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ABSTRACT

Linear sequence modeling methods, such as linear attention, state space model-
ing, and linear RNNs, offer significant efficiency improvements by reducing the
complexity of training and inference. However, these methods typically compress
the entire input sequence into a single fixed-size memory state, which leads to
suboptimal performance on recall-intensive tasks. To address this limitation, we
introduce a novel architecture called Mixture-of-Memories (MoM). MoM utilizes
multiple independent memory states, with a router network directing input to-
kens to specific memory states. This approach greatly enhances the overall mem-
ory capacity while minimizing memory interference. MoM serves as a general
framework that can be seamlessly combined with diverse memory update mech-
anisms across linear models. As a result, MoM performs exceptionally well on
recall-intensive tasks, surpassing existing linear sequence modeling techniques.
Despite incorporating multiple memory states, the computation of each memory
state remains linear in complexity, allowing MoM to retain the linear-complexity
advantage during training, while constant-complexity during inference. Our ex-
perimental results show that MoM outperforms current linear sequence models on
downstream language tasks, particularly recall-intensive tasks, and even achieves
performance comparable to Transformer models.

1 INTRODUCTION

Attention mechanisms have made significant contributions to the field of artificial intelligence, ad-
vancing various modalities such as language, vision, audio, video, graphs, and even time series
(Achiam et al., 2023; Team, 2023). The Transformer (Vaswani, 2017), known for its ability to
capture long-range dependencies, has become a foundational architecture in this space. However,
traditional Transformers encounter computational challenges due to their quadratic time complex-
ity, O(n2), with respect to sequence length n, making it difficult to scale to long sequences. To
overcome this limitation, several linear sequence modeling methods have been proposed, including
linear attention (Katharopoulos et al., 2020; Qin et al., 2023a; Li et al., 2025), state space modeling
(Gu & Dao, 2024; Dao & Gu, 2024), and linear RNNs (Peng et al., 2024; Qin et al., 2024d), which
offer O(n) training complexity and O(1) inference complexity. These approaches often reduce the
input sequence to a fixed-size hidden space, collapsing the information into a single “memory state”.
While these methods enhance efficiency, they face two main challenges: limited memory capacity
and memory interference. When new information overwrites the single fixed-size memory state,
previously stored representations may degrade, which negatively impacts its long-term memory per-
formance on recall-intensive tasks.

We argue that the strong performance of Transformer models on recall-intensive tasks arises from
their ability to avoid memory interference by maintaining independent key-value caches for each
token, thus offering virtually unlimited memory capacity. In contrast, linear sequence modeling
relies on extreme compression, consolidating all the input information into a single fixed-size mem-
ory state (Katharopoulos et al., 2020; Dao & Gu, 2024). This approach results in limited memory
capacity and inherently leads to memory interference issues.

Interestingly, the human brain has developed mechanisms that enable large memory capacity while
reducing memory interference. Neuroscience studies show that in the hippocampus, theta oscil-
lations (4∼8 Hz) and gamma oscillations (30∼100 Hz) work together to support a neural coding
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mechanism for multi-item memory (Buzsáki, 2002; Lisman & Jensen, 2013). Specifically, each
theta cycle is subdivided into multiple gamma subcycles, and within each gamma subcycle, a dis-
tinct group of neurons is activated following the “E%-max” mechanism (de Almeida et al., 2009).
This sequential activation temporally separates different memory items, thus preventing interference.

Inspired by these biological insights, we propose a new architecture called Mixture-of-Memories
(MoM), which aims to strike a balance between the explicit token representations in Transform-
ers and the extreme compression found in earlier linear sequence modeling methods. MoM employs
multiple independent memory states, with a router network that directs input tokens to specific mem-
ory states. The input sequence is divided into a predefined number of subsequences (phase-specific
neural assemblies), which are processed in parallel and fed into the corresponding memory projec-
tions (dentate microcircuits) to generate key-value pairs. As the linear sequence modeling layer pro-
cesses each subsequence using an RNN-like update mechanism, it produces multiple memory states
that capture different aspects of the input sequence. The final output is computed as a weighted sum
of these memories, which we refer to as the mixture-of-memories. This approach expands memory
capacity and eliminates memory interference, enabling MoM to significantly outperform existing
linear sequence models that rely on a single fixed-size memory state.

Our contributions can be summarized as follows:

• We present MoM, an architecture that incorporates multiple independent memory states,
significantly enhancing memory capacity and eliminating memory interference, while re-
taining the efficiency benefits of linear-time training and constant-memory inference.

• Distinct with existing gating mechanisms, MoM is a new paradigm to reduce memory
interference by separating the memory states. The overall design is broadly compatible
with diverse linear sequence modeling methods, making it a straightforward and effective
approach to boost task performance.

• Through empirical evaluation, we show that MoM outperforms strong linear sequence
modeling baselines across a variety of language tasks, particularly on recall-intensive tasks.
MoM even achieves performance on par with Transformer models, a feat that current linear
sequence modeling methods struggle to match.

2 PRELIMINARY

For notations in this work, we use bold lower-case letters for row vectors (e.g., qt,kt), bold upper-
case letters for matrices (e.g., Q,K) and the identical letters represent a row in the matrix, e.g., qt
is the t-th row of Q.

