TDBENCH: BENCHMARKING VISION LANGUAGE MOD-
ELS ON TOP-DOWN IMAGE UNDERSTANDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Top-down images play an important role in safety-critical settings such as au-
tonomous navigation and aerial surveillance, where they provide holistic spatial
information that front-view images cannot capture. Despite this, Vision Lan-
guage Models (VLMs) are mostly trained and evaluated on front-view benchmarks,
leaving their performance in the top-down setting poorly understood. Existing
evaluations also overlook a unique property of top-down images: their physical
meaning is preserved under rotation. In addition, conventional accuracy metrics can
be misleading, since they are often inflated by hallucinations or “lucky guesses”,
which obscures a model’s true reliability and its grounding in visual evidence. To
address these issues, we introduce TDBench, a benchmark for top-down image
understanding that includes 2000 curated questions for each rotation. We further
propose RotationalEval (RE), which measures whether models provide consistent
answers across four rotated views of the same scene, and we develop a reliability
framework that separates genuine knowledge from chance. Finally, we conduct
four case studies targeting underexplored real-world challenges. By combining
rigorous evaluation with reliability metrics, TDBench not only benchmarks VLMs
in top-down perception but also provides a new perspective on trustworthiness,
guiding the development of more robust and grounded Al systems.

1 INTRODUCTION

Top-down images provide comprehensive spatial overviews and clear geometric context, supporting
tasks such as autonomous navigation, aerial surveillance, mapping, and disaster assessment (Lu et al.,
2018}; [Nearmap, 2022; |Zhao et al., [2025). Top-down images from drones or satellites provide a
complete “bird’s-eye” view, offering several unique advantages over conventional front-view images:
they reduce occlusion between objects, maintain more consistent scale across the frame, and reveal
complete spatial layouts that are impossible to observe from ground level. These properties allow
analysts or autonomous systems to reason about large geographic areas efficiently, which is essential
in applications such as traffic monitoring, urban planning, and environmental response.

Despite their importance, top-down images are substantially underrepresented in the datasets com-
monly used to train and evaluate Vision Language Models (VLMs). Well-known datasets such as
COCO (Lin et al., [2015) and ImageNet (Russakovsky et al., 2015) contain primarily front-view
images, where appearance cues, object sizes, and spatial relationships are largely different from aerial
perspectives. For instance, in our preliminary data audit, fewer than 7% images (595 of 8,629) from
the VisDrone dataset(Zhu et al.,|2021) could be considered truly top-down. This limited coverage
leaves current VLMs largely untested for top-down understanding, even though such models are
increasingly applied in drone-based and remote-sensing systems.

Most existing VLM benchmarks (Liu et al.,|2024b; |Yue et al., 2024} Yu et al., 2024} |Lu et al.,[2024) are
not designed for top-down images. While these benchmarks have driven progress in general-purpose
visual reasoning, they provide little insight into how VLMs handle the distinct challenges of top-down
perception. Aerial scenes present small, densely packed objects, drastically different viewing angles,
and weak perspective depth cues. Contextual cues that aid object recognition in conventional images
may be absent or transformed in top-down perspectives. VLMs trained mostly on canonical-view
data often fail to generalize to these conditions, leading to severe accuracy drops (Danish et al., |2025;



Attribut Object
Recognition Counting intervi3 BEE 18 (NN 28 NN 83 SN op [EEH 148 N 388

Visual
Grounding

N

Understanding
0.8

0.6

Hallucination
Detection

Dynamic
N\ 04 06 08 10 Temporal

Score

0.4

—— InternVL3-388
— GPTS
Qwen2.5-VL-328
Gemini-2.5-Pro
Gemma3-278 0.0
—— Claude-4.1-Opus

Attribute 02

Comparison

Object
Localization

N
\
\
\
\
\
\
\
\
\
N

Vi A
Y A

AN

Object
Presence Relationship

e r g A_adj=0-1
9% Question Known  P(Correct|Known) ~P(Correct|Guessed) Adjusted Accuracy

Figure 1: (Left) Accuracy across ten top-down image tasks in TDBench. (Right) Knowledge
decomposition analysis from TDBench: % of questions known (6) measures the proportion of
questions a model truly knows; P(Correct| Known) (r) is the model’s accuracy among the questions
that it knows; P(Correct|Guessed) (g) is the model’s accuracy among the questions it does not
know; and the Adjusted Accuracy (Auq; = 6 - r) is the model’s accuracy without lucky guesses.

2024a)). Without a dedicated benchmark, it is difficult to measure or systematically improve
their performance on top-down views.

To address this gap, we present TDBench, a benchmark for evaluating VLMs on top-down image
understanding. TDBench contains 2,000 carefully constructed questions drawn from public aerial
datasets and high-fidelity simulations, covering diverse settings and tasks relevant to real-world
operations. We also introduce RotationalEval (RE), an evaluation method that leverages a key
property of top-down images: their physical meaning is preserved under rotation. Unlike front-view
images, where rotation produces implausible scenes (for example, the sky appearing below or objects
upside down), rotating a top-down image is equivalent to changing a drone’s heading, so the scene
remains physically consistent. RE tests whether models can answer correctly across all four rotated
views, recognizing that semantics and object identities remain the same while spatial descriptors (e.g.,
“top left”), and coordinates legitimately change. This provides a stricter and more diagnostic measure
of visual reasoning, reducing the influence of spurious one-off successes.

Vision Language Models (VLMs) often hallucinate, generating answers from learned text patterns
instead of grounding them in the provided image (Li et all, 2023b; Bai et al. [2025b). This can
artificially inflate scores under conventional evaluation. However, an ungrounded guess is highly
unlikely to be correct across four different rotations, RE naturally filters out these successes. We
further formalize this with new reliability-oriented metrics that disentangle a model’s visually-
grounded knowledge from its apparent accuracy. This provides a more quantitative view of model
trustworthiness than raw accuracy alone.

Finally, we conduct four application-oriented case studies for real-world applications: digital and
physical “zoom-in”, handling partially visible objects and reasoning about depth from 2D views.
These case studies demonstrate how TDBench can guide the design and deployment of VLM-based
aerial systems. In summary, our main contributions are:

* Application-driven Benchmark. We build TDBench, a top-down benchmark of 2,000 ques-
tion—answer pairs from public datasets and high-fidelity simulation, organized into ten evaluation
dimensions. To demonstrate its practical relevance, we also conduct four case studies that examine
VLMs on real-world aerial applications, providing actionable insights for deployment.

Rotation-invariant Evaluation. We introduce RotationalEval (RE), an evaluation strategy that
requires consistent answers across four rotated views of each image. By requiring models to be
rotationally consistent, correctly adapting their spatial reasoning to each orientation, RE provides a
far more robust and diagnostic measure of their performance than single-view evaluation.

Probability-based Knowledge Reliability Analysis. Beyond raw and RE accuracy, we propose
a probabilistic analysis that decomposes model performance into % of questions known (9),
P(Correct| Known) (r), P(Correct|Guessed) (g), and further aggregate them into Adjusted
Accuracy (6 - r), which reveals how much of a model’s apparent correctness stems from genuine
knowledge rather than lucky guesses.



2 RELATED WORKS

2.1 VISION LANGUAGE MODELS (VLMS)

Vision Language Models (VLMs) extend large language models (LLMs) to visual inputs by aligning
image features with text representations. Most current VLMs adopt a two-stage design: a pretrained
visual encoder (e.g., CLIP (Radford et al.,|2021) or SigL.IP (Zhai et al., 2023)) is coupled with a
pretrained text-only LLM via a learnable projection module, as in LLaVA (Li et al.| [2024b) and
InternVL (Chen et al.l 2025). This setup preserves the language backbone while enabling it to
interpret visual features. Some models instead use early-fusion architectures that train perception and
language components jointly, strengthening visual grounding and cross-modal reasoning. Proprietary
models such as GPT (OpenAll [2024), Gemini (Google, [2024)), and Claude (Anthropic, |2024) may
follow similar multimodal principles at larger scales.

VLMs are generally trained on large-scale image—text pairs from datasets like LAION (Schuhmann
et al.}2022), COCO (Lin et al., 2015), and ImageNet (Russakovsky et al., 2015), which may contain
few top-down images and thus treat them as out-of-distribution (OOD). While this broad training
enables rich visual-linguistic knowledge, it biases models toward ground-level scenes and object
appearances. As a result, their generalization to top-down views, where objects appear smaller, depth
cues are weak, and spatial relationships dominate, remains underexplored, motivating the need for a
dedicated benchmark.

2.2 VLM BENCHMARKS

Recent years have seen the emergence of numerous benchmarks for evaluating Vision—Language
Models (VLMs) on diverse multimodal reasoning tasks. General-purpose benchmarks such as
MMBench (Liu et al., 2024b), MMMU (Yue et al., 2024}, MME (Fu et al., 2024), and MM- Vet (Yu
et al.l 2024) assess general knowledge, visual perception, commonsense reasoning, and spatial
understanding. However, these benchmarks focus primarily on conventional front-view imagery and
include few tasks involving aerial or top-down perspectives. They thus overlook challenges unique
to top-down understanding, including extreme scale variation, weak depth cues, and dense spatial
layouts, which often cause VLMs to underperform on aerial tasks.

A few recent efforts have begun addressing this gap using remote sensing images. For example, Hu
et al.| (2023)), Muhtar et al.| (2024), [Kuckreja et al.|(2023)), and |Danish et al.|(2025) evaluate VLMs
on satellite data. These datasets mostly comprise low-resolution images (meters per pixel) aimed at
large-scale land cover classification or scene categorization. They rarely involve human-scale and
near-surface views tasks such as object localization, attribute comparison, or spatio-temporal analysis.
To quantify this gap, we compared a specialist remote sensing model (GeoChat-7B(Kuckreja et al.|
2023)) against LLaVA-1.5-7B on TDBench (details in Appendix [E.2). While GeoChat excelled at
detection tasks, it failed catastrophically on reasoning tasks, indicating that current remote sensing
benchmarks do not cover the spatial reasoning required for near-surface aerial domains. Moreover,
satellite images are typically captured from fixed nadir viewpoints at consistent altitudes, lacking the
perspective variation and dynamic conditions common in drone operations.

Beyond remote sensing, only a few studies explore top-down images. For instance, Li et al.| (2024a)
introduces an indoor map benchmark for evaluating navigation and spatial reasoning from floor plans.
In contrast, our benchmark TDBench focuses on high-resolution, near-surface top-down images
resembling drone viewpoints, enabling systematic evaluation of fine-grained perception and reasoning
abilities that remain underrepresented in existing benchmarks.

2.3 HALLUCINATIONS IN MULTIMODAL LLMS

Hallucination has become an increasing concern in both large language models (LLMs) and vi-
sion—language models (VLMs). In VLMs, it often occurs when models generate content that is
inconsistent with the image, such as describing nonexistent objects, misrepresenting spatial rela-
tionships, or ignoring the visual input entirely (Wang et al.,|2024)). Recent studies have introduced
benchmarks and methods to systematically evaluate these visual hallucinations. |Li et al.| (2023a)
introduced the POPE method, which probes object hallucination by asking targeted presence/absence
questions and measuring how often models falsely claim the existence of unseen objects. [Liu et al.
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Figure 2: Proposed RotationalEval (RE) strategy. In RE, each image is rotated three times to create
four questions, with choices generated separately for each rotation. We illustrate a failure case in
object localization where four choices align with four images, and the VLM answers three correctly
but fails on one. ‘GT’ refers to ground truth.

(2024a)) provided a large-scale study on hallucinations in VLMs and proposed automatic detection
metrics based on grounding scores, which assess alignment between textual output and visual evi-
dence. HallusionBench (Guan et al.,2024) proposed a benchmark designed to isolate hallucination
behavior using paired, contrastive visual questions to reveal when models invent objects or attributes.

