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Abstract

Visual representations become progressively more abstract along the cortical hier-
archy. These abstract representations define notions like objects and shapes, but
at the cost of spatial specificity. By contrast, low-level regions represent spatially
local but simple input features. How do spatially non-specific representations of
abstract concepts in high-level areas flexibly modulate the low-level sensory repre-
sentations in appropriate ways to guide context-driven and goal-directed behaviors
across a range of tasks? We build a biologically motivated and trainable neural
network model of dynamics in the visual pathway, incorporating local, lateral, and
feedforward synaptic connections, excitatory and inhibitory neurons, and long-
range top-down inputs conceptualized as low-rank modulations of the input-driven
sensory responses by high-level areas. We study this Dynamical Cortical network
(DCnet) in a visual cue-delay-search task and show that the model uses its own
cue representations to adaptively modulate its perceptual responses to solve the
task, outperforming state-of-the-art DNN vision and LLM models. The model’s
population states over time shed light on the nature of contextual modulatory dy-
namics, generating predictions for experiments. We fine-tune the same model on
classic psychophysics attention tasks, and find that the model closely replicates
known reaction time results. This work represents a promising new foundation for
understanding and making predictions about perturbations to visual processing in
the brain.

1 Introduction

We readily use abstract cues to modulate our sensory perception. These include cues to attend
to abstract high-level features (find Waldo; count the number of hoop shots, etc.) or low-level
features (find the red items, vertically oriented bars, etc.). Such cue-based modulations of the visual
pathway allow us to locate items of interest more rapidly and accurately, and to perform goal-directed
computations.

Understanding how top-down modulatory cues are represented and then interact with bottom-up
sensory-driven neural responses has been a longstanding goal in computational cognitive neuro-
science [1–4]. Extensive psychophysical experiments [5] and studies showing that individual neurons
whose receptive fields are aligned with the attentional cue exhibit a gain modulation [6, 7] shed light
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on the phenomenon. However, a fundamental circuit-level and conceptual problem remains open:
what is the nature of the “modulatory homunculus” that knows, given various goals and context cues,
which low-level representations to modulate, in which combination and which topographic part of the
representational space in different processing layers? We lack a cohesive computational framework
to link these two levels of representation. Simultaneously, we lack models of sensory processing that
fully take into account the recurrent and temporally unfolding nature of computation in the brain;
thus, they fall short of explaining phenomena like reaction time variations with task difficulty and the
sharpening of perception as information is integrated within a trial.

We combine known architectures of visual cortex with advances in machine learning to introduce a
biophysically-inspired model, the Dynamical Cortical network (DCnet), to solve cue-delay-visual
search tasks (Figure. 1). The model is endowed with several relevant properties of biological circuits,
including separate (tuned) excitatory and (weakly-tuned) inhibitory populations, lateral inhibition
(intra-area recurrence), and neuron types with distinct learnable time constants. We operationalize
the “modulatory homunculus” as multiplicative low-rank perturbations from higher-order cortical
and thalamic areas. Specifically, these low-rank perturbations arise from the model’s own sensory
responses from earlier times within the trial.

Contributions. In this work, we focus on analyzing and interpreting the internal dynamics and
behavioral modes of our biophysically inspired model on a suite of visual cue-mediated tasks.

• We introduce vis-count, a novel, challenging, and parametrically generated cue-delay-visual search
task. A visual cue (consisting of a color, a shape, or a color-shape conjunction) specifies which
objects in a subsequently presented scene of geometric objects to count.

• We present a biologically realistic model of the brain’s visual system, the Dynamical Cortical
network (DCnet), that is relatively shallow with local and top-down feedback and separate E/I
neurons, which is capable of top-down attentional modulation based on previously presented cues
and processes information over time. Our framework is among the first to link levels of analyses
from physiology to behavior via computations and is a necessary first step toward hypothesis
generation for neuroscience.

• Our model outperforms state-of-the-art standard DNNs and LLMs on the task, while being inter-
pretable and having orders of magnitude fewer parameters.

• We perform in silico electrophysiology of the circuit’s population dynamics to show that cue-based
modulation drives a divergence of the bottom-up responses from the uncued case.

• We can fine-tune the same model on new stimulus sets corresponding to classic human psy-
chophysics attention tasks. Reaction time analogues in our model closely replicate experimental
observations.

In sum, these contributions suggest that our approach is a promising framework for modeling the
brain’s visual processing dynamics, one that replicates many key attentional phenomena and that can
generate testable hypotheses and predictions about circuit mechanisms.