LINEAR ATTENTION

To reduce the time complexity of Transformer attention, various optimization techniques have been
proposed. Linear Transformers (Katharopoulos et al., 2020) replace the softmax attention mecha-
nism with dot-product of feature maps ϕ(·):

ot =

∑n
i=1 ϕ(qt)ϕ(ki)

Tvi∑n
i=1 ϕ(qt)ϕ(ki)T

, (1)

where qt,kt,vt ∈ Rd. While the presence of the denominator may lead to numerical instability (Qin
et al., 2024b) and the feature map can utilize an identity function, which we omit for simplicity. In
perspective of memory, the formulation can also be written in a recurrent format:

Mt = Mt−1 + kT
t vt, ot = qtMt. (2)

This indicates that linear attention can function as a linear recurrent layer with a matrix-valued
hidden state M which we refer to as memory sate and the output is generated by querying the
memory state M . This represents the ultimate compression of sequence information, condensing
the entire sequence into a single memory state.

Building on the foundational concepts of linear attention and memory perspective, some recent
advancements have focused on optimizing memory structure, including gated updates (Yang et al.,
2023; Qin et al., 2024e;d) and memory capacity expansion (Peng et al., 2024; Qin et al., 2024d).
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3 METHOD

3.1 MOTIVATION

Linear sequence models compress the entire sequence data into a fixed-size memory state. Despite
numerous efforts to minimize information loss, such as introducing gating mechanisms and employ-
ing more precise control over memory modifications (Orvieto et al., 2023; De et al., 2024; Beck
et al., 2024; Yang et al., 2023; Zhang et al., 2024), some degradation in this compression process is
inevitable. Expanding the memory capacity has been shown to mitigate this issue to some extent,
with studies indicating that increasing memory capacity can enhance model performance (Qin et al.,
2024d; Peng et al., 2024).

However, previous approaches that simply increased the size of the RNN state, essentially expand-
ing a single memory state, struggled to capture the full spectrum of information within an entire
sequence. We propose that this difficulty arises because sequence information is often multifaceted,
and a single, expanded memory may not be capable of simultaneously capturing multiple aspects of
the data. Inputs that introduce new or orthogonal information may interfere with existing memory
content when using a shared memory. Rather than discarding these inputs through gating mech-
anisms or overwriting the existing memory state, it may be more effective to consider alternative
strategies that allow for the preservation of diverse information without interference.

3.2 MOM: MIXTURE-OF-MEMORIES

𝑄 𝐾 𝑉

𝐾𝑉 Proj 𝑁

𝐾1 𝑉1

Matmul

𝐾𝑁 𝑉𝑁
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…
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Shared KV Memory
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Output

Shared 

Memory

𝑡𝑜𝑝𝑘=2
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Matmul

Matmul

Local KV Memory

Mixture of Memories

Figure 1: MoM Architecture. Each input to-
ken selectively activates and updates K memory
states, leaving non-activated memory states un-
changed to avoid interference from current input.
Additionally, we introduce a continuously acti-
vated shared memory. This figure presents the
basic memory update mechanism; other mecha-
nisms involving gating or more complex updates
follow a similar approach.

To address the challenge outlined above, we
propose a novel approach for encoding multi-
item memory such as theta-gamma oscilla-
tions (Lisman & Jensen, 2013), and concepts
from Mixture-of-Experts (MoE) (Shazeer et al.,
2017), where different experts handle specific
tokens. In this approach, we leverage mul-
tiple memory states, each of which is selec-
tively updated by different inputs. This in-
creases the memory capacity and enables the
model to retain diverse pieces of information
by storing various types of inputs in separate
memory states.

In our framework, the memory states function
similarly to the experts in MoE. However, in-
stead of relying on completely separate net-
works, these modules are individual RNN states
embedded within a linear recurrent mechanism.
This design allows for the isolation of mem-
ory updates while concurrently managing dis-
tinct types of information. It is important to
note that MoM essentially differs from tradi-
tional MoE, as we will discuss in Appendix B.
Figure 1 provides an overview of the MoM ar-
chitecture. Below, we introduce the structure
of the MoM layer and explain how this multi-
memory architecture is implemented in the con-
text of linear sequence modeling.

3.2.1 ROUTER

We use a router to assign inputs to different memory states. Utilizing the top-k concept, each token
is routed to the top-k memories based on its importance scores. Specifically, we use a simple linear
layer to generate these scores for each input token. After applying a softmax function, we select the
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top-k scores and normalize them.

scorest = TopK(softmax(xtWg)) ∈ Rk, (3)

gt =
scorest∑
scorest

∈ Rk, (4)

where xt ∈ Rd, k is the top-k number, Wg ∈ Rd×M is learnable weight, gt is the normalized
importance scores of the input xt.

3.2.2 LINEAR RECURRENT MEMORY MODULE

After the router network, the input xt is directed to top-k linear recurrent modules, meaning that the
top-k memories are activated while the others remain inactive.

Each Memory. For each activated memory, indexed by m, we perform the following operation:

1. Key and Value Projections: We project the input xt to km
t and vm

t using Wm
k and Wm

v :

km
t = xtW

m
k ,vm

t = xtW
m
v ∈ Rd, (5)

where Wm
k , Wm

v are learnable projection weights for kv of the m-th memory module.
2. Memory Update: We update the activated memory state using km

t , vm
t :

Mm
t = Mm

t−1 + (km
t )Tvm

t ∈ Rd×d. (6)
The equation above represents the simplest form of memory update for clarity. Our approach is
flexible and does not rely on a specific memory update mechanism. To enhance performance, we
can incorporate mechanisms such as forget gates (Sun et al., 2023).
More generally, our method can be adapted to incorporate various memory update methods pro-
posed in previous work. Detailed descriptions of these methods are provided in Table 1.

Table 1: Memory Update Rules. We
demonstrate that several linear sequence
models can be viewed as recurrent
models in terms of memory updates,
where at, bt ∈ (0, 1) are data-dependent
scaler, at is data-dependent vector, and
γ is a data-independent constant.

