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ABSTRACT

Diffusion models have achieved remarkable success in generating high-quality
data, yet challenges remain in training convergence, interpretability, and fine-
grained controllability. Additionally, the high computational cost of training is
often overlooked from a theoretical perspective. To address these limitations,
we propose Eigenvalue-Guided Explainable and Accelerated Diffusion Model
(EGEA-DM), a novel framework grounded in ergodic theory. EGEA-DM leverages
the L-generator’s principal eigenvalue to control the forward diffusion speed,
enabling adaptive adjustment of reverse steps during both training and sampling.
By modulating the forward process through the L-generator’s coefficients, our
method establishes a unified mechanism for explainable and fine-grained control.
This control, in turn, enables more efficient training and allows for the optimization
of the speed-quality trade-off. Extensive experiments validate the effectiveness of
EGEA-DM, demonstrating its potential to advance the practical applicability of
diffusion models.

1 INTRODUCTION

Diffusion models are a powerful class of generative models that have achieved outstanding perfor-
mance in various fields, such as image synthesis (Dhariwal & Nichol, 2021), audio generation (Huang
et al., 2023), and time-series prediction (Shen & Kwok, 2023). These models operate by employing a
forward process that iteratively adds noise to the data, gradually transforming the data distribution
into a stationary distribution. The reverse process is then learned to progressively denoise the data,
reconstructing the original distribution.

Diffusion models primarily fall into two categories: Denoising Diffusion Probabilistic Models
(DDPM) (Ho et al., 2020) and Score-Based Generative Models (SGM) (Song et al., 2020c). DDPM-
based methods, such as FastDPM (Kong & Ping, 2021), Truncated Diffusion Models (Zheng et al.,
2022), and ES-DDPM (Lyu et al., 2022), optimize noise scheduling, truncation, and sampling effi-
ciency. SGM employs score functions with stochastic differential equations (SDEs) or probability
flow ODEs, with advancements like Lévy Stable Diffusion (Song & Zhang, 2023), MSGM (Liu
& Wang, 2024), and adaptive step-size methods (Franzese et al., 2023), enhancing flexibility, ro-
bustness, and efficiency. These advancements collectively highlight the versatility and potential of
diffusion models in addressing complex generative tasks while motivating further exploration into
their theoretical foundations and practical applications.

Despite their major advances and impressive capabilities, diffusion models face two key challenges:
1) Theoretical gaps in diffusion sampling: Diffusion models typically involve a large number of
time steps (often exceeding 1000), which leads to significant computational overhead—especially
during sampling—due to the need for repeated evaluations of a neural network in the reverse
denoising process. While these models have shown impressive empirical performance, the theoretical
understanding of this inefficiency and how to mitigate it remains limited. 2) Lack of interpretability
and controllability: While various methods (Kim et al., 2025; Fu et al., 2025; Jiang et al., 2024)
etc. have been proposed to mitigate the computational cost of diffusion models, many lack a
solid theoretical foundation. This limits their interpretability and constrains fine-grained control
over the diffusion process, ultimately hindering systematic optimization and adaptation for diverse
applications.
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To address the computational inefficiency and lack of theoretical interpretability in diffusion models,
we propose the Eigenvalue-Guided Explainable and Accelerated Diffusion Model (EGEA-DM), a
novel framework grounded in ergodic theory. In EGEA-DM, we model the forward diffusion process
using a continuous-time Markov generator governed by an L-generator. The convergence rate toward
the stationary distribution is mainly determined by the spectral gap of this generator, which is equal
to the magnitude of its principal (first non-zero) eigenvalue.

We modulate the coefficients of the L-generator to control the spectral decay, enabling fine-grained
regulation of the forward diffusion dynamics. By estimating the deviation between the data distri-
bution at step T and the stationary distribution under a given generator, we determine the minimal
number of forward (and hence reverse) steps required for effective denoising, thereby reducing the
computational cost of both training and sampling.

Crucially, we observe that aggressive acceleration—i.e., maximizing the principal eigenvalue—can
degrade generation quality due to insufficient representation of intermediate data states. To balance
quality and efficiency, we incorporate empirical quality metrics into the eigenvalue-guided tuning
process. This yields an interpretable trade-off curve between diffusion speed and generation fidelity.

A central technical challenge lies in estimating the principal eigenvalue of the L-generator. We adopt
Chen’s estimation theory (Chen, 2012), combined with iterative numerical methods, to efficiently
approximate this quantity. This allows us to characterize and control the diffusion process via a
theoretically grounded mechanism.

We remark that, although the eigenvalue estimation incurs additional computational overhead, it is
substantially outweighed by the training acceleration achieved. Moreover, while other factors such
as initial and stationary distributions do affect model convergence, the spectral properties exhibit
dominant influence. Ultimately, while alternative theories can characterize convergence rates, they
generally lack precise estimation bounds for generic diffusion processes.

