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Abstract

Large language models (LLMs) based on trans-001
former are witnessing a notable trend of size002
expansion, which brings considerable costs to003
both model training and inference. However,004
existing methods such as model quantization,005
knowledge distillation, and model pruning are006
constrained by various issues, including hard-007
ware support limitations, the need for exten-008
sive training, and alterations to the model inter-009
nal structure. In this paper, we propose a con-010
cise layer-wise structured pruner called Layer011
Collapse (LaCo), in which rear model layers012
collapse into a prior layer, enabling a rapid013
reduction in model size while preserving the014
model structure. Comprehensive experiments015
show that our method maintains an average016
task performance of over 80% at pruning ratios017
of 25-30%, significantly outperforming exist-018
ing state-of-the-art structured pruning methods.019
We also conduct post-training experiments to020
confirm that the LaCo effectively inherits the021
parameters of the original model. Additionally,022
we perform ablation studies on various settings023
of LaCo. Finally, we discuss our motivation024
from the perspective of layer-wise similarity025
and evaluate the performance of the pruned026
LLMs across various pruning ratios.027

1 Introduction028

Recently, large language models (LLMs) based on029

transformer (Vaswani et al., 2017) have showcased030

impressive capabilities across diverse tasks. How-031

ever, the prevailing trend in model development032

leans towards larger scales, placing substantial de-033

mands on computational resources.034

To mitigate the above challenge, various ap-035

proaches have been explored to reduce the infer-036

ence and training costs of models or to derive a037

smaller model from an LLM, including model038

quantization (Dettmers et al., 2022; Yao et al.,039

2022; Xiao et al., 2023), knowledge distillation040

(Liu et al., 2022; Hsieh et al., 2023; Shridhar et al.,041
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Figure 1: An example of Reserving-Differences-while-
Seeking-Common (RDSC) Layer Merge. In (a), we
perform parameter differencing, which we regard as
Reserving-Differences. In (b), we conduct parameter
merging, which we interpret as Seeking-Common.

2023), and model pruning (Zhang et al., 2022; Fran- 042

tar and Alistarh, 2023; Ma et al., 2023). How- 043

ever, existing solutions exhibit certain notable draw- 044

backs. Model quantization typically necessitates 045

specific hardware support and often impacts model 046

performance. Knowledge distillation often requires 047

retraining a smaller model, which is costly and task- 048

specific. Model pruning, whether non-structured 049

or structured, has its issues. Non-structured prun- 050

ing often involves model sparsity, which generally 051

leads to certain performance loss and also relies 052

on hardware support. Structured pruning entails re- 053

moving specific modules, often altering the model 054

structure and diminishing the model portability. 055

Considering the above issues, we contemplate di- 056

rectly pruning the model with a new idea: to prune 057

some layers directly from a well-trained LLM and 058

substitute the parameters of one layer for multiple 059

layers, enabling effective model pruning. 060

Specifically, we observe that merging the param- 061

eter differentials of certain layers with their sub- 062

sequent layers often does not significantly impact 063

model performance, as illustrated in Figure 1. We 064

term it the Reserving-Differences-while-Seeking- 065
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Common (RDSC) Layer Merge, as it incorporates066

parameter differencing and merging. Building067

upon this insight, we introduce a streamlined yet068

potent layer-wise pruner dubbed Layer Collapse069

(LaCo), in which rear layers collapse into a prior070

layer, with the objective of preserving the model’s071

output representation. In this paper:072

• The Layer Collapse can directly remove 30%-073

50% of model layers without training while main-074

taining the model performance. Experiments on075

multiple benchmarks show that our approach out-076

performs state-of-the-art structured pruning meth-077

ods under equivalent pruning ratios.078

• The Layer Collapse preserves the internal079

structure of LLMs, such as maintaining intermedi-080

ate dimensions. So, the pruned models can be seam-081

lessly integrated into existing applications without082

any changes to the system’s implementation.083

•We conduct post-training to confirm that Layer084

Collapse can efficiently inherit parameters and re-085

quires only minimal training to restore the pruned086

model to the original model’s loss convergence087

level. Additionally, we discuss our motivation and088

evaluate the performance of pruned models using089

LaCo across different pruning ratios. We also per-090

form ablation studies on various settings of LaCo.091

2 Method092

2.1 Reserving-Differences-while-Seeking-093

Common Layer Merge094

For the l-th layer of an LLM, we denote all095

its parameters, including those in self-attention096

(SAN) and MLP as θl. For the m consecutive097

layers following it, we merge the parameters of098

θl+1,θl+2, · · · ,θl+m into θl to form θ∗
l :099

θ∗
l = θl + (θl+1 − θl) + · · ·+ (θl+m − θl)

= θl +
m∑
k=1

(θl+k − θl)
(1)100

where (θl+k − θl) is the layer-wise parameter dif-101

ference. Given identical layer structures, we in-102

dependently apply these processes to both SAN103

and MLP. Then, these m consecutive layers will be104

discarded. Subsequent model pruning will contin-105

uously involve RDSC Layer Merge which can be106

regarded as the continual collapse of layers onto107

specific layers, hence the name Layer Collapse.108

2.2 Layer Collapse109

We dynamically merge adjacent layers from the110

topmost layer down, ensuring the pruned model’s111

Algorithm 1 Workflow of Layer Collapse

Input: LLMM; Number of layers combined in
each merge C; Layer range [L,H]; Minimum
interval between two adjacent merged layers I;
Few-shot Calibration Samples D; Threshold
for representation similarity T

Output: Pruned LLMM∗

1: M∗ ←M
2: l← H− C
3: while l >= L do
4: K ←Min(C − 1, Layer_Count(M∗)−l)
5: Mtmp ← RDSC_Lay_Merge(M∗, l, K)
6: s← Avg_Cos_Sim(Mtmp,M, D)
7: if s > T then
8: M∗ ←Mtmp

