre-training corpus of BLOOM.

High Medium Low Ex-Low

Model #shot EN ZH ID IT† TH† TR† VI ET† SW TA HT† QU† Avg

XGLM7.5B
0 69.4 62.4 63.0 56.0 62.0 56.6 61.4 57.4 58.2 56.2 56.6 48.0 58.9

5 74.6 63.2 62.6 57.6 62.4 58.4 66.2 58.6 57.2 57.2 54.8 51.8 60.4

XGLM7.5B +AFP
0 71.0 65.2 64.2 58.6 64.2 60.2 63.8 59.8 60.4 58.0 58.4 52.2 61.3
5 76.6 66.2 63.4 59.6 64.2 61.0 67.4 61.2 60.6 58.4 56.2 53.4 62.4

BLOOMZ7.1B
0 61.2 57.6 59.4 49.4 53.2 55.0 58.2 49.2 53.6 46.0 43.4 51.2 53.1

5 62.4 59.8 61.0 49.4 51.6 54.2 61.8 47.2 52.2 58.4 48.4 49.2 54.6

BLOOM7.1B
0 58.0 54.2 59.2 48.6 52.6 53.8 59.0 48.0 53.2 45.0 46.0 49.4 52.3

5 58.4 54.8 60.0 50.2 52.8 53.4 57.8 47.6 54.6 53.8 46.6 50.0 53.3

BLOOM7.1B +AFP
0 59.4 55.8 61.6 53.2 54.4 55.2 60.6 51.2 54.2 54.4 48.6 51.8 55.0
5 61.0 56.8 61.0 51.4 54.2 54.6 59.6 49.8 55.2 57.2 50.2 50.4 55.1
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Table 12: In-context learning results on XStoryCloze across all languages. “High”, “Medium”,
“Low” and “Ex-Low” denotes the available amount of linguistic resources. † denotes the unseen
language in the pre-training corpus of BLOOM.

High Medium Low Ex-Low

Model #shot EN ES RU† ZH AR ID HI SW TE EU MY† Avg

XGLM7.5B
0 69.2 64.0 63.4 59.5 56.2 63.0 59.0 59.2 60.2 57.4 55.1 60.6

5 73.7 63.6 63.6 59.2 54.4 62.2 59.4 58.5 58.7 56.9 55.7 60.5

XGLM7.5B +AFP
0 70.7 65.9 65.7 62.5 58.3 64.1 60.1 60.5 61.1 60.0 57.7 62.4
5 74.7 67.3 67.4 62.8 58.2 67.1 61.4 61.6 60.7 59.8 57.6 62.5

BLOOMZ7.1B
0 73.7 64.6 52.6 62.1 60.3 62.4 59.2 55.3 57.7 51.9 48.4 58.9

5 76.9 65.4 53.1 63.9 60.9 67.4 62.8 57.3 59.2 56.4 47.5 61.0

BLOOM7.1B
0 70.4 59.4 53.5 64.3 59.7 59.6 58.8 52.1 54.7 50.7 47.5 57.3

5 73.5 64.1 51.7 64.8 60.0 64.6 61.3 53.1 56.9 53.7 47.3 59.2

BLOOM7.1B +AFP
0 70.8 67.6 54.3 67.6 62.3 65.2 62.3 57.6 57.0 59.2 50.0 61.3
5 75.4 66.4 54.8 69.0 64.0 70.5 63.1 56.9 58.1 59.4 49.8 62.5

Table 13: In-context learning results on XWinograd across all languages. “High” and “Medium”
denotes the available amount of linguistic resources. † denotes the unseen language in the pre-
training corpus of BLOOM.

High Medium

Model #shot EN FR RU† ZH JA† PT Avg

XGLM7.5B
0 62.8 59.0 58.7 73.8 66.4 62.4 63.9

5 66.4 62.7 60.6 73.2 62.6 62.7 64.7

XGLM7.5B +AFP
0 64.6 61.4 60.3 75.2 66.6 64.6 65.5
5 70.2 63.9 63.2 74.2 63.9 64.6 66.7

BLOOMZ7.1B
0 64.1 59.0 56.5 66.1 51.6 62.7 60.0

5 66.9 60.2 54.3 68.5 52.6 60.1 60.4

BLOOM7.1B
0 60.6 56.6 55.2 71.4 51.7 58.6 59.0

5 63.8 57.8 55.6 67.7 51.8 58.6 59.2

BLOOM7.1B +AFP
0 62.1 57.8 58.4 72.2 53.6 62.4 61.1
5 64.8 61.4 56.2 68.5 52.6 59.7 60.5
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C TASK DESCRIPTIONS AND PROMPT TEMPLES

To comprehensively evaluate our models, six datasets across four tasks are adopted in this work. Ta-
ble 14 shows the statistics of all datasets used. It is noted that the original COPA dataset (Roemmele
et al., 2011) in English is also included in the evaluation. Most temples of prompt follow the ones
in Lin et al. (2022).