Overall, EGEA-DM provides a principled and explainable approach to accelerating diffusion models,
achieving joint optimization of computational efficiency and generative quality through spectral
control. Our contributions are summarized as follows:

• Interpretable diffusion via egodic theory: We reinterpret diffusion models through the lens of
ergodic theory, linking the convergence rate of the forward process to the principal eigenvalue of
the L-generator. This provides a theoretical foundation for understanding and analyzing diffusion
dynamics and noise injection schemes.

• Controllable optimization via L-generator modulation: By adjusting the coefficients of the
L-generator based on its principal eigenvalue, we introduce a flexible mechanism to control the
speed and stability of the diffusion process.

• Spectral characterization via numerical estimation: We adopt the iterative method (Chen, 2012)
to efficiently estimate the principal eigenvalue of the L-generator, enabling quantitative control of
diffusion speed and providing a metric for generator design.

• Generalization across dataset and methods: EGEA-DM demonstrates strong generalization
on multiple datasets and integrates seamlessly with a variety of DDPM extensions, validating its
robustness across tasks and architectures. Our framework is also compatible with score-based
models, offering a theory-informed and systematic methodology approach for selecting and tuning
L-generators across diverse generative frameworks, opening up new possibilities for expanding
research on baseline models.

2 PRELIMINARY

We briefly review score-based generative models (SGMs) and the associated L-generator. Here we
focus on the one-dimensional case without loss of generality. In fact, although the experimental
data distribution is high-dimensional and contains both semantic and spatial information, each
dimension undergoes noise injection and removal independently according to the same Stochastic
Differential Equations (SDEs), and thus shares the same L-generator, stationary distribution and
principle eigenvalue. The only distinction lies in the potentially different initial distributions across
dimensions. Consequently, the convergence rate of the high-dimensional data can be characterized
mainly by this identical eigenvalue.
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2.1 SCORE-BASED GENERATIVE MODEL

In SGMs, the forward diffusion process gradually perturbs data X0 into noise, with the distribution
of the final data XT at time T approaching a stationary distribution. This process is governed by the
following SDE:

dXt = f(Xt, t) dt+ g(Xt, t) dWt, (1)

where Wt is a standard Wiener process, f(x, t) : R× [0, T ] → R is the drift coefficient dictating the
deterministic dynamics, and g(x, t) : R× [0, T ] → R is the diffusion coefficient scaling the random
noise at each step.

The reverse process starts from samples of XT and iteratively denoises the data to recover X0. This
is described by the reverse-time SDE:

dXt =
[
f(Xt, t)− g(Xt, t)

2∇x log pt(Xt)
]
dt+ g(Xt, t) dW̃t,

where W̃t is a standard Wiener process when time flows backward from T to 0, and ∇x log pt(x)
is the score function, i.e., the gradient of the log-probability density of Xt (typically unknown).
∇x log pt(x) could be learned via sliced score matching (SSM), where a neural network is trained to
approximate the gradients of perturbed data distributions across multiple noise scales. SSM trains the
score matching function sθ(Xt, t) by the following equaiton

θ∗ = argmin
θ

Et

{
λ(t)EX0

EXt
Ev∼N (0,1)

[
1

2
∥sθ(Xt, t)∥22 + Tr (∇Xt

sθ(Xt, t))

]}
,

where the random vector v follows a Gaussian distribution, and λ : [0, T ] → R>0 is a weight function,
taken as λ ∝ 1/E

[
∥∇Xt log p0t(Xt | X0)∥22

]
(Song et al., 2020c;b).

2.2 Lt-GENERATOR

In addition to the SDE in Eq. 1, the forward diffusion process can be fully characterized by the
infinitesimal generator Lt-generator, defined as Lt ϕ(x) = limh→0

E[ϕ(Xt+h)|Xt=x]−ϕ(x)
h , where ϕ is

an infinitely differentiable function with compact support (Stroock & Varadhan, 1997). This generator
specifies the evolution of Xt at each infinitesimal time step. Using Itô’s formula, the Lt-generator
can be expressed as:

Lt =
1

2
g2(t, x)

d2

dx2
+ f(t, x)

d

dx
, (2)

which encapsulates both the drift and diffusion components of the process. Note that if 1
2g

2(t, x) ≡
a(x) and f(t, x) ≡ b(x) for all t, then Lt is time-independent in t.

3 EGEA-DM

This section will present the detailed formulation of our proposed EGEA-DM. We adopt the SGM as
the foundational framework and employ the L-generator to regulate the model. The adoption of the
SGM is grounded in its rigorous theoretical guarantees for score matching, while the L-generator
serving as an effective controller of the diffusion model.

Subsection 3.1 will develop the theoretical model design, including the generator structure, conver-
gence conditions and principle eigenvalue-convergence rate correspondence. Subsection 3.2 will
provide the numerical method to estimate the convergence speed, enabling model adjustment guided
by the principle eigenvalue. Subsection 3.3 will present the empirical observations for selecting the
L-generator, thereby enabling effective control of EGEA-DM.