9: l← l − I
10: if l > Layer_Count(M∗) then
11: l←Layer_Count(M∗)−C
12: end if
13: else
14: l← l − 1
15: end if
16: end while
17: returnM∗

output representation on few-shot calibration sam- 112

ples remains as similar as possible to the original 113

model to minimize performance loss. Algorithm 1 114

summarizes the workflow of Layer Collapse: 115

(1) Preparation 116

For an LLM M to be pruned, we define the 117

number of layers to be merged during each merg- 118

ing operation as C. We configure the merging to 119

operate within a certain range of layers, denoted as 120

[L,H]. As the layer merging operation inevitably 121

leads to a performance loss, to prevent consecutive 122

layer merging from causing a sharp decline in the 123

model performance, we set a minimum interval of 124

layers between two merging operations as I. Few- 125

shot calibration samples D, typically a few plain 126

sentences, are used during the pruning process. We 127

perform forward computations on D with both the 128

pruned and original models to obtain the output 129

representations and ensure that the similarity of 130

representations is not less than the threshold T . 131

(2) Pruning (line 1-17) 132

We present an illustration of Layer Collapse in 133

Figure 2. We begin by initializing the modelM∗ 134

with the modelM and set a layer pointer l to start 135

fromH− C. Then, the iterative process begins: 136

RDSC Layer Merge (line 4-5) During each iter- 137

2



𝜽𝒍

𝜽𝒍ା𝟏

𝜽𝒍ା𝟐

𝜽𝒍ା𝓚

𝜽𝓛

𝜽𝓗

𝓜∗

𝜽𝒍 + ∆𝜽𝟏+. . . +∆𝜽𝓚

𝜽𝒍ା𝟏

𝜽𝒍ା𝟐

𝜽𝒍ା𝓚

𝜽𝓛

𝜽𝓗

𝓜𝒕𝒎𝒑

Given the model ℳ before pruning, 
evaluate ℳ௧ on 𝒟

𝓚 = 𝑀𝑖𝑛(𝓒 − 1, 𝐿𝑎𝑦_𝑐𝑛𝑡(𝓜∗))

𝓜∗ = 𝓜𝒕𝒎𝒑

𝒍 = 𝑀𝑖𝑛(𝒍−   , 𝐿𝑎𝑦_𝑐𝑛𝑡(𝓜∗) − 𝓒)

𝒔 = 𝐴𝑣𝑔_𝐶𝑜𝑠_𝑆𝑖𝑚(𝓜𝒕𝒎𝒑, 𝓜, 𝓓)

𝒍 = 𝒍 − 𝟏

𝒍 ≥ 𝓛 𝒍 < 𝓛

𝒔 > 𝒔 ≤

Pruned LLM
Next Iteration

Try RDSC layer merging 
the following 𝓚 layers of 𝒍

RDSC Layer Merge Calculate Similarity

Merge Evaluation
and Adjustment



 

Figure 2: An illustration of Layer Collapse.

ation, our approach involves merging the K layers138

following layer l into layer l itself and then discard-139

ing the redundant K layers, where K is the mini-140

mum of C − 1 and the total layer count ofM∗ − l,141

implying merging either the subsequent C − 1 lay-142

ers or all layers following l, thus to prune the model143

M∗, resulting in the interim modelMtmp.144

Calculate Similarity (line 6) We process each145

sentence in D using forward computations with146

Mtmp andM to derive their representations which147

are the output hidden-states of the last layer of148

the model. For every sentence, we then calculate149

the cosine similarity between these representations150

from both models, averaging these values to obtain151

the overall similarity score s.152

Merge Evaluation and Adjustment (line 7-153

15) Then, we evaluate s against the threshold T .154

Should s exceed T , the current merge is considered155

successful. Then,Mtmp is updated toM∗ for the156

next iteration, and the pointer l is adjusted down-157

wards by I layers. Conversely, l is simply reduced158

by a single layer. It is important to highlight that159

the instances may occur where l falls below the160

total layer count ofM∗ after a series of successive161

merges. Consequently, it is required to reset l to162

the layer count inM∗ − C, as illustrated in line 11.163

We iterate through the above process until l is164

less than L and output the pruned LLM.165

2.3 Complexity Analysis166

The complexity of LaCo primarily depends on167

model inference. In the worst-case scenario, with168

L set to 0 and H to the total number of layers,169

if in each iteration the similarity s is less than T ,170

all layers will be traversed. Thus, the worst-case171

time complexity is O(H× ||D||). For example, for 172

Llama2-13B with 40 layers and ||D|| consisting of 173

10 sentences, the maximum number of inference 174

steps would be only 400 sentences, which can be 175

completed within minutes on a single GPU. 176

3 Experiments 177

3.1 Models 178

To assess the effectiveness of the proposed LaCo, 179

we conduct experiments on popular English LLMs, 180

Llama2-7B and 13B (Touvron et al., 2023). Ad- 181

ditionally, we test the effectiveness on bilingual 182

LLMs, specifically Baichuan2-7B and 13B (Yang 183

et al., 2023), which support both Chinese and En- 184

glish. We leverage the base versions of these LLMs. 185

All these models are decoder-only models based 186

on the transformer architecture. 187

3.2 Benchmarks 188

To comprehensively evaluate the pruned model’s 189

capabilities, we utilized the OpenCompass eval- 190

uation framework (Contributors, 2023). Specifi- 191

cally, following OpenCompass categorization, we 192

conduct evaluations in five aspects: Reasoning, 193

Language, Knowledge, Examination and Under- 194

standing. We select several benchmarks from each 195

category. Reasoning: CMNLI (Xu et al., 2020), 196

HellaSwag (HeSw) (Zellers et al., 2019), PIQA 197

(Bisk et al., 2019). Language: CHID (Zheng et al., 198

2019), WSC (Levesque et al., 2012). Knowledge: 199

CommonSenseQA (CoQA) (Talmor et al., 2018), 200

BoolQ (Clark et al., 2019). Examination: MMLU 201

(Hendrycks et al., 2021), CMMLU (Li et al., 2023). 202

Understanding: Race-High/Middle (H/M) (Lai 203
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et al., 2017), XSum (Narayan et al., 2018), C3204

