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Abstract

Graph neural networks (GNNs) are known to be capable of implementing specific
algorithmic steps that guarantee strong out-of-distribution performance, a property
referred to as algorithmic alignment or neural algorithmic reasoning (NAR). At the
same time, recent advances in the reasoning capabilities of large language models
(LLMs) have created an interest in mechanistic interpretability: identifying specific
model components that are responsible for certain tasks. In this work, we adapt
circuit discovery methods from mechanistic interpretability to the GNN setting
with Mechanistic Interpretability for Neural Algorithmic Reasoning (MINAR). We
validate MINAR by applying it to two GNNs: one predicting single-source shortest
path distances and another computing shortest path distances and reachability in
parallel. Through both examples, we demonstrate how mechanistic interpretability
can offer fine-grained insight into an algorithmically aligned model. Our code will
be made available at https://github.com/he-jesse/minar]|

1 Introduction

The recent surge in the capabilities of large language models (LLMs) has created a commensurate
demand for novel interpretability methods suited to analyze these models. At the same time, the
discovery of phenomena like grokking [[13] has shown that surprising structure arises in trained
models. This confluence of interests has led to the emergence of mechanistic interpretability [9]:
attempting to reverse-engineer a model’s behavior in terms of its internal processes. At the same time,
researchers have noticed that graph neural networks (GNNs) are capable of implementing specific
algorithms. This is thought to be a result of the resemblance between their message-passing structure
and dynamic programming. This notion, dubbed “algorithmic alignment” [[17]] or “neural algorithmic
reasoning” [[L6], promises robust out-of-distribution generalization and substantial improvements
in sample complexity. With an interest in discovering how models perform specific algorithmic
tasks on the one hand, and a class of models that implement specific algorithms on the other, the
algorithmic alignment of graph neural networks creates a natural testbed for fine-grained mechanistic
interpretability research.

In this work, we introduce Mechanistic Interpretability for Neural Algorithmic Reasoning (MINAR),
a method to identify neuron-level circuits in GNNSs using circuit discovery methods like EAP [[15]]
and EAP-IG [5]. To our knowledge, MINAR is the first attempt to bring mechanistic interpretability
to the GNN setting. We apply our method to two GNNs: one predicting single-source shortest path
distances and another computing shortest path distances and reachability in parallel. In the first,
we validate our method by identifying the circuit that implements the Bellman-Ford algorithm. In
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the second, we identify that the model learns Bellman-Ford, but recycles much of the shortest path
computation to predict reachability. These examples demonstrate how neuron-level circuits can offer
detailed insight to trained models.

2 Related Work

Circuit Discovery and Mechanistic Interpretability Early mechanistic interpretability work
(e.g., [9,121]]) combines manual examination of parameters with expert hypotheses to reverse-engineer
the inner workings of a narrow trained model. However, the rise in language model capabilities
has created an interest in applying such methods to much larger models. To this end, recent work
has focused on methods to partially or totally automate much of the mechanistic interpretability
process, detecting specific model components that are responsible for certain tasks. Such components
and their connections are dubbed a “circuit” by Olah et al. [[L1], and the process of identifying
circuits is known as circuit discovery. A number of approaches for circuit discovery have been
proposed, broadly performing some form of activation patching [[15} 5} 20] or pruning [ [2} [19]].
These methods formulate the model as a computation graph and attempt to find small subgraphs that
are responsible for a particular behavior. To date, much of the circuit discovery literature has been
focused on sub-tasks for language models such as indirect object identification or detecting which of
two numbers is greater, and identifies coarse-grained circuits whose nodes are entire attention heads
or MLP modules.

