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Abstract

Graph neural networks (GNNs) are known to be capable of implementing specific1

algorithmic steps that guarantee strong out-of-distribution performance, a property2

referred to as algorithmic alignment or neural algorithmic reasoning (NAR). At the3

same time, recent advances in the reasoning capabilities of large language models4

(LLMs) have created an interest in mechanistic interpretability: identifying specific5

model components that are responsible for certain tasks. In this work, we adapt6

circuit discovery methods from mechanistic interpretability to the GNN setting7

with Mechanistic Interpretability for Neural Algorithmic Reasoning (MINAR). We8

validate MINAR by applying it to two GNNs: one predicting single-source shortest9

path distances and another computing shortest path distances and reachability in10

parallel. Through both examples, we demonstrate how mechanistic interpretability11

can offer fine-grained insight into an algorithmically aligned model.12

1 Introduction13

The recent surge in the capabilities of large language models (LLMs) has created a commensurate14

demand for novel interpretability methods suited to analyze these models. At the same time, the15

discovery of phenomena like grokking [13] has shown that surprising structure arises in trained16

models. This confluence of interests has led to the emergence of mechanistic interpretability [9]:17

attempting to reverse-engineer a model’s behavior in terms of its internal processes. At the same time,18

researchers have noticed that graph neural networks (GNNs) are capable of implementing specific19

algorithms. This is thought to be a result of the resemblance between their message-passing structure20

and dynamic programming. This notion, dubbed “algorithmic alignment” [17] or “neural algorithmic21

reasoning” [16], promises robust out-of-distribution generalization and substantial improvements22

in sample complexity. With an interest in discovering how models perform specific algorithmic23

tasks on the one hand, and a class of models that implement specific algorithms on the other, the24

algorithmic alignment of graph neural networks creates a natural testbed for fine-grained mechanistic25

interpretability research.26

In this work, we introduce Mechanistic Interpretability for Neural Algorithmic Reasoning (MINAR),27

a method to identify neuron-level circuits in GNNs using circuit discovery methods like EAP [15]28

and EAP-IG [5]. To our knowledge, MINAR is the first attempt to bring mechanistic interpretability29

to the GNN setting. We apply our method to two GNNs: one predicting single-source shortest path30

distances and another computing shortest path distances and reachability in parallel. In the first,31

we validate our method by identifying the circuit that implements the Bellman-Ford algorithm. In32

the second, we identify that the model learns Bellman-Ford, but recycles much of the shortest path33

computation to predict reachability. These examples demonstrate how neuron-level circuits can offer34

detailed insight to trained models.35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



2 Related Work36

Circuit Discovery and Mechanistic Interpretability Early mechanistic interpretability work37

(e.g., [9, 21]) combines manual examination of parameters with expert hypotheses to reverse-engineer38

the inner workings of a narrow trained model. However, the rise in language model capabilities39

has created an interest in applying such methods to much larger models. To this end, recent work40

has focused on methods to partially or totally automate much of the mechanistic interpretability41

process, detecting specific model components that are responsible for certain tasks. Such components42

and their connections are dubbed a “circuit” by Olah et al. [11], and the process of identifying43

circuits is known as circuit discovery. A number of approaches for circuit discovery have been44

proposed, broadly performing some form of activation patching [15, 5, 20] or pruning [1, 2, 19].45

These methods formulate the model as a computation graph and attempt to find small subgraphs that46

are responsible for a particular behavior. To date, much of the circuit discovery literature has been47

focused on sub-tasks for language models such as indirect object identification or detecting which of48

two numbers is greater, and identifies coarse-grained circuits whose nodes are entire attention heads49

or MLP modules.50

Algorithmic Alignment in Graph Neural Networks While mechanistic interpretability has51

revealed surprising structure in large generalist models, a particular class of narrow models has52

also been shown to possess algorithmic “reasoning” capabilities: graph neural networks. Broadly,53

GNNs operate on graph data via an iterative message-passing scheme: each node in the graph has54

an embedding, and at each layer of the network, each node will aggregate the embeddings of its55

neighbors and use the aggregated embeddings to update its own embedding. Xu et al. [17] and Dudzik56

and Veličković [3] point out that this aggregate-and-update flow resembles dynamic programming,57

hypothesizing that the algorithmic alignment of graph neural networks affords them an advantage58

in learning algorithmic tasks like single-source shortest path computation. Further, Veličković et al.59

[16] show that learning BFS and Bellman-Ford in parallel can help GNNs generalize on both tasks.60

However, it was only recently that Nerem et al. [10] showed that GNNs are not only capable of61

learning specific algorithms, but that a properly designed GNN will provably learn a specific algorithm62