(Sun et al., 2020).205

We conduct evaluations using official scripts206

from OpenCompass, all zero-shot or few-shot,207

without additional training. Two evaluation modes208

are utilized: perplexity (PPL) and generation209

(GEN) 1. For CHID and XSum, we use the GEN210

mode. For the WSC dataset, we use both PPL211

(WSCP) and GEN (WSCG) modes. The remain-212

ing benchmarks are evaluated using the PPL mode.213

The evaluation results on each benchmark are con-214

verted to a score by OpenCompass, where a higher215

score indicates better performance. OpenCom-216

pass provides official evaluation results for the217

Baichuan2 and Llama2 series. However, to avoid218

discrepancies resulting from hardware and software219

environments, as well as potential errors in official220

results, we reproduce all results to ensure fairness.221

3.3 Baselines222

Since LaCo involves structured pruning, which di-223

rectly removes components from LLMs, we se-224

lect two state-of-the-art (SOTA) structured pruning225

methods, LLM-Pruner (LLMPru.) (Ma et al., 2023)226

and SliceGPT (Ashkboos et al., 2024), as our base-227

lines. These methods have surpassed the previous228

SOTA sparsity method, SparseGPT (Frantar and229

Alistarh, 2023). In our experiments, we set the230

pruning ratios of baselines to be equivalent to or231

slightly smaller than LaCo to ensure fairness.232

3.4 Settings233

Since previous work mostly set pruning ratios be-234

low 30%, we heuristically adjust the hyperparame-235

ters to bring the model pruning ratio close to 30%,236

as shown in Appendix A Table 7. We randomly se-237

lect 5 sentences from both the English and Chinese238

Wikipedia datasets for Baichuan2 and 10 sentences239

from English Wikipedia for Llama2 as few-shot cal-240

ibration samples. All experiments are conducted241

on a server with 8 Nvidia A100 80GB GPUs.242

3.5 Main Results243

In Table 1, we present the results of four LLMs un-244

der different pruning methods across various bench-245

marks. “Dense” represents the official results of246

the unpruned LLMs in OpenCompass leaderboards,247

while “Dense∗” represents our reproduction of the248

“Dense” results. "LLMPru." and "SliceGPT" corre-249

spond to the two baselines, respectively. “Ratio"250

1opencompass.readthedocs.io/en/latest/get_started/faq.html

refers to the overall pruning ratio, namely the pro- 251

portion of the total number of pruned parameters 252

to that of the unpruned model. “Lay.” denotes the 253

total number of layers in the model. 254

Comparing Dense and Dense∗, the results show 255

not much difference, with most discrepancies 256

within 5%. This indicates our experimental setup 257

is error-free. To ensure fairness, we compare the 258

results against Dense∗ in the subsequent analyses. 259

Upon comparing LaCo with the baselines, from 260

Table 1, it can be observed that LaCo achieves the 261

best results on most benchmarks, despite our prun- 262

ing ratio being slightly higher than the baselines. 263

To provide a more intuitive presentation of the 264

results in Table 1, we compute the average scores 265

of each pruner across all benchmarks (Avg.), the 266

average scores per category (Reas., Lan., Know., 267

Exam., Unde.), and the average performance per- 268

centages relative to Dense∗ across all benchmarks 269

(Per.) in Table 2. Overall, our average scores are 270

significantly higher than the baselines. LaCo shows 271

superior performance in four out of five categories. 272

Though there is a slight dip in Reasoning, it re- 273

mains comparable. Additionally, LaCo’s average 274

performance percentage across all datasets, relative 275

to Dense∗, is far superior to the baselines. The aver- 276

age percentage surpasses 80% in three out of four 277

models, with the lowest being 73% on Baichuan2- 278

7B. In contrast, none of the baselines exceed 70%. 279

To demonstrate the stability of the pruned mod- 280

els by LaCo, we compute the performance percent- 281

age relative to Dense∗ (Appendix D.3 Table 16). 282

LaCo-pruned models maintain performance above 283

70% on most benchmarks and do not experience 284

crashes, with no performance dropping below 30%. 285

Notably, on three benchmarks evaluated through 286

GEN mode, CHID, XSUM, and WSCG, the LLMs 287

pruned by LaCo maintain relatively stable perfor- 288

mance, while models pruned by baselines exhibit 289

poorly, with even multiple results becoming 0.00. 290

GEN mode scores are based on the model’s gen- 291

erated sentences, and the models pruned by base- 292

lines are prone to producing meaningless repeti- 293

tive outputs. In Appendix D.4 Table 17, we show- 294

case an example from the Xsum benchmark, where 295

Llama2-7B, pruned by baselines, produces nonsen- 296

sical repeated outputs, whereas our LaCo yields 297

outputs resembling normal sentences. 298

In summary, LaCo is a superior pruner that pre- 299

serves model performance and demonstrates excep- 300

tional stability across various benchmarks. It relies 301

solely on parameter differences and additions, with- 302
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LLM Pruner Ratio/Lay. Reasoning Language Knowledge Examination Understanding
CMNLI HeSw PIQA CHID WSCP WSCG CoQA BoolQ MMLU CMMLU RaceH RaceM XSum C3

Llama2
-7B

Dense 0%/32 34.90 74.00 78.30 46.50 - 66.30 66.50 74.90 46.80 31.80 37.50 40.20 19.70 42.80

Dense∗ 0%/32 32.98 71.35 78.18 46.04 37.50 38.46 66.67 70.67 45.92 31.86 35.51 33.15 19.68 43.78

LLMPru. 27.0%/32 34.33 56.46 71.22 25.25 36.54 0.96 42.51 55.20 23.33 25.25 22.56 22.35 11.51 25.64

SliceGPT 26.4%/32 31.70 50.27 66.21 20.79 36.54 19.23 41.36 38.32 28.92 25.37 21.07 21.66 4.89 39.78

LaCo 27.1%/23 34.43 55.69 69.80 36.14 40.38 25.00 45.70 64.07 26.45 25.24 22.61 23.61 15.64 39.67

Llama2
-13B

Dense 0%/40 41.40 77.50 79.80 53.00 - 66.30 66.70 82.40 55.00 38.40 58.90 63.00 23.40 46.10

Dense∗ 0%/40 32.99 74.83 79.71 52.97 50.96 63.46 66.91 71.50 55.63 38.74 58.03 60.24 23.56 47.51

LLMPru. 24.4%/40 33.03 67.76 76.66 35.64 40.38 0.00 50.86 56.42 25.21 24.71 22.47 22.08 19.17 32.33

SliceGPT 23.6%/40 29.82 55.71 69.04 19.31 36.54 36.54 47.26 37.86 37.14 25.79 23.41 24.03 5.27 41.92

LaCo 24.6%/30 32.86 64.39 74.27 40.10 52.88 35.58 52.66 63.98 45.93 32.62 54.49 56.55 14.45 44.93

Baic2.
-7B

Dense 0%/32 32.90 67.00 76.20 82.70 - 66.30 63.00 63.20 54.70 57.00 52.50 50.90 20.90 64.50

Dense∗ 0%/32 33.37 67.56 76.17 82.67 41.35 63.46 63.14 63.30 54.25 56.95 52.63 51.04 20.84 64.55

LLMPru. 24.2%/32 32.28 53.66 71.82 69.80 53.85 0.00 47.83 61.19 24.93 25.69 21.96 22.28 15.98 41.64

SliceGPT 22.2%/32 32.07 25.29 50.33 14.85 36.54 0.00 19.57 39.30 25.18 25.25 23.53 22.49 0.00 26.58

LaCo 24.2%/23 33.00 52.28 68.50 76.24 42.31 26.92 47.26 56.15 31.53 31.24 28.99 27.72 12.03 50.85

