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ABSTRACT

Equivariant and invariant machine learning models seek to take advantage of sym-
metries and other structures present in the data to reduce the sample complex-
ity of learning. Empirical work has suggested that data-driven methods, such as
regularization and data augmentation, may achieve a comparable performance as
genuinely invariant models, but theoretical results are still limited. In this work,
we conduct a theoretical comparison of three different approaches to achieve in-
variance: data augmentation, regularization, and hard-wiring. We focus on mean
squared error regression with deep linear networks, where we specifically con-
sider rank-bounded linear maps which do not have a linear parametrization and
which can be hard-wired to be invariant to specific group actions. We show that
the optimization problems resulting from hard-wiring and data augmentation have
the same critical points, all of which are saddles except for the global optimum.
In contrast, regularization leads to a larger number of critical points, again all
of which are saddles except for the global optimum. The regularization path is
continuous and converges to the optimum of the hard-wired problem.

1 INTRODUCTION

Equivariant and invariant models are a class of machine learning models designed to incorporate
specific symmetries or invariances that are known to exist in the data. An equivariant model ensures
that when the input undergoes a certain transformation, the model’s output transforms in a pre-
dictable way. Many powerful hard-wired equivariant and invariant structures have been proposed
over the recent years (see, e.g., Cohen & Welling, 2016; Zaheer et al., 2017; Geiger & Smidt, 2022;
Liao et al., 2024). Such models are widely employed and have achieved state-of-the-art level per-
formance across various scientific fields, including condensed-matter physics (Fang et al., 2023),
catalyst design (Zitnick et al., 2020), drug discovery (Igashov et al., 2024), as well as several others.

Given an explicit description of the desired invariance and equivariance structures, a direct way to
implement them is by hard-wiring a neural network in a way that constraints the types of functions
that it can represent so that they are contained within the desired class. Another intuitive method
to approximately enforce invariance and equivariance is data augmentation, where one instead sup-
plies additional data in order to guide the network towards selecting functions from the desired class.
Both approaches have shown to be viable for obtaining invariant or equivariant solutions (see, e.g.,
Gerken & Kessel, 2024; Moskalev et al., 2023). However, it is not entirely clear how the learn-
ing processes and in particular the optimization problems compare. An obvious drawback of data
augmentation is that the number of model parameters as well as the number of training data points
may be large. On the other hand, it is known that constrained models (Finzi et al., 2021), or under-
parameterized models, can have a more complex optimization landscape, but the specific interplay
between the amount of data and the structure of the data is not well understood. We are interested
in the following question: how do invariance, regularization, and data augmentation influence the
optimization process and the resulting solutions of learning? To start developing an understanding,
we investigate the simplified setting of invariant linear networks, for which we investigate the static
loss landscape of the three respective optimization problems.

The loss landscapes of neural networks are among the most intriguing and actively studied topics
in theoretical deep learning. In particular, a series of works has documented the benefits of overpa-
rameterization in making the optimization landscape more benevolent (see, e.g., Poston et al., 1991;
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Gori & Tesi, 1992; Soltanolkotabi et al., 2019; Simsek et al., 2021; 2023; Karhadkar et al., 2024).
This stands at odds with the success of data augmentation, since when using data augmentation as
done in practice, even enormous models may no longer be overparameterized and may have fewer
parameters than the number of training data points (see, e.g., Garg et al., 2022; Belkin et al., 2019).
Beyond overparameterization, the effects of different architecture choices on the loss landscape are
of interest (see, e.g., Li et al., 2018). As mentioned above, equivariant and invariant architectures
are of particular interest, as they could potentially help dramatically reduce the sample complexity
of learning within a clearly defined framework. This has been documented theoretically in a recent
stream of works (see, e.g., Mei et al., 2021; Tahmasebi & Jegelka, 2023). However, the impact of
these architecture choices on the optimization landscape is still underexplored. Equivariant linear
networks have received interest as simplified models to obtain concrete and actionable insights for
more complex neural networks (see, e.g., Chen & Zhu, 2023; Kohn et al., 2022; Zhao et al., 2023;
Nordenfors et al., 2024).

Our work advances this line of investigation by considering the optimization problems arising from
data augmentation, regularization and hard-wiring. We consider linear networks whose end-to-end
functions are rank-constrained and thus cannot be simply re-parameterized as linear models. The
non-convexity of the function space makes it nontrivial to draw conclusions about the impact of
the constraints imposed by invariances. These models are a natural point of departure to study
other networks with nonlinear function space, such as networks with nonlinear activation functions.
We observe in particular that rank constraints are common in practice. For example, in generative
models such as variational autoencoders (VAEs) (Kingma & Welling, 2022), the hidden layer is
usually narrower than the input and output layers with the purpose of capturing a low-dimensional
latent representation of the data. In large language models, low-rank adaptation (LoRA) (Hu et al.,
2021) is also used to reduce the number of trainable parameters for downstream tasks. In these and
other cases where the architecture has a narrow intermediate linear layer, rank constraints arise.

1.1 CONTRIBUTIONS

In this work, we study the impact of invariance in learning by considering and comparing the opti-
mization problems that arise in linear invariant neural networks with a non-linear function space.

* We consider three optimization problems: data augmentation, constrained model, and reg-
ularization. We show that these problems are equivalent in terms of their global optima, in
the limit of strong regularization and full data augmentation.

* We study the regularization path and show that it continuously connects the global optima
of the regularized problem and the global optima of the constrained invariant model.

* We are able to characterize all the critical points in function space for all three problems.
In fact, the critical points for data augmentation and the constrained model are the same.
There are more critical points for the unconstrained model with regularization.

1.2 RELATED WORK

Loss Landscapes The static optimization landscape of linear networks has been studied in nu-
merous works, whereby most works consider fully-connected networks. In particular, the seminal
work of Baldi & Hornik (1989) showed for a two-layer linear network that the square loss has a
single minimum up to trivial symmetry and all other critical points are saddles. Kawaguchi (2016)
considered the deep case and showed the existence of bad saddles in parameter space for networks
with three or more layers. Laurent & Brecht (2018) showed that for deep linear networks with no
bottlenecks, all local minima are global for arbitrary convex differentiable losses, and Zhou & Liang
(2018) offered a full characterization of the critical points for the square loss. The more recent work
of Trager et al. (2020) found that for deep linear networks with bottlenecks, the non-existence of
non-global local minima is very particular to the square loss. Several works have also considered
more specialized linear network architectures, such as symmetric parametrization (Tarmoun et al.,
2021) and deep linear convolutional networks (Kohn et al., 2022; 2024a). These and the recent work
of Shahverdi (2024) also discuss the critical points in parameter and in function space. In this context
we may also highlight the work of Levin et al. (2024), which studies the effect of parametrization on
an optimization landscape. In contrast to these works, we focus on deep linear networks with bottle-
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necks that are invariant to a given group action. The corresponding functions are rank-constrained
and thus cannot be simply re-parameterized as linear models.

Training Dynamics Although analyzing the training dynamics is not the main focus of our work,
we would like to briefly highlight several related works in this direction. Many works have studied
the convergence of parameter optimization in deep linear networks, which to this date remains an
interesting topic even in the case of fully-connected layers (Arora et al., 2018; 2019a;b; Xu et al.,
2023; Bah et al., 2021; Bréchet et al., 2023; Saxe et al., 2013). For certain types of linear convo-
lutional networks, Gunasekar et al. (2018) studied the implicit bias of parameter optimization. In
the context of equivariant models, Chen & Zhu (2023) discuss the implicit bias of gradient flow on
linear equivariant steerable networks in group-invariant binary classification.

Invariance, regularization, and data augmentation A few works try to understand the differ-
ence between the various aforementioned methods to achieve invariance. Geiping et al. (2023) seek
to disentangle the mechanisms through which data augmentation operates and suggest that data
augmentation that promotes invariances may provide greater value than enforcing invariance alone,
particularly when working with small to medium-sized datasets. Beside data augmentation, Botev
et al. (2022) claims that explicit regularization can improve generalization and outperform models
that achieve invariance by averaging predictions of non-invariant models. Moskalev et al. (2023)
empirically show that the invariance learned by data augmentation deteriorates rapidly, while mod-
els with regularization maintain low invariance error even under substantial distribution drift. Our
work is inspired by their experiments, and we seek to theoretically study whether data augmentation
can learn genuine invariance. A recent work by Kohn et al. (2024b) investigates linear neural net-
works through the lens of algebraic geometry and computes the dimension, singular points, and the
Euclidean distance degree, which serves as an upper bound on the complexity of the optimization
problem. We are also consider the number of critical points but are primarily interested in the com-
parison of the loss landscapes arising from different methods. The work of Gideoni (2023) inves-
tigates the training dynamics of linear regression with data augmentation. In contrast, we consider
regression with rank-bounded linear maps and also discuss the effect of regularization. Nordenfors
et al. (2024) investigate the optimization dynamics of a neural network with data augmentation and
compare it to an invariance hard-wired model. The authors show that the data augmented model
and the hard-wired model have the same stationary points within the set of representable equivariant
maps &, but does not offer conclusions about stationary points that are not in £. In contrast, we
obtain a result that describes all critical points in a non-linear function space of rank-constrained
linear maps and show that all of them are indeed invariant.