2 Related Work

Stimulus computable models of visual cognition. Modeling top-down contextual effects on
bottom-up sensory processing during visual search is of longstanding interest in the vision sciences
community. There are a large number of phenomenological models of visual search and associated
reaction time findings [8–12], but only recently have models been able to operate directly on high
dimensional sensory inputs [13–16]. The most promising approach involves augmenting pre-attentive
ventral stream models with controllers either via attention maps [13] or multiplicative modulation
factors on network activities [17]. However, these models cannot be used to faithfully study sensory
processing dynamics because they are purely feedforward. Recurrent models of early sensory
processing with lateral feedback and distinct excitatory and inhibitory populations [18–20], and
top-down feedback [21] have shown promise in accounting for contextual visual computations and
human reaction times on visual cognitive tasks. However, to our knowledge, stimulus-computable
recurrent vision models compatible with cue-delay-target paradigms do not exist. More generally,
models have tended to either be stimulus-computable or grounded in biological realism, but usually
not both.
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Figure 1: Low-rank modulations to drive context-aware processing. We present a biologically
motivated, end-to-end trainable network model of dynamics in the visual pathway. Layers in the
model are parameterized by recurrent (tuned) Excitatory (E) and (weakly tuned) Inhibitory (I) neural
populations that interact bidirectionally with a higher-order layer in a low-rank manner. The low-rank
modulatory factors serve to extract abstract context cues from sensory responses for subsequently
driving neural dynamics into context-appropriate dynamical regimes.

Low-rank interactions. Neuronal networks in the brain can be involved in disparate computations
simultaneously [22]. Computational neuroscience research has focused on understanding how such
neural networks can represent task-specific information and, relatedly, its consequence on the system’s
overall behavior. Theoretical results suggest that the coexistence of structured low-rank connectivity
and random connectivity in networks can enable multi-task computations and expand the dynamic
range of the network’s functional capability [23–27]. An alternate but non-orthogonal viewpoint is
that low-rank control inputs from an external system can switch a network’s input-output mappings
context-dependently [28–30]. Most of the computational work in this regard is, however, rooted in
the motor domain, with Schmid and Neumann being a recent exception.

Neurophysiology of attentional control. Biological attention upmodulates task-relevant information
by filtering sensory responses using “templates". Empirical work shows that attentional templates are
primarily represented in higher order cortical areas [31–34] and that such templates can be learned
rapidly on a per-task basis [35]. Moreover, the nature of such attentional filtering is known to be
cell-type and layer-specific [36], with theories emphasizing the role of top-down mediation of specific
GABAergic interneurons [37]. In addition to cortical feedback inputs, higher-order thalamic nuclei
are also known to convey contextual inputs to sensory regions either via direct projections [38, 39] or
indirectly through the frontal cortices [40, 41]. Building biological sensory processing models that
account for all these disparate findings is of primary importance to the Neuroscience community.

3 General methods

3.1 DCnet Model and training details

DCnet comprises two core components: a biologically motivated sensory perception stream and a
higher-order area that interacts bidirectionally with it (Figure. 1). Each of the four sensory areas
in our model are organized retinotopically as hypercolumns consisting of distinct excitatory and
inhibitory neural subpopulations that obey Dale’s law [42]. Excitatory pyramidal neurons receive
bottom-up and recurrent lateral excitatory inputs as well as short-range lateral inhibitory inputs from
interneurons in the same area. Interneurons receive bottom-up and lateral excitatory inputs. Finally,
pyramidal neurons project in a feedforward manner to their downstream area. The ratio between
excitatory and inhibitory neurons is 4 : 1, as observed in cortical areas [43].

3



Figure 2: Explicit context-guided modulation of sensory dynamics is necessary for learning
generalizable solutions. a. We introduce vis-count, a parametric, visually-cued, delayed search
task. On each trial, models are cued with a visual attribute (either a color, shape, or a conjunction
of the two), and after a delay, a scene is presented. The task is to count and report the number of
cue-consistent objects in the scene. b. On each of the three types of trails, we find that our model
consistently outperforms state-of-the-art standard DNNs (Section. 3.2; Baselines) on novel held-out
scenes. Implicit models refer to the condition where cues and scenes are presented simultaneously.
The red dashed line denotes chance performance. c. A harder test of generalization on novel scenes
and cues reveal that our model is robust to such variations, unlike performant implicit models.

The higher-order layer receives pyramidal input from each area and, in turn, modulates inter-area
projections in a low-rank manner operationalized as follows.

r1; r2 = ξ(hl
t)W

T
l,1 + b1; ξ(hl

t)W
T
l,2 + b2 # Compute the linear projections

ml
t = ξ(hl

t) [r1 ⊗ r2] # Compute the modulating factors

hl
t+∆ = hl

t+∆−ϵ ⊙ ml
t # Execute the modulation

Here, hl
t ∈ RC×H×W is the excitatory population readout of area l ∈ [1..4] at time t; ξ(.) is the

spatial average pooling operator; ⊗ denotes outer product and ⊙ denotes pointwise scaling.