(in this case Bellman-Ford) during training.63

3 Preliminaries64

It will be necessary to disambiguate the term “computation graph,” which researchers define differ-65

ently in the circuit discovery and in the graph neural network literature. Let Φ be a GNN operating66

on a graph G = (V,E,X,A), where X : V → Rp are the node features and A : E → Rq are edge67

attributes. Where necessary, we will denote by Ψ an arbitrary (perhaps non-graph) neural network.68

In the circuit discovery literature [2, 15, 20], a “computation graph" (which we will call a model69

computation graph) refers to a graph representing individual model components. While earlier70

circuit discovery work defines these components at a lower resolution (e.g., entire attention heads or71

feedforward MLP modules), we consider circuits at the level of individual neurons.72

Definition 3.1 (Model Computation Graph). Let Ψ be a neural network with arbitrary subcomponents73

ψi. The model computation graph of Ψ, denoted Gm
C (Ψ), is the directed graph with vertices i and74

edges (i, j) if the output of ψi is part of the input to ψj .75

In graph neural network literature, some authors [18, 6] use “computation graph” to represent the76

layered message-passing performed by a GNN. We first briefly recall the message-passing scheme77

that underlies most popular GNNs. A GNN Φ of depth L maintains an embedding Φ
(ℓ)
v for each node78

v ∈ V (G) and ℓ = 0, . . . , L, with layer 0 being the input node features Φ(0)
v = Xv . Each subsequent79

layer is given by80

Φ(ℓ+1)
v = f

(ℓ)
Up

Φ(ℓ)
v ,

⊕
(u,v)∈E(G)

f
(ℓ)
Agg(Φ

(ℓ)
u )

 (1)

where f (ℓ)Agg and f (ℓ)Up are any function and
⊕

denotes any permutation-invariant operation such as81

sum, mean, minimum, or maximum. We may denote the output of Φ at node v by Φv or Φv(G), if82

the input graph is ambiguous.83
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Definition 3.2 (Message-Passing Computation Graph). Let Φ be an L-layer GNN operating on a84

graph G. Then the (message-passing) computation graph Gv
c (Φ) for Φ at v ∈ G is the directed graph85

with nodes
⊔L

ℓ=0 N (ℓ)(v) and edges (i(ℓ−1), j(ℓ)) for each (i, j) ∈ E(G) if j ∈ N (L−ℓ)(v) where86

N (ℓ)(v) denotes the ℓ-hop neighborhood of v.87

In what follows, we will follow the circuit discovery literature and use “computation graph” to refer88

to the model computation graph. Furthermore, we will consider circuit discovery at the neuron level:89

each node in the computation graph corresponds to an individual neuron in the model, and each edge90

corresponds to a connection between neuron activations.91

4 Circuit Discovery for GNNs92

Having introduced our definitions and notation, we introduce the scoring methods EAP [15] and93

EAP-IG [5], both forms of attribution patching. The goal of attribution patching is to approximate94

the difference in prediction that would occur if an edge in the computation graph was corrupted95

or removed [5]. Actually removing the edge and obtaining the result with a full forward pass is96

referred to as activation patching [2]. We also describe in this section our approach to discovering97

neuron-level circuits in the GNN setting.98

4.1 Attribution Patching Scores99

We will use the model computation graph using a single node prediction as the output, with the100

aggregated neighbor information appearing as additional inputs. We adopt the method of edge101

attribution patching (EAP) [15] and its integrated gradients variation EAP-IG [5]. Formally, let (i, j)102

be an edge in the computation graph of a neural network Ψ, corresponding to the connection between103

two modules ψi and ψj . The attribution score of (i, j) for a prediction Ψ(x) takes the activation zi104

at ψi for the input x together with the activation z′i from a corrupted input x′. Then, given a loss L105

which measures the distance between predictions y = Ψ(x) and y′ = Ψ(x′), the EAP score uses the106

gradient of L with respect to the output of ψj . That is,107

EAP(i,j)(x, x
′) = (z′i − zi)

⊺ ∂

∂ψj
L(Ψ(x),Ψ(x′)). (2)

Equation (2) comes from the first-order term in a Taylor expansion for the perturbation performed by108

activation patching. EAP scores can be computed efficiently, performing just two forward passes and109

one backwards pass for each pair of inputs [15].110

EAP-IG [5] adapts EAP to use the integrated gradients method of [14], approximating an integral111

over the straight-line path between zi and z′i with a Riemann sum of m terms:112

EAP-IG(i,j)(x, x
′) = (z′i − zi)

⊺ 1

m

m∑
k=1

∂

∂ψj
L

(
Ψ(x),Ψ

(
x′ +

k

m
(x− x′)