Baic2.
-13B

Dense 0%/40 32.70 70.80 78.10 83.20 - 63.20 65.60 67.00 59.50 61.30 67.20 68.90 25.20 65.60

Dense∗ 0%/40 33.21 71.10 78.07 83.17 41.35 63.46 65.60 67.00 58.81 61.27 67.27 68.94 24.95 65.64

LLMPru. 24.3%/40 33.80 53.57 71.82 72.77 37.50 0.00 38.82 56.54 23.19 25.18 21.17 21.61 13.67 39.89

SliceGPT 22.8%/40 32.07 25.85 51.03 10.40 36.54 0.00 18.02 37.83 22.95 25.26 21.56 21.52 0.00 24.99

LaCo 24.7%/30 33.03 60.71 68.88 76.73 44.23 60.58 55.45 62.35 51.35 53.65 56.92 57.80 12.32 61.10

Table 1: The main results of our experiments. Lay. is the number of model layers. Dense is the official LLM results
in OpenCompass and Dense∗ is our reproduction. LLMPru. and SliceGPT are two baseline comparisons.

out altering the model’s internal structure, resulting303

in a concise and efficient pruning solution.304

3.6 Pruning Time305

To verify that LaCo has lower time complexity and306

faster pruning speed than the baselines, we com-307

pare LaCo with them for 27% sparsity pruning of308

Llama2-7B on a single A100 GPU. For fairness,309

we only measure the main pruning process, exclud-310

ing the time for loading models, loading data, and311

storing models. The results in Table 3 show LaCo312

pruning is more efficient compared to the baselines.313

3.7 Memory Usage and Inference Speed314

We also aim to investigate whether the model315

pruned by LaCo offers advantages in memory us-316

age and inference speed compared to the models317

pruned by the baselines. In Table 4, we present the318

average memory consumption and inference speed319

of the Llama2-13B pruned models from Table 1 on320

the English Wiki dataset (The results for all models321

are in Appendix D.1, Table 14). All models are322

loaded in Bf16 on a single A100 GPU.323

LLM Pruner Avg. Per. Reas. Lan. Know. Exam. Unde.

Llama2
-7B

Dense∗ 46.55 100% 60.83 40.67 68.67 38.89 33.03

LLMPru. 32.36 67.79% 54.00 20.92 48.86 24.29 20.52

SliceGPT 31.87 67.37% 49.39 25.52 39.84 27.15 21.85

LaCo 37.46 80.28% 53.30 33.84 54.89 25.85 25.38

Llama2
-13B

Dense∗ 55.50 100% 62.51 55.80 69.20 47.18 47.34

LLMPru. 36.19 65.87% 59.15 25.34 53.64 24.96 24.01

SliceGPT 34.97 61.78% 51.52 30.80 42.56 31.46 23.66

LaCo 47.55 85.21% 57.17 42.85 58.32 39.28 42.60

Baic2.
-7B

Dense∗ 56.52 100% 59.03 62.49 63.22 55.60 47.26

LLMPru. 38.78 69.65% 52.59 41.22 54.51 25.31 25.46

SliceGPT 24.36 44.27% 35.90 17.13 29.44 25.22 18.15

LaCo 41.79 73.26% 51.26 48.49 51.70 31.38 29.90

Baic2.
-13B

Dense∗ 60.70 100% 60.79 62.66 66.30 60.04 56.70

LLMPru. 36.40 60.70% 53.06 36.76 47.68 24.18 24.08

SliceGPT 23.43 40.33% 36.32 15.65 27.92 24.10 17.02

LaCo 53.94 87.94% 54.21 60.51 58.90 52.50 47.04

Table 2: The average scores and the percentages com-
parison with the Dense∗.

5



Pruner LaCo LLM-Pruner SliceGPT

Pruning Time 14.7s 15.9s 313s

Table 3: Pruning time for different pruners.

Pruner LaCo Dense LLMPru. SliceGPT

Memory 19422 25902 19874 22506

Infer. 38.65 29.98 27.15 (↓) 35.16

Table 4: Memory usage (MB) and inference speed (to-
kens/s) of the Llama2-13B pruned by different pruners.
↓ indicates performance worse than the Dense model.

The results indicate that the LaCo-pruned mod-324

els consume less memory and achieve faster infer-325

ence speeds. Moreover, while existing baselines326

may decrease inference speeds compared to the327

dense model, LaCo does not have this issue.328

4 Further Analysis329

4.1 Post-training and Re-pruning330

4.1.1 Post-training331

Due to the inevitable performance loss caused by332

pruning, we investigate whether models pruned us-333

ing our LaCo can effectively inherit parameters334

from the original model and quickly recover per-335

formance through post-training on the full param-336

eters. Specifically, we select the pruned Llama2-337

7B and Baichuan2-7B models obtained through338

LaCo in the main experiments and post-train them.339

For training pruned Llama2-7B, we utilize approx-340

imately 1.0 billion tokens from the English dataset,341

while for pruned Baichuan2-7B, we employ ap-342

proximately 1.25 billion tokens, with a 50% from343

English and Chinese. The detailed implementation344

can be found in the Appendix C.345

In Figure 3, we present the loss curves. It can be346

observed that both models converge rapidly during347

training, with the loss showing a sharp decline af-348

ter about 250 steps, then stabilizing. The pruned349

Llama2-7B and Baichuan2-7B models, both ap-350

proximately 5 billion parameters, exhibit final con-351

vergence losses around 1.6 and 2.0, which are352

quite comparable to the reported values of 1.75 for353

Llama2-7B and 1.9 for Baichuan2-7B in their tech-354

nical reports. The post-training of pruned Llama2-355

7B and Baichuan2-7B on 4 Nvidia A100 80GB356

GPUs takes approximately 28 hours and 35 hours,357

respectively. Training a 5B LLM from scratch358

requires at least 500 billion tokens on hundreds359
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Figure 3: Loss curves for post-training.

LLM Method Avg. Reas. Lan. Know. Exam. Unde.