Algorithmic Alignment in Graph Neural Networks While mechanistic interpretability has
revealed surprising structure in large generalist models, a particular class of narrow models has
also been shown to possess algorithmic “reasoning” capabilities: graph neural networks. Broadly,
GNN’s operate on graph data via an iterative message-passing scheme: each node in the graph has
an embedding, and at each layer of the network, each node will aggregate the embeddings of its
neighbors and use the aggregated embeddings to update its own embedding. Xu et al. [17] and Dudzik
and Velickovi¢ [3] point out that this aggregate-and-update flow resembles dynamic programming,
hypothesizing that the algorithmic alignment of graph neural networks affords them an advantage
in learning algorithmic tasks like single-source shortest path computation. Further, Velickovi¢ et al.
[16] show that learning BFS and Bellman-Ford in parallel can help GNNs generalize on both tasks.
However, it was only recently that Nerem et al. [10] showed that GNNs are not only capable of
learning specific algorithms, but that a properly designed GNN will provably learn a specific algorithm
(in this case Bellman-Ford) during training.

3 Preliminaries

It will be necessary to disambiguate the term “computation graph,” which researchers define differ-
ently in the circuit discovery and in the graph neural network literature. Let ® be a GNN operating
onagraph G = (V, E, X, A), where V is the node set, F is the edge set, X : V' — RP are the node
features and A : £ — RY are edge attributes. Where necessary, we will denote by U an arbitrary
(perhaps non-graph) neural network.

In the circuit discovery literature [2, [15 20]], a “computation graph" (which we will call a model
computation graph) refers to a graph representing individual model components. These model
components are typically defined at an architectural level, rather than at the mathematical level. While
earlier circuit discovery work defines these components at a lower resolution (e.g., entire attention
heads or feedforward MLP modules), we consider circuits at the level of individual neurons.

Definition 3.1 (Model Computation Graph). Let ¥ be a neural network with arbitrary subcomponents
;. The model computation graph of ¥, denoted G¢¥(V), is the directed graph with vertices i and
edges (4, j) if the output of v; is part of the input to 1;.

In graph neural network literature, some authors [[18| 6] use “computation graph” to represent the
layered message-passing performed by a GNN. We first briefly recall the message-passing scheme
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where fj(fg)g and fl(fg are any function and € denotes any permutation-invariant operation such as

sum, mean, minimum, or maximum. We may denote the output of ® at node v by ®,, or ®,(G), if
the input graph is ambiguous.

Definition 3.2 (Message-Passing Computation Graph). Let ® be an L-layer GNN operating on a
graph G. Then the (message-passing) computation graph G2(®) for ® at v € G is the directed graph

with nodes | [}, N (v) and edges (i~ 1), j(9)) for each (i, j) € E(G) if j € NE=9(v) where
N (v) denotes the ¢-hop neighborhood of .

In what follows, we will follow the circuit discovery literature and use “computation graph” to refer
to the model computation graph. Furthermore, we will consider circuit discovery at the neuron level:
each node in the computation graph corresponds to an individual neuron in the model, and each edge
corresponds to a connection between neuron activations.

4 Circuit Discovery for GNNs

Having introduced our definitions and notation, we introduce the scoring methods EAP [15] and
EAP-IG [5], both forms of attribution patching. The goal of attribution patching is to approximate
the difference in prediction that would occur if an edge in the computation graph was corrupted or
removed [5]. Actually removing the edge and obtaining the result with a full forward pass is referred
to as activation patching [2]]. Our choice to use attribution patching rather than activation patching is
in large part due to efficiency, as our neuron-level computation graphs are typically very dense. We
also describe in this section our approach to discovering neuron-level circuits in the GNN setting.

4.1 Attribution Patching Scores

We will use the model computation graph using a single node prediction as the output, with the
aggregated neighbor information appearing as additional inputs. We adopt the method of edge
attribution patching (EAP) [[15] and its integrated gradients variation EAP-IG [5]]. Formally, let (i, )
be an edge in the computation graph of a neural network W, corresponding to the connection between
two modules ¢; and 1;. The attribution score of (i, j) for a prediction ¥(z) takes the activation z;
at v; for the input x together with the activation z; from a corrupted input 2. Then, given a loss L
which measures the distance between predictions y = ¥(z) and y' = ¥(z’), the EAP score uses the
gradient of L with respect to the output of +);. That is,

0
0,
Equation (2)) comes from the first-order term in a Taylor expansion for the perturbation performed by
activation patching. By perturbing the input and using the intermediate activations, EAP scores can

be computed more efficiently than activation patching scores: EAP performs just two forward passes
and one backwards pass for each pair of inputs [[15].