))
. (3)

EAP-IG is m times slower than EAP, essentially performing the EAP calculation m times for each113

pair of inputs [5].114

4.2 Circuit Identification in GNNs115

Because a graph neural network operates on each node of the input graph, EAP and EAP-IG assign116

each computation edge a different score for each input node in the graph. To give each computation117

edge a single score for a given prediction, MINAR sums over the scores from each vertex to obtain118

the total score for each computational edge on one graph instance. That is,119

EAP(i,j)(G,G
′) =

∑
v∈G

(
z′

v
i
′ − zvi

)⊺ ∂

∂ψj
L(Φv(G),Φv′(G′)) (4)

where zvi is the activation of neuron ψi on node v. We compute EAP-IG in a simlar manner, again120

summing over nodes to give a total score on a single graph instance. For EAP-IG, we implement the121

steps between the original and corrupted inputs by interpolating between all node and edge features.122
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Finally, since attribution scores are typically averaged over multiple input instances to understand123

their behavior across a probing dataset, we average over each input graph to obtain the final attribution124

score for each edge. We also follow previous work in using the absolute value of each attribution125

score for downstream circuit discovery:126

EAP(i,j) =

∣∣∣∣∣∣ 1

|Gprobe|
∑

(G,G′)∈Gprobe

EAP(i,j)(G,G
′)

∣∣∣∣∣∣ (5)

and similarly for EAP-IG.127

To guarantee connectedness of the identified circuit, we propose to construct the circuit from complete128

paths between the computation graph’s inputs and outputs. While previous work in circuit discovery129

uses naive top-k selection [15] or a greedy Dijkstra-like algorithm [5], these methods often produce130

parentless or childless edges which must then be pruned. Instead, MINAR takes advantage of the fact131

that the computation graph is directed, acyclic, and topologically sorted, and therefore supports an132

efficient longest-path algorithm. Each longest path computation takes O(|V (Gm
c )|+ |E(Gm

c )|) time,133

the same runtime as constructing the model computation graph Gm
c itself.134

Using the absolute value of our attribution scores as weights, we initialize our circuit with the135

longest path from any input to each model output. Then, continuing down the top-k edges which136

have not yet been included, we compute the longest path containing that edge and add it to the137

circuit. Thus once scores are computed, finding a circuit that includes the top k edges takes time138

O((k+dL)(|V (Gm
c )|+ |E(Gm

c )|)), where dL is the output dimension. This way, MINAR guarantees139

that the identified circuit is a connected subgraph of the computation graph whose only parentless140

and childless nodes are the model inputs and outputs, respectively.141

5 Results142

We demonstrate our circuit discovery method using two classical algorithmic tasks in the neural143

algorithmic reasoning literature: single-source shortest paths (via Bellman-Ford) and node reachability144

(via breadth-first search). We test first shortest paths by itself, then test shortest paths and reachability145

in parallel, as in [16]. In the shortest path task, we validate our method by identifying the circuit146

predicted by Nerem et al. [10] to implement the Bellman-Ford algorithm. For the parallel task, we147

examine the hypothesis of Veličković et al. [16] that a model predicting shortest path distance and148

reachability in parallel may experience some amount of transfer between tasks, reusing part of the149

computation for one task to perform the other.150

Both tasks share the same training set, constructed as in [10], but with additional node features and151

labels to support the reachability task. Specifically, for the each node is given two initial features:152

xSP
v =

{
0 v is the source
B otherwise.

and xBFS
v =

{
1 v is the source
0 otherwise.

(6)

Here B is any large number greater than any path length, which we take to be B = 1000. For the153

shortest path GNN, only xSP
v is provided as input to the model. When the two tasks are performed154

in parallel, the initial node feature is the concatenation (xSP
v , x

BFS
v ). For the test set, we additionally155

include a number of balanced tree graphs to provide more graphs with unreachable nodes. We discuss156

the dataset in greater detail in Appendix B. In our circuit discovery experiments, we corrupt the input157

data by setting every edge weight to zero and flipping the input features:158

xSP
v

′
=

{
B v is the source
0 otherwise

and xBFS
v

′
=

{
0 v is the source
1 otherwise.