2 PRELIMINARIES

We use [n] to denote the set {1,2,...,n}. I; represents a d by d identity matrix. For any square
matrix U € C"*"™, we use U,. € C™*" to denote the truncation of U to its first  columns. In a slight
abuse of notation, for any non-square matrix > € C"*™, we use X, € C"*" to denote the truncation
of X to its first r columns and r rows. For any matrix M € C"*™, we denote the Hermitian as M T,
the Moore-Penrose pseudoinverse as M, and the transpose as MT. We use | M|z and | M| r to
denote the operator norm and the Frobenius norm of M, respectively. For a matrix M € R"*™,
we use vec (M) to denote the column by column vectorization of M in R™. Given any two vector
spaces V and W, we use V' ® W to denote the tensor (Kronecker) product of V' and W.

2.1 EQUIVARIANCE AND INVARIANCE

To set up our problem, we need to borrow some concepts from representation theory.

Definition 1. A representation of a group G on a vector space X is a group homomorphism p: G —
GL(X), where GL(X) is the group of invertible linear transformations on X’.

Definition 2. Let X and ) be two vector spaces with representations px and py of the same group
G, respectively. A function f: X — ) is said to be equivariant with respect to px and py if
fopx(g)=py(g)of, VYgeg. M
If f is a linear function, we say f is a G-linear map or a G-intertwiner. For simplicity of notation,
we write f(gx) = gf(x) when px and py are clear. If py is the trivial representation, i.e., py(g)
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is the identity map for all g € G, then f is said to be invariant with respect to px. We then write
f(gz) = f(x) when py is clear.

For a finite cyclic group G there is a generator g € G such that G = {e, g, g% ...,g" '}, where e is
the identity element, n is the order of the group, and ¢* = ¢’ whenever ¢ = j mod n.

Example 1. For example, the rotational symmetries of a polygon with n sides in R? form a group.
The group is a cyclic group of order n, i.e., G = C,, with generator g, and the representation is
cos - —sin Z]

s

generated by p(g) = {Sin T cost
n n

2.2 DEEP LINEAR NEURAL NETWORKS

A linear neural network ®(0,x) with L layers of widths dy, .. ., dy, is a model of linear functions
®(0,x) : R¥% x R¥* 5 RY;  x— Wy - - Wix, )

parameterized by weight matrices W; € R%*%-1.vj € [L]. We write 8 = (Wp,...,W;) €
© C R% for the tuple of weight matrices. The dimension of the parameter space © is dg =
> jelL] d;jd;_1, where dy := dx, dr, := dy are the input and output dimensions, respectively.

For simplicity of the notation, we will write W := W, --- W for the end-to-end matrix, and write
Wi == Wj---W; for the matrix product of layer ¢ up to j for 1 < 7 < j < L. We denote the
network’s parameterization map by

p: O sRIEXd g = (W, Wy) =W =Wy---W,. (3)

The network’s function space is the image of the parametrization map p, which is the set of linear
functions it can represent, i.e., the set of d;, X do matrices of rank at most v := min {dy, ..., dp}.
We denote the function space by M,. C R%*40 When r = min {dy, d}, the function space is a
vector space which can represent any linear function mapping from R to R?%. On the other hand,
when r < min {dg, dr,}, it is a non-convex subset of Rz *do known as a determinantal variety (see
Harris, 1992, Chapter 9), which is determined by polynomial constraints, namely the vanishing of
the (r + 1) x (r + 1) minors. We adopt the following terminology from Trager et al. (2020).

Definition 3. The parametrization map p is filling if r = min{dp,dr}. If r < min{do,dr},
then y is non-filling. In the filling case, M, = R4:*d _which is convex. In the non-filling case,
M, C Rér*do is a determinantal variety, which is non-convex.

Given a group G, a representation py on the input space X’ and a representation py on the output
space, an equivariant linear network is a linear neural network ®(6,x) that is equivariant with
respect to p, i.e., Wp - Wipx(g)x = py(g)Wpr - Wiz forall g € G and z € X. When py
is trivial, the network is called an invariant linear network. Though we focus on invariant linear
networks, it is easy to extend all the results to equivariant linear networks by constructing a new
representation taking the tensor product of px and py (see Appendix A.2). In section 4 we will
discuss how to define a deep linear network that is hard-wired to be invariant to a given group.

2.3 Low RANK APPROXIMATION

For a linear network with » = min{dp, ..., dy}, the function space consists of d;, X dy matrices
of rank at most r. Optimization in such a model is closely related to the problem of approximating
a given matrix by a rank bounded matrix. When the approximation error is measured in Frobenius
norm, Eckart & Young (1936a) show that the optimal bounded-rank approximation of a matrix is
given in terms of the top components in its singular value decomposition (see, e.g., Strang, 2019,
L9): If A = UXVT = oyugvt + -+ + o,u,v) and B is any matrix of rank r, then ||A — B||p >
|A — A,||F, where A, = oyuyvf + -+ + opuvr. Mirsky (1960) showed that this result in fact
holds for any matrix norm that depends only on the singular values.

There are several generalizations of this result, for instance to bounded-rank approximation with
some fixed entries (Golub et al., 1987), weighted least squares (Ruben & Zamir, 1979; Dutta & Li,
2017), and approximation of symmetric matrices by rank-bounded symmetric positive semidefinite
matrices (Dax, 2014). However, for general norms or general matrix constraints, the problem is
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known to be hard (Song et al., 2017; Gillis & Shitov, 2019). We will be interested in the problem
of approximating a given matrix with a rank-bounded matrix that is constrained to within the set of
matrices that represent linear maps that are invariant to a given group.

3 MAIN RESULTS

3.1 GLOBAL OPTIMUM IN CONSTRAINED FUNCTION SPACE

As we want our function space to contain only the G-interwiners, we need to constrain it accordingly.
Due to the linearity of the representation py, the constraints are also linear in R%- <90 Prior research
has investigated the constraints for different groups (see, e.g., Maron et al., 2019; Puny et al., 2023;
Finzi et al., 2021). We have the following proposition to explicitly characterize the constraints,
proved in Appendix A.1. We will focus on the case where the group G is finite and cyclic, the
representation py is given and nontrivial, and the representation py is trivial.

Proposition 1. Given a cyclic group G and a representation px of G on vector space X = R%,
a linear function W mapping from X to' Y = R is invariant with respect to pyx if and only if
WG =0, where G =14, — px(9g), and g is the generator of G.

Remark 1. Though we assume that G is cyclic, the above proposition can be generalized to any
finitely generated group G by replacing the single generator g with a set of generators {g1, ..., g }-
For that, define G, = 1y, — px(gm) for all m € [M], and set G = [G1,...,G) a dy x (Mdy)
matrix. In fact, we can even extend this proposition to continuous groups such as Lie groups. As
discussed by Finzi et al. (2021), for any Lie group G of dimension M with its corresponding Lie
algebra g, we are able to find a basis {Ay, ..., Ay} for g. If the exponential map is surjective in
G, we can then use it to parameterize all elements in G, i.e., for any g € G, we can find weights
{am € R}yeqn such that g = exp (ZT\Tf:1 amAn). Therefore, G, = dpx(Ay,) and G =
[G1,...,G, where dp is the Lie algebra representation. See Appendix A.1 for more details.

