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Neural Network Approach for Estimation of Peak
Over voltages Under Switching Transients
D. Thukaram, Senior Member, IEEE, H. P. Khincha, Senior Member, IEEE and Sulabh Khandelwal
Abstract— Intended transmission line switching Severe overvoltages resulting from switching transients

operations are required for charging the lines for
restoration of power following some disturbances.
Though detailed transient studies carried out for the
design of transmission lines, such studies are not
common in a day-today operation of power systems.
However it is important for the operator to ensure that
peak overvoltages resulting from the switching
operations are well within safe limits. This paper
presents an Artificial Neural Network (ANN) based
approach to estimate the peak overvoltages generated
by switching transients. In the proposed methodology
Levenberg-Marquardt method is used to train the
multilayer perceptron. The developed ANN is trained
with the extensive simulated results, and tested for
typical cases. The results presented for a 400 kV system
show that the proposed approach can estimate the peak
values of switching overvoltages with good accuracy.

Index Terms— Artificial neutral networks,
electromagnetic transients, switching surges.

I. INTRODUCTION

HE reliable operation of any electrical power system is

determine to a great extent by the amplitude, duration
and frequency of the transient voltages appearing in
different places in the network. These voltages may impose
high stresses on the line and apparatus insulations. Network
transients may result in disturbance of normal operating
conditions and may cause catastrophic or protective
interruption. Switching operations, faults, lightning surges
and other intended or unintended disturbances cause
temporary overvoltages and currents in power system. The
simulation of transient phenomena is therefore very
important for the proper coordination of insulation as well
as for the proper design of protective devices and schemes.
If the estimation of transients can be carried out at the
design stage itself, proper precaution can be taken to
minimize their effects.
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may cause flashover and serious damage to equipment.
Switching transients are fast transients that occur in the
process of energizing transmission line and bus load
capacitances immediately after a power source is connected
to the network. Inductance of transmission line and power
sources interacts with capacitance to cause very fast
oscillations in the process. The insulation level of apparatus
should be capable for withstand at that switching transient
overvoltages. Whenever a transmission line energization,
re- energization and opening happens the generated
switching surge magnitude depends on [1]:
¢ Point on the AC sinusoidal wave at the instant of opening
or closing i.e. switching angle.
e Time span between closing of three phases i.e. pole-
discrepancy.
¢ Strength of source i.e. fault level of the sending end bus.
e Transmission line length.

Digital computer tool such as Electro Magnetic
Transients Program (EMTP) is universally accepted as
industry standard for computation of both switching and
temporary over voltages. At the planning stage the
insulation level of apparatus is decided on the basis of peak
value of transient over voltages, but enormous numbers of
cases have to consider arriving at the magnitude of
maximation. These cases arise because of the sensitivity of
the switching surge magnitude with respect to the parameter
mention above.

The knowledge of switching overvoltages severity during
the intended operations of transmission lines are important
from the operator point of view to take safe decisions about
the operations. In a day-to-day operation of power systems,
EMTP simulations are not common due to enormous cases
required to be carried out to cstimate the worse switching
overvoltages. This paper presents the ANN application for
estimation of peak over voltages under switching transients
during line charging. This will also helps in consolidation
of number of case studies to be carried out using the
conventional methods. ANN has attracted a great deal of
attention because of their pattern recognition capabilities,
and their ability to handle noisy data. They have been
successfully applied to several classification problems in
the area of speech and image processing, as well as in
certain power engineering application [2]. It reflects a
practical classification approach that can draw on the
experience and knowledge of an engineer.
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I1. SWITCHING TRANSIENTS

An electrical transient is the outward manifestation of the
sudden change in circuit conditions, as when a switch opens
or close or a fault occurs on a system. Some of the most
common types of transient phenomena in electric power
system include [3],
¢ Lightning strokes on or near transmission lines
e Energization of transmission lines
e Capacitor switching (single capacitor switching, or

“back-to-back” switching of one capacitor next to an

energized capacitor)

¢ Interruption of small inductive currents (switching off
reactors and unloaded transformers)

o Energization of transformer-termination lines
(“temporary” overvoltages caused by a combination of
transformer inrush currents and traveling waves on the
line)

e Lincar rcsonance at fundamental or at a harmonic
frequency.

e Series capacitor switching and sub-synchronous
resonance

e Load rejection

e Transient recovery voltage across circuit breakers

e Very fast transients in gas insulated bus ducts.