(7)

We also perturb the edge weights, setting them to zero in the corrupted data.159

5.1 Bellman-Ford160

We validate MINAR by replicating [10]. We train a minimum-aggregated message-passing network161

(which [10] dubs a MinAggGNN) to predict single-source shortest path distances. We use a two-layer162

network, corresponding to two steps of Bellman-Ford. Each layer is given by163

Φ(ℓ+1)
v = f

(ℓ)
Up

(
Φ(ℓ)

v , min
(u,v)∈E(G)

f
(ℓ)
Agg(Φ

(ℓ)
u , eu,v)

)
(8)
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Figure 1: MSE training loss, multiplicative test loss, and L1 regularization term for Bellman-Ford
MinAggGNN (left) and parallel Bellman-Ford and BFS MinAggGNN (right). The right plot also
shows train and test accuracy on the BFS reachability task.

where we implement f (ℓ)Agg and f (ℓ)Up as two-layer MLPs and we use the minimum operation as the164

aggregator to mimic the Bellman-Ford algorithm. By training with L1 sparsity regularization and a165

small curated training set, [10] shows that such a GNN must implement the Bellman-Ford algorithm.166

While we use MSE during training, we follow [10] in evaluating using a percentage-based test loss:167

Ltest =
1

N

∑
v reachable

∣∣∣∣1− yv
Φ(v)

∣∣∣∣ (9)

where N is the number of reachable nodes from the source of each graph and yv is the true label168

for each reachable node. The trained GNN reaches an MSE of LMSE = 0.0002 and a test loss of169

Ltest = 0.0673. We plot the loss and the L1 regularization term in Figure 1, showing that the model170

has converged to a sparse, generalizable solution.171

Having trained a model to implement a shortest-path solution, we use EAP-IG with m = 20 steps to172

identify the responsible circuit (Figure 2). The resulting circuit consists of only 17 edges out of 18240173

edges in the full computation graph. For comparison, a minimum of 10 parameters are predicted174

by [10]. The circuit, taken as a subnetwork of the full model, achieves a loss of 0.0644 on the test set,175

matching the high performance of the full model. In fact, the circuit achieves a slightly lower loss176

overall, although not substantially. In this example, MINAR successfully recovers a small circuit that177

captures the behavior of the full model, validating our approach.178

5.2 Bellman-Ford and breadth-first search in parallel179

We expand the Bellman-Ford example by introducing a second task: predicting reachability by180

breadth-first search. As with Bellman-Ford, the model’s two layers correspond to two steps of BFS.181

The combination of Bellman-Ford with BFS was investigated by Veličković et al. [16], who note that182

both algorithms traverse a graph in the same manner, and hence hypothesize that learning one task183

can benefit performance on the other.184

We train simultaneously, using MSE for the shortest path task and binary cross-entropy for the185

reachability task. Because we use the same training and testing sets as the Bellman-Ford experiment,186

the positive and negative reachability classes are imbalanced. (About 91.24% of training nodes and187

81.98% of test nodes are reachable.) Therefore, we use class weighting so that the positive and188

negative classes have equal weight during training. We additionally scale the BCE loss by a factor of189

25 during training, as we observed that the MSE and L1 terms dominated training otherwise. Figure 1190

shows the loss and accuracy curves of the model during training, with a test loss of 0.0604 on shortest191

path and a test accuracy of 0.9943 on reachability. We again use EAP-IG with m = 20 steps to192

identify the circuit (Figure 2). We identify a circuit with 25 edges (out of 18432) which achieves a193

test loss of 0.0635 on shortest paths and a reachability accuracy of 0.9664.194

Examining the circuit for the parallel GNN in Figure 2, we notice the nodes x_sp and x_sp correspond195

to the shortest path input feature. The BFS feature is absent, indicating that the model does not196

actually use the BFS feature xBFS. Instead, the model simply recycles steps from the shortest path197

computation: comparing the two circuits in Figure 2 reveals that the Bellman-Ford computation198

follows a very similar structure in both models. However, in the final layers of the parallel model, the199

same neuron convs.1.up_mlp.lins.0.24 is responsible for the bulk of both outputs. Thus we see200

that rather than fully implement BFS and Bellman-Ford in parallel, the parallel GNN uses a heuristic201

from the shortest path calculation to perform the reachability prediction.202
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Figure 2: Identified circuits in the Bellman-Ford MinAggGNN (left) and parallel Bellman-Ford with
BFS MinAggGNN (right). Nodes are individual MinAggGNN neurons. Input and output neurons are
colored white, fAgg neurons are colored blue, and fUp neurons are colored orange. Circuit edges are
colored by corresponding model weights.

6 Conclusion203

We propose MINAR, bringing methods from mechanistic interpretability to the setting of neural204

algorithmic reasoning with graph neural networks. To our knowledge, our work is the first to attempt205

circuit discovery in GNNs to study NAR. Through two case studies, we demonstrate how MINAR206

can be used to identify circuits implementing Bellman-Ford and BFS in trained GNNs, two classical207

tasks in NAR. We chose these settings because the learned algorithms are well-understood and clearly208

interpretable, allowing us to validate our method. In future work, we intend to apply MINAR to novel209

algorithmic and mathematical tasks or to algorithmically-aligned tasks that use real data containing210

high-dimensional features.211
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Figure 3: Training graphs for the Bellman-Ford MinAggGNN from [10].