Consider a data set D = {(x;,y;)}" 4, a cyclic group G, and a representation px of G on vector
space X = R%. Let X = {x1,...,X,} € R YV = {y1,...,y,} € R“L*" Given a
positive integer » < min{do, dr}, we want to find an invariant linear and rank-bounded function
that minimizes the empirical risk, i.e., we want to solve the following optimization problem:

— 1
W = argmin —||[WX —Y|%, st WG =0, rank(W) < r. 4)
WE]RdedD’I’L

We assume X X' has full rank dy such that we can use its positive definite square root P =
(X XT)1/2 ¢ Rdoxdo 1o derive:

WX —Y|% = (WX, WX)p —2(WX,Y)p +(Y,Y)p
= (WP,WP)p —2(WP,YX P ') p +(Y,Y)r
= ||WP —YXTP 1% + const
= |W —YXTP~'|% +const, where W = WP, (5)

We can see that the above optimization problem (4) is equivalent to the following low-rank approx-
imation problem:
= 1 ~ — —
W = argmin —|W — Z||%, st WG =0, rank(W) <r, (6)
W eR?L X do

where Z = YXTP~! and G = P~1G. If we get the solution W, then we can recover the solution

to (4) by W = WP~!. Since WG = 0, we know that the rows of W are in the left null space

of G. Then rank(WW) < nullity(G) = dy — rank(G). In order to make this low rank constraints
nontrivial, we suppose r < d := nullity(G). In the case where r > d, the projection of the unique
least square estimator onto the left null space already satisfies the rank constraint, making the rank
constraint meaningless. The following theorem characterizes the solution to the above optimization
problem, proved in Appendix A.3.
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=inv =inv

Theorem 1. Denote Z"" = Z(14, — GG*). We assume rank(Z""") > r. Let A

—INU SNV =—5INY TP_1

T =inv I7i
u ¥V be the SVD of Z . Then the solution to (4) is W' = U

—INU SINV=FINY

DI 74

T T T

Remark 2. The assumption that ranksz mv) > ris mild. Fix any full row rank data matrix X and
suppose Y = WX + E, where E € R**" is a random noise matrix. If each column of E is drawn
independently from any continuous distribution with full support on R?=, then with probability 1,

rank(Z"") = min{d, dy,do} > . In Appendix A.9 we verified this on the MNIST data set.

The key observation is that if the target matrix lives in the invariant linear subspace, then the low-
rank approximator of that matrix also lives in the invariant linear subspace. Theorem 1 shows how
to find the global optima in the optimization problem of constrained space. Indeed, we can project

the target matrix to the left null space of G and find its low-rank approximator.

3.2 GLOBAL OPTIMUM IN FUNCTION SPACE WITH REGULARIZATION

Instead of imposing constraints on the function space, we can also regularize the optimization prob-
lem. We consider the following optimization problem:

— 1
W = argmin —|WX —Y|% + \|WG|%, st rank(W) <7 (7)
WERdL Xdon

Similarly to optimization problem (4), we can rewrite problem (7) in the following form:
e~ 1~ — ~
W = argmin —|W — Z|% + A\|WG||%, st rank(W) <7 (8)
W eR4L xdo

The optimization problem (8) is referred to as manifold regularization (Zhang & Zhao, 2013). In
the context of manifold regularization, the input data points are assumed to lie on a low-dimensional
manifold embedded in a high-dimensional space. The following proposition, characterizing the
solution to the above optimization problem, can be established directly by following the manifold
regularization result of Zhang & Zhao (2013, Theorem 1).

Proposition 2. Denote B()\) the square root of the symmetric positive definite matrix 14, +

nAGGT, ie, B()\)? Ly, + nAGGT. Denote Z(/\)mg = ZBW\) 7, and Z(x\)mg =
o s

reg ———T —=Te
Z,N) BN P = U0 SO0

T e
V(A as the SVD of Z()\) 7. Then the solution to problem 7 is W(A) -
re regT _
Ve BN TP

Beside characterizing the global optimum of problem (7), we can also study the regularization path
and relate it with the global optimum in the constrained function space. The following theorem
states that the regularization path is continuous, and it connects the global optimum in the con-
strained function space and the global optimum without constraints or regularization. Although the
regularization path for /5 regularization is usually continuous in a vector space, in the case of rank
constraints that we consider here the theorem is not trivial.

Theorem 2. Assume m “~-7B N Lis Sfull rank for all X > 0. Then, the regularization path

_—Tre

of W(\) ? i continuous on (0, 00). Moreover, we have limy_, W“g()\) = Winv,

Remark 3. Similar to Remark 2, the assumption that Z ()\)Teg is full rank for all X > 0 is mild. If
we fix any full row rank data matrix X, then B(\) is full rank for all X > 0. Then, with probability

1, Z(N)" = 2B\ "V is full rank for all A > 0.

3.3 GLOBAL OPTIMUM IN FUNCTION SPACE WITH DATA AUGMENTATION

Data augmentation is another, data-driven, method to achieve invariance. As an informed regular-
ization strategy, it increases the sample size by applying all possible group actions to the original
data. The corresponding optimization problem is then given as follows:

o~

1
W = argmin —- Z IWox(9)X —Y|%, st rank(W) <r. )
W ER?L X do n‘g| e
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We can rewrite the above optimization problem in the following form:

= 1 _ —
W = argmin —||W — \Q|YXTGTQ*1||%, s.t. rank(W) <, (10)

W ER?L Xdo nlg‘
where G = ﬁ >_geg Px(g), and Q is the square root of the symmetric positive definite matrix

dogec px (XX px(g)T,ie., Q% = > ogeg PX (9)XXTpx(g)T. The following proposition char-
acterizes the solution to the above optimization problem.

— _ — —da—da—daT —
Proposition 3. Denote Z'* = |G|V XTG' Q~Y, and Z" = T™S"V"" as the SVD of Z*.
Then the solution to the above optimization problem (9) is Wde = 7 ﬁaQ“ = Uf“if“?ﬂ“TQ“.
Moreover, if px is unitary, then W js an invariant linear map, i.e., WdeG = 0.

All together, we arrive at the following statement.

Theorem 3. Assume py is unitary. Then the global optima in the function space with data augmen-
tation and the global optima in the constrained function space are the same, i.e., Wda — v,

This theorem tells us that data augmentation and constrained model have the same global optima,
which is also the limit of the global optima in the optimization problem with explicit regulariza-
tion. Beside the global optima, we are also interested in comparing the critical points of the three
optimization problems. The following section discusses this in detail.

3.4 CRITICAL POINTS IN THE FUNCTION SPACE

We consider a fixed matrix Z € R %% with SVD Z = UXV'T. Let m = min{dy, dr.} and denote
by [m],. the set of all subsets of [m] of cardinality . For Z € [m],,, we define ¥z € R4r*do to
be the diagonal matrix with entries 0z 1,0z2,...,07,m, where 07 ; = o;ifi € Zand o07; = 0
otherwise. Define ¢z (W) := ||Z — W||% as the loss function in the function space M,. The
function space M, is a manifold with singularities. A point P € M, is a critical point of ¢ if
and only if Z — P € NpM,. Following Trager et al. (2020, Theorem 28) we can characterize the
critical points of the loss function ¢z in the function space M, as follows (see Appendix A.8).
zZn'

eps . i =d Lo ..
Proposition 4. Assume all non-zero singular values of Z' m, A a, Z(\)  are pairwise distinct.

1. (Constrained Space) The number of critical points in the optimization problem (4) is (f)

—inve=; —inv L
They are all in the form of U X"V P~ where T € [d],. The unique global

L. . =INU =, —5INY _ . . . ..
minimum is U Emvv P~Y, which is also the unique local minimum.

2. (Data Augmentation) The number of critical points in the optimization problem (9) is (f)

) —da= ; —daT .. .
They are all in the form ofU( GE%GV “ Q~1, where T € [d|,. These critical points are the
same as the critical points in the constrained function space. The unique global minimum

. —dafda—daT 1 . . . ..
isU Z[T]V Q™ which is also the unique local minimum.

3. (Regularization) The number of critical points in the optimization problem (7) is (T) They

are all in the form of UregigegvregTB()\)_lP_l, where T € [m),. The unique global

—reg=regsregT -
minimum is UTEQE[T:]QVWQ B(\) ' P, which is also the unique local minimum.

According to this result, we can say that the critical points in the constrained function space are the
same as the critical points in the function space with data augmentation. Furthermore, the number
of critical points in function space for a model trained with regularization is larger than the number
of critical points in the other two cases.