These approaches typically rely on comparing generated captions or answers against ground-truth
annotations, using measures such as hallucination rate (percentage of fabricated objects), grounding
accuracy (percentage of correctly grounded mentions), or contrastive consistency scores. However,
current methods primarily treat hallucination as a binary outcome (hallucinated or correct) and do not
assess whether correct answers arise from genuine visual understanding or from chance agreement
with priors. Our benchmark TDBench complements these efforts by a reliability-oriented evaluation
perspective, aiming to distinguish reliably grounded responses from lucky successes.

3 DESIGN OF TDBENCH

In this section, we provide a brief overview of TDBench. More details regarding question examples,
dataset implementation and quality control procedures are presented in Appendix [B]

3.1 ABILITY TAXONOMY OF TDBENCH

TDBench evaluates top-down image understanding across 10 categories derived from typical aerial
tasks encountered in real-world applications. These categories span core aspects such as image
perception, object identification, spatial reasoning, and multi-instance understanding as the dimen-
sions shown in Figure[T] (Left). We excluded evaluation dimensions that are either common across
existing benchmarks or largely unaffected by image perspective, such as text recognition or general
knowledge recall, to focus the benchmark on perspective-sensitive capabilities.

3.2 DATA CONSTRUCTION

We constructed TDBench from two primary sources: curated public datasets (Shahal 2025} [Zhu et al.}
2021} |Gasienica-Jozkowy et al.l[2021}; ICGl[2019} |Varga et al.| 2022 Mou et al., [in press) and realistic
simulation (CARLA Simulator (Dosovitskiy et al |2017) and GTA V). The benchmark includes
two task types: Multiple Choice Questions (MCQs) for most abilities, and Visual Grounding (VG).
Each MCQ problem is structured as a quadruple P; = [Q;, I;, C;, L;], where @; denotes the textual
question, I; is the associated image, C; represents the set of possible answers with n (2 < n < 4)
choices {c1, ¢, ..., ¢} (randomly shuffled during evaluation), and L; is the correct label. For VG
problems, we evaluate models’ ability to precisely localize objects by comparing their predicted
bounding box coordinates against L;, which contains human-annotated ground truth coordinates. In
addition, all input images in TDBench are standardized to a square resolution of 512x512 pixels to
eliminate variability from model-specific preprocessing, which could otherwise affect the results.

3.3 LEVERAGING ROTATIONAL INVARIANCE IN EVALUATION

In TDBench, we introduce a novel evaluation strategy, RotationalEval (RE), designed to leverage
the unique properties of top-down images (Figure 2] example from object localization). RE evaluates



model performance on four orientations of each image: the original, 90°, 180°, and 270° rotations,
and counts a question as correct only if all four are answered correctly. This exploits the fundamental
rotational invariance of aerial perspectives. Unlike front-view images, where rotations create
physically implausible scenes, top-down rotations simply mimic different yaw angles without altering
scene content. During evaluation, we treat each rotation as a stateless, independent instance. Both
the image and text prompts (e.g., directional references) are distinct for each orientation, the model
cannot exploit correlations between trials.

3.4 TDBENCH STATISTICS

TDBench contains 2000 problems across the 10 ability categories for each rotation, plus an additional
2100 problems used in four case studies. We aimed for an even distribution of problems across
abilities, with 200 samples per category. Of the total questions, 1910 (including case studies) are
collected from real-world datasets, and 2190 are generated from simulation environments. Notably,
all problems in the ‘Object Counting’ category are generated from the CARLA Simulator, which
allows controlled ground-truth labeling during scene generation. Under RotationalEval (RE), each
question is evaluated across four orientations, effectively producing four instances per problem.

4 EVALUATION RESULTS

4.1 SETUP

To ensure reproducibility and a fair comparison across models, all evaluations are conducted within
an open-source VLM evaluation framework. We evaluated a total of 60 VLMs in a zero-shot setting,
without providing any in-context examples. For all experiments, the model temperature was set to 0,
and GPT-40 was used as the answer extractor for all model outputs.

Models We evaluated 17 proprietary models, including the Claude (Anthropic, 2024; [2025ajcib)),
Gemini (Google, 2024} [2025al), and GPT (OpenAl, [2024; |2025ajcib)) families; and 43 open-source
models from diverse families such as Gemma 3 (Google, [2025b), InternVL (Chen et al., [2025} [Zhu
et al.| 2025; Wang et al., 2025}, Qwen2.5-VL (Bai et al., [2025a)), DeepSeek-VL2 (Zhiyu Wu, 2024),
LLaVA (Liu et al., [2023; |L1 et al., |2024b), Kimi-VL (KimiTeam),|[2025), and VLM-R1 (Shen et al.|
2025). These models span a wide range of sizes, from 0.5 billion to 38 billion parameters.

Table 1: Performance comparison of open-source and proprietary VLMs under VanillaEval (VE@0°)
and RotationalEval (RE), along with the corresponding accuracy drop (A) on TDBench.

Open VLMs VE RE A | Prop VLMs VE RE A
Qwen2.5-VL7B  0.630 0.470 -0.160 | Gemini 2.5 Pro 0.793 0.611 -0.182
Kimi-VL 0.624 0.455 -0.169 | Gemini 1.5 Pro 0.756 0572 -0.183
DeepSeek VL2 0.637 0.448 -0.189 | GPT-5 0.761 0.570 -0.190
InternVL3.5 14B  0.601 0.442 -0.159 | GPT-4.1 0.720 0.520 -0.200
LLaVA-Next-13B  0.617 0.419 -0.198 | Claude Sonnet3.7 0.611 0415 -0.196
Gemma3 12B 0.591 0.330 -0.260 | Claude Opus 4.1 0.603 0.392 -0.211

4.2 RESULTS

RotationalEval vs. VanillaEval We first compare our proposed RotationalEval (RE) with the
conventional one-pass evaluation, VanillaEval (VE). Table |I| summarizes their results on TDBench,
averaged across all dimensions. To validate the benchmark, we conducted a human study (excluding
visual grounding), achieving 0.92 VE and 0.89 RE. The high accuracy confirms dataset solvability,
while the minimal gap (0.03) validates RE as a consistent metric for genuine understandingﬂ Adopting
RE leads to a notable performance decline across all VLMs. This drop occurs because RE reduces
the chance of obtaining correct answers through random guessing. Interestingly, models with higher

'In contrast, text-only model baselines yielded a VE of ~ 33% (close to the random guess baseline of
30.6%), confirming that TDBench requires visual reasoning and cannot be solved via language priors.
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(a) Open-source models. (b) Proprietary models.

Figure 3: Average RE performance of models on TDBench, aggregated across 10 evaluation dimen-
sions for both Open-source and Proprietary models.

VE do not necessarily achieve higher RE. For example, although Gemini 1.5 Pro has a slightly lower
VE than GPT-5 (0.756 vs. 0.761), it attains a higher RE (0.572 vs. 0.570). Among open models,
DeepSeek VL2 achieves the best VE, while Qwen2.5-VL-7B achieves the highest RE. These results
suggest that models performing well under VE may still be prone to hallucinations, which we further
examine in Section [4.3]

Main Results All reported results are based on RotationalEval (RE), calculated as the average
across ten evaluation categories unless explicitly stated. Detailed results, including dimension-wise
performance, are provided in Appendix [E] Figure [3a] shows the RE performance of various open-
source models as a function of their parameter size. Within the same model families, performance
generally increases with model size, although several exceptions exist. Notably, the “thinking”
variants consistently underperform their standard counterparts, especially at smaller model sizes,
with the gap narrowing as model size increases. This suggests that while chain-of-thought prompting
can enhance reasoning at the semantic level, it may make responses less grounded in the visual
input. In addition, newer models do not necessarily perform better: for example, InternVL3.5
underperforms InternVL3 despite being trained on more data, suggesting that additional general-
purpose data may have diluted the proportion of top-down-related images during training. We
also report the performance of proprietary models in Figure 3B} although their parameter sizes are
undisclosed, the largest variants generally outperform their smaller counterparts, except for GPT-4.1
and GPT-4.1-Nano.

4.3 BEYOND ACCURACY: A DEEPER ANALYSIS OF MODEL RELIABILITY

As noted earlier, RotationalEval (RE) yields lower scores than VanillaEval (VE) because it discounts
isolated correct predictions and thus reduces the impact of lucky guesses. To further analyze this

Table 2: RE, MA, VE, and reliability parameters (proportion of questions a model truly knows 6,
accuracy among known questions r, accuracy among guessed questions g, and adjusted accuracy
Aagj). Arrows indicate whether higher (1) or lower (]) is better. Best values are green, worst are red.

Model RET MA| VE | 0f  rf g Al
Gemini 2.5Pro | 0.611 0.073 0.791 | 0.822 0.909 0.201 0.754
GPT-5 0.570 0.085 0.751 | 0.688 0.941 0.265 0.652
Claude Opus 4.1 | 0.392 0.194 0.607 | 0.610 0.849 0.189 0.541
03 0.549 0.096 0.731 | 0.693 0.921 0279 0.651
DeepSeek VL2 | 0.448 0.196 0.631 | 0.620 0.900 0.184 0.568
Gemma3-27B 0428 0220 0.604 | 0.587 0.880 0.206 0.538
Qwen2.5-VL-32B | 0474 0.165 0.668 | 0.668 0.902 0.203 0.611
Kimi-VL 0455 0239 0613 | 0.612 0.882 0.164 0.565
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Figure 4: Impact of digital magnification on aerial object detection performance.

phenomenon, let & = {0°,90°,180°,270°} be the set of rotations, and let Yi(d)) € {0,1} denote
whether the question ¢ under rotation ¢ is answered correctly. We define three observations
— 1
RE =Pr(Vpe®: v =1), VE= E[@ 3 Y}(")}, MA = Pr(ve: V¥ = 0),
PED

where MA denotes wrong answer in all rotations. Assuming each question for the model is either
“known” or “unknown”, and rotations are conditionally independent, the above observations satisfies

RE=0r*+(1-0)g*, VE=0r+(1-0)g, MA=0(1-r)"+(1-0)(1-9g)"

where 6 represents the proportion of questions the model truly knows, r means the accuracy on
known questions, and g denotes the accuracy on unknown questions (due to lucky guesses). These
parameters are inferred by solving the system of equations above (see Appendix [C]for derivation);
We aggregate these into the adjusted accuracy (Aagj):

Aadj =0-r.

The adjusted accuracy represents single-pass accuracy after discounting the contribution of guessing
from the apparent correctness (VE). To illustrate this, Figure[T] (Right) presents results for different
sizes of InternVL3, averaged across all evaluation dimensions. As model size increases, 6 (the
proportion of questions the model truly knows) also rises, while r remains consistently high (ap-
proaching 100%), and shows a gradual upward trend with scale, which is desirable. In contrast, g
exhibits variability that does not show a clear dependence on model size. Overall, Adjusted Accuracy
improves with larger models, supporting the validity of our probability-based knowledge reliability
analysis. Table[2]reports additional representative results across different model families (including
four proprietary and four open-source VLMs), with full category-wise breakdowns for all 60 models
provided in Appendix [E]

Unlike the scaling trend observed with InternVL3, different models exhibit distinct strengths and
weaknesses on TDBench. For example, Gemini 2.5 Pro achieves the highest 8, suggesting it possesses
the broadest knowledge coverage, although its r is lower than that of OpenAI’s GPT-5 and 03. Both
GPT-5 and 03, however, yield the highest g values, indicating that these models are more likely to
produce correct answers by chance. On the other hand, Gemma3-27B shows the lowest 6, indicating a
comparatively narrower knowledge base. Meanwhile, Claude Opus 4.1 shows the lowest r among all
models, even below all open-source models listed here, which may stem from its stronger emphasis
on code-related reasoning or function-calling tasks rather than visual-language understanding.