Neurons have learnable cell-type specific time constants. We dispense of traditional ML operations
such as BatchNorm or LayerNorm, designed to impart stability during training. Our model has
∼ 1.8M parameters that we learn via gradient descent on a task-performance objective. A full
mathematical specification of the model is provided in Appendix. A.1.

3.2 Baselines

We instantiate baseline models of two varieties. First, we consider a “Convolutional RNN" model
(∼ 8.8M params) that uses a traditional 6-Layer convolutional backbone feeding into a gated recurrent
unit (GRU) [44] with N = 2048 neurons (Appendix. B). We construct this baseline to evaluate the
benefits of an explicit modulatory mechanism such as the higher-order layer in our model. Second,
we consider four standard deep feedforward neural network architectures. As these models do not
operate on spatiotemporal inputs, we condense trials to a single time point by stacking cues and
scenes together. Given the lack of an explicit cue followed by scene phase for these models, we
term them implicit. Cues and scenes are presented at the same time. These baselines provide an
upper bound on the expected performance of DCnet and verify that our chosen task is a non-trivial
computational challenge. In our experiments, we consider the following implicit models: a 6-Layer
CNN (∼ 2.8M params); ResNet-18 [45] (∼ 11.5M params); ViT-B/16 [46] (∼ 86M params), a
vision transformer with a patch size of 16px; Swin-T [47] (∼ 28M params), a hierarchical vision
transformer. Furthermore, we also ran experiments on the zero-shot generalization abilities of an
LLM (Appendix. C).
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Figure 3: Neural network dynamics reveal context-dependent behavior. We perform dimensional-
ity reduction on late layer model activities and visualize neural trajectories (Gray for individual trials;
Dark-colored for trial averages) for different experimental manipulations. The solid dot indicates the
trial start. a. For a fixed cue (color trials visualized here), network dynamics reflect the extraction
and preservation of task-relevant information (object counts) while being invariant to task-irrelevant
bottom-up responses from the different scenes. b. Matched cued vs. uncued trials for the same scene
(inset) reveal a divergence of the bottom-up responses driven by the low-rank modulations.

4 vis-count: A parametric cued visual search task

4.1 Task and stimuli

We draw inspiration from Clevr [48], a synthetic dataset for language-mediated visual reasoning and
construct vis-count, a parametric visually-cued, delayed search task. On each trial, we challenge
models to count and report the number of geometric objects in a visual scene with features consistent
with a cue provided earlier (Figure. 2a). Cues can be simple colors, geometric shapes, or a conjunction
of the two. Scenes comprised 3 − 10 geometric 3D shapes of varying sizes, colors, and material
properties. By construction, there can be 0−5 cue-consistent objects in the scene. We counterbalanced
the dataset so that the distribution of target counts was uniform across trial types. Cues and scenes
were rendered at 320× 240px and resized to 128× 128px for model training and evaluation. In total,
our training (validation) dataset comprised of ∼ 384K (38K) trials. As with Clevr, we detect and
discard scenes with fully occluded objects.

For DCnet and the Convolutional RNN baseline, cues and scenes are visual inputs provided to Layer
1 of these models. Cues are persistently provided to the network for the first T discrete time steps
followed by scenes for the next T time steps. The output activities of the last layer at the last time
step (t = 2T ) are transformed into logits, and a supervision signal is provided via a cross-entropy
loss, with ground truth labels counted from 0 to 5. For the “implicit" baseline models, cues and
scenes are stacked together and presented simultaneously.

4.2 Results

We report the results of our model evaluations and comparisons to baselines in Figure. 2b-c. Our
model consistently and significantly outperforms state-of-the-art DNN vision models when evaluated
on trials with novel held-out scenes, achieving 99%, 95%, 73% accuracy on the color, shape, and
conjunction trials, respectively. Additionally, we perform a harder generalization test by synthesizing
trials with novel cues and novel scenes (e.g., we test our model on blue and green colors, cube
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Figure 4: A selectivity gradient
emerges across the cortical layers
for the different visual cues. We
sequentially lesion the modulatory
synapses in a trained DCnet from
the higher-order layer to each sensory
area, starting from the top-most (D)
to the bottom-most (A) sensory area,
while documenting task performance
on each trial type. (E) indicates the
intact DCnet. While late lesions have
a minimal effect on performance in
color trials, the opposite is true for
shape trials. Early areas in the DCnet
exhibit color selectivity, while later
areas exhibit shape selectivity.

shapes, and conjunctions thereof, all unseen in the training set). Our model demonstrated the best
generalization performance (55%) while even the most performant baseline models (with orders of
magnitude more parameters) dropped to chance (16.67%). Sample model results are visualized in
Appendix. A.5.