Llama2
-7B

Dense∗ 46.55 60.83 40.67 68.67 38.89 33.03

LaCo 37.46 53.30 33.84 54.89 25.85 25.38

LaCo
+post train 40.33 56.66 36.43 61.85 27.40 26.70

LaCo
+post train
+re prune

32.40 48.07 20.26 49.46 25.72 24.56

Baic2.
-7B

Dense∗ 56.52 59.03 62.49 63.22 55.60 47.26

LaCo 41.79 51.26 48.49 51.70 31.38 29.90

LaCo
+post train 40.46 51.67 40.82 53.97 27.98 31.28

Table 5: Average scores across all categories and the
overall average score of pruned models, post-trained
models, post-trained models followed by re-pruning.

of A100 GPUs for several months. However, we 360

achieve a loss-converged model of similar size with 361

only one-thousandth of their cost. This indicates 362

that the pruned models have effectively inherited 363

the parameters of the original models, enabling 364

them to rapidly recover performance with minimal 365

post-training and achieve convergence. 366

We also evaluate the post-trained models on 367

multiple benchmarks with detailed results in Ap- 368

pendix E Table 18. The average scores for each 369

category and the overall average are in Table 5. 370

From the tables, it is evident that the post- 371

training of pruned Llama2-7B significantly im- 372

proves its performance across various benchmarks. 373

However, the performance of pruned Baichuan2- 374

7B after post-training shows mixed results, with 375

some benchmarks showing improvement while oth- 376

ers exhibit a decrease and there is also a slight 377

decrease in the overall score. We speculate that 378

the pre-training data of Baichuan2-7B includes a 379

variety of sources, resulting in a data distribution 380

different from that of our post-training data, hinder- 381

ing the effectiveness of post-training. However, the 382

consistent score improvement on pruned Llama2- 383

6



7B indicates that models pruned using our LaCo384

indeed effectively inherit the parameters and can385

regain performance through low-cost post-training.386

LaCo achieves excellent performance through387

post-training, prompting us to compare its effective-388

ness with the SOTA LLM-Pruner on the same train-389

ing data. Our results, shown in the Appendix D.2390

Table 15, indicate that the model pruned by LaCo391

outperforms the one pruned by LLM-Pruner after392

post-training. Meanwhile, LaCo also significantly393

reduces training resource consumption.394

4.1.2 Re-pruning395

Since it is possible to partially restore performance396

using post-training on an LLM with approximately397

25%-30% of its parameters pruned, it raises the398

question of whether we can further prune the post-399

trained model to obtain one with only around 50%400

parameters while still maintaining relatively good401

performance. Thus, we further prune the previously402

post-trained pruned Llama2-7B model using LaCo,403

resulting in a model with 17 layers, retaining 55%404

of the parameters of the original Llama2-7B model.405

We evaluate the re-pruned model. The detailed406

results are shown in Appendix E Table 18 and the407

average results are in Table 5.408

The tables show that even with only 55% param-409

eters, the model still retains about 70% of the orig-410

inal 7B model performance. However, our train-411

ing data quality and scale are limited. With more412

and better training data, LaCo should demonstrate413

even greater utility in the pruning+post-training+re-414

pruning pipeline on larger models.415

4.2 Layer-wise Similarity416

This section discusses our motivation for merging417

adjacent layers. Our primary motivation comes418

from observing that the changes in parameters and419

output representations between adjacent layers in420

the LLMs are not particularly significant.421

In Figure 4, we show the L2 similarities between422

the SAN q, k, v matrices of each layer and their423

counterparts in the subsequent layer, as well as the424

upscaling and downscaling matrices of the MLP425

for both Llama2-7B and Baichuan2-7B. The re-426

sults indicate that the maximum L2 values between427

corresponding matrices in adjacent layers are gen-428

erally no more than 200. Given the large sizes of429

the MLP upscaling (11008x4096) and SAN q, k, v430

(4096x4096) matrices, the change in each element431

between adjacent layers is minimal.432

In Figure 5 (a), we randomly select 20 sentences433
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Figure 4: The L2 similarity of corresponding matrices
between adjacent layers.
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Figure 5: The cosine similarity of layer representations.

from Wikipedia and calculate the cosine similar- 434

ity between the hidden-states of adjacent layers 435

outputs. The results show that for both Baichuan2- 436

7B and Llama2-7B, the representation similarity 437

between adjacent layers from layers 3 to 28 is typi- 438

cally very close to 1. The high similarity in param- 439

eters and representations between adjacent layers 440

leads us to consider that a single layer might re- 441

place multiple subsequent layers. 442

Moreover, the similarity in parameters suggests 443

focusing on the differences between layers. In- 444

spired by previous model merging work (Yu et al., 445

2023; Matena and Raffel, 2022), we come up with 446

collecting parameter differences between layers 447

and merging them into a single layer. To verify that 448

RDSC Layer Merge can replace multiple layers 449

with one, we conduct the experiment: we merge 450

every four consecutive layers into one within lay- 451

ers 10 to 19 and evaluate the cosine similarity be- 452

tween the merged layer’s output and the original 453

last layer’s output, as in Figure 5 (b), where the low- 454

est cosine similarity on the 4096-dimensional vec- 455

tors is above 0.996, confirming the effectiveness of 456

RDSC Layer Merge in preserving representations. 457

4.3 Varying Pruning Ratio 458

In this section, we explore the performance of LaCo 459

at different pruning ratios. We conduct experiments 460

on Llama2-7B and Llama2-13B, controlling the 461
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LLM Ratio/Lay. Avg. Reas. Lan. Know. Exam. Unde.

Llama2
-7B

0%/32 46.55 60.83 40.67 68.67 38.89 33.03

12.0%/28 36.13 44.46 36.31 56.35 26.34 24.54

27.1%/23 37.46 53.30 33.84 54.89 25.85 25.38

45.0%/17 30.00 43.66 19.27 48.06 24.78 21.44

Llama2
-13B

0%/40 55.50 62.51 55.80 69.20 47.18 47.34

14.6%/34 53.89 60.56 54.51 63.58 46.10 47.46

24.7%/30 47.55 57.17 42.85 58.32 39.28 42.60

49.7%/20 38.27 48.20 26.89 49.26 32.82 36.58

Table 6: Model performance at different pruning ratios.

pruning ratios at approximately 10%, 25% (our462

main experiments), and around 50% by setting dif-463

ferent hyperparameters (as shown in Appendix A464

Table 8)2. We evaluate pruned models accordingly.465

The average results are shown in Table 6 and the466

detailed results are shown in Appendix E Table 19.467

As the pruning ratio increases, overall model468

performance decreases. However, from a pruning469

ratio of around 10-15% to about 25%, the perfor-470

mance does not significantly decline, indicating our471

method’s stability within this range. Furthermore,472

at a pruning ratio close to 50%, the model still main-473

tains approximately 70% performance, demonstrat-474

ing that our method prevents model crashes even475

with about half of the parameters removed.476

5 Related Work477

Model Quantization reduces model size by con-478

verting weights from high-precision floating points479

to lower-precision floating points or integers.480

SmoothQuant (Xiao et al., 2023) quantizes both481

weights and activations while smoothing activa-482

tion outliers. Gptq (Frantar et al., 2022) uses ap-483

proximate second-order information for quantiza-484

tion. Qlora (Dettmers et al., 2023a) backpropagates485

gradients through a frozen, 4-bit quantized model486

into Low Rank Adapters. OmniQuant (Shao et al.,487

2023) optimizes various quantization parameters.488

Knowledge Distillation transfers knowledge489

from a large model to a smaller one. Distilling490

step-by-step (Hsieh et al., 2023) trains smaller491

models that outperform LLMs. DISCO (Chen492

et al., 2023) distills counterfactual knowledge from493

LLMs. SOCRATIC COT (Shridhar et al., 2023)494

distills the ability of Chain-of-Thought from LLMs.495

2Further ablation study on the hyperparameters D, T , dif-
ferent similarity metrics, different merging strategies can be
found in Appendix B.