Method Memory Update Rule

Linear Attn Mt = Mt−1 + kT
t vt

RetNet Mt = γMt−1 + kT
t vt

GLA Mt = (aT
t 1)Mt−1 + kT

t vt

DeltaNet Mt = (I − kT
t kt)Mt−1 + btk

T
t vt

G-DeltaNet Mt = at(I − kT
t kt)Mt−1 + btk

T
t vt

TTT Mt = Mt−1 + bt∇l(Mt−1;kt,vt)

Titans Mt = atMt−1 + bt∇M l(Mt−1;kt,vt)

Mamba2 Mt = atMt−1 + btk
T
t vt

HGRN2 Mt = (aT
t 1)Mt−1 + (1− at)

Tvt

RWKV6 Mt = atMt−1 + kT
t vt

RWKV7 Mt = (aT
t 1)Mt−1 + bt∇l(Mt−1;kt,vt)

Memory Mixing. After updating the activated memory
states, we perform a weighted sum of these memory states
using the importance scores obtained from Equation(4).

M̃t =
∑
m

g
(m)
t Mm

t ∈ Rd×d, (7)

where Mm
t is one activated memory and g

(m)
t is the im-

portance score of Mm
t .

We then obtain the output of the MoM by applying query
vector qt to the mixed memory M̃t:

ot = qtM̃t ∈ Rd. (8)
Finally, the output of the MoM layer is computed by ap-
plying an activation function, normalization, and a linear
transformation.

Throughout the recurrent process, only a subset of mem-
ory states is activated and updated at each time step, while
memory states that are not routed remain inactive and un-
changed. When the input passes through the key-value
projection layer, it generates multiple sets of keys and values that are fed into different memory
modules. This design enables the model to maintain multiple memory states, each preserving dis-
tinct pieces of information. By aggregating the activated memories into a comprehensive mixed
memory by weighted summation, the query can effectively retrieve information from this mixed
memory, and generate attention output followed by other layers.

Shared Memory. To enhance our model’s ability to capture long-term dependencies, we introduce
a shared memory mechanism. This shared memory has access to the entire sequence information,
allowing it to effectively store and retrieve long-term information. By integrating shared memory
into our model, we ensure that it can leverage the complete historical context, resulting in significant
improvements in performance and robustness.
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① ② ③

④⑤⑥

Original Sequence Reorganized According to Memories Varlen Input Sequence

Memory 4

Memory 3

Memory 2

Memory 1 Memory 1

Memory 2

Memory 3

Memory 4

Figure 2: Hardware-efficient Implementation of MoM. Tokens sharing the same color are routed
to the same memory. ① Tokens are first split into groups according to memory routing results, ②
then concatenated into a varlen input sequence, ③ processed by the Triton kernel, ④ the outputs are
returned, ⑤ split back into their respective memories, and ⑥ finally restored to the original sequence
order. For clarity, the illustration shows the top-1 routing case, and the qkv projection is omitted.

3.3 HARDWARE-EFFICIENT IMPLEMENTATION

In the implementation of MoM, mixing memories before query multiplication is equivalent to mul-
tiplying each memory by the query and then mixing the results, allowing us to reuse efficient Triton-
based operators from prior linear sequence models. We first reorder the sequence tokens according
to the routing results so that they follow the memory layout. The reordered tokens are then con-
catenated with varlen for operator computation, after which the results are aggregated via weighted
summation. In this way, MoM’s computation can be effectively reduced to varlen operations, en-
abling efficient execution. We elaborate on this process below.

Given input tokens xb,t ∈ Rd for batch b ∈ {1, . . . , B} and time step t ∈ {1, . . . , T}, each token
is routed to one or more memories m ∈ {1, . . . ,M} with routing weights αb,t,m ≥ 0 satisfying∑M

m=1 αb,t,m = 1.

For each (b,m), define the ordered index set

Ib,m =
(
tb,m(1), . . . , tb,m(Lb,m)

)
,

where tb,m(j) is the original sequence index of the j-th token assigned to memory m, and Lb,m =
|Ib,m|. We index buckets lexicographically by p = (b−1)M +m and define cumulative boundaries

s0 = 0, sp =

p∑
q=1

Lq (p = 1, . . . , BM).

The flattened sequence X̃ is obtained by

x̃ sp−1+j = x b, tb,m(j), j = 1, . . . , Lb,m,

with varlen representation (X̃, s), where s = (s0, . . . , sBM ).

For each bucket p = (b − 1)M +m, queries share a projection matrix WQ, while keys and values
use memory-specific projections W (m)

K ,W
(m)
V :

q̃u = WQx̃u, k̃u = W
(m)
K x̃u, ṽu = W

(m)
V x̃u, u ∈ {sp−1 + 1, . . . , sp}.

A memory-specific kernel Fm with parameters θ(m) is applied independently to each segment:

o sp−1+1:sp = Fm

(
q̃sp−1+1:sp , k̃sp−1+1:sp , ṽsp−1+1:sp ; θ

(m)
)
.

Mapping outputs back to the original sequence, the j-th token in Ib,m has per-memory output

ôb,tb,m(j),m = o sp−1+j .

Finally, token-level representations are reconstructed by weighted summation:

yb,t =

M∑
m=1

αb,t,m ôb,t,m.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Models. In our experiments, we employ the Gated DeltaNet (Yang et al., 2024) as the memory
update mechanism in MoM. The model is configured with four memory states, two of which are
activated at each time step, along with a shared memory.