Model errors, too, can be particularly enlightening. Consider the last example in Figure. A.5. When
cued to find “blue cylinders", the model mistakenly appears to include either the cyan cylinder or the
occluded blue cube in its count, either of which would reflect an illusory conjunction [49]. Illusory
conjunctions arise due to failures of feature-based attention and have been extensively studied in the
human cognition literature. The presence of such pathologies in our model exposes an opportunity to
gain potential insights into the neural implementations of feature-based attention.

In the following sections, we report analyses of our model’s learned dynamics and internal represen-
tations that support contextual guidance.

What to modulate? Low-rank structures support optimal cue representations. In daily life,
“cues" are not specified to us as abstract rules but rather as high-dimensional sensory inputs. How do
we construct a representational space where abstract rules (derived from sensory responses) and the
sensory responses themselves are distinct yet coexist? Following insights from electrophysiology [29]
and prior theoretical work [23, 24, 28], we hypothesized that learning to inject derived cue information
back into sensory representations as low-rank perturbations will aid in optimally partitioning the
sensory representational space.

DCnet’s task performance indicated that it had indeed learned task-optimal representations. Here, we
perform dimensionality reduction on the activities of pyramidal neurons in the last layer of DCnet to
probe how this optimality emerges.

First, we observe that cued vs. uncued dynamics on individual trials become progressively divergent
and nearly orthogonal with time (Figure. 3b). This indicates that the bidirectional interactions
likely promote the formation of low-dimensional activity subspaces embedded within the higher-
dimensional ambient activity space. Second, we see that the bottom-up responses to the same set
of scenes are differentially modulated to appropriate target subspaces based on the cue (Figure. 3a).
We believe that this happens through the inactivation of context-irrelevant subspaces, resulting in
invariance to current task-irrelevant features. As additional consideration, we note that training
DCnet without this top-down feedback mechanism brings performance down to 38%, highlighting
the importance of this interaction in our framework.

Where to modulate? A cortical gradient for feature selectivity. After extracting abstract context
rules from sensory responses, a question remains: At what level of the representational hierarchy
must the perturbation be applied? We perform lesion analysis on the trained DCnet to probe this
question (Figure. 4).

We sequentially “turn off" modulations, area by area, and observe their detrimental effects on overall
function as determined by task performance. We implement this by setting the modulating factors to
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Figure 5: In silico electrophysiology sheds light on tuning properties and excitation-inhibition
dynamics. We drive network activity in DCnet with uncorrelated, time-varying Gaussian noise
inputs. (a) We depict a randomly chosen neuron in early and late sensory areas of DCnet. Each
E/I neuron pair shown here has matched receptive fields. Learned time constants reflect fast/slow
integration in early/late areas, revealing a macroscopic gradient. By contrasting DCnet trained with
and without inhibition, we find that inhibition plays a crucial role in (b) imparting stability and (c)
expanding the dynamic range of computations in the network. More quantitative details are presented
in Appendix. A.4.

1. We hypothesized that if the modulation of pyramidal neuron activity in a given area is essential for
the system’s function, then lesioning this perturbation will result in a maximal drop in performance.
Interestingly, this analysis yielded differential results per trial type (Figure. 4). For the color trials,
we find that lesioning modulations in the early areas had the largest impact on performance, while
for the shape trials, it was the late modulations that proved critical. In contrast, modulation strength
seemed relatively uniform across the sensory areas.

Taken together, these results offer two insights. First, opposing cortical gradients for color and shape
selectivity emerge and coexist in the sensory areas despite the model only being supervised to “count".
Second, leveraging this selectivity gradient, the higher-order area learns to apply appropriate low-rank
modulations. We believe that the low-rank nature of the context-based modulation, not only within
but also across areas, is fundamental to generalization.

Excitation-Inhibition Dynamics. The amplification of context-relevant sensory representations must
be balanced to support stable dynamics [50]. The neural underpinnings of this balance and its compu-
tational role in feature gain modulation have previously only been studied phenomenologically. Here,
we leverage DCnet to investigate how the circuit-level properties discovered through optimization
can support overall network function.

We probe the cell-type specific neural dynamics in DCnet by driving network activity with uncorre-
lated, time-varying Gaussian noise inputs. First, despite fewer interneurons in the model, inhibitory
interactions play a crucial role in imparting stability (Figure. 5b) and expanding the dynamic range
of computations expressed by the network when compared to a version of DCnet trained without
inhibition (Figure. 5c). Second, we detect the presence of co-tuned excitation and inhibition (Ap-
pendix. A.4). Empirically, co-tuning is known to be a common organizational principle across
the sensory areas. These findings imply the critical role of interneurons in cortical amplification
dynamics underlying context-dependent computations. Finally, we observe that neurons learn to
integrate information faster in early vs. late areas, revealing the emergence of a macroscopic gradient
in neural timescales (Figure. 5a, 8).