We observe that fully-connected linear networks have no spurious local minima, meaning that each
local minimum in parameter space corresponds to a local minimum in function space (Trager et al.,
2020). This is a consequence of the geometry of determinantal varieties that also holds in our cases,
suggesting that also for our three optimization problems there are no spurious local minima.
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4 EXPERIMENTS

4.1 CONVERGENCE TO AN INVARIANT CRITICAL POINT VIA DATA AUGMENTATION

The following experiment demonstrates that gradient descent on the optimization problem (9) con-
verges to a critical point that parameterizes an invariant function. The training data, consisting of
1000 samples before data augmentation, is a subset of the MNIST dataset. For computational ef-
ficiency, the images are downsampled to 14 x 14 pixels, resulting in a vectorized representation
of dimension 196 for each image. The classification task involves 9 classes, and we aim to train a
linear model mapping from R'96 to R? that is invariant under 90-degree rotations. Since digits 6
and 9 are rotationally equivalent, we exclude digit 9 from the dataset. The group associated with
this invariance is the cyclic group of order 4, denoted as G = C)4y, where the representation px of G
on R96 is the rotation operator. We employ a data augmentation technique that applies all possible
group actions to the original data, yielding a total of 4000 training samples.

The model is a two-layer linear neural network with 5 hidden units, parameterizing all R9* 196

matrices with rank at most 5. We evaluate both mean squared error (MSE) and cross-entropy (CE)
as the loss functions. For MSE, the targets are the one-hot encoded labels. The model is trained
using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.001 and Adam parameter
B = (0.9,0.999), which is the default value in PyTorch (Paszke et al., 2019). The following Figure 1
depicts the evolution of certain entries in the end-to-end matrix W. In our setup, the learned linear
map is invariant if and only if specific columns are identical. For example, according to the linear
constraints in W (see Proposition 1), columns 45, 52, 143, and 150 of W should be exactly the same
to achieve invariance. Figure 1a presents the results when trained with MSE, while Figure 1b shows
the results with CE. In both cases, the entries in W converge to approximately the same values,
indicating that the learned map is nearly invariant. Additionally, we observe that the model trained
with MSE converges significantly faster than the one trained with CE.
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(a) Trained with Mean Squared Error loss (MSE). (b) Trained with Cross Entropy loss (CE).

Figure 1: Weights in a two-layer linear neural network trained using Data Augmentation.

4.2 TRAINING CURVES OF ALL THREE APPROACHES

In the same setup as the previous experiment, we compare the performance of the model trained
with all three approaches: data augmentation, hard-wiring, and regularization with different choices
of the penalty parameter \. In practice, we parameterize the model in the constrained function space
by multiplying a basis matrix B to the weight matrix of the linear model, i.e., f(z) = WyW; Bz,
where Wy € R9%5 and W, € R5*49 are the learnable weight matrices of the linear model, and the
basis matrix B € R49*19 jg a matrix that satisfies BG = 0. It is worth noting that it is actually
equivalent to perform feature-averaging before feeding the data to the model if we parameterize the



Under review as a conference paper at ICLR 2025

invariant function space in this way. Regarding the regularization method, A € {0.001,0.01,0.1}
when using MSE as the loss, and A € {0.01,0.1,1} when using CE as the loss. We used the same
data and setup as in the previous experiment.

Accuracy
Accuracy

0 1000 2000 0 1000 2000

Epochs Epochs

(a) Trained with Mean Squared Error loss (MSE). (b) Trained with Cross Entropy loss (CE).

Figure 2: Training curves for Data Augmentation (DA), Regularization (\), and Constrained model.

Figure 2 shows the training curves of all three methods under different losses. In terms of regulariza-
tion, though the models are trained without data augmentation, the curves we show here are accuracy
for the augmented dataset. We can see that data augmentation and hard-wiring have similar perfor-
mance in the late stage of training. When A is suitable, regularization can also achieve very similar
performance to the previous two methods. All three methods converge to the critical point at a simi-
lar rate (around 500 epochs). In fact, when trained with MSE, the hard-wired model converges to the
same global optimum as the model trained with data augmentation. This result is consistent with the
theoretical analysis in Theorem 3. Interestingly, even when trained with CE, all three methods have
similar terminal performance. More experiments are needed to further investigate this phenomenon.

Regarding the amount of time required for training, training with data augmentation is computation-
ally much more expensive than hard-wiring. This is because the model trained with data augmenta-
tion requires more samples (4 times more in this case) and more parameters (about 4 times more in
this case) than the hard-wired model. Regularization is in between of the other two methods since it
only requires more parameters but not more samples.

4.3 COMPARISON BETWEEN DATA AUGMENTATION AND REGULARIZATION

In this section, we empirically study the training dynamics in both data augmentation and regular-
ization. Using the same setup as the above experiments, we are showing the evolution of the non-
invariant part of the learned end-to-end matrix W. For any 1/1\7 we can decompose it into two parts,
an invariant part and a non-invariant part, i.e., W= (ﬁ\’ -W 1)+ W 1. A similar decomposition
has been used by Gideoni (2023). In Figure 3, we track the evolution of W, by computing ||ﬁ\ mir
and ||W\ — Wy %/ ||W\||% after each training epoch. When W is very close to an invariant function,
W || should be close to 0 and |[W — W ||2./|[W |2 should be close to 1. Figure 3 shows that
with data augmentation Hﬁ\’ | || r first increases and then tends to decrease to zero. For regularization,
since the penalty coefficient )\ is finite, the critical points are actually not invariant. Therefore, in
this case we can see that Hﬁ\’ 1 || 7 does not converge to zero. Interestingly, we can see that for both
data augmentation and regularization, W | || = displays a “double descent”. Our conjecture is that
the loss may also be decomposed into two parts, one controlling the error from invariance, and the
other one controlling the error from the target. Therefore, the gradient of the weights during training
can be decomposed into two directions as well, resulting in this phenomenon. This intuition could
help us better understand the training dynamics and identify methods to accelerate training. Further
research needs to be done to investigate this both theoretically and empirically. Experiments using
cross entropy loss are included in Appendix A.10.




Under review as a conference paper at ICLR 2025

—-= DA

— A =1le-3
— A=1le2
— A=le-l

0.8\ =TTl ) ——\=1e3

osd  TTrme—l —A=1lel

I

T T T T T T T T T T T
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Frobenius Norm
o
i
Proportion

Epochs Epochs

(@) ||W||F, where W is the non-invariant part of . ®) |W —WL||%/ V]2

Figure 3: Frobenius norm of the non-invariant part of the end-to-end matrix W, trained with Data
Augmentation (DA) and Regularization (\), with the Mean Squared Error loss (MSE).

5 CONCLUSION

This work explores learning with invariances from the perspective of the associated optimization
problems. We investigate the loss landscape of linear invariant neural networks across the settings
of data augmentation, constrained models, and explicit regularization, for which we characterized
the form of the global optima (Proposition 3, Theorem 1, Proposition 2). We find that data augmen-
tation and constrained models share the same global optima (Theorem 3), which also correspond
to the limit of the global optima in the regularized problem (Theorem 2). Additionally, the critical
points in both data augmentation and constrained models are identical, while regularization gener-
ally introduces more critical points (Proposition 4). Though our theoretical results are for linear
networks, since we consider a non-convex function space, it is natural to conjecture that some of the
conclusions might carry over to other models with non-convex function space. Empirical results in
Appendix A.11 indicate that data augmentation and a constrained model indeed achieve a similar
loss in the late phase of training for two-layer neural networks with different activation functions. At
the same time, we observe that for models with a higher expressive power it is more difficult to learn
invariance from the data. Based on our theoretical results, we suggest that data augmentation may
have similar performance to constrained models, but will incur higher data and computing costs.
The regularized model does not require more data and should have a performance close to the con-
strained model, but it may induce more critical points. The constrained model should have the best
performance though one might need to design the invariant architecture carefully before feeding the
data to the model.

Limitations and future work We are focusing on deep linear networks, which are a simplified
model of neural networks. Nonetheless, we considered the interesting case of rank-bounded end-
to-end maps, which is a non-convex function space. Owing to the geometry of this model and the
mean squared error loss (MSE), the global optima in all three optimization problems are the same.
However, this is generally not true when the function class is more complicated or the loss is not
the MSE. Moskalev et al. (2023) empirically suggest that data-driven methods fail to learn genuine
invariance in weight-tying shallow ReLU networks for classification tasks with the cross-entropy
loss. Experiments suggest that nonlinear networks may still learn invariance via data augmentation
when trained with enough data. It would be interesting to investigate this phenomenon theoretically.
Furthermore, as mentioned in Section 4.3, the training dynamics of our setup is also worth studying.
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A APPENDIX

A.1 PROOF OF PROPOSITION 1

Proposition 1. Given a cyclic group G and a representation px of G on vector space X = R%,
a linear function W mapping from X to' Y = R is invariant with respect to pyx if and only if
WG =0, where G =14, — px(g), and g is the generator of G.