A Model Training290

We perform our computations on an NVIDIA RTX A6000 Laptop GPU using PyTorch [12] and291

PyTorch-Geometric [4]. For each MinAggGNN, f (ℓ)Agg and f (ℓ)Up are implemented as two-layer MLPs292

with a hidden dimension of 64. The intermediate dimension of each network is 8. We train each293

model using AdamW [8] with a learning rate of γ = 0.001 for 20,000 epochs using full batches and294

an L1 regularization term of η = 0.001.295

B Training Data296

Following [10], we construct a training set Gtrain from the graphs depicted in Figure 3 for K = 2. It297

includes all path graphs of the form P
(1)
K+1(a, . . . , b, . . . , 0) for a, b ∈ {0, 1, . . . , 2K}×{0, . . . , 2K+298

1} (where b is the weight of the K-th edge). It also includes the graph H(0)
K from Figure 3 and the299

special path graphs P (0)
1 (1), P (1)

2 (1, 0). We also include extra path graphs: four three-node path300

graphs initialized at step zero of Bellman-Ford and four four-node path graphs initialized at step two301

of Bellman-Ford, each with randomly generated edge weights.302

For the test set, we also largely follow [10]. We include a collection of 3, 4, and 5-node cycle graphs;303

complete graphs on 5 to 200 nodes; and Erdős-Rényi graphs on 5 to 200 nodes with p = 0.5. To304

provide extra examples of graphs with unreachable nodes, we also generate binary and ternary trees305

of depths of 3 and 4. All test graphs have randomly generated edge weights, and the test set contains306

300 graphs in total.307

C Regularization308

Our use of an L1 sparsity regularization follows Nerem et al. [10], who show that training their309

MinAgg GNN withL1 regularization is necessary to induce the desired Bellman-Ford implementation.310

Regularization is also employed in several mechanistic interpretability works to induce a “correct”311

implementation in a trained model. For example, Zhong et al. [21] use weight decay when training312

their model to perform modular addition, and Li et al. [7] show that weight decay is necessary to313

prune “vestigial” circuits that implement trivial heuristics early in training. The role of regularization314

can be seen in the parameter summaries for the trained networks, as shown in Figure 4 and Figure 5.315
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Figure 4: Parameter summaries for each component of the Bellman-Ford MinAggGNN.
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Figure 5: Parameter summaries for each component of the parallel Bellman-Ford and breadth-first
search MinAggGNN.
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NeurIPS Paper Checklist316

1. Claims317

Question: Do the main claims made in the abstract and introduction accurately reflect the318

paper’s contributions and scope?319

Answer: [Yes]320

Justification: Our contributions are described in the abstract and introduction and reflect the321

content of the rest of the paper.322

Guidelines:323

• The answer NA means that the abstract and introduction do not include the claims324

made in the paper.325

• The abstract and/or introduction should clearly state the claims made, including the326

contributions made in the paper and important assumptions and limitations. A No or327

NA answer to this question will not be perceived well by the reviewers.328

• The claims made should match theoretical and experimental results, and reflect how329

much the results can be expected to generalize to other settings.330

• It is fine to include aspirational goals as motivation as long as it is clear that these goals331

are not attained by the paper.332

2. Limitations333

Question: Does the paper discuss the limitations of the work performed by the authors?334

Answer: [Yes]335

Justification: We address our limitations in the conclusion, and discuss the runtime of our336

method in Section 4.337

Guidelines:338

• The answer NA means that the paper has no limitation while the answer No means that339

the paper has limitations, but those are not discussed in the paper.340

• The authors are encouraged to create a separate "Limitations" section in their paper.341

• The paper should point out any strong assumptions and how robust the results are to342

violations of these assumptions (e.g., independence assumptions, noiseless settings,343

model well-specification, asymptotic approximations only holding locally). The authors344

should reflect on how these assumptions might be violated in practice and what the345

implications would be.346

• The authors should reflect on the scope of the claims made, e.g., if the approach was347

only tested on a few datasets or with a few runs. In general, empirical results often348

depend on implicit assumptions, which should be articulated.349

• The authors should reflect on the factors that influence the performance of the approach.350