Baselines. We evaluate MoM against several linear recurrent models and Transformers, including
RetNet (Sun et al., 2023), GLA (Yang et al., 2023), Gated DeltaNet (Yang et al., 2024), and Trans-
former++ (Touvron et al., 2023), which incorporates Rotary Position Embeddings (Su et al., 2024)
and GLU (Shazeer, 2020) into the Transformer architecture. To ensure a fair comparison, we train
all baseline models from scratch using the exact same number of tokens.

Training. We follow the training procedure described by Yang et al. (2023), utilizing the SlimPa-
jama dataset (Soboleva et al., 2023) sampled with 100B tokens and tokenized using the Mistral
tokenizer (Jiang et al., 2023). We train models from scratch with parameter sizes of 380M and 1.3B,
respectively. For the 380M models, we train on 15B tokens with a batch size of 0.5M tokens. More
detailed training configuration is provided in Appendix C. We utilized publicly available pretrained
weights from Zhang et al. (2024) with exactly same configuration 1.

Parameter Explanation. We report model sizes using the common shorthand, where “380M”
denotes a configuration with 24 layers and hidden size 1024, and “1.3B” denotes 24 layers with
hidden size 2048. The main goal of MoM is to expand the memory capacity of linear sequence
models through sparse activation. To this end, we apply sparse activation only to the key and value
projections, which results in a small increase in activated parameters that is well justified by the
performance gains. A detailed discussion on fairness is provided in Appendix G.

4.2 MAIN RESULTS

Table 2: Results on Recall-Intensive Tasks. All inputs are truncated to a maximum length of 2K
tokens. MoM significantly outperforms all other linear models across both model sizes. In the 1.3B
model, MoM even achieves performance very close to that of Transformer models.

Scale Model FDA SWDE SQUAD NQ TriviaQA Drop Avg. Avg.
(no FDA)

380M Params
15B Tokens
L=24, d=1024

Transformer++ 46.14 25.87 33.22 18.94 45.97 20.03 31.70 28.81
RetNet 5.90 9.28 22.41 6.91 40.05 18.59 17.19 19.45
HGRN2 11.53 17.34 24.08 12.67 43.84 17.35 21.14 23.06
GLA 11.26 16.78 27.85 12.77 43.90 17.68 21.71 23.80
GSA 6.36 16.87 21.90 14.60 42.18 16.72 19.77 22.45
Gated DeltaNet 20.53 23.24 28.55 14.98 44.91 16.48 24.78 25.63
MoM 22.98 29.90 29.69 16.60 48.82 20.99 28.16 29.20

1.3B Params
100B Tokens
L=24, d=2048

Transformer++† 44.32 32.43 42.59 24.49 58.47 21.56 37.31 35.91
RetNet† 13.62 22.59 33.46 15.43 53.79 19.79 26.45 29.01
HGRN2† 12.35 23.24 33.19 19.10 55.27 19.65 27.13 30.09
GLA† 27.61 30.93 35.04 22.27 56.28 19.45 31.93 32.79
GSA† 23.25 32.80 35.57 22.96 57.05 20.65 32.05 33.81
Gated DeltaNet 30.25 27.65 34.06 23.22 58.23 20.36 32.30 32.70
MoM 41.14 34.30 37.08 24.11 58.59 21.03 36.04 35.02

4.2.1 RECALL-INTENSIVE TASKS

Linear sequence models, due to their limited memory capacity, often exhibit a significant perfor-
mance gap compared to Transformer models, especially in recall-intensive tasks where extensive
context is crucial. These tasks highlight notable performance differences among various linear mod-
els, making them a more accurate benchmark for evaluating a linear model’s capabilities in handling
contextual information.

1Models marked with an asterisk † use open-source pretrained weights with identical training configurations.
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To thoroughly assess our model’s proficiency in such scenarios, we test six recall-intensive tasks
following Arora et al. (2024): FDA (Arora et al., 2023), SWDE (Arora et al., 2023; Lockard et al.,
2019), SQuAD (Rajpurkar et al., 2018), NQ (Kwiatkowski et al., 2019), TriviaQA (Joshi et al.,
2017) and Drop (Dua et al., 2019). These tasks are designed to challenge a model’s ability to
perform context-based retrieval and comprehension.

As shown in Table 2, our proposed approach, benefiting from increased memory capacity and
memory mixing mechanism, achieves significant improvements over other linear sequence mod-
els. Specifically, our model effectively narrows the performance gap with Transformer models. This
improvement underscores the advantage of our method in capturing and utilizing long-range depen-
dencies, thereby enhancing performance on tasks that require extensive contextual understanding.

4.2.2 LONG CONTEXT TASKS

Table 3: LongBench Benchmark Re-
sults. Note: Sum = Summarization, FS
= Few-shot, Syn = Synthetic.

Model Sum FS Syn Code Avg.

RetNet† 6.30 15.76 2.64 40.52 13.61
HGRN2† 6.51 15.50 2.61 40.11 13.02
GSA† 7.75 20.29 1.92 42.83 14.61
Gated DeltaNet 7.14 18.00 2.10 41.52 13.98
MoM 6.89 21.26 2.63 47.79 15.64

Assessing performance on long-context tasks is crucial
for linear models, as it reflects their ability to handle
long-range dependencies effectively. We evaluated our
model’s comprehension of long contexts using the Long-
Bench benchmark (Bai et al., 2024; Contributors, 2023).
In Table 3, we present the average results across various
categories, including summarization, few-shot learning,
synthetic tasks, and code completion, along with the over-
all mean across all tasks. The complete detailed results
are provided in Appendix I.

Table 4: Comparison of Mixture of Memories and Single Memory Expanded. We constructed
MoM models using different memory update mechanisms. Separate memory segments yielded bet-
ter performance compared to simply increasing the memory capacity of a single memory.