Proof. Suppose G is a cyclic group of order k with generator g, i.e., G = (g), g* = e. If W is
invariant with respect to pv, then Wpx (h) = W for all h € G. Then we have W (I, —px(g)) =0
for the generator g.

Conversely, if W (I, — px(g)) = 0 for the generator g, then we have Wpx (g) = W. Multiplying
both sides by px(g), we have Wpx(92) = Wp3(g9) = Wpx(g) = W. By induction, we can see
that Wpx(g7) = W for all j € [k]. O

The following proposition extends the above proposition to cases when the group is continuous. The
key point is that we can parameterize any element in the continuous group in terms of basis in its
corresponding Lie algebra, along with a discrete set of generators.

Proposition 5. [Theorem 1 in Finzi et al. (2021)] Let G be a real connected Lie group of dimen-
sion M with finitely many connected components. Given a representation p on vector space V of
dimension D, the constraint equations

plglv=v,YveV,geg (11)

holds if and only if
dp(Am)U - 07 Vm € [AJ]* (12)
(p(hp) —Ip)v =0, Vpe [P], (13)

where { A, }YM_, are M basis vectors for the M dimensional Lie Algebra g with induced represen-

tation dp, and for some finite collection {hp};f:l of discrete generators.

A.2 EXTENSION FROM INVARIANCE TO EQUIVARIANCE

Extension from invariance to equivariance is straightforward due to the fact that the constraints are
still linear in the vector space of linear maps from X to ). The following proposition shows how to
find the linear constraints.

Proposition 6. Given a group G, an input vector space X with representation px of G and an output
space Y with representation py of G, a linear function f : X — Y, x — W is equivariant with

respect to px and py if and only if vec(W) € (g ker (Px(g) ® py(gfl)T - I(l;gdy)’ where d x
is the dimension of X and dy is the dimension of ).

Proof. By definition, f is equivariant if and only if Wpx(g) = py(g)W forall g € G. We can then
get py (g1 )Wpx(g) = W. By vectorizing both sides, we can see that

vee(py(g™ )W (9)) = (px(9)" @ py(g™") ) vee(W) = vee(W),

. . — T
implying that vec(W) € (1, ker (PX(Q) ®@py(g~) - Idxdy)' -
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A.3 PROOF OF THEOREM 1

The following lemma proves a key observation that if a matrix lives in a left null space of another
matrix, then the low rank approximator remains in the left null space of the other matrix.

Lemma 1. Given a matrix A € R"*™ and a matrix B € R™*?, AB = 0, where d = nullity(B).
Let A = UXVT be the SVD of A, where U € R, 3 € R"™™ ™ and V € R™*™. Then for any
r <rank(A) <d, V,T lives in the left null space of B, namely, V.Y B = 0, and A, B = 0.

Proof.
A=UxVT AB=0
= UZVTB=0
= YWTB=0
= Y,V})B=0, d=nullity(B).

Since X4 is a diagonal matrix, and the diagonal entries are non-zero, we have that VdTB = 0. And
Vy= [V, Vi_,], wehave VI B = 0. We can now see that A, B = U,.X,V,;' B = 0. O

Theorem 1. Denote 7" = (Id0 — GGY). We assume rank(imv) > T Let 7" =

—INU SNV —INU SINU— U

U X V be the SVD on . Then the solution to (4) is Winv = U, %, V P~

Proof. As stated in the main text, we can rewrite the optimization problem 4 as the following form:

o~

= 1 ~ —_~ —
W = argmin —||W — Z||%, st. WG =0, rank(W) <r, (14)
WGRdedO

where Z =Y XTP~!, and G = P~'G. There are two cases to consider.
Case 1: ZG = 0. We assume Z has rank d. Then we can perform SVD on Z = UXVT =
UaXqV,. Eckart & Young (1936b) have shown that the best rank-r approximation of Z is given by

Ly = UTETWT. According to Lemma Lemma 1, we can see that Z,.G = 0. Therefore, the solution

to the above optimization problem is W = L.

Case 2: ZG # 0. We can then decompose Z = Z + Z,, where 7G =0, (Z,Z,)p = 0.
Therefore, we can see that

W = Z|% = (W -2) - Z.|%
=W = ZIF +1Z.|% —2(W = Z,Z1)F
=W = Z|% + 1227 (15)

Thus, the solution to the above optimization problem is
W = argmin ||W Z||% = argmin ||W Z||%.
W eR4L *do WeRdL xdo

This is then reduced to the low-rank approximation problem of Z, which is the same as in Case 1.
Let Z = USV " be the SVD of Z. Then the solution is W — UTETV,«T

Note that Z can be found by projecting Z onto the left null space of G. An easy construction is
Z = Z(14, — GG™). To see this, we can check that ZG' = 0 and (Z, Z, ) = 0. We have

ZG = Z(l4, — GGHG = ZG — ZGG*G = ZG — ZG = 0. (16)
To check (Z, Z ) = 0, we have

(Z,Z)p = tr {ZTZL} — tr [ZT(Z - Z)]
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= tr (L4, - GG 27 ZGGH ]
= tr _ZTzéévﬁ] — tr [éé*ZTzéc?ﬂ

— tr {ZTZG&] —tr [ZTZ(?@*éCN}’JF}

— tr :ZTZ(?C:‘*] —tr [ZTZéﬁﬁ] —0. (17)

A.4 PROOF OF PROPOSITION 2

Proposition 2. Denote B(\) the square root of the symmetric positive definite matrix 14, +

nAGGT, ie, B()\)? = I, + nAGGT. Denote Z()\)Teg = ZB\)7', and Z()\)reg =
U S0

Z,N" ' BXNTP T = U SNV By T P

VN “" as the SVD of Z( ) Then the solution to problem 7 is W( ) =

Proof. The loss function is defined as:
— 1~ —
LW) = —|W = Z|7 + \IWG|7 (18)

= LG = 2T — 2)) + A6 [(WE)T (W),

n

1 ~—— — — e~
= tr[WWT —2WTZ + Z7Z) + M te[W(GGTYWT)
= T (1, + nAGEDTT — 2T 2 4 27 7]

n

1 tr[WBA\)BWN)TWT — 2B\ WTZB(\) ™ + 27 7]

n
1
= —||[WB()\) — ZB(\)™}||% + const. (19)
n
Therefore, the optimization problem is equivalent to the following low rank approximation problem:
e 1 ~ _ _
W(A):= argmin —|WB(\) — ZB(\) "%, rank(W) <r (20)
WeRdr xdo 1
=Z.""BW ™ @
reg reg reg'T -1
=U.(A) "Z.(N) “V.(\) B()\) (22)
L= = —Ted reg eg regT “151
Since W = WP~ !, wehave W(\) =U,.(\) "Z.(A) "V.(\) B\ P O

A.5 PROOF OF THEOREM 2

To prove the theorem, we need the following lemma:

Lemma 2 (Theorem 2.1 in Dieci et al. (2005)). Let A be a C*%,s > 1, matrix valued function,
€ [0,1] = A(t) € R™*™ m > n, of rank n, having p disjoint groups of singular values (

p < n ) that vary continuously for all t : 3q,...,%,. Let z = m — n. Consider the function
M € C# ([0, 1], RUmFm)x(mFn)) given by
_ 0 A(t)
o= 4 V| 3

Then, there exists orthogonal () € C* ([0, 1], R(m+”)x(m+”)) of the form

() ONE Ui0))VE
Q“){ 0 VN2 —V(twﬂ’ 29
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such that
0 o0 0
QTHMMQ)=|0 S®) 0 |, (25)
0 0 —=S5()
where S is S = diag (S;,i = 1,...,p), and each S; is symmetric positive definite, and its eigenval-

ues coincide with the ¥;,i = 1,...,p. We have Uy € C*® ([0,1],R™*#) Uy € C* ([0, 1], R™*™),
andV € C* ([0, 1], R™*™). Equivalently, ifweletU = [ Uy Uy |, then

with the previous form of S.
Theorem 2. Assume Z(\) = ZB(\) ™" is full rank for all X > 0. Then, the regularization path

——reg —~ —~.
of W(X)  is continuous on (0,00). Moreover, we have limy_, oo W9 (\) = W,

~ -~ =T ~ ~
Proof. Let USSCVE " be the SVD of G. Since nullity(G) = d, then rank(G) = do—d, suggesting
that only the first dy —d elements of ¢ are non-zero. Denote ©¢ = diag(c{, .. crgifd, 0,...,0),

then we have G+ = V& diag(l/a?, ce 1/ag_d,0, .. .,O)UéT according to the property of
Moore-Penrose pseudoinverse. Therefore, we have