Probing Intrinsic Model Properties Although we introduce these metrics within the context of
TDBench, they are not inherently tied to top-down image understanding. Rather, TDBench serves
as a probing medium to reveal latent aspects of model behavior that cannot be directly observed.
The estimated parameters (6, r, g) reflect how much of a model’s correctness stems from genuine
knowledge versus lucky guesses, capturing properties intrinsic to the model itself rather than any
particular dataset.

5 CASE STUDIES

Top-down images are typically captured from high altitudes, which introduces unique challenges
such as small object size, unusual perspective, and the lack of depth cues, yet depth is critical for
tasks like building height estimation or drone navigation. To examine these challenges, we design
four targeted case studies.
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5.1 CASE STUDY 1: DIGITAL MAGNIFICATION FOR SMALL OBJECT DETECTION

Small objects occupy very few pixels, making them difficult for VLMs to detect. We explore a digital
magnification strategy that crops images to increase the target object’s relative pixel coverage (area
ratio), as illustrated in Figure fla] We use samples from object presence and object localization tasks
where baseline performance was low, and reformat them using the object presence template.

Figure [4b] shows that accuracy rises with area ratio before dropping as context is lost. GPT-40 peaks
at only 0.8% occupancy, whereas open-source models require 2—4%. Beyond 6%, performance
declines across all models due to resolution loss and reduced context. These findings offer practical
guidance on magnification levels for aerial imaging and suggest future work on improving small-
object detection in VLMs, particularly for models using multi-tile preprocessing, where tile size
could be adapted based on prior knowledge of target object scale.

5.2 CASE STUDY 2: ALTITUDE EFFECTS ON OBJECT DETECTION

This study examines optimal hovering heights for drones with a fixed field of view (FOV) when
performing tasks that require consistent object detection, such as tracking suspects. Unlike previous
studies, we focus on physical “zoom-in”, where the drone adjusts its altitude to improve detection
performance. Because most datasets lack camera height metadata, we used the CARLA simulation to
deploy multiple cameras at different altitudes over identical scenes (Figure[5a). We evaluated three
object categories (bicycle/motorcycle, car, and truck/bus—chosen) for their frequency in aerial tasks
and distinct size differences. Object presence performance was measured across altitudes from 5 to
150 meters, spanning typical operational ranges for commercial and tactical drones, while keeping
image resolution constant. This setup offers practical guidance for maximizing detection reliability
through optimal drone positioning rather than post-capture image processing.

As shown in Figure [5b] accuracy generally decreases with altitude but peaks at specific heights: 5m
for bicycles/motorcycles, 10m for cars, and 15m for trucks/buses. We attribute this to field coverage
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Figure 7: Impact of Object Integrity and Area Ratio on VLM Performance.
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Figure 8: Analysis of spatial awareness and depth perception.

differences: at low altitudes, large objects may be only partially visible, reducing detection accuracy,
while smaller objects remain fully visible even at minimal heights.

5.3 CASE STUDY 3: OBJECT VISIBILITY AND PARTIAL OCCLUSION

Objects may be only partially visible, especially near image borders. We controlled visibility
(integrity) by shifting a fixed-size crop window over objects at a set area ratio (AR) (Figure[6). This
allowed us to vary integrity while keeping magnification constant.

Figure [7a shows that accuracy stays stable (>90%) until integrity drops below a threshold, then
declines sharply. This threshold depends on AR: with AR=100, accuracy drops below 70% integrity,
while lower ARs fail around 60%(Figure[7b). This demonstrates how incomplete visibility affects
detection even without resolution changes.

5.4 CASE STUDY 4: Z-AXIS PERCEPTION AND DEPTH UNDERSTANDING

Since top-down images preserve xy-plane information, they inherently lack altitude cues. To evaluate
this limitation, we defined two types of z-axis awareness challenges (Figure [8a): (i) assessing
an object’s intrinsic properties, such as a building’s or tree’s height, and (ii) evaluating contextual
relationships, such as determining whether a car is traveling on a road or an overpass. As shown in
Figure [8b] DeepSeek performs well on tallest/highest identification but struggles with ranking tasks,
whereas GPT-40 achieves near-best performance across both types.

6 CONCLUSION

In this work, we introduced TDBench, a comprehensive benchmark for evaluating VLMs on top-down
images, comprising over 2,000 manually labeled questions across diverse categories. To ensure
robust and reliable assessment, we proposed RotationalEval, an evaluation strategy that leverages
the rotational invariance of top-down perspectives to provide a more rigorous alternative to standard
single-pass evaluation. Beyond accuracy, we further developed a set of reliability-oriented metrics
that assess how much of a model’s performance stems from genuine knowledge rather than lucky
guesses or hallucinated responses. Our multi-dimensional analysis reveals both the capabilities and
limitations of current VLMs, and our four case studies demonstrate their strengths and challenges in
real-world aerial applications. While TDBench serves as the testbed for this study, these metrics are
not tied to any specific dataset and can serve as general probes of model reliability, offering a new
perspective for guiding future development of more trustworthy VLMs.
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Appendix

A LARGE LANGUAGE MODEL USAGE ACKNOWLEDGMENT

We used large language models (LLMs) to assist in the preparation of this work in the following
ways. First, LLMs were employed for language-related support, including polishing the writing
and improving grammar, clarity, and overall readability of the manuscript. Second, LLMs were
used as coding assistants primarily for generating and refining code to produce figures for the paper.
All research ideas, experimental designs, analyses, and final claims presented in this work were
conceived, validated, and verified by the authors. The authors take full responsibility for the content

of this paper.

B MORE DETAILS ABOUT THE TDBENCH

B.1 BENCHMARK TAXONOMY

In this section, we provide an overview of the 10 categories in TDBench with examples in Figure 9]
We then describe the data sources used to build the benchmark and the procedures for curating and

annotating the dataset.

Scene Understanding

s What best describes
B8 the location?
BN A. Roundabount
I\ B. Highway on-ramp
P74 C. Residential area
M D. Traffic intersection
GT: A

What best describes
the location?

A. Lawn

B. Mountain
C.Beach

D. River

GT: C

Hallucination Detection

” SR el How many trees

9 GT: B

Object Presence

Is there a bicycle
in this image?
A. Yes

B.No

GT:A

are in this image?

Where is the
chimney?

A. Top right

B. No chimney
C. Bottom right
D. Bottom left

Is there a parking
lot in this image?
A. No

Object Counting

How many cars
are in this image?

How many kayaks
are in this image?

Object Localization

Visual Grounding

il A. Top row, right column
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@ hich section is the red car Iocated?

H‘U!\‘

1)

What color is the car driving in a
different direction in this image?
A. Black

B.Red

C. White

Please output the coordinates of the {obj} in
the image in the format [x1, y1, x2, y2].
Respond with relative coordinates between 0
and 1, with top left corner (0, 0), top right (1, 0)
and bottom right (1, 1).

N D. Bottom row, left column
GT:B

If the image is divided into a 3x3 grid,
in which section is the person located?
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" . D. Blue
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on the right of the image?

A. Shadow

B. Real

C. Sticker
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obj: person riding a bike
GT: (0.0112, 0.6477,
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Spatial Relationship
| How is the dog (D) positioned relative to
@R the bikes (B) in the image?
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GT: A
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the white car (W) in the image?
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Attribute Comparison
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riding bicycles moving
in the same direction?

Dynamic Temporal

Which image was taken earlier?
A. They are not related / not taken
at the same place

B. The top image
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GT:D

What is the difference between the
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B. The two images are not related
C. No changes

D. They are the same image

GT:A

Figure 9: Benchmark examples across the ten categories in TDBench. Different colors indicate the
three high-level capability groups: image perception (blue), single-instance understanding (green),

and multi-instance reasoning (yellow).
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Image Perception This category focuses on the broad-scale interpretation of top-down aerial im-
agery, emphasizing holistic semantic understanding rather than fine-grained details. Such capabilities
are especially valuable for wide-area reconnaissance, where drones must scan large regions to detect
critical features such as wildfire outbreaks, traffic congestion, or emergency response scenarios. It
includes two tasks: Scene Understanding, which evaluates a model’s ability to comprehend the
overall contextual meaning of a scene, and Hallucination Detection, which assesses its ability to
distinguish actual image content from fabricated choices. These tasks are shown in blue in Figure 9]
and represent foundational abilities for reliable aerial image interpretation.

Single-Instance Understanding This category emphasizes detailed object-level recognition and
localization within a single image, as shown in green in Figure[9] It covers both recognition and
localization aspects. For recognition, Object Presence evaluates basic detection capabilities, and
Attribute Recognition assesses the identification of specific properties such as color, shape, material,
or species. For localization, we use a three-tiered approach: coarse presence detection (Object
Presence), intermediate 3x3 grid-based localization (Object Localization) requiring quadrant-level
precision, and fine-grained Visual Grounding using exact bounding box coordinates. We also include
Object Counting to assess quantification abilities, which is particularly challenging in aerial contexts
where many similar objects appear at varying scales and densities.

Multi-Instance Reasoning This category evaluates compositional reasoning across multiple ob-
jects, requiring analysis of spatial, comparative, and temporal relationships, as shown in yellow in
Figure 0] Spatial Relationship tasks challenge models to localize multiple objects and accurately
determine their relative positions, which is crucial for navigation and path planning in autonomous
aerial systems. Attribute Comparison requires models to compare properties or states across multiple
entities, useful for anomaly detection and identifying distinctive features. Finally, Dynamic Temporal
presents pairs of images to evaluate models’ ability to detect changes, reason about temporal order,
and infer causal relationships.

B.2 DATA SOURCES

To maximize data diversity, we combined multiple open-source datasets covering varied environments,
including urban infrastructure, remote wilderness, and disaster zones (Table EI) All images from
these datasets were manually selected and annotated following our evaluation taxonomy. In addition
to real-world data, we generated synthetic images using the CARLA simulator with custom scripts to
control scene parameters precisely. For specialized case studies requiring exact ground truth, such as
camera altitude, object counts, or height measurements, we used both CARLA and Grand Theft Auto
V(GTA V).

Table 3: Distribution of data sources in TDBench

Image Source Problem Formulation Number Ratio
Aerial Traffic Images (Shahal, 2025)) Human Annotation 457 20.8%
Semantic Drone (ICG,[2019) Human Annotation 653 29.7%
AFO (Gasienica-Jozkowy et al.,[2021) Human Annotation 18 0.8%
Visdrone (Zhu et al., [2021) Human Annotation 416 18.9%
Seadronesee (Varga et al.,[2022) Human Annotation 3 0.1%
ERA (Mou et al.| /in press) Human Annotation 363 16.5%
CARLA (Dosovitskiy et al.,[2017) Simulation Script 290 13.2%
Additional New Data Used In Case Study
CARLA (Dosovitskiy et al.;[2017) Simulation Script 1500 -
GTAV Human Annotation 400 -

B.3 IMPLEMENTATION OF TDBENCH

Rotation-Aware Question Design Because TDBench supports RotationalEval (RE), we catego-
rized all questions as either rotation-invariant or rotation-sensitive. Rotation-invariant questions
(e.g., object presence, attribute recognition) remain semantically unchanged after rotation; only
the image is rotated while the question and answer options remain the same. Rotation-sensitive
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Figure 10: Performance (RE) of models versus their release date. Circles denote open-source models,
with marker size indicating model scale. Triangles denote proprietary models. Each point represents
the largest evaluated model from a given family.

questions (e.g., spatial relationships or localization) require synchronized transformation of direc-
tional references. For instance, after a 90° clockwise rotation, phrases like “top-left” are mapped to
“top-right”.

