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ABSTRACT

In weakly supervised video anomaly detection, it has been
verified that anomalies can be biased by background noise.
Previous works attempted to focus on local regions to ex-
clude irrelevant information. However, the abnormal events
in different scenes vary in size, and current methods strug-
gle to consider local events of different scales concurrently.
To this end, we propose a multi-scale integrated perception
(MSIP) learning approach to perceive abnormal regions of
different scales simultaneously. In our method, a frame is
partitioned into several groups of patches with varying scales,
and a multi-scale patch spatial relation (MPSR) module is fur-
ther proposed to model the inconsistencies among multi-scale
patches. Specifically, we design a hierarchical graph convo-
lution block in the MPSR module to improve the integration
of patch features by implementing cross-scale feature learn-
ing. An existing clip temporal relation network is also intro-
duced to enable spatio-temporal encoding in our model. Ex-
periments show that our method achieves new state-of-the-art
performance on the ShanghaiTech and competitive results on
UCF-Crime benchmarks.

Index Terms— video anomaly detection, multi-scale per-
ception, weakly supervised, spatio-temporal relation

1. INTRODUCTION

Video anomaly detection (VAD) is the task of detecting ab-
normal events that differ from usual patterns and determining
the time window of the occurring anomaly [1, 2, 3], which
can be applied in many real-world scenarios [3].

Due to the high cost of manual annotations, most of the
existing methods treat VAD as an unsupervised [4, 5, 6] or
weakly supervised [1, 2] problem. A noticeable drawback
of unsupervised VAD is the lack of prior knowledge of ab-
normality, resulting in the inability to capture all normalcy
variations [7]. Therefore, unsupervised VAD generally has
worse performance than weakly supervised methods, which
can produce more reliable results using coarse-grained video-
level labels to maintain a relatively small annotation effort.

*Corresponding author. This work is funded by the National Natural
Science Foundation of China (62002220,62372295).
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Fig. 1: The overall pipeline of our proposed MSIP.

In recent research, weakly supervised VAD commonly
employs the multiple instance learning (MIL) framework [2,
8], which can alleviate the imbalance between abnormal and
normal samples. However, weakly supervised anomaly de-
tection still poses many unresolved challenges. One of the
challenges is how to reduce the background noise (i.e., nor-
mal regions in a frame) that increases the difficulty in detect-
ing anomalous events. Guoqiu Li et al. [9] divided the in-
put video frames into several sets of non-overlapping patches
with different scales and proposed a scale-aware model to ex-
plore anomalous patches. They trained the model in mul-
tiple stages, each dedicated to training a separate branch of
the model to handle patches of a specific size. Another work
chose [10] to apply an object detector to extract the object pro-
posals, removing the background noise. However, the above
methods either focus excessively on the objects and may miss
the information about abnormal events, or ignore the connec-
tions between patches at different scales. Additionally, the
step-by-step training strategy in [9] leads to a complex net-
work and high computational demands.

To address the problems above, we propose a novel multi-
scale integrated perception (MSIP) learning method with cas-
caded spatio-temporal relation networks and a cross-scale
learning block. A concise multi-scale patch spatial relation
(MPSR) network is proposed to model the inconsistencies
among multi-scale patches simultaneously, enabling the iden-
tification of scale-varying anomalous regions. An existing
clip temporal relation (CTR) module is introduced [8] to
explore the temporal dependencies among clips, enabling
spatio-temporal feature learning.

Graph convolutional networks (GCNs) have been applied
to action recognition [11, 12] and video anomaly detection
[3, 13, 14]. Furthermore, [15] proposed a hierarchical GCN
for traffic forecasting. Inspired by their works, we design a
hierarchical graph convolution (HGC) block with a similar
structure to [15] to achieve cross-scale feature learning. Our
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contributions are summarized below:

• We propose a novel multi-scale integrated perception learn-
ing method for weakly supervised video anomaly detection,
which can perceive multi-scale patches simultaneously to
capture scale-varying anomalies in video clips.