~~ ~ =2 =T ~ ~2 ~T
L, + nAGGT =1 +nA\UYSY U9 =U¢Y (Ido +nAn¢ > Uc

~ ~92 ~ 2 ~T
=U%diag(1 +nXof ,...,1+nXoq _, ,1,...., 1)U, (26)

1

B(\) : = (Ig, + nAGG™)z

_ 0% diag(y1 + nre@, .. m s @7)

1

lim B(\) ™! = Jim (I, + nAGGT) ™3
—00

A—00
. G &2 & 2 aT
_/\hm U™ diag(1/\/1+nXoy ..., 1/A/1+nXog _, ,1,..., ) U™,
— o0

~ ~T
= U%diag(0,...,0,1,...,1)U® (28)

and

On the other hand, we have

— GGt =1,, — U% diag(L,...,1,0,...,0)U¢"

~ ~T
= U% diag(0,...,0,1,...,1)UY .
Thus, we can see that limy_,.o B(A) ' = I, — GG+,
Recall that W(N) = Z,(0) ““BO)'PL = T,00 “S.00 Vo0 B P and

—INU SNV,

/W\inv _ U E wa

First, we want to show that the regularization path is continuous on (0, c0). According to Weyl’s
inequality for singular values, we have the following inequalities:

0e(ZONF+8) ) = o(ZON) N < 1ZOxF8) = ZN) |2, Vk € [min{do,dr}]. (29)
On the other hand, we have,

1ZON+3) " — Z(\)

2 (30)

:EgH
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=ZB(A+6)"" = ZB(\) 2 31)
G 1 1
= || ZU€ diag — - —, .., (32)
\/1+n)\01G \/1+n(A+6)alG
1 1 =T
_ =,0,...,0 U . (33)

— 9 —
\/1+n)\a§i7d \/l—l—n()\—l—(s)agiid

1
< ||Z||2 max —
2
€ldo=d] \/1—|—n)\0 \/1+n()\+6)a§

Therefore, the singular values of Z (/\)re are continuous with respect to A on (0, 00). It is also easy
to check that the function f(\) = \/ﬁ is smooth on [0, co) for any constant ¢ > 0. Applying

Lemma 2 to Z()\)mg, we find that there exist smooth U (\) “ and V(A “ such that Z(/\)mg =

oun s vy ot Thus, by truncating U(\) ~ and V(A) ° I

— 0, asd — 0. (34)

OO0 and Vo are
also smooth functions of A on (0, c0). Since the singular values are continuous with respect to A,

we have that Zr()\)mg is also continuous on (0, c0). Then B(\) is continuous on (0, c0). Since the
product of continuous functions is continuous, the regularization path is continuous on (0, 0o).

reg

Finally, we want to show that lim_, mreg — Winv_ We notice that limy 00 Zr(N) =
limy_,00 ZBA) ' = Z(1g, — GGT) = Z™" According to the continuity of the regularization
N

egT —invS znv

path, we get limy o U-(A) =U, V”“’

Due to the fact that limy_, ZB()\)_1 lives in the left null space of G, Lemma 1 tells us that

re re regT ~
limy 00 Ur(A) 927.(/\) gV,.()\) 7" also lives in the left null space of G. Thus, we have that
re re egT _ re re regT
lim T,(%) =N V) BT = lim T;(3) SN VN 35)
—00 —00
The proof is complete. O

A.6 PROOF OF PROPOSITION 3

To prove the proposition, we need the following lemma:

Lemma 3. M and G are both real d by d matrices. G is diagonalizable, and M is positive definite.
If MG = GM, then M=G = GM?z, where M is the positive definite square root of M.

Proof. Let M = PAPT be the eigen decomposition of M. Since M is positive definite, we have
that P is orthogonal, and A is a diagonal matrix with positive entries. According to theorem 1.3.12
in Horn & Johnson (2017), we know that PG PT is also diagonal since M and G commute. Write

G = PDPT, then GM* = PTDPPTAP = PTDAP = PTAPPTDP = M:G. O

Lemma4. Let (G, A, \) be a measure space. Consider a nontrivial representation px of a compact
group G, let )\ be the normalized Haar measure on G. The existence of the Haar measure is guar-
anteed by the compactness of G (Bourbaki, 2004). Define G := f G px(9)d\(g). Then we have the

following properties:
1. Gpx(h) =G forall h € G.

2. G is idempotent, i.e., G’ = G. That is 10 say, G is a projection operator from X to the
subspace all G-fixed points.

3. If px is unitary, i.e., px(h) px(h) = 14 for all h € G, then G is Hermitian.

Proof.
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1. Here, we need to use the fact that the Haar measure is left-invariant, i.e., A(gA) = A(A)
forall g € G and A € A. We have

Gpx(h) = /g px(9)dN(g)px(h) = /g px(gh)dA(g) = /g px(gh)dX(gh) = G. (36)

2. To show that G is idempotent, we have

&= / o)) ) / px<h>dx<h>) = [ [t
//p;gghd)\ YaA(h //nghd)\ghd/\ /Gd)\

3. To see the last property, we have

(37)

GT:/gpx(g)TdA(g)=/gpx(g)‘ld/\(g)=/gpx(g)dk(g):G. (38)

O

Lemma 5. Given a finite group G with order n and a representation p of G on vector space V' over
field C, then for every g € G, there exists a basis Py in which the matrix of p(g) is diagonal for all
g € G, with n-th roots of unity on the diagonal.

Proof. Since G is finite with order n, let g be the generator of G, i.e., g" = e and p(g)" = p(g") =
p(e) = 1. We can write p(g) in the form of Jordan canonical form, i.e., p(g) = P, '.J P, where

P, € GL(V), J is a block diagonal matrix in the following form

Ji
J: ’

and each block J; is a square matrix of the form

A1

We know that p(g)™ = I, then J” = I, which implies that J* = I for all i € [p]. Let N; be the
Jordan block matrix with A\; = 0. Then

JP= AT+ N) = (Z) ATENF =1

k=0

Notice that N/ is the matrix with zeros and ones only, with the ones in index position (a, b) with
a = b+ q. Therefore, the sum can be I if and only if A = 1 and V; = O for all ¢ € [p]. Therefore,
A; is an n-th root of unity for all ¢ € [p], and J; is diagonal with n-th roots of unity on the diagonal.
Let m € [n], then p(g™) = p(g)™ = P, 'J™P,. Clearly, J™ is also a diagonal matrix with n-th
roots of unity on the diagonal. Therefore, the basis P, is the same for all p(¢™). O

e —da AT A1 —da —da=da— —da
Proposition 3. Denote 7~ = |GIYX "G Q' and Z— =U E v as the SVD of Z
Then the solution to the above optimization problem (9) is W% = Z" QT = Uﬁ“if“VﬂaTQfl.
Moreover, if px is unitary, then W% is an invariant linear map, i.e., WG = 0.
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Proof. 1t is easy to see that Wa = Uﬂ“if“?gaTQ’l is the solution to the optimization prob-
lem 9 since it is in the exact form of a low-rank approximation, and we can apply the Eckart-
Young- ersky theorem Eckart & Young (1936b) to get the solution directly. We still need to

check that Wda is an invariant linear map, i.e., Wd“G = 0. We have First, we observe that

(yeo 2 @XXTpr(0)™) " pr(h) = pe(h) (Syeq (@) XX Tp(a)™)  forall b € G.
To see this, we have

> px(9) XX px(9)" | pa(h)
9eg
-1

= [ D px (b )px(9) XX px(g)"

geg
-1
= px(h pr (XX px(g) T pr(h )" unitarity of py
geg
-1
_ 1 \T
=px(h) | Y px(h ' )X X Tpx(hg) : (39)

Y

Then by Lemma 3, we have Q 1px(h) = px(h)Q~!. And, we have G = Gpx(h) forall h € G
by Lemma 4. Therefore, we have
=da =T
7% p(h) = 191V X TG Q7 p (h)
= GIY X TG pa(N)Q™!