ZEPHYR (Tunstall et al., 2023) applies distilled di- 496

rect preference optimization to learn a chat model. 497

Model Pruning refers to techniques for improv- 498

ing model efficiency by sparsification or param- 499

eter removal. Non-structured pruning often in- 500

volves model sparsity. SparseGPT (Frantar and 501

Alistarh, 2023) reduces the pruning problem to 502

large-scale instances of sparse regression, while 503

SpQR (Dettmers et al., 2023b) identifies and iso- 504

lates outlier weights during LLM sparsification. 505

Structured pruning primarily removes parts of 506

model modules. LLM-Pruner (Ma et al., 2023) se- 507

lectively eliminates non-critical structures based 508

on gradient information. ShearedLLaMA (Xia 509

et al., 2023) uses targeted structured pruning and 510

dynamic batch loading to prune Llama2. 511

However, model quantization and sparsification 512

typically require special hardware and usually im- 513

pact performance. Knowledge distillation is costly 514

and task-specific. Existing structured pruning meth- 515

ods often disrupt the model inherent structure. 516

In contrast, LaCo maintains the model structure, 517

which is more concise and preserves excellent per- 518

formance. Although some existing works (Din 519

et al., 2023; Fan et al., 2019; Belrose et al., 2023) 520

have utilized layer-skipping/dropping to accelerate 521

inference, LaCo is fundamentally different. It is the 522

first pruner based on layer collapse, resulting in a 523

smaller, faster, more memory-efficient model with 524

strong performance. Furthermore, those methods 525

typically require training new parameters to deter- 526

mine which layers to skip/drop during inference, 527

whereas LaCo does not require any training. 528

6 Conclusion 529

In this paper, we propose a concise layer-wise 530

structured pruning method called Layer Collapse 531

(LaCo), which merges rear model layers into pre- 532

ceding layers for rapid model size reduction. LaCo 533

does not require special hardware support and pre- 534

serves the model intrinsic structure. Experimental 535

results show that LaCo significantly outperforms 536

current SOTA structured pruning methods, also re- 537

vealing potential parameter redundancy in existing 538

LLMs. We conduct ablation studies on various 539

settings of LaCo. We also post-train the pruned 540

models, confirming that LaCo effectively inher- 541

its the original model parameters. Additionally, 542

we discuss our motivation from the perspective of 543

layer-wise similarity and explore the performance 544

of LaCo-pruned models at different pruning ratios. 545
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Limitations546

Due to LaCo’s pruning process primarily relying on547

layer-wise iterations, it cannot directly control the548

pruning ratio like previous methods. Instead, it re-549

quires tuning hyperparameters such as the represen-550

tation similarity threshold T for control. In future551

work, we will summarize additional experimental552

patterns regarding how to set hyperparameters to553

achieve a specific pruning ratio.554

Our motivation comes from current model merg-555

ing techniques, but like existing baselines (LLM-556

Pruner (Ma et al., 2023) and SliceGPT (Ashkboos557

et al., 2024)), our method lacks a complete theoret-558

ical proof. We consider this as future work.559

Additionally, there may be better merging meth-560

ods, even though our experimental results demon-561

strate that LaCo’s current merging approach is ef-562

fective. We will continue to search for improved563

layer merging methods in the future.564
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A Hyperparameter Settings749

LLM C L H I T

Llama2-7B 4 1 32 2 0.65

Llama2-13B 6 1 40 2 0.75

Baichuan2-7B 4 1 32 2 0.70

Llama2-13B 6 1 40 2 0.70

Table 7: Hyperparameter settings for main results.

LLM (Ratio/Lay.) C L H I T

Llama2-7B (12.0%/28) 5 1 32 2 0.85
Llama2-7B (27.1%/23) 4 1 32 2 0.65
Llama2-7B (45.0%/17) 6 1 32 2 0.45

Llama2-13B (14.6%/34) 7 1 40 2 0.85
Llama2-13B (24.7%/30) 6 1 40 2 0.75
Llama2-13B (49.7%/20) 7 1 40 2 0.45

Table 8: Hyperparameters for varying pruning ratios.

B Ablation Study750

B.1 Impact of Dataset D751

To understand the impact of different datasets D752

on LaCo’s effectiveness, we conduct an ablation753

study using Llama2-7B. We perform three rounds754

of pruning, each time selecting different sets of 10755

sentences as D, with a 27% compression ratio to756

match Table 1. The results are shown in Table 9.757

BoolQ PIQA HeSw

Result in Table 1 64.07 69.80 55.69

Round1 64.50 70.28 56.14
Round2 63.70 69.14 54.92
Round3 63.90 69.66 55.18

Table 9: Ablation study on D, where the model is
Llama2-7B with compression ratio of 27%.

We can find that the results are all on nearly the758

same scale, indicating that the random selection of759

sentences inD has no notable impact on the results.760

B.2 Impact of Threshold T761

We also aim to understand the impact of threshold762

T on the model pruned by LaCo. For the results of763

Llama2-7B in Table 1, we keep other parameters764

unchanged and set T to 0.85, 0.45, and 0.25 (T =765

0.65 corresponds to the results in Table 1). We766

evaluate the pruned models on several datasets. The767

results, shown in Table 10, indicate that a smaller 768

threshold leads to a larger compression ratio and 769

poorer performance, which aligns with intuition. 770

Ratio/Layer BoolQ PIQA HeSw

T = 0.65 27.1%/23 64.07 69.80 55.69

T = 0.85 9.0%/29 70.92 76.01 68.15
T = 0.45 48.0%/16 59.82 60.34 36.09
T = 0.25 60.1%/12 41.68 51.74 26.37

Table 10: Ablation study on T . The model is Llama2-
7B. T = 0.65 corresponds to the results in Table 1.