• A spatio-temporal relation network is introduced, compris-
ing our proposed MPSR module and a CTR module.

• A hierarchical graph convolution block is proposed to
achieve cross-scale feature learning in the MPSR module.

• Experiments on UCF-Crime and ShanghaiTech datasets
show that our method can achieve competitive results with
a simple training process and fewer parameters.

2. PROPOSED METHOD

2.1. Overview

The overall pipeline of our proposed MSIP is illustrated in Fig
1, including a multi-scale patch spatial relation (MPSR) mod-
ule, a clip temporal relation (CTR) module, and a classifier.
Given an input video V, and the video level annotation Y ∈
{0, 1}, which indicates whether the video contains anoma-
lous events (Y = 1 for abnormal videos). Following the pre-
vious approach [2, 13, 8, 9], we divide the video along the
temporal sequence into T non-overlapping clips {ct}Tt=1. For
each clip ct ∈ RH×W×F×3 (H = height,W = width, F =
frames), we further subdivide it into several sets of non-
overlapping patches with L different sliding window sizes
{(hl, wl)}Ll=1, where l ∈ {1, . . . , L} is the index of patch set
l. These patch sets are represented as Pl

t = {plt,i}
Nl
i=1, and Nl

is the number of patches in patch set l, plt,i ∈ Rhl×wl×F×3

denotes a patch of patch set l in the tth clip. Each clip and cor-
responding multi-scale patches will be fed into a pre-trained
I3D network to extract features. Feature of the tth clip is
represented as ψt ∈ RD, and the features of patches plt,i are
stacked as Φt = {ϕlt}Ll=1, ϕ

l
t ∈ RNl×D, where D denotes

the feature dimension. The features of multi-scale patches
are then passed into our MPSR module, producing the aggre-
gated patch feature χt ∈ RD, which will be element-wise
added to the clip feature ψt to obtain the patch-enhanced clip
feature ψP

t . Finally, {ψP
t }Tt=1 of T video clips will be in-

put into the CTR module and a classifier to generate anomaly
scores {st}Tt=1.

2.2. Multi-scale Patch Spatial Relation Module

The multi-scale patch spatial relation module aims to recog-
nize and spotlight the scale-varying anomalies by capturing
the correlations between multi-scale patches. As shown in
Fig 2, the patch features Φt = {ϕlt}L=3

l=1 are sent to vanilla
GCNs or a HGC block in spatial proximity graph network,
the outputs are then concatenated and passed into patch ag-
gregate module to obtain the aggregated feature χt ∈ RD.
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Fig. 2: Illustration of the pro-
posed multi-scale patch spa-
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Fig. 3: Illustration of the
proposed hierarchical graph
convolution block.

Spatial proximity graph network. Motivated by previous
work, we utilize the graph convolutional network (GCN) [16]
to capture spatial relationships among patches. In our spa-
tial proximity graph, an input patch set with N patches of
the same scale is considered as the vertex set, where patch
features correspond to the attributes of the vertexes. The ad-
jacency matrix AS ∈ RN×N of the graph is dependent on the
relative proximity prior of the ith and jth patches:

AS
ij = exp(−

√
(x2 − x1)2 + (y2 − y1)2) (1)

where (x1, y1) and (x2, y2) are the coordinates of the patch
center. In the above construction, closer distances indicate a
closer connection between patches and vice versa. As indi-
cated in Fig 2 and 3, each branch contains two GCN layers.
Specifically, for the lth GCN layer, the graph convolution is
implemented by:

X l = ASX l−1W l + f l(X l−1) (2)

whereX l−1 ∈ RN×Dl−1

are the hidden features of patches at
layer l− 1, and Wl is a trainable parametric matrix. Residual
connection is adopted to alleviate the over-smoothing prob-
lem in GCN, and f l is an inserted convolution layer.