EAP(; jy(z,2") = (z; — )T L(¥(z), ¥(x")). 2)

EAP-IG [3]] adapts EAP to use the integrated gradients method of [[14]], approximating an integral
over the straight-line path between z; and z] with a Riemann sum of m terms:

EAP-IG(; j(z,2') = Z 5y, ( ), ¥ (x + %(m - :c))) : 3)

EAP-IG is m times slower than EAP, essentlally performing the EAP calculation m times for each
pair of inputs [5].

4.2 Circuit Identification in GNNs

Because a graph neural network operates on each node of the input graph, EAP and EAP-IG assign
each computation edge a different score for each input node in the graph. To give each computation



edge a single score for a given prediction, MINAR sums over the scores from each vertex to obtain
the total score for each computational edge on one graph instance. That is,
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where z} is the activation of neuron ; on node v. We compute EAP-IG in a simlar manner, again
summing over nodes to give a total score on a single graph instance. For EAP-IG, we implement the
steps between the original and corrupted inputs by interpolating between all node and edge features.

Finally, since attribution scores are typically averaged over multiple input instances to understand
their behavior across a probing dataset, we average over each input graph to obtain the final attribution
score for each edge. We also follow previous work in using the absolute value of each attribution
score for downstream circuit discovery:
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and similarly for EAP-IG. We note that the summation in (@) can be replaced by any pooling operation
(e.g. mean). We choose summation to mirror the test loss (9) in Sectionis computed, following
Nerem et al. [[10]].

To guarantee connectedness of the identified circuit, we propose to construct the circuit from complete
paths between the computation graph’s inputs and outputs. While previous work in circuit discovery
uses naive top-k selection [15] or a greedy Dijkstra-like algorithm [5], these methods often produce
parentless or childless edges which must then be pruned. Instead, MINAR takes advantage of the fact
that the computation graph is directed, acyclic, and topologically sorted, and therefore supports an
efficient longest-path algorithm. Each longest path computation takes O(|V (G")| + |E(GZ")]) time,
the same runtime as constructing the model computation graph G itself.

Using the absolute value of our attribution scores as weights, we initialize our circuit with the
longest path from any input to each model output. Then, continuing down the top-k edges which
have not yet been included, we compute the longest path containing that edge and add it to the
circuit. Thus once scores are computed, finding a circuit that includes the top k edges takes time
O((k+dY)(|V(G™)|+|E(G™)|)), where d* is the output dimension. This way, MINAR guarantees
that the identified circuit is a connected subgraph of the computation graph whose only parentless
and childless nodes are the model inputs and outputs, respectively.

5 Results

We demonstrate our circuit discovery method using two classical algorithmic tasks in the neural
algorithmic reasoning literature: single-source shortest paths (via Bellman-Ford) and node reachability
(via breadth-first search). We test first shortest paths by itself, then test shortest paths and reachability
in parallel, as in [[16]]. In the shortest path task, we validate our method by identifying the circuit
predicted by Nerem et al. [10] to implement the Bellman-Ford algorithm. For the parallel task, we
examine the hypothesis of Velickovi¢ et al. [[16] that a model predicting shortest path distance and
reachability in parallel may experience some amount of transfer between tasks, reusing part of the
computation for one task to perform the other.

Both tasks share the same training set, constructed as in [[10], but with additional node features and
labels to support the reachability task. Specifically, each node is given two initial features based on
the typical initialization for Bellman-Ford and breadth-first-search:
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B otherwise. 0 otherwise.