B.3 Different Similarity Metrics 771

we use the cosine similarity of the representations 772

from the final layer outputs as a metric for LaCo. 773

We also aim to explore the feasibility of using com- 774

mon distribution distances as metrics, such as KL 775

divergence and kernel/linear CKA (Centered Ker- 776

nel Alignment (Kornblith et al., 2019)). Specifi- 777

cally, we replace cosine similarity with distribution 778

distances to measure the difference in representa- 779

tions. However, we find that the distribution dis- 780

tances almost remain constant, as in Table 11. 781

KL Divergence Kernel CKA Linear CKA

Constant 0.00 1.00 1.00

Table 11: The distribution distances of model output
representations.

KL Divergence being nearly 0 and CKA being 782

nearly 1 indicate minimal differences in the distri- 783

butions of the final layer outputs. This suggests that 784

the LaCo merging process does not significantly 785

alter the model output. Additionally, due to the 786

high dimensionality of the representations, the dis- 787

tribution distances tend to be constant, resulting in 788

a lack of discrimination. Therefore, we chose the 789

more discriminative cosine similarity. 790

B.4 Drop or Merge 791

As shown in Eq. 1, LaCo merges multiple adjacent 792

layers into one. This leads us to consider an ex- 793

treme case: if we set m = 1, LaCo will no longer 794

merge layers but simply drop a layer. We also aim 795

to explore the performance differences between the 796

drop and merge operations in LaCo. Thus, we con- 797

duct an experiment with m = 1 on Llama2-7B, 798

setting the compression rate to the same 27% as 799

in Table 1. The results on some benchmarks are 800

shown in Table 12. 801
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BoolQ PIQA HeSw

Drop 52.57 68.17 48.61

Mege (Result in Table 1) 64.07 69.80 55.69

Table 12: Results of the drop or merge operation.

The results indicate that the drop operation is802

not as effective as the merge operation and m = 1803

is not a good hyperparameter setting. The merge804

operation aligns better with our intention.805

B.5 Iterative-based or Rule-based Merge806

LLM Strategy BoolQ PIQA HeSw

Llama2-7B Rule 63.49 68.72 53.16

LaCo 64.07 69.80 55.69

Baichuan2-7B Rule 52.94 67.28 48.78

LaCo 56.15 68.50 52.28

Table 13: The results of using rule-based merging and
LaCo iterative merging.

We want to determine if our iterative search-807

based merging strategy is superior to rule-based808

merging. To test this, we perform rule-based merg-809

ing on Llama2-7B and Baichuan2-7B, both with 32810

layers. We merge layers in groups of four, starting811

from the top, specifically merging layers (29, 30,812

31, 32), (21, 22, 23, 24), and (13, 14, 15, 16). We813

avoid merging before the 16th layer due to signif-814

icant performance drops observed in those cases.815

The resulting models achieved compression rates816

equivalent to those in Table 1. The results in Ta-817

ble 13 indicate that LaCo performs better than the818

rule-based approach. Notably, even simple rule-819

based merging can outperform baselines across820

multiple datasets, demonstrating the potential of821

merging for model compression.822

C Post-Training Implementation Details823

We use the LLaMA-Factory (Zheng et al., 2024)824

framework along with DeepSpeed ZeRO-2. The825

sequence length is set to 4096, following the default826

settings for Llama2-7B and Baichuan2-7B. We use827

the Adam optimizer with a learning rate of 2e-4,828

setting β1 = 0.9 and β2 = 0.95. The batch size829

is 8 per GPU, resulting in a total batch size of830

32, with gradient accumulation steps set to 4. We831

employ a cosine learning rate scheduler, apply a832

weight decay of 0.1, and set the maximum gradient833

normalization to 1.0.834

D Supplementary Results (Part 1) 835

D.1 Memory Consumption and Inference 836

Speed 837

LLM Pruner Memory (MB) Infer. (tokens/s)

Llama2
-7B

Dense 13410 38.53

LLMPru. 10434 33.22 (↓)

SliceGPT 11770 44.88

LaCo 9894 50.80

Llama2
-13B

Dense 25902 29.98

LLMPru. 19874 27.15 (↓)

SliceGPT 22506 35.16

LaCo 19422 38.65

Baic2.
-7B

Dense 14810 37.13

LLMPru. 11898 38.95 (↓)

SliceGPT 13586 36.67

LaCo 11716 49.15

Baic2.
-13B

Dense 27410 36.93

LLMPru. 22390 31.61 (↓)

SliceGPT 23956 29.35 (↓)

LaCo 21010 47.46

Table 14: The memory consumption and average infer-
ence speed on English Wikipedia dataset for different
pruned models. ↓ means the performance worse than
the Dense model.

D.2 Comparison of Post-trained Pruned 838

Models 839

GPU*hour BoolQ PIQA HeSw

LaCo 88 60.26 65.01 45.49

LLM-Pru. 216 58.75 61.26 43.53

Table 15: Results on different datasets for models
pruned to 55% sparsity using LaCo and LLM-Pruner on
Llama2-7B, followed by post-training on the same data.

We prune Llama2-7B to 55% sparsity using 840

LaCo and LLM-Pruner, then conduct post-training 841

with the same data in Table 5. The results in Ta- 842

ble 15 show that LaCo performs better. Addition- 843

ally, training the model pruned by LLM-Pruner re- 844

quires 216 GPU*hours (27 hours on 8 A100 GPUs), 845

while only 88 GPU*hours (22 hours on 4 A100 846

GPUs) for LaCo-pruned model. Thus, LaCo saves 847

more computational resources for post-training. 848

D.3 Performance Percentage for Main Results 849
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LLM Pruner Ratio/Lay. Reasoning(%) Language(%) Knowledge(%) Examination(%) Understanding(%)
CMNLI HeSw PIQA CHID WSCP WSCG CoQA BoolQ MMLU CMMLU RaceH RaceM XSum C3

Llama2
-7B

Dense∗ 0%/32 100 100 100 100 100 100 100 100 100 100 100 100 100 100

LLMPru. 27.0%/32 104.09 79.13 91.10 54.84 97.44 2.50 63.76 78.11 50.81 79.25 63.53 67.42 58.49 58.57

SliceGPT 26.4%/32 96.12 70.46 84.69 45.16 97.44 50.00 62.04 54.22 62.98 79.63 59.34 65.34 24.85 90.86

LaCo 27.1%/23 104.40 78.05 89.28 78.50 107.68 65.00 68.55 90.66 57.60 79.22 63.67 71.22 79.47 90.61