A load rejection accompanied by a fault can give rise to
severe power frequency over voltages. In an interconnected
system the effect of this cause is some what alleviated. Full
load rejection on an interconnected system is not likely
since there are other lines or real load, which offer some
outlet for power [1]. In general, the highest switching
overvoltages in a high voltage network are caused by
energizing and rc-cnergizing of unloaded linc. When the
line is connected to the source, traveling wave will start to
travel along the line towards the receiving end and double
there at the open end with an overvoltage near to 2 p.u. for
a 400kV system [4] as shown in Fig. 1. In practical system
a number of factors affect the overvoltages factors due to
energization or re-closing. The influence of various factors
can be grouped into three broad categories, such as strong,
medium and weak [5] as given in Table 1.

On re-closer the power frequency voltage on the feeding
point side across the breaker gap is superimposed on the
voltage corresponding to the trapped charges, the transient
is correspondingly increase and result in a higher
overvoltage [4]. Transient on re-closer can heavily damped
by pre-insertion resister (PIR). The optimum size of the PIR
depends on the surge impedance of line and particularly on
its length. For an existing system PIR value and PIR
duration timings remain fixed and the effect of trapped
charge comes in medium category.

The shunt compensation effect is shown in the Fig. 2. A
S0 MVAR shunt reactor is connected at the receiving end
bus of a 400kV system, which cause the maximum
overvoltage come down to the value 1.778 p.u. To arrive at
the worse case peak overvoltages, shunt compensation and
the frequency dependency of line parameter are neglected.
So the factors, which strongly affect the switching
overvoltages are switching angle, fault level of the sending
end bus and transmission line length.
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Fig. 1. Switching transient overvoltage at bus 3 without
reactor at bus 3. Max peak absolute value is 2.08, 2.06 and
2.02p.u. in phase A,B and C respectively with switching
angle 90°
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S: Strong, M: Mediumand W: Weak

System size affect the overvoltage strongly, overvolatge
reduces as the size of system increases. This reduction is
due to the superposition of a number of different
frequencies not due to the damping of switching
overvoltage. Fig. 4 shows the effect of source strength on
overvoltage at different line length. As the source become
stronger it will keep the transient voltage low. If switching
take place at the voltage maximum i.e. at 90° the voltage at
first oscillate along the whole the Ine length to almost
twice the value of the system voltage [4] as shown in Fig. 1.
Overvoltage can be limited by controlled switching of
circuit breaker as shown in the Fig. 3, in which line closing
is done at (°. Fig. 5 shows that for a particular line length
and source strength transient voltage will be more at 90°
than (°. The effect of transmission line length is shown in
Fig. 4 and Fig. 6.
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Fig. 2. Switching transient overvoltage at bus 3 with 50
MVAR reactor at bus 3. Max peak absolute value is 1.563,
1.602 and 1.778p.u. in phase A,B and C respectively with
switching angle 90°
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Fig. 3. Switching transient overvoltage at bus 3 with 50
MVAR reactor at bus 3. Max peak absolute value is 1.411,
1.749 and 1.426p.u. in phase A,B and C respectively with
switching angle 0°
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Fig. 4. Voltage peak at bus 3 as source strength increases,
while the switching angle is kept fixed at 50°
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Fig. 5. Voltage peak at bus 3 as source strength increases,
while line length is 300km.
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Fig. 6. Voltage peak at bus 3 as line length increases, while
the source strength is 1000 MVA

The switching overvoltage values which may occur
during the operations of transmission line like energization,
re- energization and opening are important from the
operator point of view to take decision about the operation.
In late 1960s Herman Dommel developed the
Electromagnetic Transients Program (EMTP) at Bonneville
Power Administration. The EMTP is a general-purpose
computer program for simulating high-speed transient
effects in electric power systems. The trapezoidal rule was
chosen for integrating the ordinary differential equations of
lumped inductance and capacitances, which reduces the
numerical instability [6]-[9]. The EMTP method cannot
give an online solution because to reach the solution lot of
cases has to be carried out. As discuss above for a existing
system the main factor witch affect the switching
overvoltage are switching angle, line length and source
strength. An ANN can help to take the onlinc decision for
switching operation. An ANN is programmed by
presenting it with training set of input/output patterns from
which it then learns the relationship between the inputs and
outputs. Its ability to perform well is affected by the chosen
training data as well as training scheme. In next section a
ANN based approach is describe which can give a
acceptable solution of switching transients by the help of
which an operator can take a quick decision at the time of
operation
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III. THE PROPOSED ARTIFICIAL NEURAL NETWORK