Table 14: Statistic of evaluation datasets used. ‡ denotes the number of English samples, as the
number of test samples in XWinograd varies across languages.

Task Dataset #Lang Data Curation Metric #Train #Dev #Test

Natural Language Inference XNLI 15 Translation Accuracy − 2, 490 5, 010

Paraphrase Detection PAWS-X 7 Aligned Accuracy − 2, 000 2, 000

Reasoning
XCOPA 12 Translation Accuracy 33, 810 100 500

XStoryCloze 11 Translation Accuracy 361 − 1, 511

XWinograd 6 Translation Accuracy − − 2, 325‡

Multilingual Machine Translation FLORES-101 101 Aligned BLEU − 997 1, 012

Natural Language Inference This task aims to determine the semantic relationship between the
premise and hypothesis. Table 15 shows the temple and 3-shot example used in our evaluation for
this task.

Table 15: Template and example of 3-shot demonstrations used in the evaluation of XNLI. Connec-
tors are indicated in italics. The label for each example is underlined. The red text is the prediction
from the model evaluated.

Template Candidate Verbalizer

{Premise}, right? {Label}, {Hypothesis} Entailment→Yes, Neural→Also, Contradiction→No

3-shot Example in English

We ask every nation to join us., right? Also, We need at least 10 countries to join us.</s>

One of the benefits we get of course is travel., right? Yes, Traveling is one perk we get.</s>

Serious crime down, but murders increase., right? Yes, There has been a rise in murders.</s>

So I’m not really sure why., right? No, I am certain as to the reason why.

Paraphrase Detection Models need to evaluate whether the second sentence is a paraphrase of
the first sentence in this task. The temple and 3-shot example adopted are reported in Table 16.

Reasoning Three popular multilingual reasoning datasets are applied in this task category. Given
candidate sentences or pronouns mentioned above, models have to select the best one with semantic
coherence and comply with the rules of the physics world. The detailed temples and examples are
presented in Table 17 (XCOPA), Table 18 (XStoryCloze) and Table 19 (XWinogrande).

Multilingual Machine Translation Given sentences in the source language, models for this task
have to generate the corresponding sentences in the target language. Table 20 illustrates the temple
and 3-shot example used in our evaluation for FLORES-101.

D ADDITIONAL INFORMATION ABOUT LANGUAGE CODE

Table 21 presents more information about the language codes involved in this work.
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Table 16: Examples of 3-shot demonstrations used in the evaluation of PAWS-X. Connectors are
indicated in italics. The label for each example is underlined. The red text is the prediction from the
model evaluated.

Template Candidate Verbalizer

{Sentence 1}, right? {Label}, {Sentence 2} True→Yes, False→No

3-shot Example in English

Write anywhere , run once, right? No, Write anywhere , once run</s>

It was Easipower that said :, right?Yes, It said that Easipower was ,</s>

In 1951 , he died and retired in 1956 ., right? No, He died in 1951 and retired in 1956 .</s>

Green took over Park ’s No ., right? Yes, Park Green took over No .

Table 17: Examples of 3-shot demonstrations used in the evaluation of XCOPA. Connectors are
indicated in italics. The label for each example is underlined. The red text is the prediction from the
model evaluated.

Template Candidate Verbalizer

[cause:|effect:] {Sentence 1} [because|so] {Label} Identity

3-shot Example in English

cause: The woman resigned.because She thinks her boss is behaving immorally.</s>

effect: I pulled the rubber band.so It stretches out.</s>

cause: My skin suddenly broke out in a rash.because I came across poison ivy in my yard.</s>

cause: The girl pinched her nose.because The baby soiled the diaper.
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Table 18: Examples of 3-shot demonstrations used in the evaluation of XStoryCloze. Connectors
are indicated in italics. The label for each example is underlined. The red text is the prediction from
the model evaluated.