Llama2
-13B

Dense∗ 0%/40 100 100 100 100 100 100 100 100 100 100 100 100 100 100

LLMPru. 24.4%/40 100.12 90.55 96.17 67.28 79.24 0.00 76.01 78.91 45.32 63.78 38.72 36.65 81.37 68.05

SliceGPT 23.6%/40 90.39 74.45 86.61 36.45 71.70 57.58 70.63 52.95 66.76 66.57 40.34 39.89 22.37 88.23

LaCo 24.6%/30 99.61 86.05 93.18 75.70 103.77 56.07 78.70 89.48 82.56 84.20 93.90 93.87 61.33 94.57

Baic2.
-7B

Dense∗ 0%/32 100 100 100 100 100 100 100 100 100 100 100 100 100 100

LLMPru. 24.2%/32 96.73 79.43 94.29 84.43 130.23 0.00 75.75 96.67 45.95 45.11 41.73 43.65 76.68 64.51

SliceGPT 22.2%/32 96.10 37.43 66.08 17.96 88.37 0.00 30.99 62.09 46.41 44.34 44.71 44.06 0.00 41.18

LaCo 24.2%/23 98.89 77.38 89.93 92.22 102.32 42.42 74.85 88.70 58.12 54.86 55.08 54.31 57.73 78.78

Baic2.
-13B

Dense∗ 0%/40 100 100 100 100 100 100 100 100 100 100 100 100 100 100

LLMPru. 24.3%/40 101.78 75.34 91.99 87.50 90.69 0.00 59.18 84.39 39.43 41.10 31.47 31.35 54.79 60.77

SliceGPT 22.8%/40 96.57 36.36 65.36 12.50 88.37 0.00 27.47 56.46 39.02 41.23 32.05 31.22 0.00 38.07

LaCo 24.7%/30 99.46 85.39 88.23 92.26 106.96 95.46 84.53 93.06 87.32 87.56 84.61 83.84 49.38 93.08

Table 16: The percentage of each model’s score on each benchmark relative to the score of Dense∗ in the main
results. Models pruned by LaCo maintain performance above 70% on most benchmarks and avoid crashes, with no
performance falling below 30%.

D.4 Examples of Responses850

Prompt Document: The 18-year-old scored 88.40 to make
history in what was the fifth and the final stop
of the World Cup season.\nShe came ahead of
Sweden’s Emma Dahlstrom and Swiss Mathilde
Gremaud.\nBoston-born Atkin, who initially com-
peted for the US before switching to Great Britain
aged 15, was making her 15th appearance at a
World Cup event.\nAtkin will be competing at the
Freestyle World Championships in Sierra Nevada,
Spain (9-19 March). The event will be live on
the BBC Sport website, app, connected TV and
red button.\nBased on the previous text, provide a
brief single summary:

Pruner Generated Responses
LLMPru. \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
SliceGPT of the 19900s of the 1900s of the 1900s of the

1900s.
LaCo Boston-born Atkin, who initially competed for

the US before switching to Britain aged 15, was
making her 15th appearance at a World Cup
event.\nThe 18-year-old scored 88.40 to make his-
tory in what was the fifth and the final stop of the
World Cup season.

Table 17: A response on the Xsum benchmark from
Llama2-7B after pruning with different pruners. In this
case, the models pruned by the baseline pruners generate
repetitive and meaningless text, while only LaCo is able
to smoothly respond with meaningful text according to
the instructions.

E Supplementary Results (Part 2)851
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LLM Method Reasoning Language Knowledge Examination Understanding
CMNLI HeSw PIQA CHID WSCP WSCG CoQA BoolQ MMLU CMMLU RaceH RaceM XSum C3

Llama2
-7B

Dense∗ 32.98 71.35 78.18 46.04 37.50 38.46 66.67 70.67 45.92 31.86 35.51 33.15 19.68 43.78

LaCo 34.43 55.69 69.80 36.14 40.38 25.00 45.70 64.07 26.45 25.24 22.61 23.61 15.64 39.67

LaCo
+post train 34.92 61.88 73.18 38.12 36.54 34.62 57.49 66.21 29.47 25.33 28.33 29.87 10.02 38.58

LaCo
+post train
+re prune

33.80 45.35 65.07 23.27 36.54 0.96 38.49 60.43 26.07 25.37 23.07 22.98 15.48 36.71

Baichuan2
-7B

Dense∗ 33.37 67.56 76.17 82.67 41.35 63.46 63.14 63.30 54.25 56.95 52.63 51.04 20.84 64.55

LaCo 33.00 52.28 68.50 76.24 42.31 26.92 47.26 56.15 31.53 31.24 28.99 27.72 12.03 50.85

LaCo
+post train 32.92 52.67 69.42 78.22 40.38 3.85 52.01 55.93 28.72 27.25 25.01 26.25 15.82 58.03

Table 18: The detailed scores across all benchmarks of pruned models, post-trained models, as well as post-trained
models followed by re-pruning.

LLM Ratio/Lay. Reasoning Language Knowledge Examination Understanding
CMNLI HeSw PIQA CHID WSCP WSCG CoQA BoolQ MMLU CMMLU RaceH RaceM XSum C3

Llama2
-7B

0%/32 32.98 71.35 78.18 46.04 37.50 38.46 66.67 70.67 45.92 31.86 35.51 33.15 19.68 43.78

12.0%/28 32.99 55.91 74.48 42.57 36.54 29.81 52.58 60.12 25.59 27.10 22.01 21.73 17.97 36.44

27.1%/23 34.43 55.69 69.80 36.14 40.38 25.00 45.70 64.07 26.45 25.24 22.61 23.61 15.64 39.67

45.0%/17 32.58 38.33 60.07 20.30 36.54 0.96 34.73 61.38 23.98 25.59 22.38 23.26 1.28 38.85

Llama2
-13B

0%/40 32.99 74.83 79.71 52.97 50.96 63.46 66.91 71.50 55.63 38.74 58.03 60.24 23.56 47.51

14.6%/34 32.99 71.88 76.82 51.98 63.46 48.08 63.72 63.43 53.97 38.23 59.35 61.49 21.32 47.67

24.7%/30 32.86 64.39 74.27 40.10 52.88 35.58 52.66 63.98 45.93 32.62 54.49 56.55 14.45 44.93

49.7%/20 34.22 46.55 63.82 13.37 56.73 10.58 36.28 62.23 38.41 27.24 51.97 56.41 1.56 36.38

Table 19: The detailed results of models pruned at different pruning ratios using LaCo across all benchmarks. As the
pruning ratio increases, overall model performance decreases. However, performance remains stable from 10-25%
pruning. Even at 50% pruning, the model can maintain about 70% performance.
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