To automate this process, we use placeholder tokens ({(imgl), (img2)) in both questions and answers.
In the original orientation, they are rendered as “left/right” or “top/bottom”, and these tokens are
automatically rotated when generating the 90°, 180°, and 270° variants. This ensures consistent
semantics across all rotation conditions.

Image Standardization To mitigate evaluation biases from inconsistent image preprocessing across
different VLMs (such as padding, stretching, or multi-tiling), we established a uniform input pipeline.
All images were standardized to a fixed 512x512 pixel resolution. For tasks requiring image pairs,
such as temporal or comparative analyses, we concatenated two sub-images either horizontally (as
a 512x256 pair) or vertically (as a 256x512 pair). This method ensures the combined input fits the
same 512x512 canvas, providing a fair and consistent basis for model comparison.

Quality Control We followed a two-stage quality control pipeline combining human and model-
based checks. Stage 1: Human review. Six annotators independently examined all questions,
removing or revising items that were unsolvable due to lost context during cropping, or that contained
unclear wording or incorrect ground truth. Stage 2: Model filtering. Several open-source models were
benchmarked to detect consistently failed or consistently solved items. Questions that all models
failed underwent additional human review and were retained only if correctly formulated, while those
that all models solved were discarded for offering little discriminative value in model comparison.

CARLA Simulation CARLA (Dosovitskiy et al.,[2017) is an open-source autonomous driving
simulator that provides high-fidelity urban environments and physics. We used its configurable RGB
and segmentation cameras at various altitudes to generate synthetic data. This setup enables precise
control over object instances (e.g., vehicles), supporting systematic evaluation of object counting
performance (Section [3) and altitude-dependent detection studies (Section [5).

C IDENTIFIABILITY OF THE MIXTURE PARAMETERS

We used three parameters, (6,7, g) € [0, 1] to study the reliability of the models. These parameters
denote the proportion of questions a model truly knows (6), model’s accuracy among the questions
that it knows (), and model’s accuracy among the questions it does not know and guessed (g).
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We show that these parameters in our mixture model are generically unique given the observed
statistics

RE, VE, MA.

C.1 PROBLEM FORMULATION

Assume the parameters satisfy
RE = 0r* + (1 - 0)g*,
VE =0r + (1 -0)g, ()
MA =0(1 —7)*+ (1 - 0)(1 — g)*.
This system is symmetric under the transformation
0,7,9) «— (L —=0,g,7).
To remove this trivial multiplicity, we restrict to the ordered domain
VE —g
r—g
The degenerate case r = g occurs iff RE = VE' and MA = (1 — VE)* and is excluded. We

also exclude trivial boundary cases VE € {0,1} or MA € {0, 1}, where conditioning becomes
ill-defined.

Dyg = {(r,g)|0<g<VE<r<1}, 0 = € (0,1). )

C.2 REDUCTION TO SECANT EQUATIONS

Define f(z) = 2* and u(x) = (1 — z)*. Eliminating 6 using the middle equation in equation the
outer equations become the secant identities
RE—g' rt-g' MA-(1-g*' (@1-n'-(1-9g"

— = , — = . 3)
VE —g r—g VE — g r—g

These state that (g, r) have the same secant slope on f as (1 — g,1 — r) do on w.

Since f and w are strictly convex on [0, 1], their secant slopes are strictly increasing in each endpoint.
In particular, for fixed g € [0, 1),
gt

r—

is strictly increasing on (g, 1]. “)
r—g

C.3 ELIMINATION TO ONE VARIABLE

Using r* — g* = (r — g)(r® + gr% + g*r + ¢?), the first equation in equationis equivalent (for
r # g) to the cubic
RE — ¢*
3 2 2 3
rtgrt+grtg = — ‘ 5
gro+grtyg VE_g o)
By equation ] this has at most one solution r > g for each fixed g.

Let r = R(g) denote this unique solution (if it exists) and define

(1-R(g)'-(1-9g)* MA-(1-g)! ©)
R(g)—g VE-g

E(g) =

Lemma (Bijection with E(g) = 0). For fixed VE € (0, 1), ordered solutions (r,g) € Dyg of

equation E]are in one-to-one correspondence with real roots g € (0, VE) of E(g) = 0 for which
VE—g*
T* 79* .

R(g) > VE. For each such root g*, the corresponding * = R(g*) is unique, and then 6* =

Proof. Fix g € (0, VE). The first equality in equationuniquely determines r = R(g) > g by
equation substituting into the second gives E(gi: 0. Conversely, if E(g) = 0 and R(g) > VE,
1

then (6,7, 9) = ( VE_g R(g), g) solves equation O

R(g)—g’

17



Remark (Why R(g) > VE). Since x — 2% is convex on [0, 1], Jensen’s inequality gives RE =

Ort 4+ (1 —0)g* > (Or + (1 = 0)g9)* = VE', with strict inequality in the ordered, nondegenerate
case r # g. Hence

RE ¢ _ VE' — g

VE — g VE—-g
By strict monotonicity in equation |4} the unique r satisfying the first secant identity must satisfy
r = R(g) > VE.

C.4 THE CUBIC IN g AND ITS DISCRIMINANT

Clearing denominators in equation [3]yields a cubic polynomial
Prpvemald) = 0, )

whose coefficients depend algebraically on (RE, VE, MA). Degree justification. Using equation
ri_gt
r—g

the first secant identity expresses as 3 + gr? + ¢r + ¢3, which is linear in the unknown slope
RE—g*
VE—g
factor (r — g) and leaves a polynomial of degree at most 3 in g. (Explicit coefficients are lengthy and

omitted for brevity.)

; substituting this » = R(g) into the second identity and clearing denominators cancels the

By the lemma above, ordered solutions are in bijection with real roots of Pry v va (9) in (0, VE).

Let A(P) denote the discriminant of a cubic P(g) = ag® + bg? + cg + d:
A(P) = 18abcd — 4b%d + b*c? — 4ac® — 27ad>.
This determines the real root structure:

A < 0 = one real root, A >0 = three real roots, A =0 = a multiple real root.

Theorem (Uniqueness certificate). Fix VE € (0,1) and (RE,MA). Let Pyg v \a be as in
equationl?] If A(PrgvEma) < 0, then there is at most one ordered solution (r, g) € Dyg. If; in
addition, Py, 75 \ia has a real root g* € (0, VE), then
VE — ¢g*
" =R(g), 0=
-y
gives the unique solution (60*,r*, g*) of equation up to symmetry.

Proof. Ordered solutions correspond to real roots of Pry 37 o A(g)in (0, VE). If A < 0 then P has

a single real root on R, hence at most one in (0, VE). If such a root exists, the corresponding (, g)
and 6 are uniquely recovered via R(g) and equation (|

C.5 GENERIC UNIQUENESS AND THE DISCRIMINANT LOCUS

Let Ry be the image of Dy under the map (r, g) — (RE,MA) defined by equation [3} The
equation A(Prp 75 \4) = 0 defines a real algebraic curve Y C Ry (the discriminant locus).

Theorem (Generic uniqueness). For fixed VE € (0,1):

* If (RE,MA) € Ryg \ Sy then A < 0 and equation |l has a unique solution (0,1, g) up
to symmetry.

* If (RE,MA) € X, then either a multiple solution occurs or three distinct solutions exist.

In particular, Y75 has measure zero, so for almost all valid (RE, VE, MA) the parameters (6,r, g)
are uniquely identifiable up to symmetry.

Proof (sketch). Off ¥ the simple-root condition (9P/dg) # 0 holds generically; by continuity

(implicit function theorem), the number of real roots is locally constant and equals 1, yielding a single
ordered solution. On Y the discriminant changes sign, creating a multiple or triple real root. [
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Existence note. For statistics induced by any nondegenerate mixture in the ordered domain (r >
VE > g), continuity of the forward map (r, g) — (RE,MA) and the intermediate value principle
ensure that Ppp o A (g) attains a real root in (0, VE). Empirically, all rows in our dataset satisfy
this condition.

C.6 SUMMARY

The system equation [T] admits at most three ordered solutions (six with symmetry). However,
generically A < 0, so there is exactly one ordered solution (and thus one (6, r, g) up to symmetry).
Empirically, our dataset lies in this generic region, which explains why the solver returns either zero
or one solution per row.

D DISTINCTION FROM MULTI-PASS EVALUATION AND MAJORITY VOTING.

Unlike multi-pass evaluation with majority voting, which evaluates output variability by repeatedly
sampling responses for the same image—question pair, our RotationalEval (RE) framework assesses
invariance under controlled changes in the visual input. In multi-pass evaluation, the image remains
identical across trials and only the text side varies—models sample different responses from the
same underlying probability distribution, and any divergence arises solely from stochastic decoding.
Even when question order or answer choices are shuffled, these modifications occur entirely at the
semantic level in text and do not alter the visual input to the model. By contrast, TDBench rotates the
image and systematically updates the question text and spatial relations to match the new orientation.
Each trial therefore presents a distinct visual configuration of the same scene, requiring the model to
consistently ground its reasoning in the visual content rather than relying on language priors. This
fundamental difference makes RE a measure of visual invariance and grounding, whereas multi-pass
evaluation primarily measures response stability under repeated sampling.

E ADDITIONAL EVALUATION RESULTS

E.1 MODEL SCALING TRENDS

We further analyze model performance trends over time and model size. Figure [3a] shows the
relationship between RE performance and model size for various open-source models. To examine
temporal trends, Figure [I0]plots model performance against their release dates, where open-source
models are shown as dots (with marker size indicating model scale) and proprietary models are shown
as triangles. Overall, performance tends to rise with newer releases, particularly among proprietary
models such as GPT-5 and Gemini 2.5 Pro. Open-source models also progress over time, though less
consistently: for instance, InternVL3.5, released after InternVL3, shows no clear RE improvement
despite comparable size. A similar pattern appears in the Claude family, where later models (e.g.,
Claude 4.1 Opus) underperform earlier Sonnet versions on RE. These patterns indicate that top-down
visual understanding is not a prioritized objective in current training regimes; most models appear to
focus on mainstream capabilities such as chat, long-context reasoning, or coding, while robustness on
top-down views receives little explicit attention. This highlights the underexplored status of top-down
images and the importance of benchmarks like TDBench that bring this gap into focus.

E.2 COMPARISON WITH REMOTE SENSING MODEL

To investigate whether existing remote sensing VLMs can address TDBench, we compared GeoChat-
7B (Kuckreja et al. [2023)), a model fine-tuned on satellite imagery, against a generalist baseline,
LLaVA-1.5-7B. As detailed in Table[d GeoChat achieves perfect performance on Object Presence
(RE 1.00), demonstrating robust detection capabilities for aerial views. However, it fails catastrophi-
cally on reasoning-intensive tasks, scoring 0.00 on Spatial Relationship and Visual Grounding, and
significantly underperforming LLaVA on Scene Understanding (0.14 vs. 0.81). This performance
dichotomy confirms that while fine-tuning on remote sensing data improves simple detection, it
does not confer the fine-grained spatial logic and holistic scene reasoning required by TDBench,
further validating the distinct domain gap between traditional satellite tasks and near-surface aerial
understanding.
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Category LLaVA-1.5-7B RE (VE) GeoChat-7B RE (VE)

Object Presence 0.32 (0.56) 1.00 (1.00)
Visual Grounding 0.37 (0.67) 0.00 (0.01)
Scene Understanding 0.81 (0.91) 0.14 (0.31)
Spatial Relationship 0.04 (0.41) 0.00 (0.26)
Attribute Comparison 0.64 (0.67) 0.59 (0.64)
Attribute Recognition 0.39 (0.59) 0.14 (0.32)
Dynamic Temporal 0.09 (0.38) 0.16 (0.29)
Hallucination Detection 0.28 (0.56) 0.40 (0.63)
Object Counting 0.18 (0.36) 0.04 (0.26)
Object Localization 0.12 (0.55) 0.10 (0.24)

Table 4: Comparison between generalist (LLaVA) and remote sensing specialist (GeoChat) models
on TDBench. GeoChat excels at detection but lacks spatial reasoning capabilities.