Template Candidate Verbalizer

{Sentence 1} {Sentence 2} {Sentence 3} {Sentence 4} {Label} Identity

3-shot Example in English

Ava started to notice wrinkles by her eyes. She bought an expensive wrinkle cream. She applied

it every night. After a month she checked her eyes out carefully. She was happy to see her wrink-

les were gone.</s>

Jenny wanted to learn how to ride a horse. She went to a local horse farm. After a quick lesson,

she mounted the horse. A feeling of joy enveloped her as she rode the horse around a ring. She

decided to come back soon for another fun lesson.</s>

Rick liked eating chocolate oatmeal. But his friend suggested that he use higher quality cocoa

powder. Rick was tight about money. But he decided to buy more expensive cocoa powder just

once. The taste was worth the price.</s>

Gordon bought his son a remote control car for Christmas. But he realized that it needed AA

batteries. Gordon could not find any. So the next day, he went to the toy store where he bought

the car. He bought a big package of AA batteries.

Table 19: Examples of 3-shot demonstrations used in the evaluation of XWinogrande. Connectors
are indicated in italics. The label for each example is underlined. The red text is the prediction from
the model evaluated.

Template Candidate Verbalizer

{Part 1 of Sentence} {Label} {Part 2 of Sentence} Identity

3-shot Example in English

Charles Dickinson shot at Andrew Jackson, so Charles Dickinson started reloading.</s>

The cheetah outran the antelope so The cheetah got to eat.</s>

The lawyer asked the witness a question, but The lawyer was reluctant to repeat it.</s>

The outlet powered the lamp when The outlet had electricity.
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Table 20: Examples of 3-shot demonstrations used in the evaluation of FLORES-101. Connectors
are indicated in italics. The label for each example is underlined. The red text is the prediction from
the model evaluated.

Template Candidate Verbalizer

{Src. Lang.}: {Src. Sent.} = {Tgt. Lang.}: {Tgt. Sent.} Identity

3-shot Example in English

English: Since moving to the Catalan-capital, Vidal had played 49 games for the club. = French:

Depuis son arrivée dans la capitale catalane, Vidal a joué 49 matchs pour le club.</s>

English: Nadal’s head to head record against the Canadian is 7–2. = French: Le score de Nadal

en confrontations directes face au Canadien est de 7-2.</s>

English: He recently lost against Raonic in the Brisbane Open. = French: Il a récemment perdu

un match contre Raonic durant l’Open de Brisbane.</s>

English: Piquet Jr. was sacked after the 2009 Hungarian Grand Prix. = French: Piquet Jr. a été

limogé après le Grand Prix de Hongrie 2009.

Table 21: Details of Language codes in this work. ⋆ denotes the language used in bilingual and
5-language experiments. † indicates the languages involved in the multilingual evaluation datasets
but not in Bactrian-X.

ISO 639-1 Language Family

AF Afrikaans Indo-European
AR Arabic Afro-Asiatic
AZ Azerbaijani Turkic

BG† Bulgarian Indo-European
BN Bengali Indo-European
CS Czech Indo-European
DE German Indo-European
EL† Greek, Modern Indo-European
EN⋆ English Indo-European
ES Spanish Indo-European
ET Estonian Uralic

EU† Basque Language Isolate
FA Persian Indo-European
FI Finnish Uralic
FR French Indo-European
GL Galician Indo-European
GU Gujarati Indo-European
HE Hebrew Afro-Asiatic
HI Hindi Indo-European
HR Croatian Indo-European
HT† Haitian Creole French Creole
ID Indonesian Austronesian
IT Italian Indo-European
JA Japanese Japonic
KA Georgian Kartvelian
KK Kazakh Turkic
KM Khmer Austroasiatic
KO Korean Koreanic

ISO 639-1 Language Family

LT Lithuanian Indo-European
LV Latvian Indo-European
MK Macedonian Indo-European
ML Malayalam Dravidian
MN Mongolian Mongolic
MR Marathi Indo-European
MY Burmese Sino-Tibetan
NE Nepali Indo-European
NL Dutch Indo-European
PL Polish Indo-European
PS Pashto Indo-European
PT Portuguese Indo-European

QU† Quechua -
RO Romanian Indo-European
RU Russian Indo-European
SI Sinhala Indo-European
SL Slovene Indo-European
SV Swedish Indo-European

SW⋆ Swahili Niger-Congo
TA Tamil Dravidian
TE Telugu Dravidian

TH⋆ Thai Kra-Dai
TL Tagalog Austronesian

TR⋆ Turkish Turkic
UK Ukrainian Indo-European
UR Urdu Indo-European
VI Vietnamese Austroasiatic
XH Xhosa Niger-Congo
ZH⋆ Chinese Sino-Tibetan
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