—gIVXTG Q1 = 7™ (40)

Thus, we can say that Z"@ = 0. Based on Lemma 1, we can get that Z4G = Uﬁ“iﬁ“Vﬁ“T G =0.
Therefore,

W px(h) = URSLVIT Q™ p(h)
_ Udaidavda’r ( )Q—l
_ Udazdavda Q 1 Wda (41)

A.7 PROOF OF THEOREM 3

To prove the theorem, we need the following lemma:

;
Lemma 6. Let A = A Ay
A1 Ax

GL(n,C), where A1; € GL(n,C) and Az; € GL(m,C) are both Hermitian and positive definite.
Define E = A X { B On’m] = {AHB O"’m] Then E+T = [EH Ei }, where F11 =

€ GL(n + m, C) be Hermitian and positive definite and B €
Om,n Om,m A21B Om,m m,n Om,m
-1 -1
-1 (A%1 + A;lAgl) Aq1, and B9 = B! (A%I + A;1A21> A;l
Proof. We need to verify that our solution satisfies the properties of the Moore-Penrose pseudoin-
verse. Notice the following property:

E11 Ay + EppAgy = B71 (42)
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First, we need to show that EETE = E and EYEET = ET. We have

[A1B 0 E E AnB 0,
+ _ 11 n,m 11 12 11 n,m
EE"E = _Ang Omym:| |: :l |:A21-B Om,m:|

[Aj1BEy; A1 BEp| [AuB 0nm
|A21BE11 A2 BE12| [Aa1B O,

[A11B(F11 A1 + E19421)B  04m
| A21 B(E11A11 + E12421) B Oy,

_AllB On,m_
_A21B Om,m_

Similarly, we want to show that ET EE+ = E+. We have

[ E Ep | [AuB 0 E E
+ + _ 11 12 11 n,m 11 12
ETEE _Om,n Om,m_ _A21B Om,'m:||: :|

Om,n Om,m

=E. (43)

Om,n Om,m

[(E11A1y + E12421)B Opn | [ E1n Ero
- Omm Om,m Om,n Om,m

[ In On,m_ _Ell E12:|

_Om,n Om,m_ _Om,n Om,m

B (44)

_Om,n Om,m_

We also need to verify that EET and E+ E are Hermitian. We have

i -1 t 1
— An (A%1 + A21A21) A An (Afl + A21A21) An (45)
= —1 —1 9
Az (Afl + A$1A21) A Az (A;ﬂ + A$1A21> Al
and
EYE = [Oln gnm] . (46)

It is clear that both EEt and E+ E are Hermitian. Therefore, we have shown that £ is indeed the
Moore-Penrose pseudoinverse of E. O

Lemma 7. Let Z € C"™*"™ be a full-rank matrix. Q € C™*" is Hermitian and positive semi-definite,
and P € C™*" satisfying Q*> = PP'. Given r < rank(Q), let Z, and Z, be the best rank-r
approximation of ZQ and Z P with respect to the Frobenius norm, respectively, then Z,Q = Zy PT.

Proof. Let P = USV' be the SVD of P, then we have Q = USU. Since ZQ? = ZPP*, we can
see that ZQU SUT = ZPV SUT. Therefore, we have ZQ = ZP(VU'). VUT is a unitary matrix,
and according to the rotational invariance of SVD, we can say that Z; = Zy(VU T), ie.,if ZP =
USVT, then ZQ = US(UVIV)I, Zy = U,S,. Vi, and Z; = U,.S,.(UVTV)I = U,.S, VI(UVT)T.
It is easy to check that Z,Q = Z, P*. O

Theorem 3. Assume pyx is unitary. Then the global optima in the function space with data augmen-
tation and the global optima in the constrained function space are the same, i.e., W = W™nv,

Proof. First, we want to prove that
—1

01 | SoxoXxTova” | =27 (1= () (7)) P
189

Similar to the proof of Proposition 3, we know that (deg px(9) XX Tpx (g)T) commutes with

-1 -
px(g) for all g € G. Then, (deg px(9) XX px (g)T> commutes with G as well. Accord-

ing to Lemma 3, Q71 = (deg pX(g)XXTpX(g)T) commutes with G. We also know that

S
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IGIG <deg px(9) XX px (g)T) is a G-fixed point. Therefore, we have
-1 -1

GIG | Y px(0) XX px(9)" | =16I1G | Y px(9) XX px(9)" | G

geg g€g

= 6IGQ QG = 9|GQ'GQ™" = (1g|*GQ ™).

On the other hand, I, — (P~1G)(P~'G)T is an idempotent projection matrix. Therefore, we have
P Iy — (PTG (PT'G)T) P!

— P Iy — (P'Q)(P'G) ) P = P! (I, — (PIG)(PIG) )’ P

=P (Iyy — (PTIG)(PT'G)T) (P! (L — (P G)(PIG)T))
If Equation 47 holds, then we can apply Lemma 7 directly to get the result. Therefore, we only need
to prove Equation 47.

Let px(g) = VA,V ™! be the eigen-decomposition of px(g), where g is the generator of G and A,
is a diagonal matrix with the eigenvalues of px(g) on the diagonal. This can be done according to
Lemma 5. Furthermore, under the assumption that px is unitary, we have V-1 = VT, It is worth
noting that A, is a diagonal matrix with |G|-th roots of unity on the diagonal, and among the |G|-th
roots of umty, d of them are 1. Without loss of generality, we assume that the first d eigenvalues are
1. Define X = V-1X, and let X;. .4 be the first d rows of X, and X(d+1) .d, be the last dy — d rows

of X. Now, let’s simplify the LHS of Equation 47:

= i ) (ZAh> v

heg heg

G oA Oddod | =1, (48)
Odo dd  Ody—d,do—d

i€[G]

The last equality in Equation 48 holds because the partial geometric series to order |G| is O for any
root of unity other than 1, i.e., Zlgj (ez\ﬁTkll )j = 0 for any k # 0. On the other hand,

> |g|px DXXTpr(g)" (49)

geg

geg
1
-V —AXXTAT |V
2 g1 !
geg
) _
=V [ | D diag(A,)diag(Ay)T | © XXT| V!
2= 191
_v ([0 14 Od,dod:| ® XXT> y-1
do—d,d
-V {Xl:dXI:d Ortdo—d} vl (50)
Odofd d e

Therefore, the LHS of Equation 47 is
-1

Zmpx DXXTpx(g)" (51)

geg
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~ St —1
v I; Od,do—d X1:4X1.y Oddo—a| /-1
Odo—d,d Ody—d,do Ody—d,a
~ ~ —1
<X1:dXI;d) 0d,do—d

0dy—d,d Ody—d,do—d

=V VL (52)

The RHS of Equation 47 is
P (I — (PPG)(PTTG)T) P

—yply-! (Ido — (VP Ay~ L)V ) (VP (A, - IdO)V‘1>+> VPl

~ ~ ~ +\ ~
—vp! (Id0 - (P*l(Ag - Ido)) (P*l(Ag - Ido)) > Py, (53)
where P2 = X X1,
To prove that the LHS equals the RHS, we need to show that

~ ~ —1
()™ s [ (7000 m0) (P -10) ) P
(54)

‘We can see that

~ ~ —1
P2 (]52 _ [(XldeI:d> 0d,do—d ‘|> (55)

0dy—d,d 0dy—d,do—d

.\l
=1, — P2 (thXI:d) Od,do—d ]
0dy—d,d Ody—d,do—d
S = .\l
1, - X1. Xm d’r X1 dX(d-i,-Jrl) ] [(Xl:dXI:d> 0d,do—d ]
X(d+1) doX1.q X(d+1) doX(d+1) :do 0dy—d,d 0dy—d,do—d

14 0d,do—d
X(d+1):doX1.q (X1:dX1;d) Odo—d,do—d
04,q ) 0d,dy—a 56)
T X XL (XlidXI:d) Lig—a | (

Py Py

On the other hand, we rewrite P~! block-wisely, i.e., P~! = [ ~
Pl Py

} . By Lemma 6, we have
- + -
(Ag —Tap) (P’I(Ag - Ido)) P! (57)
= { ~ Daa ~ 0a do d } {{'in 1312]
(P3 + Pl,Pro) "' P, (P} + Pl,Pio) ' Pas| | Pl, Pos

0d,d Od,dod}

N o 58
{<P§2+PLP12>1<P1*2P11+P22PL> Liy—a o9

By definition, we know that P2XXT = 14,. Therefore,

~ ~ .2
|:Elll _612:| Xl dX T Xl dX(dJ,-Tl) do — Id (59)
Py P X(d+1) doX1 :d X(d+1) doX(d+1) :do ’

{ Pn + P12P12 P11P12 + P12P22:| NXldeLg X, dX(d+1) do | 1, . (60)

PhPi+PuPl,  Ph+PhPo || X)Xty X(d+1)~doX(Td+1):d0 ’
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By equating the LHS and RHS of the above equation, we can get that
<P12P11 + P22P12)X1 dX1 T (P22 + P12P12)X(d+1) do d = 0do—d,d

-1
7X(d+1):doX1:d (Xl:Xmzd) = (P222 + P12P12)71(P1T2P11 + P22P12) (61)
We have shown that the LHS equals the RHS in Equation 47. The theorem is proved. O

A.8 PROOF OF PROPOSITION 4

Proposition 7. Suppose the target matrix Z € R*% has rank m > d > r. The critical points
of {7 restricted to the function space M, are all matrices of the form USzV™ where I € [d),.. If
0 < 0,41 < 0y, then the local minimum is the critical point with T = [r]. It is the global minimum.