The proposal in this work considers the adoption of
forward multilayer perceptron (MLP) architecture. A
simple MLP neural network composed of single hidden
layer and output layer is capable of solving difficult and
complex problems [10]. Non-linear hyperbolic tangent
function is used for the hidden units while linear activation
function is used for the output units.

Source Strength
Svdtching Angle

Line Length

Hidden Layer

Input Layer Output Layer

Fig. 7. Proposed MLP based ANN architecture

The schematic diagram of the proposed MLP neural
networks architecture is shown in Fig. 7. The composition
of the input variables for the proposed neural networks has
been carefully selected. The following data has been
considered in the input:

e Switching angle.

e Source strength.

e Transmission line length.

In order to accelerate the neural network training the
input variables must be normalized. Output is the absolute
maximum value of peak voltage of any phase at the
receiving end bus. The other parameter like preinsertion
resister (PIR) value, PIR duration time is kept constant.
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Fig. 8. Supervised Learning of ANN

Supervised training of ANN is a usual training paradigm
for MLP architecture. Fig. 8 shows the supervised learning
of ANN for which input is given to EMTP to get the peak
values of transient overvoltages and the same data is used to
train the ANN. Error is calculated by the difference of
EMTP output and ANN output. This error is used to adjust
the weight of connection. Since the switching transient
demands a solution with high precision, the neural network

has to be trained considering a very small stopping
criterion. Output values of the trained neural networks must
be capable of computing the voltages with very good
precision. Gradient-based training algorithms, like back-
propagation, are most commonly used for training
procedures. They are not efficient due to the fact that the
gradient vanishes at the solution. Hessian-based algorithms
allow the network to learn more subtle features of a
complicated mapping. The training process converges
quickly as the solution is approached, because the Hessian
does not vanish at the solution. To benefit from the
advantages of Hessian based training, we focused on the
Levenberg-Marquardt (LM) Algorithm reported in [11].
The LM algorithm is basically a Hessian-based algorithm
for nonlinear least squares optimization.

Levenberg-Marquardt (LM) Algorithm
Suppose that we have a function &x) which we want to
minimize with respect to the parameter vector x. Where

E(x) = _Zef(x)

Then the Marquardt- Levenberg modification to the
Gauss-Newton method is

Ax =[0I ) + Il I(x) e(x)

The parameter W is multiplied by some factor B whenever
a step would result in an increased &x). When a step
reduces &x), i is devided by B. Notice that when p is large
the algorithm becomes steepest descent; while for small p
the algorithm becomes Gauss-Newton. The LM algorithm
is very efficient when training networks have up to few
hundred weights. Although the computational requirements
are much higher for the each iteration of the LM algorithm,
this is more than made up for by the increased efficiency.
This is especially true when high precision is required.

In order to get good generalization capability of the
neural networks, the composition of training data consider
different source levels, various switching angles and line
lengths. Depending on the analysis to be conducted it is
possible to increase or decrease the quantity of training
cases. The variation in reactor values at buses, PIR values
and duration time is not considered for the training data.

IV. SIMULATED STUDIES AND RESULTS

A.  System Study

The proposed scheme is tested with three-bus 400kV
system. Single line diagram is shown in Fig. 9. Equivalent
source generator G is connected at bus 1, switch S is placed
between buses 1 and 2, a 400 kV transmission line is
represented between bus 2 and bus 3. This system is
simulated for various combination of switching angle,
source strength and line length. Minimum and maximum
switching angle, source strength and line length have been
considered as follow:

¢ Source strength :1000 - 9000 MVA in step of 500 MVA
e Line length : 100kms - 300 kms in step of 50 kms
o Switching angle : 0° - 90° in step of 30°
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B.  Generalization and Normalization