Algorithm 1 Cross-scale feature transfer function Ftrans

Input: ϕ̃l=j
t ∈ RNj×D, vertex coordinates of patches in set i {coordl=i

r =
[x1r, y

1
r , x

2
r, y

2
r ]}

Ni
r=1, vertex coordinates of patches in set j {coordl=j

s =

[x1s, y
1
s , x

2
s, y

2
s ]}

Nj

s=1, Intersection area function fia, patch area function fa
Output: transϕ̃l=i

t ∈ RNi×D

1: transformation matrix Tran ∈ RNi×Nj , threshold τ = 1/3
2: for r = 1 → Ni do
3: for s = 1 → Nj do
4: Soverlap ⇐ fia(coord

l=i
r ,coordl=j

s );Sj ⇐ fa(coord
l=j
s )

5: if Soverlap ÷ Sj > τ then
6: Tran[r, s] ⇐ 1
7: else
8: Tran[r, s] ⇐ 0
9: end if

10: end for
11: end for
12: return transϕ̃l=i

t ⇐ Trans× ϕ̃l=j
t
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Hierarchical graph convolution block. The varied spa-
tial distributions of multi-scale patches pose a challenge for
vanilla GCNs to effectively capture their relations, for which
we propose a hierarchical graph convolution block to imple-
ment cross-scale feature learning. First, we aim to transform
patch features of different scales into a uniform one by em-
ploying a transfer function as shown in Alg 1. Referring to
Fig 3, the transformation matrix in the function is essentially
equivalent to re-partitioning patch set j into overlapping re-
gions that resemble the distribution of set i, and patch features
in the same region are aggregated to obtain the transformed
features. Given features ϕ̃l=j

t ∈ RNj×D of patch set j,
we first use the transfer function to convert it into features
φ̃l=i
t ∈ RNi×D with the same scale as patch set i. ϕ̃l=j

t

and φ̃l=i
t will be passed to two different branches of GCNs

and the output of each GCN layer in the branch of ϕ̃l=j
t will

also be transformed using the above function and combined
with that in the branch of φ̃l=i

t by concatenating. Taking the
output of the first layer GCN as an example, this process can
be described as:

Combine(φ̄l=i
t , ϕ̄l=j

t ) = Concat(φ̄l=i
t , Ftrans(ϕ̄

l=j
t )) (3)

where ϕ̄l=j
t and φ̄l=i

t represent the output of the first layer
GCN in the two branches. Thus, the graph convolution on
the scale i will be affected by the convolution of the scale j,
utilizing the spatial intersection relations between multi-scale
patches to enable effective feature integration, which is the
unique feature of our HGC block.
Patch aggregate. The patch aggregate module is designed to
further aggregate patch features of different spatial regions.
As Fig 2 shows, the outputs of different branches are concate-
nated to get the integrated feature χ̃t ∈ RN1×D. Inspired by
previous work, we first reshape χ̃t into RH/h1×W/w1×D ac-
cording to the initial spatial location, and then input it into the
patch aggregate module with a 2D convolutional and a fully
connected layer, producing an aggregated multi-scale patches
feature χt ∈ RD.

2.3. Clip Temporal Relation Module

An existing clip temporal relation (CTR) module [8] is em-
ployed to learn the temporal correlations between video clips.
The CTR consists of dilated convolutions [17] and a non-local
block [18]. The non-local block is formulated as follows:

Ψ̃P = softmax
(
fθ(Ψ̄

P )× fφ(Ψ̄
P )⊤

)
× fg(Ψ̄

P ), (4)

Ψ̂P = fz(Ψ̃
P ) + Ψ̄P (5)

where ΨP = [ψP
1 , ψ

P
2 , . . . , ψ

P
T ] ∈ RT×D represents the

patch-enhanced features of a T clips video, which is dimen-
sionally reduced to obtain Ψ̄P ∈ RT×D/4. The final output
ΨPC ∈ RT×D is calculated as follows:

ΨPC = [Ψ̂P ,ΨP
∗ ] +ΨP (6)

where ΨP
∗ denotes the outputs of dilated convolution layers.