E.3 DETECTION-ASSISTED PIPELINE ANALYSIS

To determine if a hybrid approach could surpass end-to-end VLMs, we implemented a detection-
assisted pipeline. We fine-tuned a YOLOv11x model on a subset of TDBench data (achieving high
robustness, VE=0.857, RE=0.791) and used it to pre-process images by overlaying bounding boxes
on detected objects. These augmented images were then fed into GPT-40. We compared this hybrid
approach against the direct VLM baseline on two categories: Object Localization (161 questions)
and Object Presence (133 questions). Results are summarized in Table[5] We observed two distinct
behaviors. First, detection aids existence: for Object Presence, the pipeline significantly boosts
performance, particularly on the subset where objects were successfully detected (Accuracy increases
from 82.9% to 91.8%), as the explicit visual cue helps the VLM confirm object existence. Second,
visual aids hinder reasoning: conversely, for Object Localization, rotational consistency (RE) drops
from 0.292 to 0.248. Even when the object is correctly boxed (det_count > 0), the VLM is less
accurate at placing it in the correct grid cell (0.671 vs 0.679). This suggests that overlaid boxes
introduce visual clutter or bias the VLM’s internal spatial mapping, disrupting the precise coordinate
reasoning required for localization.

Detection-Augmented  Direct VLM

Task Metri
s arC (YOLOvlix + GPT-40)  (GPT-do)

Object Localization (161 Qs x 4 rotations = 644 samples)

All Samples RE 0.248 0.292

VE 0.689 0.677

Subset (det > 0)  Accuracy 0.671 0.679
Object Presence (133 Qs x 4 rotations = 532 samples)

All Samples RE 0.647 0.609

VE 0.835 0.782

Subset (det > 0)  Accuracy 0.918 0.829

Table 5: Performance comparison between a Detection-Augmented Pipeline and Direct VLM infer-
ence. While detection augmentation improves existence tasks, it degrades spatial consistency (RE)
and localization accuracy.

E.4 COMPREHENSIVE DIMENSION-WISE RESULTS

We have presented only aggregated performance summaries (Figure [T} Table [I| & [2) in previous
sections. For completeness, Tables [6H9|provide the full dimension-wise results of all 60 evaluated
models (17 proprietary and 47 open-source) across the 10 evaluation dimensions in TDBench. To
verify that these dimensions capture distinct model capabilities rather than just generic quality, we
computed Pearson correlations across the 60 models. The average correlation is weak (p = 0.38 for
VE), confirming task diversity.

20



Table 6: VLMs in TDBench on Scene Understanding, Hallucination Detection, Object Presence.

Model ‘ Scene Understanding ‘ Hallucination Detection ‘ Object Presence
| RE VE [ r g Awj | RE VE [ r g Awj | RE VE ] T g Ay
Proprietary VLMs

Claude 3.5 Haiku 0.740 0.864 0.853 0.965 0.278 0.823 | 0.835 0.901 0.884 0.986 0.260 0.871 | 0.390 0.601 0.627 0.888 0.119 0.557
Claude 3.5 Sonnet 0.775 0.899 0.896 0.964 0.338 0.863 | 0.635 0.828 0.855 0.928 0.234 0.794 | 0.430 0.650 0.640 0.905 0.197 0.579
Claude 3.7 Sonnet 0.780 0.892 0.861 0.975 0.384 0.839 | 0.745 0.881 0.907 0.952 0.189 0.864 | 0.325 0.537 0.530 0.885 0.146 0.469
Claude 4 Sonnet 0.745 0.865 0.885 0.958 0.150 0.848 | 0.600 0.796 0.772 0.938 0.315 0.724 | 0.330 0.534 0.525 0.890 0.140 0.467
Claude 4.1 Opus 0.800 0.899 0.896 0972 0.266 0.871 | 0.515 0.743 0.742 0.912 0.254 0.677 | 0.340 0.550 0.526 0.896 0.165 0.472
GPT 4o0-mini 0.870 0.934 0.940 00981 0.197 0.922 | 0.745 0.875 0.846 0.968 0.365 0.819 | 0.465 0.635 0.642 0.923 0.120 0.592
GPT-40 0.930 0.961 - - - - 0.575 0.761 0.761 0.932 0.216 0.710 | 0.645 0.815 0.760 0.958 0.361 0.728
GPT-4.1 Nano 0.875 0.932 0932 0984 0.221 0.918 | 0485 0.700 0.659 0.925 0.264 0.610 | 0.735 0.853 0.849 0.964 0.223 0819
GPT-4.1 0.915 0961 0943 0992 0456 0.935| 0405 0.629 0.642 0.891 0.158 0.572 | 0.725 0.855 0.848 0.961 0.263 0.815
OpenAl 03 0.920 0.965 0.956 0.990 0.419 0.947 | 0.560 0.756 0.760 0.926 0.217 0.704 | 0.565 0.730 0.724 0.940 0.180 0.680
GPT-5 mini 0.920 0.949 0.951 0992 0.116 0.943 | 0.185 0.388 0.431 0.809 0.068 0.349 | 0.865 0.919 0.906 0.988 0.249 0.895
GPT-5 0.930 0.971 0.973 0989 0.344 0.962 | 0.550 0.730 0.707 0.939 0.226 0.664 | 0.615 0.754 0.731 0.958 0.201 0.700
Gemini 1.5 Flash 0.905 0.948 0.953 0987 0.147 0.941 | 0.540 0.703 0.708 0.934 0.139 0.662 | 0.720 0.815 0811 0.971 0.147 0.787
Gemini 1.5 Pro 0.920 0.953 0.956 0991 0.134 0.947 | 0.525 0.714 0.719 0.924 0.175 0.664 | 0.810 0.886 0.882 0.979 0.193 0.864
Gemini 2.5 Flash-Lite 0.905 0.946 0.931 0993 0.316 0.925 | 0.655 0.820 0.835 0.941 0.208 0.786 | 0.745 0.843 0.839 0.971 0.173 0815
Gemini 2.5 Flash 0.920 0.956 0.953 0.991 0.249 0.945 | 0.590 0.784 0.729 0.947 0.345 0.690 | 0.770 0.866 0.875 0.969 0.151 0.847
Gemini 2.5 Pro 0.940 0.970 0.971 0.992 0.232 0.963 | 0.595 0.786 0.823 0.922 0.156 0.759 | 0.860 0.930 0.928 0.981 0.275 0.910
Open Source VLMs
Gemma3 4B 0.795 0.897 0919 0964 0.136 0.887 | 0.175 0.372 0.392 0.818 0.086 0.320 | 0.825 0.922 0.934 0.969 0.257 0.906
Gemma3 12B 0.780 0.896 0.907 0.963 0.246 0.873 | 0.255 0.477 0.477 0.855 0.134 0.407 | 0.805 0.894 0.894 0.974 0.216 0.871
Gemma3 27B 0.860 0.924 0.904 0.987 0.324 0.893 | 0.230 0.416 0.420 0.860 0.094 0.362 | 0.890 0.949 00954 0.983 0.245 0.937
Deepseek VL2-Tiny 0.870 0.931 0.932 0983 0.220 0.916 | 0.250 0.374 0.389 0.896 0.042 0.348 | 0.335 0.546 0.546 0.885 0.138 0.483
Deepseek VL2-Small 0.885 0.932 0913 0992 0.307 0.906 | 0.555 0.724 0.750 0.927 0.113 0.696 | 0.645 0.761 0.764 0.958 0.122 0.732
Deepseek VL2 0.840 0.925 0.929 0975 0.272 0.906 | 0.560 0.755 0.780 0.921 0.169 0.718 | 0.695 0.771 0.772 0.974 0.085 0.752
InternVL2.5 4B-MPO 0.815 0.900 0.905 0974 0.195 0.881 | 0.610 0.767 0.756 0.948 0.210 0.716 | 0.485 0.624 0.593 0.951 0.148 0.564
InternVL2.5 8B-MPO 0.810 0.881 0.848 00983 0.284 0.838 | 0.625 0.785 0.809 0.937 0.139 0.758 | 0415 0.594 0573 0.922 0.153 0.528
InternVL3-1B 0.755 0.869 0.893 0.959 0.118 0.856 | 0.405 0.532 0.514 0.942 0.099 0.484 | 0.450 0.600 0.602 0.930 0.101 0.560
InternVL3-2B 0.855 0.922 0917 0.983 0259 0.901 | 0.365 0.519 0.524 0914 0.084 0479 | 0.615 0.749 0.743 0.954 0.157 0.708
InternVL3-8B 0.880 0.924 0.932 0986 0.074 0.919 | 0405 0.546 0.554 0.925 0.076 0.512 | 0.595 0.759 0.777 0.935 0.144 0.727
InternVL3-9B 0.830 0916 0.927 0973 0.199 0.902 | 0415 0.613 0.624 0.903 0.131 0.563 | 0.485 0.656 0.646 0.931 0.156 0.601
InternVL3-14B 0.850 0.909 0.903 0.985 0.198 0.890 | 0.395 0.556 0.539 0.925 0.125 0.498 | 0.565 0.698 0.679 0.955 0.154 0.648
InternVL3-38B 0.950 0.976 0.982 0.992 0.140 0.974 | 0.520 0.654 0.620 0.957 0.159 0.593 | 0.645 0.770 0.782 0.953 0.112 0.746
InternVL3.5-1B 0.705 0.821 0.829 0.960 0.149 0.796 | 0.220 0.396 0.402 0.860 0.085 0.346 | 0.645 0.811 0.794 0.949 0.282 0.753
InternVL3.5-2B 0.750 0.845 0.848 0970 0.148 0.823 | 0.140 0.273 0.286 0.837 0.047 0.239 | 0.780 0.879 0.896 0.966 0.129 0.865
InternVL3.5-4B 0.690 0.826 0.822 0957 0.223 0.787 | 0.245 0.364 0.371 0.901 0.046 0.335 | 0.765 0.877 0.893 0.962 0.174 0.859
InternVL3.5-8B 0.700 0.834 0.819 0961 0.258 0.787 | 0.130 0.275 0.307 0.807 0.040 0.247 | 0.720 0.839 0.791 0.976 0.319 0.772
InternVL3.5-14B 0.720 0.836 0.841 0962 0.171 0.809 | 0.140 0.304 0.303 0.825 0.078 0.250 | 0.815 0.909 0.924 0.969 0.177 0.895
InternVL3.5-38B 0.855 0.921 0.938 0977 0.077 0.916 | 0.380 0.569 0.568 0.904 0.128 0.513 | 0.730 0.866 0.860 0.959 0.293 0.825
InternVL3.5-1B-Thk 0.705 0.834 0.846 0955 0.164 0.809 | 0.245 0.421 0.413 0.877 0.100 0.363 | 0.630 0.818 0.809 0.939 0.303 0.760
InternVL3.5-2B-Thk 0.720 0.820 0.807 0.972 0.185 0.784 | 0.230 0.502 0.559 0.801 0.125 0.448 | 0.545 0.767 0.808 0.906 0.185 0.732
InternVL3.5-4B-Thk 0.695 0.830 0810 0.962 0.266 0.779 | 0.350 0.495 0.477 0.925 0.102 0.442 | 0.695 0.853 0.827 0.956 0.354 0.791
InternVL3.5-8B-Thk 0.700 0.839 0.826 0.959 0.268 0.792 | 0.240 0.436 0.459 0.850 0.084 0.391 | 0.715 0.834 0.814 0.968 0.246 0.788
InternVL3.5-14B-Thk 0.730 0.860 0.860 0.960 0.247 0.826 | 0.200 0.424 0.476 0.805 0.078 0.383 | 0.780 0.889 0.865 0.974 0.345 0.842
InternVL3.5-38B-Thk 0.880 0.930 0.934 00985 0.146 0.920 | 0435 0.629 0.616 0916 0.167 0.565 | 0.695 0.853 0.885 0.941 0.168 0.833
VLM-R1-OVD 0.615 0.786 0.778 0.943 0.237 0.734 | 0.370 0.593 0.583 0.892 0.173 0.520 | 0.440 0.636 0.669 0.901 0.102 0.602
VLM-R1-Math 0.645 0.799 0.791 0.950 0226 0.752 | 0.505 0.671 0.677 0.929 0.130 0.629 | 0.480 0.667 0.684 0.915 0.131 0.626
VLM-R1-REC 0.580 0.777 0.785 0.927 0.231 0.728 | 0.530 0.730 0.752 0916 0.166 0.689 | 0.305 0.535 0.533 0.870 0.154 0.463
Kimi-VL-A3B-Thk 0.735 0.863 0.840 0.967 0.316 0.812 | 0.355 0.611 0.571 0.887 0.244 0.506 | 0.375 0.601 0.607 0.886 0.161 0.538
Kimi-VL-A3B-Instruct 0.850 0.926 0.908 0.983 0.365 0.893 | 0.625 0.761 0.764 0951 0.147 0.727 | 0.630 0.746 0.745 0.959 0.124 0.715
Kimi-VL-A3B-Thk-2506 0.875 0.934 0.936 0983 0.209 0.920 | 0.725 0.858 0.812 0971 0.368 0.788 | 0.420 0.591 0.614 0.910 0.086 0.558
LLaVA-Interleave-Qwen-0.5B | 0.710 0.797 0.792 0.973 0.128 0.771 | 0.205 0.334 0.345 0.878 0.047 0.303 | 0.460 0.604 0.584 0.942 0.128 0.550
LLaVA-1.5-7B 0.810 0.890 0.878 0.980 0.244 0.860 | 0.280 0.529 0.545 0.846 0.148 0.461 | 0.320 0.545 0.541 0.877 0.154 0.474
LLaVA-Next-Mistral-7B 0.820 0.896 0.889 0.980 0.225 0.871 | 0.585 0.704 0.710 0.953 0.095 0.676 | 0.755 0.836 0.842 0.973 0.109 0.819
LLaVA-Next-Vicuna-7B 0.720 0.829 0.819 0968 0.198 0.793 | 0.340 0.481 0.496 0910 0.059 0452 |0.520 0.701 0.711 0.925 0.151 0.658
LLaVA-Interleave-Qwen-7B 0.895 0.946 0.923 0992 0.399 0.916 | 0420 0.594 0.620 0.907 0.082 0.563 | 0.570 0.696 0.692 0.952 0.119 0.660
LLaVA-1.5-13B 0.760 0.873 0.874 0.966 0.227 0.844 | 0450 0.620 0.659 0.909 0.061 0.599 | 0.620 0.776 0.774 0.946 0.195 0.732
LLaVA-Next-Vicuna-13B 0.725 0.829 0815 0971 0.202 0.791 | 0.390 0.530 0.533 0.925 0.080 0.493 | 0.605 0.706 0.714 0.959 0.074 0.685
Phi-4 0.680 0.812 0.811 0.957 0.194 0.776 | 0.705 0.833 0.849 0.955 0.147 0.810 | 0.140 0.304 0.287 0.836 0.090 0.240
Qwen2.5VL 3B 0.665 0.804 0.788 0.958 0.228 0.755 | 0.590 0.752 0.763 0.938 0.157 0.715 | 0.470 0.665 0.668 0.916 0.160 0.612
Qwen2.5VL 7B 0.825 0.914 0901 0978 0.329 0.881 | 0.720 0.834 0.810 0.971 0.251 0.786 | 0.435 0.590 0.583 0.929 0.116 0.542
Qwen2.5VL 32B 0.670 0.838 0.861 0.939 0.206 0.809 | 0.655 0.789 0.800 0.951 0.139 0.761 | 0.435 0.611 0.594 0.925 0.152 0.550