One of the most critical problems in constructing the
ANN is the choice of the number of hidden layers and the
number of neurons for each layer. Using too few neurons in
the hidden layer may prevent the training process to
converge, while using too many neurons would produce
long training time, and/or result in the ANN to lose its
generalization attribute. In this study, a number of tests
were performed varying with the one or two hidden layers
as well as varying the number of neurons in each hidden
layer. A MLP with onc hidden layer and five hidden unit is
sufficient to get good accuracy and generalization for
proposed methodology. Input vector contain three feature
switching angle, line length and source strength. Neural
networks learn more quickly and give better performance if
the input variables are pre-processed before being used to
train the network [12]. Input variable has different range
like line length is in the order of 100kms, switching angle is
in the order of 10° and source strength is in the order of
1000MVA. Normalization of data is done to preprocessed
inputs and targets and which scaled into the range of [-1, 1].
As the dimension of input vector is three so no need to
reduce the dimension of input vector. The hyperbolic tan
sigmoid function is used in hidden units and linear
activation function used at output node. Whole simulation
is run for 1000 epoch with 350 training patterns at each
epoch. Network is trained with the goal of Mean Square
Error (MSE) le-3.

C. Training

A set of training data is generated with the variation of
input data by using EMTP program. Switching angle is
varied in steps of 30°, fault MVA in steps of 500 MVA and
Line length in steps of 50kms. PIR is chosen 5.33p.u. at
base of 100MVA (300Q). Switching sequence are 0-2-4ms
and PIR duration sequence are 8ms chosen for all the cases.
The total numbers of generated pattern are 350 The Neural
Network is trained using the results of simulated conditions.
The second order Levenberg-Marquardt training method is
adopted to get high precision accuracy as mention in
section III.

D. Testing

Testing of ANN is done by varying the line length in
steps of 10kms, switching angle in steps of 10° and source
strength in steps of [00MVA. Results for testing data is
shown in Figs. 10-12. In Fig. 10 shown the voltage peak at
bus3 with the variation in source strength both ANN and
EMTP values are shown, line length is constant at 300km
and switching angle at 90°. Fig. 11 shows the voltage peak
at bus 3 find by both ANN and EMTP change with line
length at constant source strength 1000MVA and switching
angle 90° and Fig. 12 shows the voltage peak at bus 3 as
switching angle varies in step of 10° with constant line
length and source level. .
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Fig. 10. Voltage peak at bus 3 simulated by ANN and
EMTP while switching angle 90° and line length 300km
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Fig. 11. Voltage peak at bus 3 simulated by ANN and
EMTP while switching angle 90° and source strength is
1000 MVA
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Fig. 12. Voltage peak at bus 3 simulated by ANN and
EMTP while source strength is S000MVA and line length
100km



INDIAN INSTITUTE OF TECHNOLOGY, MADRAS 600 036 DEC. 27-30

629

E. Optimal PIR

The data pattern of various cases obtained for the training
in proposed methodology PIR value (300Q) was
maintained constant. The PIR 300Q is optimal for around
200 km line length, which shows the clustering of peak
voltages data close to the value 1.45 p.u. If the optimal
value of PIR used for each line length then the peak voltage
data pattern will be different. Hence further work needs to
be carried out by taking the various optimal values of PIR
and PIR duration time. The parameters like presence of
shunt reactor at receiving end and sending end of different
sizes can also be considered.
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Fig.. 13. Data Pattern generated by 850 cases

V. CONCLUSION

A Neural Network approach to estimate the peak over
voltages under switching transient was proposed and
implemented. The Levenberg-Marquardt second order
training method has been adopted for obtaining small MSEs
without losing generalization capability of ANN. This
approach also helps in reduction of the number of case
studies to be carried out for the insulation coordination. The
results from this scheme are near to conventional method
and helpful in predicting the over voltage of the other case
studies within the range of training set.

A three bus 400kV system has been used to test the
proposed ANN based switching transients estimation. The
simulated results clearly shows that the proposed technique
can estimated the peak values of switching overvoltages
with good accuracy. Further work can be carry out by
taking the various optimal values of PIR and PIR duration
time. Additional parameters in input like presence of shunt
reactor of different sizes at receiving end and sending end
can also be considered.
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