Model Params ARC-e
acc↑

ARC-c
accn↑

Hella.
accn↑

Lamb.
acc↑

PIQA
acc↑

Wino.
acc↑ Avg.

GLA expanded 425M 42.34 22.95 34.56 20.45 63.00 50.12 38.90
GLA MoM 395M 42.85 24.15 36.60 23.23 63.22 49.88 39.99

Gated DeltaNet expanded 550M 43.60 24.66 37.80 26.90 64.47 50.51 41.32
Gated DeltaNet MoM 444M 44.65 24.74 36.54 27.93 66.16 51.78 41.97

Model Params FDA SWDE SQUAD NQ TriviaQA Drop Avg.

GLA expanded 425M 15.08 20.15 28.28 13.30 41.65 18.74 22.87
GLA MoM 395M 9.90 21.65 29.36 14.16 45.20 20.89 23.53

Gated DeltaNet expanded 550M 18.26 24.27 30.03 17.74 48.34 19.26 26.32
Gated DeltaNet MoM 444M 22.98 29.90 29.69 16.60 48.82 20.99 28.16

Table 5: Comparison with the Same Activated Parameters. MoM and Gated DeltaNet with 400M
activated parameters are tested.

Model Params ARC-e
acc↑

ARC-c
accn↑

Hella.
accn↑

Lamb.
acc↑

PIQA
acc↑

Wino.
acc↑ Avg.

Gated DeltaNet 400M 46.04 23.55 35.18 27.01 66.05 50.83 41.44
MoM 400M 47.10 23.72 35.43 26.88 64.64 51.22 41.50

Model Params FDA SWDE SQUAD NQ TriviaQA Drop Avg.

Gated DeltaNet 400M 20.53 23.24 28.55 14.98 44.91 16.48 24.78
MoM 400M 24.16 25.59 29.46 15.36 46.15 18.35 26.51
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Figure 3: Inference Efficiency of MoM. We
demonstrate the inference time and GPU mem-
ory consumption required to generate 1K tokens
at specific sequence lengths.
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Figure 4: Length Extrapolation. We extrap-
olated models trained on 2K sequences to a
length of 32K for perplexity (ppl) evaluation.

4.2.3 MIXED MEMORY VS. SINGLE MEMORY

To validate the effectiveness of our mixed memory mechanism, we compare our MoM model with
mixed memories to a baseline model that uses an expanded single memory with the same activated
memory capacity. We adopt the same memory update method as existing linear models and extend
it within our MoM framework. For comparison, we employed the commonly used method of ex-
panding the single memory by expanding the dimension of v to match the total size of all activated
memories in the MoM model. We evaluate their performance on common-sense reasoning tasks and
recall-intensive tasks in Table 4.

The experimental results demonstrated that using multiple mixed memories leads to a greater im-
provement than simply expanding the capacity of a single memory with less parameters. This con-
firms that mixed memory can effectively reduce interference from different inputs. Assigning inputs
specifically to different memories, combined with the use of a forget gate, proves to be a more
effective approach for reducing interference than relying solely on a forget gate.

4.2.4 EFFICIENCY

We compare the inference speed and memory usage of MoM and Transformer++ with flash attention
in Fig 3. Our analysis demonstrates that MoM exhibits linear complexity, showcasing significant ad-
vantages over the Transformer model when handling long sequences. Specifically, MoM’s efficient
memory update mechanisms allow it to process longer inputs with reduced computational overhead,
positioning it as a more scalable solution for large-scale natural language processing tasks.

4.2.5 LENGTH EXTRAPOLATION

We pretrained the models on the Slimpajama dataset with a 2K context length and conducted ex-
trapolation experiments on various lengths using the Fineweb (Penedo et al., 2024) dataset. We
extended the length to 32K to calculate perplexity (ppl). As shown in Fig 4, the Transformer model
experienced a significant increase in ppl due to its poor extrapolation capability. Among the linear
models, MoM achieved the best results.

4.2.6 MEMORY ANALYSIS

Memory Load Balance Analysis. To evaluate whether each memory segment in MoM is effectively
balanced during inference on downstream tasks, we analyzed the number of tokens routed to each
layer using around 300k tokens from the ARC-easy benchmark. We visualized the results with
auxiliary loss (following the formulation introduced in Switch Transformer (Fedus et al., 2022)) in
Fig 6 with heatmaps and we also visualized results with auxiliary loss in Fig 10. Due to the adoption
of auxiliary loss, the memory segments in each layer are almost uniformly routed and activated.

Memory Specialization Analysis. To quantitatively investigate whether the router guides memories
toward specialized roles, we analyzed the routing decisions within the model’s deep layers during
inference on the ARC-easy benchmark. We sampled the input hidden states (xt) for a large number
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of tokens and used UMAP (McInnes et al., 2018) to project these high-dimensional states into a 2D
space. Each point in the visualization is color-coded by its Top-1 routed memory index.

The results are presented in Figure 5. We observe a clear and distinct clustering phenomenon,
which confirms that the router has learned a meaningful specialization. Since our model employs
top-k=2 routing, each token is routed to two memories. For visualization clarity, the figure only
plots the top-1 memory destination. Consequently, some overlap at the cluster boundaries is visible,
which is an expected outcome of this design.