5 Model psychophysics on parametric cued feature searches

A feature search is a variant of the general visual search problem in which a “target" is defined by a
single discriminative feature [5]. Parametric variations along (or orthogonal to) this discriminative
feature axis help shed light on the mechanisms of top-down contextual guidance and its impact on
behavior. Here, we consider two feature search tasks from the human psychophysics literature.
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Figure 6: Slower reaction times/larger output entropy with more heterogeneous distractors.
a. Task description. b. We parametrically vary the heterogeneity in distractor orientation (similar
to [5]). c. In both target-present and target-absent trials, we find that the DCnet’s output entropy is
significantly different between low distractor heterogeneity vs. high distractor heterogeneity trials.
Error bars represent the standard error of the mean.

General methods. To perform model psychophysics, we start from the DCnet model trained on
vis-count. We replace its readout to do binary classification (target present/absent) and fine-tune the
model on each task below. Furthermore, to derive a measure of model “reaction time," we compute
the entropy of DCnet’s decision outputs after evolving dynamics for the duration of each trial.

5.1 The role of distractor heterogeneity

Task and stimuli. A target feature’s bottom-up salience (pop-out) does not survive variations in
irrelevant distractor features. (Figure. 6b) [5]. To test this, we construct cued-feature search trails
where models search for an L/T (target) in a grid with a fixed number of Ts/Ls respectively (scene).
Targets and scenes were rendered on a 128×128px canvas. Targets (L/T) were presented at the center
and oriented uniformly at random between [0, 2π). The distractor heterogeneity level (ω) for every
trial was uniform random between [0, 1]. Consequently, distractor orientations in the scene were
uniform random between [θ − ω π

2 , θ + ω π
2 ] with θ ∈ [0, 2π) being the mean distractor orientation.

The target was present in 50% of the trails. Our training (test) dataset comprised of 32K (8K) trials.

Results. When fine tuned on this task, DCnet achieved an overall accuracy of 97% on the test trials.
Moreover, faithful to the human psychophysics results, we find that the entropy of DCnet outputs
is significantly different for low (ω <= 0.5) vs. high (ω > 0.5) distractor heterogeneity for both
target-present (Mann–Whitney U = 302947., p < .001) and target-absent trials (Mann–Whitney
U = 301376., p < .001). While target-absent trials yield higher reaction times in humans when
compared to target-present trials, we don’t see this in our model’s output entropy. This possibly
reflects an imperfect choice for a model reaction time measure, an aspect of our work that we look to
extend upon in future work.

5.2 The role of target-distractor feature differences in the presence of distractors

Task and stimuli. In a classic critical color difference task, human participants were required to
detect a target that differed from distracting stimuli only in color [51]. Search times were measured
for varying color differences as a function of display density (the number of distractors). We
parametrically synthesize stimuli to recreate this task (Figure. 7a-b).

Target and distractor stimuli were chosen to be circular discs of radii 10px. Cues were rendered at
the center of a 128× 128px canvas at a target color chosen at random from among four perceptually
uniform color spaces. Search scenes consisted of 1− 7 distractor stimuli whose color differed from
the target color at one of 10 preset target-distractor difference levels chosen uniformly at random.
The target was present in 50% of the trails. In total, our training (test) dataset comprised of 32K (8K)
trials.
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Figure 7: Differential reaction times/output entropy predictions for varying levels of target-
distractor differences. a. Task description. b. We parametrically vary both the number of distracting
stimuli in the scene and the target-distractor color difference [5]). c. DCnet’s output entropy is
invariant (linear) to the number of distracting stimuli when the feature difference is high (low),
capturing the psychophysical phenomenon of "popout." d. Model entropy as a function of target-
distractor feature difference when marginalized over the number of distracting stimuli. Error bars
represent the standard error of the mean.

Results. When fine tuned on this task, DCnet achieved an overall accuracy of 95% on the test trials.
Moreover, DCnet recapitulates two key findings from the psychophysics literature.

We probe DCnet’s output entropy (a proxy for model RT) as a function of the number of distractors
in the scene. We find that for trials in which the target-distractor color difference was high, model
entropy was invariant to the number of distracting stimuli (Pearson’s r = −0.11). On trials where
the target-distractor color difference was low, model entropy increased linearly with the number
of distracting stimuli in the scene (Pearson’s r = 0.55). We find a similar result when we probe
DCnet’s output entropy as a function of the target-distractor feature difference. These results faithfully
replicate behavioral effects reported in prior literature [5, 51, 52].