For example, a facial recognition algorithm may perform poorly when image resolution351

is low or images are taken in low lighting. Or a speech-to-text system might not be352

used reliably to provide closed captions for online lectures because it fails to handle353

technical jargon.354

• The authors should discuss the computational efficiency of the proposed algorithms355

and how they scale with dataset size.356

• If applicable, the authors should discuss possible limitations of their approach to357

address problems of privacy and fairness.358

• While the authors might fear that complete honesty about limitations might be used by359

reviewers as grounds for rejection, a worse outcome might be that reviewers discover360

limitations that aren’t acknowledged in the paper. The authors should use their best361

judgment and recognize that individual actions in favor of transparency play an impor-362

tant role in developing norms that preserve the integrity of the community. Reviewers363

will be specifically instructed to not penalize honesty concerning limitations.364

3. Theory assumptions and proofs365

Question: For each theoretical result, does the paper provide the full set of assumptions and366

a complete (and correct) proof?367

11



Answer: [NA]368

Justification: This work does not include theoretical results.369

Guidelines:370

• The answer NA means that the paper does not include theoretical results.371

• All the theorems, formulas, and proofs in the paper should be numbered and cross-372

referenced.373

• All assumptions should be clearly stated or referenced in the statement of any theorems.374

• The proofs can either appear in the main paper or the supplemental material, but if375

they appear in the supplemental material, the authors are encouraged to provide a short376

proof sketch to provide intuition.377

• Inversely, any informal proof provided in the core of the paper should be complemented378

by formal proofs provided in appendix or supplemental material.379

• Theorems and Lemmas that the proof relies upon should be properly referenced.380

4. Experimental result reproducibility381

Question: Does the paper fully disclose all the information needed to reproduce the main ex-382

perimental results of the paper to the extent that it affects the main claims and/or conclusions383

of the paper (regardless of whether the code and data are provided or not)?384

Answer: [Yes]385

Justification: The experimental settings are described in Section 5 and Appendix A. Algo-386

rithms are described in Section 4.387

Guidelines:388

• The answer NA means that the paper does not include experiments.389

• If the paper includes experiments, a No answer to this question will not be perceived390

well by the reviewers: Making the paper reproducible is important, regardless of391

whether the code and data are provided or not.392

• If the contribution is a dataset and/or model, the authors should describe the steps taken393

to make their results reproducible or verifiable.394

• Depending on the contribution, reproducibility can be accomplished in various ways.395

For example, if the contribution is a novel architecture, describing the architecture fully396

might suffice, or if the contribution is a specific model and empirical evaluation, it may397

be necessary to either make it possible for others to replicate the model with the same398

dataset, or provide access to the model. In general. releasing code and data is often399

one good way to accomplish this, but reproducibility can also be provided via detailed400

instructions for how to replicate the results, access to a hosted model (e.g., in the case401

of a large language model), releasing of a model checkpoint, or other means that are402

appropriate to the research performed.403

• While NeurIPS does not require releasing code, the conference does require all submis-404

sions to provide some reasonable avenue for reproducibility, which may depend on the405

nature of the contribution. For example406

(a) If the contribution is primarily a new algorithm, the paper should make it clear how407

to reproduce that algorithm.408

(b) If the contribution is primarily a new model architecture, the paper should describe409

the architecture clearly and fully.410

(c) If the contribution is a new model (e.g., a large language model), then there should411

either be a way to access this model for reproducing the results or a way to reproduce412

the model (e.g., with an open-source dataset or instructions for how to construct413

the dataset).414

(d) We recognize that reproducibility may be tricky in some cases, in which case415

authors are welcome to describe the particular way they provide for reproducibility.416

In the case of closed-source models, it may be that access to the model is limited in417

some way (e.g., to registered users), but it should be possible for other researchers418

to have some path to reproducing or verifying the results.419

5. Open access to data and code420
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Question: Does the paper provide open access to the data and code, with sufficient instruc-421

tions to faithfully reproduce the main experimental results, as described in supplemental422

material?423

Answer: [No]424

Justification: Due to internal policies, we are unable to release code at time of submission.425

However, we intend to provide code by the date of the workshop.426

Guidelines:427

• The answer NA means that paper does not include experiments requiring code.428

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/429

public/guides/CodeSubmissionPolicy) for more details.430

• While we encourage the release of code and data, we understand that this might not be431

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not432

including code, unless this is central to the contribution (e.g., for a new open-source433

benchmark).434

• The instructions should contain the exact command and environment needed to run to435

reproduce the results. See the NeurIPS code and data submission guidelines (https:436

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.437

• The authors should provide instructions on data access and preparation, including how438

to access the raw data, preprocessed data, intermediate data, and generated data, etc.439