This clustering analysis also provides a new perspective for understanding MoM from a Test-Time
Training (TTT) point of view. The memory update mechanism we use, Gated DeltaNet, adopts a
Delta Rule learning style, dynamically fitting a k → v mapping at test time (with the optimization
goal kM = v). When test data is highly discrete or widely distributed in the feature space, a single
memory network M struggles to fit all the data quickly and accurately. Our UMAP analysis demon-
strates that the MoM router acts as a dynamic clustering mechanism, automatically partitioning the
broad input data stream during inference into multiple, more concentrated, and cohesive subsets. It
then assigns each subset to a specialized memory for processing. This is equivalent to implementing
a form of TTT Ensemble Learning: each memory Mm no longer needs to fit the entire complex
data distribution, but only a simpler sub-distribution, thereby reducing the learning difficulty.

Figure 5: UMAP visualization of memory specialization. Token hidden states are colored by their
top-1 memory destination. The distinct clustering suggests a learned specialization. The partial
overlap is an expected artifact of plotting the top-1 destination for a top-k=2 router.
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Figure 6: Memory Load Balance Analysis. Token Routing Distribution Across Layers and Mem-
ories with Aux Loss.

4.2.7 MOM SCALING UP & ABLATION STUDY

We examine the effect of scaling both the number of memory states and the number of top-k ac-
tivations in MoM. To ensure comparability, Fig. 7 reports results with a fixed activation ratio of
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Figure 7: Scaling performance with increasing number of
memories with a fixed activation ratio of 0.5.

Table 6: Ablation on memory count
and shared memory, showing average
accuracy across recall-intensive tasks.

Recall ↑ Common ↑

Aux Loss Scale

1e-2 27.59 42.10
5e-3 26.55 41.71
1e-3 28.16 41.97
0 27.23 41.58

Shared Memory

w/ shared memory 28.16 41.97
w/o shared memory 26.06 40.38

0.5. Increasing the number of memories from 1 to 8 consistently improves performance across both
recall-intensive and commonsense benchmarks. These results indicate that enlarging the memory
pool effectively mitigates interference and enhances capacity. More comprehensive results covering
other activation ratios and activation settings are provided in Appendix H.

We further study the influence of auxiliary loss and shared memory in MoM, using a 380M-
parameter model trained on 15B tokens. As shown in Table 6, auxiliary loss improves stability
and performance when applied with a suitable weight. In addition, shared memory consistently
benefits performance with global information. These results highlight the complementary roles of
auxiliary loss and shared memory in stabilizing and enhancing MoM.

5 CONCLUSION

In this paper, we propose Mixture-of-Memories (MoM), a novel architecture that enhances memory
capacity and eliminates memory interference. By leveraging multiple independent memory states,
MoM significantly improves performance on recall-intensive tasks while maintaining the efficiency
advantages of linear models. Instead of simply discarding tokens as done in gating mechanisms, our
memory separation paradigm provides a more effective way to preserve sequence information. Our
experimental results demonstrate that MoM outperforms existing linear sequence modeling meth-
ods, particularly on tasks requiring strong recall, and achieves performance comparable to Trans-
former models. This makes MoM a promising approach for applications need strong efficiency and
recall-intensive performance, paving the way for efficient sequence modeling.

6 ETHICS STATEMENT

This work does not involve human subjects, sensitive data, or high-risk applications. All experi-
ments are conducted on publicly available datasets. We encourage responsible and ethical use of the
proposed methods in line with community standards.

7 REPRODUCIBILITY STATEMENT

Our code is released at https://anonymous.4open.science/r/MoM-57F7 and all the
models we trained from scratch will be released at huggingface. We provide the training and evalu-
ation scripts to make sure that all the results in the paper can be easily reproduced.
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A RELATED WORK

LINEAR RECURRENT MODELS

Linear recurrent models, comprising linear attention, linear RNNs, state-space models (SSMs), have
garnered significant research interests (Qin et al., 2023b). The advancement of SSMs began with
the pioneering work on S4 (Gu et al., 2022), which was later optimized through a diagonalized
version (Gupta et al., 2022). Despite their strong performance on the LRA benchmark, these models
have faced challenges in language modeling mainly because they rely solely on data-independent
processes. As research progressed, constant forgetting gates were introduced, helping to alleviate
some interference issues by uniformly managing memory decay (Sun et al., 2023; Gu & Dao, 2024).
The next breakthrough involved data-dependent forget gates. These allowed models to dynamically
adjust memory updates based on the input data, significantly enhancing performance across various
tasks (Qin et al., 2024c;d; Yang et al., 2023; Zhang et al., 2024; Yang et al., 2024; Qin et al., 2024a).
Sequence parallelism techniques are well adapted on linear recurrent models (Sun et al., 2024a;
2025) for efficient long context training. There have also been recent advancements in scaling law
and test-time regression optimization (Shen et al., 2024; Sun et al., 2024c; Behrouz et al., 2024).

Building on these advancements, our MoM model incorporates data-dependent mechanisms that
selectively update memory. By efficiently managing interference through tailored memory updates
and leveraging increased memory capacity, MoM represents a further evolution, improving model
expressiveness and performance.

MIXTURE-OF-EXPERTS

Mixture-of-Experts (MoE) is a technique designed to enhance the capacity of deep neural networks
while maintaining computational efficiency (Fedus et al., 2022; Rajbhandari et al., 2020; Lepikhin
et al., 2020; Tang et al., 2023; Zhu et al., 2024; Qu et al., 2024). MoE achieves this by activating
a subset of parameters, known as “experts”, for each input, which reduces the computational costs.
Shazeer first integrated MoE into LSTM layers (Shazeer et al., 2017). The Switch Transformer
(Fedus et al., 2022) refined this approach by simplifying the gating mechanism to select only one
expert per input. Gshard (Lepikhin et al., 2020) further advanced this by using a top-2 expert routing
strategy to improve performance. Recent MoE models, such as Deepseek-MoE (Dai et al., 2024),
introduce shared experts to capture and consolidate common knowledge across different contexts,
while designing fine-grained experts to increase combinatorial flexibility.