Each table contains RE, VE, 6, r, g, and Aadj for every model, with the best values highlighted in
green and the worst in red (separately for open-source and proprietary models). Unlike the other
three tables, Table|§|(Visual Grounding) presents only the top 12 models by A,q4j in each group. Many
models produced near-zero RE and consequently very low A,q; on this task, likely due to the lack of
relevant training data, offering little comparative insight. In rare cases, such as for GPT-40 on Scene
Understanding, a valid solution to the parameter system could not be found.

E.5 VISUAL GROUNDING

In TDBench, we employ a lenient criteria, centroid containment criterion, for visual grounding
evaluation rather than the conventional Intersection over Union (IoU) metric typically used in object
detection tasks. The reason is that aerial applications, such as drone navigation scenarios where
precise object boundaries are less critical than accurate central positioning as waypoint. Specifically,
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Table 7: VLMs in TDBench on Object Localization, Attribute Recognition, Object Counting.

Model ‘ Object Localization ‘ Attribute Recognition ‘ Object Counting

| RE VE [ r g Awj | RE VE [ r g Awj | RE VE ] T g Ay

Proprietary VLMs
Claude 3.5 Haiku 0.165 0.496 0475 0.765 0.253 0.363 | 0.405 0.608 0.579 0.914 0.186 0.529 | 0.075 0.316 0373 0.669 0.106 0.250
Claude 3.5 Sonnet 0.335 0.627 0.541 0.884 0.326 0.478 | 0.525 0.714 0.711 0.927 0.189 0.659 | 0.135 0.394 0.397 0.763 0.151 0.303
Claude 3.7 Sonnet 0.340 0.583 0.484 0914 0.272 0.442 | 0480 0.669 0.613 0.940 0.239 0.577 | 0.115 0.354 0388 0.738 0.111 0.286
Claude 4 Sonnet 0.420 0.693 0.664 0.890 0.302 0.591 | 0.490 0.704 0.737 0.903 0.146 0.665 | 0.100 0.399 0.427 0.695 0.178 0.297
Claude 4.1 Opus 0.365 0.641 0.623 0.874 0.257 0.544 | 0.505 0.703 0.717 0.916 0.161 0.657 | 0.165 0.398 0.425 0.789 0.108 0.335
GPT 4o0-mini 0.075 0.468 0.4838 0.613 0.328 0.299 | 0.480 0.693 0.659 0.923 0.246 0.609 | 0.175 0.366 0.303 0.871 0.146 0.264
GPT-40 0435 0.728 0.722 0.879 0.334 0.635| 0.610 0.796 0.800 0.934 0.245 0.747 | 0.200 0.465 0.370 0.855 0.236 0.316
GPT-4.1 Nano 0.570 0.811 0.874 0.899 0.207 0.785|0.700 0.839 0.865 0.949 0.137 0.820 | 0.185 0.453 0411 0818 0.197 0.336
GPT-4.1 0.660 0.839 0.846 0.940 0.287 0.795 | 0.680 0.818 0.779 0.966 0.293 0.753 | 0.235 0.477 0.437 0.856 0.184 0.374
OpenAl 03 0.780 0.891 0.900 0.965 0.232 0.868 | 0.720 0.838 0.812 0.970 0.264 0.788 | 0.215 0.480 0.421 0.844 0215 0356
GPT-5 mini 0.575 0.826 0.831 0.910 0414 0.756 | 0.700 0.821 0.827 0.959 0.163 0.793 | 0.215 0.484 0.449 0.831 0201 0.373
GPT-5 0.770 0.887 0.886 0.965 0.284 0.855|0.700 0.838 0.841 0.955 0217 0.803 | 0.190 0.465 0436 0.812 0.197 0.354
Gemini 1.5 Flash 0.600 0.841 0.926 0.897 0.144 0.831 | 0.780 0.869 0.861 0.975 0.207 0.840 | 0.255 0.494 0506 0.842 0.136 0.426
Gemini 1.5 Pro 0.715 0.892 0.928 0937 0.325 0.869 | 0.740 0.860 0.851 0.966 0.259 0.821 | 0.285 0.492 0.448 0.893 0.168 0.400
Gemini 2.5 Flash-Lite 0460 0.721 0.744 0.886 0.241 0.660 | 0.695 0.819 0.792 0.968 0.252 0.766 | 0.125 0.374 0376 0.759 0.142 0.285
Gemini 2.5 Flash 0.585 0.795 0.685 0.956 0.445 0.655|0.755 0.856 0.834 0975 0.259 0.813 | 0.145 0.432 0422 0.765 0.190 0.323
Gemini 2.5 Pro 0.780 0.901 0.900 0.964 0.331 0.868 | 0.805 0.900 0.913 0.969 0.177 0.885 | 0.210 0.499 0.483 0.811 0.207 0.392
Open Source VLMs