2.4. Training Loss

The multiple instance learning (MIL) method is applied to
our weakly supervised learning. Following previous works
[9, 8], we adopt the feature magnitude learning method and
corresponding feature magnitude ranking loss proposed by
[8] for training to enhance the discrimination between anoma-
lous and normal clips.

3. EXPERIMENTAL RESULTS

3.1. Datasets And Implementation Details.

Dataset. Experiments are conducted on two public datasets:
ShanghaiTech [19] and UCF-Crime [2]. The ShanghaiTech
dataset has 437 videos, including 130 anomaly videos. Fol-
lowing Zhong et al. [3], we reorganize the training and testing
sets to make them suitable for weakly supervised VAD. UCF-
Crime is a large-scale dataset that contains 1900 untrimmed
real-world videos of 13 classes of anomalous events.
Implementation details. Following [8, 9], a video is split
into 32 video clips (T = 32) and each video clip is resized
into 480 × 840 × 16 pixels (H,W,F ). Then we segment
frames into three patch sets of different scales: 240 × 280,
160×168, and 120×120, where 240×280 corresponds to the
input of branch l = 1 in Fig 2. The I3D network pretrained on
the Kinetic-400 dataset is leveraged to extract features of the
full clip and corresponding patches. For hyper-parameters in
the loss function and CTR module, we use the same settings
as [8]. Our network is implemented in PyTorch and trained
using a two-stage strategy. In the first stage, only the CTR
module and the classifier are trained until the optimization
process converges. In the second stage, the previously trained
network is frozen, and the MPSR module is trained separately
to obtain the final results. In both stages, we use Adam op-
timizer [20] with a learning rate of 0.001, a weight decay of
0.0005, and a batch size of 64 for all datasets.

3.2. Results.

Quantitative comparison. The quantitative comparison re-
sults between our method and other SOTAs are shown in Ta-
ble 1. Our MSIP achieves new state-of-the-art on the Shang-
haitech dataset with an AUC result of 98.00%, exceeding the
SOTA method SSRL [9] by 0.02% and CLAV [21] by 0.40%.
For the UCF-Crime dataset, our method still achieves sub-
optimal results with an AUC result of 86.98%, surpassing
most previous methods. Notably, our MSIP outperforms the
light version SSRL with shared parameters on both datasets,
which is 98.00% compared to 97.84% on Shanghaitech and
86.98% compared to 86.85% on UCF-Crime, showing that
our method achieves superior performance while demanding
lower computational requirements.
Computational complexity. The comparison of parameter
amount and computational cost is in Table 2. Our method
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Table 1: Quantitative comparisons on ShanghaiTech [19] and
UCF-Crime [2].The best scores are bolded and the second
best are underlined.

Sup. Method Venue Feature AUC@ROC ↑
ShanghaiTech UCF-Crime

U
n-

GODS [22] ICCV‘19 I3D – 70.46
STC-Graph [5] MM‘20 - 74.70 72.70
GCLPT [23] CVPR‘21 ResNext 78.93 71.04

W
ea

kl
y-

Zhong et al. [3] CVPR‘19 TSN 84.44 82.12
GCLWS [23] CVPR‘21 ResNext 86.21 71.04
Zhong et al. [3] CVPR‘19

C3D
76.44 81.08

CLAWS [6] ECCV‘20 89.67 83.03
RTFM [8] ICCV‘21 91.57 83.28
Sultani et al. [2] CVPR‘18 85.33 77.92
Wu et al. [13] ECCV‘20

I3D

– 82.44
MIST [1] CVPR‘21 94.83 82.30
RTFM [8] ICCV‘21 97.21 84.30
S3R [24] ECCV‘22 97.48 85.99
SSRL [9] ECCV‘22 97.98 87.43
SSRL(share parameters) [9] ECCV‘22 97.84 86.85
UR-DMU [25] AAAI‘23 – 86.97
CLAV [21] CVPR‘23 97.60 86.10
Ours: MSIP I3D 98.00 86.98