B COMPARISON BETWEEN MOM AND MOE

While our approach to implementing the Mixture-of-Memories (MoM) draws inspiration from the
Mixture-of-Experts (MoE) framework, there are notable differences that distinguish our method
from traditional MoE implementations.

• Purpose: The MoE was introduced to scale up the number of parameters without signif-
icantly increasing computational resources. It address the limitations of dense models in
scaling both parameters and computational demands through sparse activation. However,
MoM is designed to expand the memory capacity of linear attention models while pre-
serving their linear time complexity. By sparsely activating memories and using weighed
summation to create a mixed memory, MoM effectively address the challenge of forgetting
historical information in linear attention. Moreover, by separating the memory into distinct
states, MoM reduces interference between different pieces of information.

• Structure: In conventional MoE, each expert is a separate neural network within the feed-
forward network (FFN) layer such as Qwen-MoE (Team, 2024) and Linear-MoE Sun et al.
(2024a). In contrast, in MoM, each memory is an RNN state with distinct key-value pro-
jection weights to generate different key-value pairs. MoE operates during the channel
mixing phase, where each token is processed independently by selected experts. On the
other hand, MoM functions during the token mixing phase, where each memory processes
different segments of the sequence, preserving inter-token relationships.
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Table 7: Results on Common-Sense Reasoning Tasks. The performance of linear models and
Transformer models is comparable; however, MoM consistently achieves the best average perfor-
mance across all model sizes.

Scale Model Wiki.
ppl↓

Lamb.
ppl↓

ARC-e
acc↑

ARC-c
accn↑

Hella.
accn↑

Lamb.
acc↑

PIQA
acc↑

Wino.
acc↑ Avg.

380M Params
15B Tokens
L=24, d=1024

Transformer++ 26.88 76.46 44.91 25.94 34.95 26.90 64.31 51.07 41.35
RetNet 31.07 87.11 44.49 23.04 33.86 23.93 63.49 52.33 40.19
HGRN2 27.90 77.40 45.24 23.63 35.61 24.74 65.45 54.06 41.46
GLA 28.78 79.95 44.53 22.27 34.84 24.94 63.93 51.38 40.32
GSA 28.17 82.50 45.50 24.23 35.00 24.02 64.85 50.43 40.67
Gated DeltaNet 26.47 58.59 46.04 23.55 35.18 27.01 66.05 50.83 41.44
MoM 25.86 55.41 44.65 24.74 36.54 27.93 66.16 51.78 41.97

1.3B Params
100B Tokens
L=24, d=2048

Transformer++† 17.61 19.29 55.01 28.07 49.21 40.95 70.08 56.27 49.93
RetNet† 18.18 21.97 57.49 26.88 48.09 37.75 69.37 53.28 48.81
HGRN2† 17.32 15.65 58.33 28.07 51.93 42.31 71.33 52.01 50.66
GLA† 17.61 19.66 55.18 27.56 48.89 40.03 69.86 53.91 49.24
GSA† 16.69 16.02 58.33 28.33 50.98 42.03 72.25 53.43 50.89
Gated DeltaNet 17.14 18.80 56.82 27.39 49.77 39.94 71.76 51.78 49.58
MoM 16.64 14.83 55.35 27.99 50.95 43.43 71.27 56.83 50.97

C EXPERIMENTS DETAILS

For the 380M models, we train on 15B tokens with a batch size of 0.5M tokens. The warmup tokens
count is set to 0.25M. We set the hidden ratio of our model to 3 to keep the activated parameter
count approximately the same. For the 1.3B models, we train on 100B tokens with a batch size of
2M tokens. The warmup tokens count is 1B. We employ AdamW optimizer (Loshchilov et al., 2017;
Sun et al., 2024b) with learning rate of 3e-4 with cosine learning rate schedule (Zhou et al., 2020).
The weight decay is set to 0.01 and gradient clipping is 1.0. Our experiments were conducted using
32 NVIDIA A800 GPUs. Training the 380M parameter model required approximately 10 hours,
while the 1.3B parameter model took around 6 days.

D COMMONSENSE REASONING TASKS

As shown in Table 7, we report the language modeling perplexity and zero-shot performance of com-
monsense reasoning tasks following (Zhang et al., 2024) which includes WikiText (Merity et al.,
2016), LAMBADA (Paperno et al., 2016), ARC-easy, ARC-challenge (Clark et al., 2018), Hel-
laSwag (Zellers et al., 2019), PiQA (Bisk et al., 2020) and WinoGrande (Sakaguchi et al., 2019).
The evaluation results are based on the lm-evaluation-harness (Gao et al., 2024).

Experimental results show that MoM outperforms other linear models and surpassed the Trans-
former model as well.

E TRAINING LOSS COMPARISON

To further assess the learning efficiency of MoM, we compared the training loss curves of MoM with
those of other baseline models. As depicted in Figure 8, MoM consistently maintains the lowest loss
throughout the entire training phase. Even as training nears convergence, MoM continues to exhibit
a clear advantage over other methods.

F THE HYBRID OF MOM AND TRANSFORMER

We delve deeper into the hybridization of MoM and Transformer layers by integrating 1 Transformer
layer after every 7 MoM layers, resulting in only 3 Transformer layers across a total of 24 layers.
The performance on commonsense reasoning and recall-intensive tasks is presented in the table 8.
MoM-Hybrid demonstrates significantly improved results compared to Transformer models, despite
using only 3 layers of global attention.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 8: Training Loss. Loss curves for training 380M models on 15B tokens with a fixed random
seed of 42.