As we alluded to in Section 5.1, our reaction time (RT) metric is one among many possible choices.
To take a step further, we implement and test another RT metric inspired by evidential learning (EDL)
theory as proposed in [20]. We verify that our primary conclusions from this experiment hold even
in the context of this new metric. Finetuned on the EDL objective, DCnet achieves 86% accuracy
on this task. Model RTs, computed as a time-averaged uncertainty measure, increased linearly with
the number of distractors in the low target-distractor color difference trials (Pearson’s r = 0.92) and
was invariant to the number of distractors on high target-distractor color difference trials (Pearson’s
r = 0.2).

6 Discussion

The advent of highly-performant ventral stream models of visual perception is rapidly revolutionizing
visual neuroscience research. Stimulus computable models operating directly on high dimensional
sensory inputs yield benefits as hypothesis generators for scientific discovery. [53–55]. However,
there exist two fundamental axes of dissonance, which are potential rate limitors. First, the emphasis
on building “bigger and better" models promotes a divergence from biological realism [56]. Second,
it is evident that the extent of biological visual capabilities spans a space bigger than one that entails
only feedforward perceptual modules [1, 57, 58]. It calls for accounting for the cooperative dynamics
between perceptual and cognitive processes [59].

In this work, we aim to bridge this gap by introducing a computational framework that emphasizes
biological realism and conceptualizes interactions between perceptual dynamics and abstract cognitive
demands while being scalable and stimulus-computable. We present the Dynamical Cortical network
(DCnet): a trainable neural network model of visual dynamics incorporating local, lateral, and
feedforward synaptic connections, excitatory and inhibitory neurons, and long-range top-down inputs
conceptualized as low-rank modulations of the input-driven sensory responses by high-level areas.

9



We start by studying the ability and behavior of DCnet to operate in a visually-cued search paradigm.
DCnet not only outperforms state-of-the-art DNN models, but its population states over time reveal
the computational structure and neural underpinnings of contextual modulatory dynamics, generating
predictions for experiments. Furthermore, we fine-tune the same model to perform two classic 2AFC
attention psychophysics tasks. Reaction time analogs from DCnet strikingly recapitulate core tenets of
feature-based attentional modulation. We find that DCnet responses are sensitive to target-distractor
feature differences, heterogeneity of irrelevant distractor features, and display density.

Overall, these contributions suggest that our approach is a promising framework for modeling the
brain’s visual cortical dynamics, one that replicates key neural and behavioral signatures of contextual
attentional modulation.

Limitations and future directions. In this work, we take the first step towards building an overcom-
plete model of cortical circuitry. Palpable omissions from our current framework include long-range
inter-area feedback and compartmental separation of feedforward and feedback inputs. We hope
to continue building on this framework in the future to include these components that will open up
novel avenues for computational neuroscience. Additionally, extracting reaction time measures from
large-scale recurrent models is a discipline of its own [20]. We adopt a simple reaction time metric
here that suffices for our current purpose, but we plan to include other sophisticated comparisons
in future work. Lastly, we have restricted our purview to visual sensory processing. The concept
of contextual modulation, however, is pervasive across sensory modalities. We are excited about
extending our ideas to other sensory domains.

Broader impact. Artificially intelligent models with enhanced visual capabilities are now pervasive
in our daily lives. The not-so-hidden cost we pay to enjoy these models’ benefits is their carbon
footprint on our environment. Building energy-, parameter-, and sample-efficient models that are
also performant is non-negotiable going forward. Understanding context-aware behavior is of utmost
importance for neuroscience research as its failure modes are associated with several psychiatric and
neuropathologies. We do not anticipate any negative impact that our work would create.
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A Dynamical Cortical network (DCnet)

A.1 Architectural specification

We instantiate DCnet as a recurrent convolutional neural network model following the primate
visual cortex’s anatomical and neurophysiological properties. DCnet implements local, lateral, and
feedforward synaptic connections, excitatory and inhibitory neurons, and long-range top-down inputs
conceptualized as low-rank modulations of the input-driven sensory responses by high-level areas.

Specified below are the governing dynamics for the neurons in our model. Neurons in our model
are either excitatory (E) or inhibitory (I). l denotes the network layer (brain area). αl and βl are
indices used to describe excitatory and inhibitory cell types, respectively, in layer l. (x, y) describes a
specific spatial location. z(l) is the feedforward input to layer l. h refers to a neuron’s instantaneous
state.
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are cell-type specific learnable neural time constants. Synaptic connections W ’s are
sparse matrices on which we impose translational invariance (details below). These are, in practice,
realized as convolutions. bE

αl
and bI

βl
are excitatory and inhibitory cell-type specific learnable

thresholds. f(.) is a non-linear activation function. We use the hyperbolic tangent as our activation
function f . An average pooling operation Pool is applied to layer pyramidal outputs (hE) to increase
the receptive field size by a factor of two.