• The authors should provide scripts to reproduce all experimental results for the new440

proposed method and baselines. If only a subset of experiments are reproducible, they441

should state which ones are omitted from the script and why.442

• At submission time, to preserve anonymity, the authors should release anonymized443

versions (if applicable).444

• Providing as much information as possible in supplemental material (appended to the445

paper) is recommended, but including URLs to data and code is permitted.446

6. Experimental setting/details447

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-448

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the449

results?450

Answer: [Yes]451

Justification: We describe training details and hyperparameter settings for model training452

and circuit discovery experiments.453

Guidelines:454

• The answer NA means that the paper does not include experiments.455

• The experimental setting should be presented in the core of the paper to a level of detail456

that is necessary to appreciate the results and make sense of them.457

• The full details can be provided either with the code, in appendix, or as supplemental458

material.459

7. Experiment statistical significance460

Question: Does the paper report error bars suitably and correctly defined or other appropriate461

information about the statistical significance of the experiments?462

Answer: [No]463

Justification: Performing multiple training trials of each experiment would require too464

much compute. The circuit discovery methods are deterministic, so error bars would not be465

appropriate.466

Guidelines:467

• The answer NA means that the paper does not include experiments.468

• The authors should answer "Yes" if the results are accompanied by error bars, confi-469

dence intervals, or statistical significance tests, at least for the experiments that support470

the main claims of the paper.471
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• The factors of variability that the error bars are capturing should be clearly stated (for472

example, train/test split, initialization, random drawing of some parameter, or overall473

run with given experimental conditions).474

• The method for calculating the error bars should be explained (closed form formula,475

call to a library function, bootstrap, etc.)476

• The assumptions made should be given (e.g., Normally distributed errors).477

• It should be clear whether the error bar is the standard deviation or the standard error478

of the mean.479

• It is OK to report 1-sigma error bars, but one should state it. The authors should480

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis481

of Normality of errors is not verified.482

• For asymmetric distributions, the authors should be careful not to show in tables or483

figures symmetric error bars that would yield results that are out of range (e.g. negative484

error rates).485

• If error bars are reported in tables or plots, The authors should explain in the text how486

they were calculated and reference the corresponding figures or tables in the text.487

8. Experiments compute resources488

Question: For each experiment, does the paper provide sufficient information on the com-489

puter resources (type of compute workers, memory, time of execution) needed to reproduce490

the experiments?491

Answer: [Yes]492

Justification: The compute resources used are provided in Appendix A.493

Guidelines:494

• The answer NA means that the paper does not include experiments.495

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,496

or cloud provider, including relevant memory and storage.497

• The paper should provide the amount of compute required for each of the individual498

experimental runs as well as estimate the total compute.499

• The paper should disclose whether the full research project required more compute500

than the experiments reported in the paper (e.g., preliminary or failed experiments that501

didn’t make it into the paper).502

9. Code of ethics503

Question: Does the research conducted in the paper conform, in every respect, with the504

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?505

Answer: [Yes]506

Justification: We only use synthetic data in our experiments.507

Guidelines:508

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.509

• If the authors answer No, they should explain the special circumstances that require a510

deviation from the Code of Ethics.511

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-512

eration due to laws or regulations in their jurisdiction).513

10. Broader impacts514

Question: Does the paper discuss both potential positive societal impacts and negative515

societal impacts of the work performed?516

Answer: [NA]517

Justification: Our work is a generic method for circuit discovery in GNNs, and poses no518

specific societal risks beyond those of machine learning as a whole.519

Guidelines:520

• The answer NA means that there is no societal impact of the work performed.521
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• If the authors answer NA or No, they should explain why their work has no societal522

impact or why the paper does not address societal impact.523

• Examples of negative societal impacts include potential malicious or unintended uses524

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations525

(e.g., deployment of technologies that could make decisions that unfairly impact specific526

groups), privacy considerations, and security considerations.527

• The conference expects that many papers will be foundational research and not tied528

to particular applications, let alone deployments. However, if there is a direct path to529

any negative applications, the authors should point it out. For example, it is legitimate530

to point out that an improvement in the quality of generative models could be used to531

generate deepfakes for disinformation. On the other hand, it is not needed to point out532

that a generic algorithm for optimizing neural networks could enable people to train533

models that generate Deepfakes faster.534

• The authors should consider possible harms that could arise when the technology is535

being used as intended and functioning correctly, harms that could arise when the536

technology is being used as intended but gives incorrect results, and harms following537

from (intentional or unintentional) misuse of the technology.538

• If there are negative societal impacts, the authors could also discuss possible mitigation539

strategies (e.g., gated release of models, providing defenses in addition to attacks,540