Table 8: Hybrid Model Performance. The hybrid model integrates 1 Transformer layer after every
7 MoM layers, resulting in only 3 Transformer layers across a total of 24 layers.

Model FDA SWDE SQUAD NQ TriviaQA Drop Avg.

Transformer++ 46.14 25.87 33.22 18.94 45.97 20.03 31.70
MoM 22.98 29.90 29.69 16.60 48.82 20.99 28.16

MoM Hybrid 58.13 44.05 35.71 20.18 48.10 20.60 37.80

Model ARC-e
acc↑

ARC-c
accn↑

Hella.
accn↑

Lamb.
acc↑

PIQA
acc↑

Wino.
acc↑ Avg.

Transformer++ 44.91 25.94 34.95 26.90 64.31 51.07 41.35
MoM 44.65 24.74 36.54 27.93 66.16 51.78 41.97

MoM Hybrid 46.55 24.49 36.45 28.86 65.51 52.41 42.38

G FAIRNESS

To enhance memory capacity, MoM applies sparse activation to the key and value projections. Al-
though these projections constitute a small portion of the overall model parameters, this inevitably
increases the parameter count. Due to differing linear model structures, aligning both parameter
count and memory capacity exactly is challenging. Thus, to ensure fairness, we conduct compar-
isons from two perspectives: equal activated parameter count and equal memory capacity.

G.1 EQUAL ACTIVATED PARAMETER COUNT

To ensure a fair comparison of parameters, we reduced the MLP hidden ratio to 2 and retrained the
MoM model using the same training configurations as in Section 4.1. Both MoM and Gated Deltanet
were set with 400M activated parameters. Although the smaller hidden ratio might impact the
model’s commonsense knowledge, we tested on commonsense reasoning tasks and recall-intensive
benchmarks. MoM consistently outperformed Gated Deltanet in both tests, further validating the
effectiveness of the MoM approach. The results are presented in Table 5

G.2 EQUAL MEMORY CAPACITY

To ensure a fair comparison of memory capacity, we also compared the single extended memory
model with the MoM model. Notably, the single extended memory model has more parameters
than the activated parameters in the MoM due to the extension of the v dimension. MoM expands
memory more elegantly and significantly outperforms in both recall and commonsense tasks. This
comparison result is presented in Table 4.
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H DETAILED SCALING RESULTS

To further examine the scalability of MoM from the perspective of memory capacity, we evaluate
the effect of enlarging the memory pool beyond the main settings. Specifically, we compare two
activation ratios, where the number of active memories accounts for either 0.5 or 0.25 of the total
memory states. In all cases, an additional shared memory is included. Starting from a single memory
as the baseline, we expand the number of memories to 2, 4, 8, and 16, and report the averaged results
on both recall-intensive and commonsense benchmarks. The results, shown in Fig. 9, indicate that
under a fixed activation ratio, increasing the memory size consistently improves performance on
both categories of tasks.

Figure 9: Detailed scaling results. Performance shows a general improvement on both recall-
intensive and commonsense tasks as the number of memories increases.

I FULL RESULTS

I.1 ABLATION ANALYSIS ON SHARED AND SPLIT MEMORIES

Table 9: Ablation study disentangling the
effects of shared and split memories.

Model Configuration Avg. (Recall)

Shared Memory Only 24.78
Split Memory Only 26.06
Mixed Memory (MoM) 28.16

To rigorously verify the necessity of the mixture
mechanism, we further disentangle the contributions
of the shared memory and the split memories in Ta-
ble 9. As discussed in Section 3.2.2, the shared mem-
ory is designed to capture global context, serving as
a complementary component to the split memories
which specialize in local token subsets. It is impor-
tant to note that the “Shared Memory Only” config-
uration is mathematically equivalent to the standard
Gated DeltaNet baseline.

I.2 ROBUSTNESS TO ROUTER INITIALIZATION

To verify the stability of the routing mechanism, we conducted an ablation study on router initial-
ization. Using the 380M model trained on 5B tokens, we fixed the initialization seed for all other
model parameters (seed=42) while varying the random seed specifically for the router network.

As shown in Table 10, the variations in both validation loss and downstream task performance (aver-
age accuracy on commonsense benchmarks) are negligible, with the loss variance remaining within
0.07%. This empirical evidence confirms that the MoM architecture is robust to router initialization
strategies.
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Table 10: Sensitivity analysis of router initialization. Models were trained for 5B tokens.

Router Seed Loss Avg. (Commonsense)

1 2.9396 40.37
42 2.9409 40.20

1234 2.9426 40.07

Model SQA MQA Sum FS Syn Code Zh-Avg En-Avg Avg.

RetNet 9.23 7.23 6.3 15.76 2.64 40.52 15.44 13.5 13.61
HGRN2 7.38 6.02 6.51 15.5 2.61 40.11 14.28 13.12 13.02
GSA 8.21 6.63 7.75 20.29 1.92 42.83 15.06 15.2 14.61
Gated DeltaNet 8.52 6.61 7.14 18 2.1 41.52 14.19 14.63 13.98
MoM 8.14 7.11 6.89 21.26 2.63 47.79 17.33 15.71 15.64

Table 11: Complete Results of LongBench. SQA: Single-doc QA, MQA: Multi-doc QA, Sum:
Summarization, FS: Few-shot learning, Syn: Synthetic
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Figure 10: Memory Load Balance Analysis. Token Routing Distribution Across Layers and Mem-
ories without Aux Loss.

J THE USE OF LLMS

Large language models (LLMs) were only used to refine the grammar and spelling of some para-
graphs in this paper. They were not used for generating research ideas, designing experiments, or
writing substantive content.
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