z(l+1)[t] =

{
Pool(h(l)

E [t])⊙ Γ(ξ(h
(l)
E [t− T ])) t ≥ T

Pool(h(l)
E [t]) t < T

We make discrete time approximations to train our model. The cue is presented first to the network
(z(1)[0])) and the dynamics are unrolled for T steps followed by scene presentation (z(1)[T ])) for
another T steps. While the scene is presented, inputs to each layer are modulated as follows, where
ξ(.) is a pooling operator that computes the average activity per cell type across all (x, y). Γ(e) is the
low-rank modulation function defined as follows:

Γ(e) = e ⊙ σ
(
[Wl,1eT + b1]⊗ [Wl,2eT + b2]

)
Here, Wl,1,Wl,2 are learnable linear projections and b1,b2 are learnable biases. ⊗ denotes outer
product and ⊙ denotes pointwise scaling. By construction, the output of [Wl,1eT+b1]⊗[Wl,2eT+b2]
is a low-rank matrix.

A.2 Implementational details

This section provides specific details on model parameters detailed in Section A.1. All layers have
the following convolutional kernels (Ws specified in the governing equations): Input to excitation
(Winput→E), excitation to excitation (WE→E), excitation to inhibition (WE→I), inhibition to excitation
(WI→E), and input to inhibition (Winput→I). The dimensionality of these convolutions is listed
layer-wise below, along with the kernel and padding shapes for all convolutions in that layer.

Input size # exc. cell types (N l
E) # inh. cell types (N l

I ) Kernel size, Padding
Layer 1 3× 128× 128 16 4 (5, 5), (2, 2)
Layer 2 16× 64× 64 32 8 (5, 5), (2, 2)
Layer 3 33× 32× 32 64 16 (5, 5), (2, 2)
Layer 4 128× 16× 16 128 32 (3, 3), (1, 1)
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 1 Layer 2 Layer 3 Layer 4

a b

Figure 8: An emergent macroscopic gradient in neuron time constants. Cell-type specific
integration time constants in DCnet are learnable parameters. While we initialize the τ ’s uniformly
(blue) pre-training, we observe layer-dependence post-training for both the (a) excitatory, and (b)
inhibitory cell types.

The outputs from the last layer are transformed via a linear readout parameterized as a fully connected
layer (1024 × 6) into logits, which we supervise with a CrossEntropy loss. The model does not
include standard embellishments like explicit normalization layers, model ensembling, test-time
augmentations, etc.

A.3 Training details

All models were trained on A100 GPUs for 100 epochs each. An experimental run took anywhere
from 4-8 hours to complete. We used an AdamW optimizer (momentum=0.9, β1 = 0.9, β2 = 0.999),
a one-cycle learning rate scheduler with a warm-up period of 30 epochs and a maximum learning rate
of 4e− 4. DCnet was 4 layers deep (∼ 1.8M learnable parameters) and was trained with batches of
256 samples. Code and datasets can be found here: Project repository.

A.4 Mechanistic interpretability analyses

In the interest of mechanistic interpretability, we perform a series of experiments on DCnet. We drive
activity by uncorrelated, time-varying Gaussian noise inputs. We then compute:

1. The Lag-1 autocorrelation as a measure of stability of the excitatory neurons (Fig. 5b). We
find that DCnet excitatory neurons are significantly more stable than excitatory neurons
in the DCnet (trained w/o inhibition) model. A Kolmogorov–Smirnov test confirmed the
significant difference (statistic=1.0, p < .001).

2. The Dynamic Range (DR) of excitatory cells in each layer of DCnet and compare that to
the DR of corresponding excitatory cells from DCnet (trained w/o inhibition) (Fig. 5c). DR
is computed as the Interquartile range (a measure of statistical dispersion) of a neuron’s
activity over a time period of 128ms when driven by noise. We take the mean over 64
trials for each neuron and plot this distribution per layer in Fig. 5c. We find that excitatory
neurons in the DCnet model have a significantly higher DR across layers compared to DCnet
(trained w/o inhibition), suggesting the role of inhibitory interactions in expanding the
range of computations carried out by each neuron. A Kolmogorov–Smirnov test confirmed
these significant differences (Layer 1 (statistic=0.667, p < .001); Layer 2 (statistic=0.99,
p < .001); Layer 3 (statistic=1.0, p < .001); Layer 4 (statistic=0.97, p < .001)).

3. The E-I correlation coefficient as a measure of co-tuning in DCnet. We find that the average
(across neurons) E-I correlation is as follows: −0.076 (Layer 1), 0.766 (Layer 2), 0.699
(Layer 3), 0.535 (Layer 4).