The proof is adapted from the proof of (Trager et al., 2020, Theorem 28).

Proof. A matrix P € M,. is a critical pointif and only if Z—P € NpM, = Col(P)*® Row(P)*,
where NpM,. denotes the normal space of M, at point P. If P = >""_, o} (u, ® v]) and Z — P =
Y5107 (uf ®v)) are SVD with o # 0 and o/ # 0, the column spaces of P and Z — P are
spanned by the u} and u" respectively. Similarly, the row spaces of P and Z — P are spanned by

the v} and v respectlvely So P is a critical point if and only if the vectors w}, v/ and v}, v/ 7 are

J
orthonormal ie., if

Z=P+(Z-P) ZO’ L, +ZU" u ®U

is a SVD of Z. This proves that the critical points are of the form UX7zV™ where Z = USXV T is a
SVD and Z € [d],. Since {5 (US7VT) = HUE[d]\IVTH2 = HE[d]\IHQ DigT o2, we see that
the global minima are exactly the critical points selecting r of the largest singular values of Z, i.e.,

with Z = [r]. It is left to show that there are no other local minima. For this, we consider a critical
point P = UX7V'T such that at least one selected singular value o; for i € Z is strictly smaller than

o. This is possible since 0 < 0,41 < o,.. To see that P cannot be a local minimum, one can follow
the proofs in (Trager et al., 2020, Theorem 28). O

es . =1 =da —~Treg .o ..
Proposition 4. Assume all non-zero singular values of Z mv, Z a, Z(\) 7 are pairwise distinct.

1. (Constrained Space) The number of critical points in the optimization problem (4) is (f)
—inve=; —inv L
They are all in the form of U YV P~ where T € [d],. The unique global

.. . NS TR _ L. . ..
minimum is U zmvv P~ which is also the unique local minimum.

2. (Data Augmentation) The number of critical points in the optimization problem (9) is (f)

. —da= g, 75daT . .
They are all in the form of U QE%‘LV “ Q™! where T € [d],. These critical points are the
same as the critical points in the constrained function space. The unique global minimum

is U Ed“V Q’l, which is also the unique local minimum.

3. (Regularization) The number of critical points in the optimization problem (7) is (T) They

TegETeereg B(\)"'P~L, where T € [m)],. The unique global
minimum is U Z[Te]nggTB()\)AP , which is also the unique local minimum.

are all in the form of U

Proof. This follows directly from Proposition 7 and the fact that Z de and Z'™" are both rank d
matrices while Z'~ has rank m. O
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A.9 EMPIRICAL SPECTRUM OF TARGET MATRICES IN MNIST DATASET

As discussed in Remark 2 and Proposition 4, we have assumptions about the rank and spectrum of
the target matrices we are trying to approximate. As shown in Figure 4, we empirically computed the
. Zda Zinv —re ~
singular values of Z°*, Z""", Z ()\)Ng for MNIST dataset. We can see that all three target matrices
have full rank. The singular values are pairwise different as well. Thus, the previous assumptions in

Remark 2 and Proposition 4 are satisfied.

—e— Z_ inv —e— Z_da —e— Z_reg(lambda = 0.1)

20

Singular Value

Index

Figure 4: The spectrum of target matrices in the MNIST dataset.

A.10 COMPARISON BETWEEN DATA AUGMENTATION AND REGULARIZATION UNDER CROSS
ENTROPY LOSS

In Figure 5, we are still plotting ||| for data augmentation and regularization trained on the
same dataset, but with cross entropy loss. It is observed that, for larger ), the dynamics of ||| »
resemble those when trained with MSE (see Figure 3). On the other hand, for small )\, ||| may
increase at first, and then decrease. For data augmentation, if we allow more epochs, we can still
observe that ||| decreases after increasing. Our theoretical results only support the scenario
for mean squared loss. Thus, when trained with cross entropy, we cannot say whether all the critical
points are invariant or not. Future work can be done to investigate the critical points when trained
with cross entropy loss.

- ——A=le2
0.9 —A=tle1
—A=1
0.8

0.7

0.6

Frobenius Norm
Proportion

0.5

0.4

0.3

T T T T T T T T u u
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Epochs Epochs

(a) ||[W_1||7 where W is the non-invariant part of W ) W — WL ||%/|W]%

Figure 5: Frobenius norm of the non-invariant part of the end-to-end matrix W, trained with Data
Augmentation (DA) and Regularization () using Cross Entropy Loss (CE).
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A.11 EXPERIMENTS FOR TWO-LAYER NONLINEAR NETWORK

In Figure 6, we show the training curve for a two-layer neural network with different nonlinear acti-
vation functions trained with data augmentation and hard-wiring. The setup is the same as previous
experiments in section 4. In this experiment, we used 5000 samples from the MNIST dataset for
training with mean squared loss (MSE). Meanwhile, we also test the case when there is not a bottle-
neck middle layer. When the middle layer has a bottleneck, we set the number of hidden units as 7;
otherwise, the number of hidden units is 15. We can see that both data augmentation and constrained
model have similar loss in the late phase of training for all four activation functions, especially when
there is a bottleneck.

Leaky ReLU [ ReLU |
0.16
0.12-
0.081 Method
e e e AR RAARAAAR T N oSt et EEEEE Ll —— Constrained
0.04- — DA
1]
8 Swish | | Tanh
-
0.161 . Bottleneck
— FALSE
0.124 -- TRUE
0.081
1:‘,.___“_~_'-”
0.04-
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Epoch

Figure 6: Training curves for a two-layer NN with different nonlinear activation functions via data
augmentation and hard-wiring on MNIST.

Besdies, Moskalev et al. (2023) suggests that invariance learned from data augmentation deteriorates
under distribution shift in a classification setting. The architecture they choose is a 5-layer ReLU
network. We would like to investigate this in a regression setting. The model we use is a 2-layer
neural network with different activation functions trained with data augmentation and MSE. For any
function f and an input point x € X, to measure the amount of invariance of f, we evaluate the
scaled variance of outputs across the group orbit,

ino(f,2) = Egon <1 - J;(iq;))>2

where f(x) := Egx[f(g92)], and A is the Haar measure on group G. In Figure 7, we train a 2-layer
neural network with different activation functions on MNIST with data augmentation using training
sample sizes N = 1000 and N = 5000. After training, we calculate €;,,(f,x) for two different
datasets: MNIST and Gaussian. For MNIST, we use 5000 samples from the original test set in
MNIST. For Gaussian, we sample 5000 points from an isotropic Gaussian distribution in dimension
196. We are showing the median of {€;,,,(f, x) }+ep in Figure 7.

The observations can be summarized as follows:
1. Effect of the size of the model: Compared to the case without a bottleneck middle layer,

€inv(f, ) is significantly smaller when there is a bottleneck. This suggests that it is more
difficult to learn invariance from the data when the model has more parameters.
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201
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2. Effect of the amount of training data: We notice that ¢;,,,(f, z) is smaller when there
are more training data. For underdetermined linear models, i.e., when the number of data
points exceeds the input dimension, Proposition 4 shows that all critical points are invariant.
However, when the model is nonlinear, we need more data in order to learn the invariance
via data augmentation.

3. Robustness under distribution shift: Though the model is trained on MNIST, €;,,,, (f, x)
does not increase significantly even when the model is tested on a completely different
dataset. This suggests that the invariance learned from the data is fairly robust.

N = 1000 N = 1000
Gaussian MNIST
Bottleneck
N = 5000 N = 5000 . FALSE
Gaussian MNIST .
TRUE

_-_-_ll___-._

Leaky ReLU  ReLU Swish Tanh Leaky ReLU  ReLU Swish Tanh
Activation Function

Figure 7: Median of the measure €;,,,,(f) of discrepancy from invariance for 2-layer neural networks
with different activation functions, trained on MNIST with data augmentation.
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