Table 2: Computational complexity comparisons.
Method Feature Param FLOPs

RTFM(CTR) [8] I3D 24.7M 7.9G
SSRL [9] I3D 192.0M 57.7G

SSRL(share parameters) [9] I3D 79.8M 57.7G
Ours: MSIP I3D 75.2M 17.0G

minimally raises computational costs compared to the base-
line and significantly reduces model parameters by 60.8% and
floating-point operations by 70.5% compared to the SOTA
method SSRL [9]. Therefore, our method not only achieves
comparable results to SOTAs but also features a lightweight
and computationally efficient model, striking a superior bal-
ance between performance and computational costs.
Visual results. Visual results are shown in Fig 4, which com-
pares the predicted anomaly scores of our MSIP and the base-
line [8] on three abnormal videos and one normal video. Evi-
dently, our method distinguishes abnormal and normal events
more effectively than the baseline and produces much fewer
false positives on normal videos.

Table 3: Ablation study on MPSR and HGC in our method.
The results of the baseline are marked with *.

CTR MPSR HGC UCF-Crime ShanghaiTech
(AUC@ROC ↑) (AUC@ROC ↑)

✓ ✗ ✗ 84.30∗ 97.21∗

✓ ✓ ✗ 86.09 97.37
✓ ✓ ✓ 86.98 98.00

3.3. Ablation Studies.

Ablation studies are conducted on the proposed modules to
investigate their influences on our model. As shown in Table
3, we employ the RTFM [8] as our baseline, corresponding to
the case of using only CTR. By leveraging the MPSR mod-
ule but replacing the HGC block with common GCNs, the
performances increase to 86.09% on UCF-Crime and 97.37%
on ShanghaiTech compared to the baseline. When both the

Shooting 048 RoadAccidents 016

Explosion 033 Normal 710

Our MSIP Baseline

Fig. 4: Visualization of the anomaly scores of our MSIP and
the baseline on UCF-Crime test videos. Pink areas are tem-
poral ground truths of anomalies. Anomalous regions are de-
noted by red boxes.

Table 4: Ablation study on patch data scale variations in in-
puts. The results of the baseline are marked with *.

Patch Size UCF-Crime ShanghaiTech
240 × 280 160 × 168 120 × 120 (AUC@ROC ↑) (AUC@ROC ↑)

✗ ✗ ✗ 84.30∗ 97.21∗

✓ ✗ ✗ 85.85 97.69
✗ ✓ ✗ 85.83 97.63
✗ ✗ ✓ 85.49 97.58
✓ ✓ ✗ 86.24 97.84
✓ ✗ ✓ 86.71 97.74
✗ ✓ ✓ 86.69 97.75
✓ ✓ ✓ 86.98 98.00

MPSR module and HGC block are added, the performances
further improve to 86.98% on UCF-Crime and 98.00% on
ShanghaiTech, respectively. The above results indicate that
both the MPSR module and HGC block contribute to our
method in producing superior performances.

Ablation studies on multi-scale patch data are also con-
ducted as presented in Table 4. When using patches of one
scale, the results show growth within the 1.19% to 1.55%
range in UCF-Crime and the 0.37% to 0.48% range in Shang-
haiTech, and the results will gradually increase by adding
more scales of patches. Eventually, the model achieves its
best performance when utilizing patch data of all scales.

4. CONCLUSION

We proposed a novel multi-scale integrated perception learn-
ing method for weakly supervised VAD to focus on local
anomalous regions with varying scales simultaneously. A re-
lation network is introduced to learn spatio-temporal features,
comprising our MPSR and a CTR module. Specifically, we
designed a hierarchical graph convolution block in the MPSR
module to learn cross-scale features for integration. Compre-
hensive experiments show that our method achieves signifi-
cant improvements compared to SOTAs.
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