Additionally, we also highlight a macroscopic gradient in learned time constants across the layers of
DCnet (Fig. 8).
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A.5 Sample model outputs
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Figure 9: Model outputs. Visualizing example DCnet predictions on out-of-distribution (held-out)
scenes across trial types.
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A.6 DCnet on visual object recognition

In a follow-up experiment, we train the sensory backbone of DCnet on a visual object recognition
task. On CIFAR-10, we report a test accuracy of 84.79%. We highlight that our model does not
include standard embellishments used in machine learning, including explicit normalization layers,
model ensembling, test-time augmentations, etc. This is a first step that strongly demonstrates the
potential of our framework to scale up.

Figure 10: DCnet performance on visual object recognition. Confusion matrix of DCnet outputs
on the CIFAR-10 test set. Overall model performance is 84.79%.

B Convolutional RNN Baseline

Layer Input Size Operations
Layer 1 3 × 128 × 128 Conv2d (8 × 3 × 5 × 5), ReLU, AvgPool2d (5 × 5, stride 2)
Layer 2 8 × 64 × 64 Conv2d (16 × 8 × 5 × 5), ReLU, AvgPool2d (5 × 5, stride 2)
Layer 3 16 × 32 × 32 Conv2d (32 × 16 × 5 × 5), ReLU, AvgPool2d (3 × 3, stride 2)
Layer 4 32 × 16 × 16 Conv2d (64 × 32 × 3 × 3), ReLU, AvgPool2d (3 × 3, stride 2)
Layer 5 64 × 8 × 8 Conv2d (128 × 64 × 3 × 3), ReLU, AvgPool2d (2 × 2, stride 2)
Layer 6 128 × 4 × 4 Conv2d (128 × 128 × 3 × 3), ReLU, AvgPool2d (1 × 1, stride 1)
Projection Fully connected (2048 inputs, 2048 outputs), ReLU,

GRU (2048 inputs, 2048 outputs)
Readout Fully connected (2048 inputs, 6 outputs)

Table 1: Baseline model details

Convolution filters are mentioned as: (output channels × input channels × kernel height × kernel
width). Pooling layers are mentioned as: (kernel height × kernel width, stride). Inputs to every layer
were normalized with LayerNorm. The convolutional backbone serves as a feature extractor for the
GRU network. We train this baseline model by passing in the cue for the first T time steps followed
by the scene for the next T timesteps. For our experiments, we set T = 3. A cross-entropy loss is
used for the readout activities at the final time step.
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C Zero-shot testing of LLM

Prompt Here is a task that takes two images, a cue and a scene. Here are the instructions: 
1. If the cue is a color, return a count of how many objects in the scene have that 
color. 2. If the cue is an orange colored shape, return a count of all objects 
in the scene that have that shape. 3. If the cue is a non-orange colored
shape, return a count of all objects in the scene that have that shape and color. 
You will only need to follow 1 of the 3 instructions above. Don’t write code. 
There is no need to explain the logic of your counting. 
Simply provide the final answer.

GPT4 Sure, I can help with that. Please upload the two images you have: the cue image and
the scene image, and I’ll proceed according to your instructions.

Figure 11: ChatGPT4 experiments We prompted GPT4 to solve solve vis-count. Given a color,
shape, or conjunction cue, we asked the LLM to identify how many objects in the provided scene
match the cue’s properties. Out of 30 trials, GPT4 achieved a success rate of 37%.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, all claims made in the abstract and introduction reflect the paper’s
contributions. We make it clear the strengths of our work and also the limitations.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, the limitations of our work is discussed in the Discussion section of our
paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not contain any purely mathematical or theoretical results.
There are no mathematical proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, the details about our experimental setup are provided in the Supplementary
Section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

20



• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, we provide a link to our code that is anonymized. We ensure that the code
can be used to reproduce our main experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Hyperparameters are provided in our Supplementary Section. Further details
regarding our experiments can also be found in our code, which we fully disclose in our
Supplementary Section as well.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report all statistically significant measures for our experiments. These can
be seen in our Results section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Discussion about the resources used to train our model are discussed in the
Supplementary Section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have verified that our work follows the NeurIPS Code of Ethics fully and
completely.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work does not have a clear societal impact and thus we do not discuss this
in our paper. This work is with regards to building biologically plausible vision models that
can serve as hypothesis generators for real world experiments. These models will not be
used by the average everyday user or affect everyday society in any regard.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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Justification: Our model poses no such risks. We do not train large models that have
collected user data, nor do we present such models in our work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Baselines implemented by other research papers have been fully credited. All
code is properly documented and cited, as well.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the code for exactly reproducing the datasets that we generate.
This reproduction process is well documented and is shared within the code that we share.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing research or collecting humans in
any way.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This research does not involve crowdsourcing or conducting experi-
ments/research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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