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from541

feedback over time, improving the efficiency and accessibility of ML).542

11. Safeguards543

Question: Does the paper describe safeguards that have been put in place for responsible544

release of data or models that have a high risk for misuse (e.g., pretrained language models,545

image generators, or scraped datasets)?546

Answer: [NA]547

Justification: This work is a generic method and poses no such risks.548

Guidelines:549

• The answer NA means that the paper poses no such risks.550

• Released models that have a high risk for misuse or dual-use should be released with551

necessary safeguards to allow for controlled use of the model, for example by requiring552

that users adhere to usage guidelines or restrictions to access the model or implementing553

safety filters.554

• Datasets that have been scraped from the Internet could pose safety risks. The authors555

should describe how they avoided releasing unsafe images.556

• We recognize that providing effective safeguards is challenging, and many papers do557

not require this, but we encourage authors to take this into account and make a best558

faith effort.559

12. Licenses for existing assets560

Question: Are the creators or original owners of assets (e.g., code, data, models), used in561

the paper, properly credited and are the license and terms of use explicitly mentioned and562

properly respected?563

Answer: [Yes]564

Justification: We cite the relevant code.565

Guidelines:566

• The answer NA means that the paper does not use existing assets.567

• The authors should cite the original paper that produced the code package or dataset.568

• The authors should state which version of the asset is used and, if possible, include a569

URL.570

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.571

• For scraped data from a particular source (e.g., website), the copyright and terms of572

service of that source should be provided.573
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• If assets are released, the license, copyright information, and terms of use in the574

package should be provided. For popular datasets, paperswithcode.com/datasets575

has curated licenses for some datasets. Their licensing guide can help determine the576

license of a dataset.577

• For existing datasets that are re-packaged, both the original license and the license of578

the derived asset (if it has changed) should be provided.579

• If this information is not available online, the authors are encouraged to reach out to580

the asset’s creators.581

13. New assets582

Question: Are new assets introduced in the paper well documented and is the documentation583

provided alongside the assets?584

Answer: [Yes]585

Justification: We provide the code with documentation.586

Guidelines:587

• The answer NA means that the paper does not release new assets.588

• Researchers should communicate the details of the dataset/code/model as part of their589

submissions via structured templates. This includes details about training, license,590

limitations, etc.591

• The paper should discuss whether and how consent was obtained from people whose592

asset is used.593

• At submission time, remember to anonymize your assets (if applicable). You can either594

create an anonymized URL or include an anonymized zip file.595

14. Crowdsourcing and research with human subjects596

Question: For crowdsourcing experiments and research with human subjects, does the paper597

include the full text of instructions given to participants and screenshots, if applicable, as598

well as details about compensation (if any)?599

Answer: [NA]600

Justification: This work does not involve human subjects.601

Guidelines:602

• The answer NA means that the paper does not involve crowdsourcing nor research with603

human subjects.604

• Including this information in the supplemental material is fine, but if the main contribu-605

tion of the paper involves human subjects, then as much detail as possible should be606

included in the main paper.607

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,608

or other labor should be paid at least the minimum wage in the country of the data609

collector.610

15. Institutional review board (IRB) approvals or equivalent for research with human611

subjects612

Question: Does the paper describe potential risks incurred by study participants, whether613

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)614

approvals (or an equivalent approval/review based on the requirements of your country or615

institution) were obtained?616

Answer: [NA]617

Justification: This work does not involve human subjects.618

Guidelines:619

• The answer NA means that the paper does not involve crowdsourcing nor research with620

human subjects.621

• Depending on the country in which research is conducted, IRB approval (or equivalent)622

may be required for any human subjects research. If you obtained IRB approval, you623

should clearly state this in the paper.624
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• We recognize that the procedures for this may vary significantly between institutions625

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the626

guidelines for their institution.627

• For initial submissions, do not include any information that would break anonymity (if628

applicable), such as the institution conducting the review.629

16. Declaration of LLM usage630

Question: Does the paper describe the usage of LLMs if it is an important, original, or631

non-standard component of the core methods in this research? Note that if the LLM is used632

only for writing, editing, or formatting purposes and does not impact the core methodology,633

scientific rigorousness, or originality of the research, declaration is not required.634

Answer: [NA]635

Justification: This work does not use an LLM in its core methods.636

Guidelines:637

• The answer NA means that the core method development in this research does not638

involve LLMs as any important, original, or non-standard components.639

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)640

for what should or should not be described.641

17

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries
	Circuit Discovery for GNNs
	Attribution Patching Scores
	Circuit Identification in GNNs

	Results
	Bellman-Ford
	Bellman-Ford and breadth-first search in parallel

	Conclusion
	Model Training
	Training Data
	Regularization