Gemma3 4B 0.035 0.400 0.074 0.684 0.377 0.051 | 0435 0.677 0.698 0.888 0.190 0.620 | 0.035 0.301 0.281 0.590 0.188 0.166
Gemma3 12B 0.280 0.593 0.453 0.880 0.355 0.399 | 0.290 0.666 0.867 0.761 0.053 0.659 | 0.130 0.414 0.438 0.738 0.161 0.323
Gemma3 27B 0.440 0.689 0.646 0.907 0.290 0.586 | 0.590 0.770 0.757 0.939 0.242 0.711 | 0.125 0.365 0.363 0.766 0.137 0.278
Deepseek VL2-Tiny 0.130 0.410 0395 0.756 0.184 0.299 | 0.610 0.774 0.789 0.938 0.160 0.740 | 0.165 0.369 0.319 0.848 0.145 0.270
Deepseek VL2-Small 0.375 0.705 0.697 0.853 0.364 0.595|0.725 0.831 0.835 0.965 0.153 0.806 | 0.235 0.395 0.361 0.898 0.110 0.325
Deepseek VL2 0.365 0.723 0.820 0.816 0.297 0.669 | 0.680 0.830 0.857 0.944 0.150 0.809 | 0.235 0.398 0.358 0.900 0.117 0.322
InternVL2.5 4B-MPO 0.180 0.531 0.363 0.826 0.363 0.300 | 0.570 0.754 0.741 0.936 0.233 0.693 | 0.260 0.432 0.415 0.890 0.108 0.369
InternVL2.5 8B-MPO 0.390 0.649 0.616 0.891 0.261 0.549 | 0.630 0.784 0.781 0.948 0.199 0.740 | 0.230 0.434 0.443 0.849 0.103 0.376
InternVL3-1B 0.110 0.459 0441 0.702 0267 0.309 | 0.500 0.699 0.696 0.921 0.192 0.640 | 0.300 0.427 0.446 0.906 0.043 0.404
InternVL3-2B 0.270 0.534 0.502 0.856 0.209 0.430 | 0.595 0.761 0.741 0.946 0.233 0.701 | 0.285 0.435 0.448 0.893 0.063 0.400
InternVL3-8B 0.570 0.769 0.724 0.941 0317 0.681 | 0.660 0.807 0.820 0.947 0.171 0.777 | 0.165 0.414 0454 0.776 0.113 0.352
InternVL3-9B 0.640 0.815 0.767 0.954 0.356 0.732 | 0.630 0.794 0.789 0.945 0228 0.746 | 0.315 0.465 0454 0913 0.093 0414
InternVL3-14B 0.595 0.823 0.883 0.906 0.191 0.800 | 0.650 0.792 0.783 0.954 0.209 0.747 | 0.320 0.490 0.496 0.896 0.091 0.444
InternVL3-38B 0.795 0911 0.907 0.967 0.366 0.877 | 0.800 0.874 0.860 0.982 0.208 0.845 | 0.340 0.475 0.455 0.930 0.095 0.423
InternVL3.5-1B 0.330 0.588 0.566 0.873 0.215 0.494 | 0.540 0.703 0.729 0.928 0.098 0.676 | 0.360 0.482 0.479 0.931 0.070 0.446
InternVL3.5-2B 0410 0.679 0.567 0918 0.366 0.520 | 0.525 0.730 0.715 0.925 0.240 0.662 | 0.315 0.474 0.474 0.903 0.087 0.428
InternVL3.5-4B 0.625 0.815 0.805 0.938 0.307 0.755 | 0.555 0.720 0.716 0.938 0.170 0.672 | 0.280 0.487 0.478 0.875 0.133 0.418
InternVL3.5-8B 0.730 0.875 0.881 0.954 0.291 0.840 | 0.540 0.733 0.734 0.926 0.198 0.680 | 0.320 0.504 0.478 0.904 0.137 0.432
InternVL3.5-14B 0.710 0.874 0.899 0.943 0.262 0.847 | 0.515 0.709 0.697 0.927 0.207 0.646 | 0.300 0.499 0.523 0.870 0.092 0.455
InternVL3.5-38B 0.820 0919 0.935 0968 0.211 0.905| 0495 0.713 0.724 0.909 0.197 0.658 | 0.355 0.564 0.533 0.903 0.176 0.481
InternVL3.5-1B-Thk 0.210 0459 0.447 0.827 0.160 0.370 | 0.525 0.693 0.704 0.929 0.130 0.654 | 0.185 0.429 0.379 0.835 0.181 0.316
InternVL3.5-2B-Thk 0.245 0.532 0.405 0.878 0.297 0.356 | 0435 0.679 0.711 0.884 0.174 0.628 | 0.185 0.444 0.450 0.801 0.152 0.360
InternVL3.5-4B-Thk 0.525 0.781 0.814 0.896 0.280 0.729 | 0.555 0.734 0.723 0.936 0.206 0.677 | 0.175 0.451 0477 0.778 0.153 0.371
InternVL3.5-8B-Thk 0.670 0.853 0.861 0.939 0.319 0.808 | 0.570 0.761 0.789 0.922 0.160 0.728 | 0.260 0.510 0.529 0.837 0.142 0.443
InternVL3.5-14B-Thk 0.650 0.853 0.805 0.944 0.474 0.760 | 0.570 0.748 0.760 0.931 0.168 0.707 | 0.325 0.539 0.513 0.892 0.167 0.458
InternVL3.5-38B-Thk 0.790 0.901 0914 0.964 0.231 0.882 | 0.555 0.761 0.742 0.929 0.279 0.689 | 0.325 0.545 0.527 0.886 0.165 0.467
VLM-R1-OVD 0.445 0.731 0.698 0.891 0.363 0.622 | 0.525 0.738 0.742 0.917 0221 0.681 | 0.160 0.407 0.416 0.787 0.137 0.328
VLM-R1-Math 0495 0.772 0.668 0.920 0.476 0.614 | 0.585 0.764 0.759 0.937 0218 0.711 | 0.145 0.367 0.347 0.804 0.136 0.279
VLM-RI-REC 0330 0.641 0.561 0.871 0.347 0.489 | 0455 0.711 0.752 0.882 0.193 0.663 | 0.120 0.354 0.298 0.796 0.166 0.237
Kimi-VL-A3B-Thk 0.160 0.455 0.330 0.830 0271 0.274 | 0.555 0.749 0.749 0.928 0216 0.694 | 0.060 0.368 0.423 0.612 0.188 0.259
Kimi-VL-A3B-Instruct 0.555 0.776 0.800 0912 0.231 0.730 | 0.710 0.825 0.835 0.960 0.141 0.802 | 0.260 0.441 0.431 0.881 0.108 0.380
Kimi-VL-A3B-Thk-2506 0.510 0.746 0.686 0.926 0.353 0.635 | 0.650 0.806 0.793 0.951 0.252 0.754 | 0.120 0.331 0327 0.778 0.114 0.254
LLaVA-Interleave-Qwen-0.5B | 0.015 0.270 0.015 0.917 0.260 0.014 | 0.420 0.630 0.629 0.904 0.165 0.569 | 0.060 0.217 0.184 0.756 0.096 0.139
LLaVA-1.5-7B 0.115 0.535 0.733 0.627 0.282 0.460 | 0.385 0.644 0.638 0.881 0.226 0.562 | 0.180 0.361 0359 0.842 0.093 0.302
LLaVA-Next-Mistral-7B 0.700 0.853 0.853 0951 0.278 0.812 | 0.690 0.820 0.837 0.953 0.138 0.797 | 0.110 0.314 0277 0.793 0.130 0.220
LLaVA-Next-Vicuna-7B 0435 0.704 0.609 0915 0.374 0.558 | 0.575 0.750 0.749 0.936 0.196 0.701 | 0.105 0.314 0295 0.772 0.122 0.228
LLaVA-Interleave-Qwen-7B | 0.170 0.514 0.472 0.771 0.284 0.364 | 0.660 0.807 0.813 0.949 0.191 0.772 | 0.175 0.351 0.322 0.858 0.110 0.277
LLaVA-1.5-13B 0.385 0.718 0.778 0.838 0.297 0.652 | 0.535 0.733 0.747 0.920 0.179 0.687 | 0.205 0.345 0.326 0.891 0.082 0.290
LLaVA-Next-Vicuna-13B 0.470 0.741 0.706 0.901 0.358 0.636 | 0.660 0.789 0.801 0.953 0.128 0.763 | 0.085 0.278 0212 0.795 0.138 0.169
Phi-4 0.010 0.244 - - - - 0.385 0.600 0.598 0.896 0.160 0.536 | 0.050 0.224 0.225 0.686 0.089 0.154
Qwen2.5VL 3B 0470 0.726 0.709 0.901 0.300 0.639 | 0.595 0.762 0.762 0.940 0.195 0.716 | 0.185 0.401 0.391 0.829 0.126 0.324
Qwen2.5VL 7B 0.715 0.863 0.862 0.954 0.290 0.823 | 0.665 0.825 0.780 0.960 0.347 0.749 | 0.125 0.326 0311 0.796 0.114 0.248
Qwen2.5VL 32B 0.600 0.824 0.757 0.939 0.464 0.711 | 0.630 0.814 0.840 0.931 0.202 0.781 | 0.115 0.321 0.282 0.799 0.134 0.225

a prediction is considered successful if the predicted object’s centroid falls within the ground
truth bounding box, enabling effective target localization for hovering operations. While boundary
precision is less relevant in many aerial contexts, we nevertheless present comparative performance
analysis using both centroid containment and IoU thresholds in Table[I0] Note that value of IoU
here is obtained by the calculating the mean in 4 rotations dataset, whereas centroid performance is
obtained under RE. We also show some examples of grounding results from some models in Figure[TT]

for reference.
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Table 8: VLMs in TDBench on Attribute Comparison, Dynamic Temporal, Spatial Relationship.

Model ‘ Attribute Comparison ‘ Dynamic Temporal ‘ Spatial Relationship
| RE VE [ r g Awj | RE VE [ r g Awj | RE VE ] T g Ay
Proprietary VLMs

Claude 3.5 Haiku 0.615 0.670 0.669 0.979 0.045 0.655 | 0.200 0.375 0.333 0.880 0.123 0.293 | 0.190 0.501 0.576 0.758 0.153 0.436
Claude 3.5 Sonnet 0.510 0.669 0.676 0.932 0.119 0.630 | 0.295 0.610 0.501 0.871 0.349 0.436 | 0410 0.715 0.539 0.920 0475 0.496
Claude 3.7 Sonnet 0.610 0.693 0.696 0.967 0.062 0.674 | 0.245 0.619 0.505 0.822 0.411 0.415 | 0475 0.723 0.700 0.907 0.293 0.635
Claude 4 Sonnet 0.545 0.679 0.708 0.937 0.053 0.663 | 0.200 0.519 0.468 0.806 0.266 0.377 | 0.480 0.759 0.782 0.884 0.308 0.692
Claude 4.1 Opus 0.530 0.679 0.687 0.937 0.112 0.644 | 0.210 0.530 0.471 0.814 0.277 0.383 | 0485 0.776 0.867 0.865 0.199 0.750
GPT 4o0-mini 0.420 0.630 0.660 0.893 0.119 0.590 | 0.145 0.432 0383 0.783 0.215 0.300 | 0.025 0.393 0.983 0.399 0.004 0.392
GPT-40 0.420 0.647 0.634 0902 0.207 0.572 | 0.225 0.529 0.444 0.840 0.280 0.373 | 0415 0.720 0.695 0.876 0.364 0.609
GPT-4.1 Nano 0.600 0.703 0.708 0.959 0.079 0.679 | 0.310 0.627 0.456 0.898 0.401 0.409 | 0.665 0.860 0.863 0.936 0.382 0.808
GPT-4.1 0.525 0.677 0.683 0.936 0.120 0.639 | 0.240 0.536 0.483 0.838 0.254 0.405 | 0.600 0.815 0.691 0.958 0.495 0.662
OpenAl 03 0.550 0.714 0.694 0.943 0.192 0.655 | 0.280 0.605 0.409 0.897 0.403 0.367 | 0.770 0.909 0.903 0.960 0.434 0.867
GPT-5 mini 0.540 0.705 0.710 0.934 0.145 0.663 | 0.210 0.481 0.413 0.843 0.227 0.348 | 0.855 0.934 0951 0.974 0.153 0.926
GPT-5 0.580 0.733 0.731 0.944 0.158 0.690 | 0.340 0.679 0.324 0.966 0.541 0.313 | 0.805 0.922 0958 0.957 0.119 0918
Gemini 1.5 Flash 0475 0.649 0.671 0917 0.101 0.616 | 0.190 0.489 0.440 0.809 0.237 0.356 | 0.635 0.829 0819 0.938 0.337 0.768
Gemini 1.5 Pro 0.565 0.704 0.696 0.949 0.142 0.661 | 0.185 0.469 0.485 0.785 0.170 0.381 | 0.620 0.845 0.857 0.921 0.388 0.790
Gemini 2.5 Flash-Lite 0410 0.639 0.656 0.889 0.162 0.583 | 0.170 0.505 0.455 0.778 0.277 0.354 | 0.620 0.846 0.865 0.919 0.380 0.795
Gemini 2.5 Flash 0455 0.691 0.663 0.909 0.262 0.603 | 0.225 0.525 0.515 0.812 0.220 0.418 | 0.820 0.921 0.943 0.966 0.186 0911
Gemini 2.5 Pro 0.575 0.744 0.743 0938 0.182 0.697 | 0.240 0.535 0.542 0.815 0.203 0.442 | 0.825 0.925 0943 0.967 0.231 0912
Open Source VLMs

Gemma3 4B 0.260 0.550 0.523 0.838 0.233 0.439 | 0.140 0429 0.463 0.741 0.160 0.343 | 0.020 0.331 0.567 0.429 0.203 0.243
Gemma3 12B 0.450 0.634 0.610 0.927 0.176 0.565 | 0.165 0.415 0.472 0.769 0.098 0.363 | 0.135 0.550 0.816 0.638 0.162 0.520
Gemma3 27B 0.490 0.676 0.670 0.925 0.172 0.619 | 0.145 0.386 0.422 0.766 0.109 0.323 | 0.495 0.744 0.673 0.923 0.375 0.621
Deepseek VL2-Tiny 0.330 0.603 0.607 0.858 0.208 0.521 | 0.085 0.350 0.284 0.737 0.196 0.209 | 0.085 0.463 0.675 0.595 0.187 0.402
Deepseek VL2-Small 0.560 0.666 0.678 0.953 0.061 0.647 | 0.150 0.471 0.474 0.749 0.222 0.354 | 0.325 0.650 0.726 0.818 0.205 0.594
Deepseek VL2 0.595 0.669 0.672 0.970 0.052 0.652 | 0.155 0.444 0389 0.793 0.222 0.308 | 0.345 0.665 0.593 0.868 0.368 0.515
InternVL2.5 4B-MPO 0.415 0.637 0.638 0.898 0.178 0.573 | 0.145 0.405 0375 0.788 0.175 0.296 | 0.140 0.566 0.871 0.633 0.115 0.551
InternVL2.5 8B-MPO 0.455 0.593 0.596 0.935 0.088 0.557 | 0.195 0.497 0.500 0.789 0.206 0.395 | 0.440 0.740 0.662 0.897 0.433 0.594
InternVL3-1B 0.370 0.546 0.533 0913 0.128 0.486 | 0.120 0.360 0.423 0.730 0.089 0.309 | 0.010 0.338 - - - -