Here B is any large number greater than any path length, which we take to be B = 1000. For the

shortest path GNN, only z5F is provided as input to the model. When the two tasks are performed
in parallel, the initial node feature is the concatenation (25, 2BF). For the test set, we additionally

v v

include a number of balanced tree graphs to provide more graphs with unreachable nodes. We discuss
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Figure 1: MSE training loss, multiplicative test loss, and L; regularization term for Bellman-Ford
MinAggGNN (left) and parallel Bellman-Ford and BFS MinAggGNN (right). The right plot also
shows train and test accuracy on the BFS reachability task.

the dataset in greater detail in Appendix|B} In our circuit discovery experiments, we corrupt the input
data by setting every edge weight to zero and flipping the input features:
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We also perturb the edge weights, setting them to zero in the corrupted data. In both experiments, we
evaluate the identified circuits by performing inference using just the circuit components. We achieve
this by zeroing out network parameters that are not included in the identified circuit and performing a
forward pass with the ablated network.

5.1 Bellman-Ford

We validate MINAR by replicating [10]. We train a minimum-aggregated message-passing network
(which [10] dubs a MinAggGNN) to predict single-source shortest path distances. We use a two-layer
network, corresponding to two steps of Bellman-Ford. Each layer is given by

(e+1) _ () () : (O
ST = Jop ((I)” By Taes (B 6“’”)) ®
where we implement f[ggg and fl(fg as two-layer MLPs and we use the minimum operation as the
aggregator to mimic the Bellman-Ford algorithm. By training with L, sparsity regularization and a
small curated training set, [[L0] shows that such a GNN must implement the Bellman-Ford algorithm.
While we use MSE during training, we follow [10] in evaluating using a percentage-based test loss:
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where N is the number of reachable nodes from the source of each graph and y,, is the true label
for each reachable node. The trained GNN reaches an MSE of Ly;sg = 0.0002 and a test loss of
Ly = 0.0673. We plot the loss and the L; regularization term in Figurem showing that the model
has converged to a sparse, generalizable solution.

Having trained a model to implement a shortest-path solution, we use EAP-IG with m = 20 steps to
identify the responsible circuit (Figure[2). The resulting circuit consists of only 17 edges out of 18240
edges in the full computation graph. For comparison, a minimum of 10 parameters are predicted
by [10]. The circuit, taken as a subnetwork of the full model, achieves a loss of 0.0644 on the test set,
matching the high performance of the full model. In fact, the circuit achieves a slightly lower loss
overall, although not substantially. In this example, MINAR successfully recovers a small circuit that
captures the behavior of the full model, validating our approach.

5.2 Bellman-Ford and breadth-first search in parallel

We expand the Bellman-Ford example by introducing a second task: predicting reachability by
breadth-first search. As with Bellman-Ford, the model’s two layers correspond to two steps of BFS.
The combination of Bellman-Ford with BES was investigated by Velickovic et al. [16], who note that
both algorithms traverse a graph in the same manner, and hence hypothesize that learning one task
can benefit performance on the other.
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Figure 2: Identified circuits in the Bellman-Ford MinAggGNN (left) and parallel Bellman-Ford with
BFS MinAggGNN (right). Nodes are individual MinAggGNN neurons. Input and output neurons are
colored white, fa,, neurons are colored blue, and fy,, neurons are colored orange. Circuit edges are
colored by corresponding model weights.

We train simultaneously, using MSE for the shortest path task and binary cross-entropy for the
reachability task. Because we use the same training and testing sets as the Bellman-Ford experiment,
the positive and negative reachability classes are imbalanced. (About 91.24% of training nodes and
81.98% of test nodes are reachable.) Therefore, we use class weighting so that the positive and
negative classes have equal weight during training. We additionally scale the BCE loss by a factor of
25 during training, as we observed that the MSE and L terms dominated training otherwise. Figure|T]
shows the loss and accuracy curves of the model during training, with a test loss of 0.0604 on shortest
path and a test accuracy of 0.9943 on reachability. We again use EAP-IG with m = 20 steps to
identify the circuit (Figure[Z). We identify a circuit with 25 edges (out of 18432) which achieves a
test loss of 0.0635 on shortest paths and a reachability accuracy of 0.9664.