InternVL3-2B 0.420 0.645 0.665 0.891 0.156 0.593 | 0.135 0.380 0.419 0.753 0.111 0.316 | 0.140 0.534 0.255 0.815 0.437 0.208
InternVL3-8B 0.420 0.584 0.579 0.923 0.118 0.534 | 0.160 0.411 0.440 0.777 0.125 0.341 | 0.505 0.772 0.697 0.917 0.439 0.639
InternVL3-9B 0450 0.649 0.669 0.906 0.130 0.606 | 0.145 0.401 0.476 0.743 0.091 0.354 | 0.595 0.807 0.813 0.924 0.300 0.751
InternVL3-14B 0.525 0.652 0.654 0.947 0.097 0.619 | 0.150 0.436 0.439 0.764 0.180 0.335 | 0.585 0.820 0.805 0.921 0.402 0.742
InternVL3-38B 0.635 0.728 0.733 0.965 0.075 0.707 | 0.190 0.453 0.450 0.806 0.163 0.363 | 0.720 0.875 0.821 0.965 0.462 0.793
InternVL3.5-1B 0.335 0.516 0.517 0.897 0.109 0.464 | 0.075 0.352 0.482 0.628 0.096 0.303 | 0.150 0.497 0562 0.718 0.215 0.404
InternVL3.5-2B 0.295 0.540 0.542 0.859 0.163 0.465 | 0.155 0.393 0.452 0.765 0.085 0.346 | 0.365 0.642 0.653 0.864 0.226 0.564
InternVL3.5-4B 0.440 0.556 0.544 0.948 0.088 0.516 | 0.165 0.443 0.513 0.753 0.116 0.386 | 0435 0.714 0.751 0.872 0.236 0.655
InternVL3.5-8B 0.395 0.554 0.531 0928 0.129 0.493 | 0.135 0.398 0.440 0.744 0.125 0.328 | 0495 0.752 0.721 0.908 0.349 0.655
InternVL3.5-14B 0495 0.615 0.592 0956 0.120 0.566 | 0.150 0.421 0.474 0.750 0.125 0.355 | 0.570 0.801 0.846 0.906 0.228 0.766
InternVL3.5-38B 0.440 0.621 0.607 0.922 0.155 0.560 | 0.205 0.440 0.438 0.827 0.138 0.362 | 0.660 0.856 0.811 0.947 0.469 0.767
InternVL3.5-1B-Thk 0.365 0.596 0.541 0.905 0.232 0.490 | 0.060 0.347 0.529 0.580 0.086 0.307 | 0.055 0.417 0.666 0.535 0.183 0.356
InternVL3.5-2B-Thk 0.255 0.586 0.571 0.815 0.282 0.465 | 0.065 0.345 0.463 0.612 0.115 0.283 | 0.225 0.591 0.515 0.805 0.364 0.414
InternVL3.5-4B-Thk 0.345 0.551 0.551 0.889 0.136 0.490 | 0.155 0.443 0.487 0.751 0.150 0.366 | 0.340 0.671 0.650 0.847 0.345 0.550
InternVL3.5-8B-Thk 0.320 0.578 0.529 0.881 0.237 0.466 | 0.115 0.399 0.472 0.702 0.127 0.332 | 0435 0.725 0.681 0.891 0.371 0.606
InternVL3.5-14B-Thk 0.440 0.635 0.624 0916 0.168 0.572 | 0.145 0.420 0.490 0.738 0.115 0.361 | 0.520 0.789 0.842 0.886 0.270 0.746
InternVL3.5-38B-Thk 0.410 0.629 0.622 0.901 0.181 0.560 | 0.215 0.460 0.452 0.830 0.155 0.375 | 0.640 0.850 0.874 0.924 0332 0.808
VLM-R1-OVD 0.200 0.509 0.544 0.778 0.188 0.423 | 0.120 0.420 0.535 0.688 0.111 0.368 | 0.270 0.621 0.620 0.810 0.314 0.502
VLM-R1-Math 0335 0.556 0.560 0.879 0.145 0.492 | 0.145 0.426 0.518 0.727 0.103 0.376 | 0.320 0.649 0.706 0.820 0.238 0.579
VLM-R1-REC 0.390 0.611 0.641 0.883 0.125 0.566 | 0.105 0.404 0.538 0.665 0.100 0.358 | 0.205 0.593 0.583 0.764 0.353 0.446
Kimi-VL-A3B-Thk 0.305 0.633 0.537 0.862 0.366 0.463 | 0.120 0.400 0318 0.781 0.223 0.248 | 0.245 0.621 0318 0.896 0.493 0.285
Kimi-VL-A3B-Instruct 0.370 0.545 0.540 0910 0.117 0491 | 0.120 0.379 0355 0.762 0.168 0.270 | 0.425 0.682 0.703 0.881 0.211 0.620
Kimi-VL-A3B-Thk-2506 0.390 0.576 0.595 0.900 0.100 0.536 | 0.180 0.484 0313 0.863 0.311 0.270 | 0450 0.719 0.640 0.912 0.375 0.584
LLaVA-Interleave-Qwen-0.5B | 0.660 0.672 0.675 0.994 0.004 0.671 | 0.135 0312 0.278 0.835 0.112 0232 | 0.005 0.233 0.030 0.545 0.223 0.016
LLaVA-1.5-7B 0.635 0.662 0.659 0.991 0.027 0.653 | 0.090 0.356 0.400 0.688 0.135 0.275 | 0.040 0.366 - - - -

LLaVA-Next-Mistral-7B 0.560 0.670 0.668 0.957 0.093 0.639 | 0.125 0.362 0.428 0.735 0.084 0.314 | 0.175 0.566 0.519 0.753 0.365 0.390
LLaVA-Next-Vicuna-7B 0.655 0.675 0.669 0.995 0.028 0.666 | 0.145 0.372 0.415 0.769 0.091 0.319 | 0.080 0.482 0.095 0.825 0447 0.078
LLaVA-Interleave-Qwen-7B 0.490 0.647 0.615 0945 0.173 0.581 | 0.155 0.394 0.437 0.772 0.100 0.337 | 0.020 0.360 0.719 0.403 0.251 0.290
LLaVA-1.5-13B 0.495 0.620 0.605 0951 0.112 0.576 | 0.120 0.393 0.461 0.714 0.118 0.329 | 0.090 0.458 0.563 0.630 0.235 0.355
LLaVA-Next-Vicuna-13B 0.660 0.679 0.680 0.993 0.012 0.675 | 0.145 0.390 0.430 0.762 0.109 0.328 | 0.160 0.544 0.664 0.699 0.236 0.465
Phi-4 0.520 0.621 0.616 0.958 0.080 0.591 | 0.105 0.393 0.433 0.701 0.157 0.303 | 0.005 0.234 - - - -

Qwen2.5VL 3B 0.265 0.516 0459 0.871 0.216 0.400 | 0.130 0.415 0.494 0.716 0.121 0.354 | 0.250 0.603 0.627 0.793 0.282 0.497
Qwen2.5VL 7B 0465 0.621 0.623 0.929 0.111 0.579 | 0.165 0.424 0.472 0.769 0.115 0.363 | 0.580 0.819 0.835 0.912 0.348 0.761
Qwen2.5VL 32B 0.375 0.589 0.617 0.883 0.115 0.545 | 0.205 0.459 0.487 0.805 0.130 0.392 | 0.650 0.851 0.865 0.930 0.344 0.805

Table 9: Top 12 proprietary and open-source VLMs on Visual Grounding in TDBench. Only the best
value in each group is highlighted; unlisted models show substantially lower RE and A,g;.

Proprietary VLMs Open-Source VLMs
Model | RE VE ] r g Aagj  Model | RE VE ] r g Aagj
Gemini 2.5 Pro 0.280 0.716 0.979 0.731 0.012 0.716 LLaVA-1.5-13B 0.610 0.829 0.836 0.923 0.346 0.772
Gemini 1.5 Pro 0.360 0.745 0.928 0.789 0.177 0.732 LLaVA-1.5-7B 0.370 0.664 0.690 0.855 0.238 0.590
Gemini 2.5 Flash 0.330 0.650 0.561 0.870 0.368 0.488 Qwen2.5VL 32B 0.405 0.589 0.580 0.914 0.140 0.530
GPT-4.1 0.215 0.605 0.688 0.746 0.295 0.513 LLaVA-Next-Vicuna-13B | 0.285 0.590 0.571 0.839 0.259 0.479
Gemini 1.5 Flash 0.220 0450 0.483 0.822 0.103 0.397 LLaVA-Next-Mistral-7B | 0.305 0.573 0.446 0.906 0.304 0.404
Gemini 2.5 Flash-Lite | 0.210 0.591 0.492 0.796 0.393 0.392 VLM-R1-OVD 0.045 0.375 0.660 0.511 0.111 0.337
GPT-5 0.225 0.528 0.288 0.926 0.366 0.267 LLaVA-Next-Vicuna-7B | 0.160 0.399 0.277 0.869 0.218 0.241
GPT-4.1 Nano 0.175 0.413 0.300 0.872 0.216 0.261 VLM-R1-Math 0.035 0.330 0.533 0.506 0.130 0.269
OpenAl 03 0.130 0.428 0.354 0.775 0.237 0.274 VLM-RI-REC 0.080 0.360 0.238 0.755 0.236 0.180
Claude 3.5 Sonnet 0.030 0.191 0.203 0.620 0.082 0.126  Kimi-VL-A3B-Thk-2506 | 0.010 0.203 0.439 0.388 0.057 0.170
GPT-5 mini 0.030 0.186 0.175 0.644 0.090 0.112 Deepseek VL2-Small 0.065 0.286 0.164 0.790 0.187 0.130
Claude 3.7 Sonnet 0.035 0.136 0.144 0.702 0.041 0.101 Deepseek VL2-Tiny 0.030 0.161 0.095 0.750 0.100 0.071
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Figure 11: Grounding results from various models.

Table 10: Visual Grounding IoU vs Centroid Containment Comparison.

Metric GPT GPT 40 Gemini Gemini Claude 3.5 Claude 3.5
40 mini 1.5 pro 1.5 flash sonnet haiku

Average loU 0.05 0.03 0.25 0.07 0.06

Centroid Performance (%) | 1.50 1.60 36.40 24.10 2.80 1.10

Metric DeepSeek DeepSeek LLaVA-Next LLaVA-Next LLaVA
VL2-small VL2-tiny Qwen-7B Qwen-0.5B  1.5-7B

Average ToU 0.09 0.08 0.06 0.05 0.35

Centroid Performance (%) | 1.80 2.60 0.60 0.50 36.50

. Qwen2.5 Qwen2.5 InternVL2 InternVL2 .

Metric VL-7B VL-3B 8B 4B Phid

Average ToU 0.07 0.02 0.04 0.02 0.01

Centroid Performance (%) | 0.60 0.00 0.50 0.00 0.00
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