Examining the circuit for the parallel GNN in Figure 2} we notice the nodes x_sp_nbr and
x_sp_self correspond to the shortest path input feature. The BFS feature is absent, indicating
that the model does not actually use the BFS feature zB"S. Instead, the model simply recycles steps
from the shortest path computation: comparing the two circuits in Figure 2] reveals that the Bellman-
Ford computation follows a very similar structure in both models. However, in the final layers of the
parallel model, the same neuron convs.1.up_mlp.lins.0.24 is responsible for the bulk of both
outputs. Thus we see that rather than fully implement BFS and Bellman-Ford in parallel, the parallel
GNN uses a heuristic from the shortest path calculation to perform the reachability prediction.

6 Conclusion

We propose MINAR, bringing methods from mechanistic interpretability to the setting of neural
algorithmic reasoning with graph neural networks. To our knowledge, our work is the first to attempt
circuit discovery in GNNs to study NAR. Through two case studies, we demonstrate how MINAR
can be used to identify circuits implementing Bellman-Ford and BFS in trained GNNs, two classical
tasks in NAR. We chose these settings because the learned algorithms are well-understood and clearly
interpretable, allowing us to validate our method. In future work, we intend to apply MINAR to novel
algorithmic and mathematical tasks or to algorithmically-aligned tasks that use real data containing
high-dimensional features.
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Figure 3: Training graphs for the Bellman-Ford MinAggGNN from [10].

A Model Training

We perform our computations on an NVIDIA RTX A6000 Laptop GPU using PyTorch [12]] and

PyTorch-Geometric [4]. For each MinAggGNN, fl(fég and f[(fg are implemented as two-layer MLPs
with a hidden dimension of 64. The intermediate dimension of each network is 8. We train each
model using AdamW [8]] with a learning rate of v = 0.001 for 20,000 epochs using full batches and

an L; regularization term of = 0.001.

B Training Data

Following [[10], we construct a training set G, from the graphs depicted in Figurefor K=21
includes all path graphs of the form Pg}rl(a, cooybyo0)fora, b e {0,1,...,2K} x{0,..., 2K+
1} (where b is the weight of the K-th edge). It also includes the graph H I((O) from Figure|3|and the

special path graphs Pl(o)(l), P2(1) (1,0). We also include extra path graphs: four three-node path
graphs initialized at step zero of Bellman-Ford and four four-node path graphs initialized at step two
of Bellman-Ford, each with randomly generated edge weights.

For the test set, we also largely follow [L0]. We include a collection of 3, 4, and 5-node cycle graphs;
complete graphs on 5 to 200 nodes; and Erd6s-Rényi graphs on 5 to 200 nodes with p = 0.5. To
provide extra examples of graphs with unreachable nodes, we also generate binary and ternary trees
of depths of 3 and 4. All test graphs have randomly generated edge weights, and the test set contains
300 graphs in total.

C Regularization

Our use of an L; sparsity regularization follows Nerem et al. [10], who show that training their
MinAgg GNN with L, regularization is necessary to induce the desired Bellman-Ford implementation.
Regularization is also employed in several mechanistic interpretability works to induce a “correct”
implementation in a trained model. For example, Zhong et al. [21] use weight decay when training
their model to perform modular addition, and Li et al. [7] show that weight decay is necessary to prune
“vestigial” circuits that implement trivial heuristics early in training. The impact of regularization can
be seen in the parameter summaries for the trained networks, as shown in Figure ] and Figure 5]
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Figure 4: Parameter summaries for each component of the Bellman-Ford MinAggGNN.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our contributions are described in the abstract and introduction and reflect the
content of the rest of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We address our limitations in the conclusion, and discuss the runtime of our
method in Section 4]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This work does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental settings are described in Section [5]and Appendix[A] Algo-
rithms are described in Section [4]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Due to internal policies, we are unable to release code at this time. However,
we intend to provide code by the date of the workshop.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe training details and hyperparameter settings for model training
and circuit discovery experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Performing multiple training trials of each experiment would require too
much compute. The circuit discovery methods are deterministic, so error bars would not be
appropriate.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The compute resources used are provided in Appendix [A]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We only use synthetic data in our experiments.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is a generic method for circuit discovery in GNNs, and poses no
specific societal risks beyond those of machine learning as a whole.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This work is a generic method and poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the relevant code.
Guidelines:
e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide the code with documentation.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This work does not use an LLM in its core methods.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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