3.1 ERGODIC THEORY

For EGEA-DM, the forward diffusion process Xt is designed to satisfy the SDE

dXt = β(t)b(Xt)dt+
√
2β(t)a(Xt)dWt, (3)

3
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so that its Lt-generator has the form

Lt = β(t) · L with L = a(x)
d2

dx2
+ b(x)

d

dx
, (4)

where a(x) > 0 and b(x) are both first-order continuous functions on R, the scheduling function β(t)
is integrable and 0 < βmin ≤ β(t) ≤ βmax < ∞.

Note that, once β(t) is selected, the generation and properties of Xt will be determined by L.

Before demonstrating the correlation between the convergence rate of Xt and the principle eigenvalue
of L, we should ensure the solution uniqueness and ergodicity of Xt. Solution uniqueness implies
the convergence of Xt, while ergodicity guarantees that Xt converges almost surely to a positive
stationary distribution. The beolw Theorem 1 specifies what conditions on a(x) > 0 and b(x) ensure
both uniqueness and ergodicity of Xt .

Theorem 1 (Uniqueness and Ergodicity). Given X0, the solution Xt of Eq. 3 is unique and ergodic
if and only if

κ(+∞) = +∞ = κ(−∞), Z :=

∫
R

eC(u)

a(u)
du < +∞, (5)

where κ(x) =
∫ x

0
e−C(u)

∫ u

0
eC(v)

a(v) dvdu and C(x) =
∫ x

0
b(u)
a(u)du for x ∈ R. If Eq. 5 holds, then the

stationary distribution is π(dx) = 1
Za(x)e

C(x)dx for x ∈ R.

Let L2(π) be the real measure space {f : π(f2) < ∞} equipped with the norm ∥f∥ = [π(f2)]1/2

and the inner product (f, g) =
∫
R f(x)g(x)π(dx), where π(g) =

∫
R g(x)π(dx) for general g. The

principle eigenvalue λ1 of L is defined as

λ1 = inf {(f,−Lf) : f ∈ D(L), π(f) = 0, ∥f∥ = 1} , (6)

with D(L) the domain of L in L2(π). Since L has one trivial eigenvalue λ0 = 0, the spectral gap
λ1 − λ0 is equal to λ1 (Chen & Mao, 2021).

For any B ∈ B, define Pt(B) = P{Xt ∈ B}, where B is the collection of all Borel sets on R. Then
Pt characterizes the distribution of Xt, while the stationary distribution π(B) =

∫
B
π(dx). The total

variation distance between Pt and π is defined as ∥Pt − π∥Var = supB∈B |Pt(B)− π(B)|.
The theorem below describes the convergence rate of Xt toward to π.

Theorem 2 (Convergence Rate). Under the condition in Eq.5 of Theorem 1, it holds that

∥Pt − π∥Var ≤ ∥P0 − π∥Var e
−λ1

∫ t
0
β(s)ds.

From Theorem 2, the convergence rate of Xt increases monotonically with the magnitude of λ1,
through which we could precisely control the speed of the forward diffusion process. While P0 and
π do affect convergence speed, λ1 dominates the long-term dynamics, which is also shown in our
experiments in Section 4.

However, λ1 is typically difficult to obtain with exact precision, which explains why the next
subsection performs its numerical estimation.

3.2 ESTIMATION OF THE PRINCIPAL EIGENVALUE

This subsection outlines an iterative algorithm for numerically estimating λ1, based on Chen’s
theoretical estimation for this principle eigenvalue (Chen, 2012).

4
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Initialize a function f1(z) as follows:

fx,y
1 (t) =



∫ r

y
ec(u)

a(u) du ·
∫ z

−∞
ec(u)

a(u) du∫ x

−∞
ec(u)

a(u) du

1/2

, if z ≤ x,

[∫ ∞

y

ec(u)

a(u)
du

]1/2
, if x ≤ z ≤ y,

[∫ ∞

t

ec(u)

a(u)
du

]1/2
, if z ≥ y.

For the n-th step, define

fn(z) =

{
f−
n (z), if z ≤ θn;

f+
n (z) if z > θn,

where

f−
n (z) =

∫ z

−∞

ec(u)

a(u)
du ·

∫ θn

u

e−c(t)fx,y
n−1(t)dt, f+

n (z) =

∫ +∞

z

ec(u)

a(u)
du ·

∫ u

θn

e−c(t)f
(x,y)
n−1 (t)dt,

and θn is obtained by solving the below equation for every (x, y):

∫ θn

−∞

ec(u)

a(u)
du ·

∫ θn

u

e−c(t)fx,y
n−1(t)dt =

∫ +∞

θn

ec(u)

a(u)
du ·

∫ u

θn

e−c(t)f
(x,y)
n−1 (t)dt.

Then the n-th estimation for the λ1 is

λ
(n)
1 = inf

x<y

[
sup
z

f−
n (z)

fn−1(z)

]
∨
[
sup
z

f+
n (z)

fn−1(z)

]
. (7)

By Chen’s theory, this sequence asymptotically and increasingly approaches to the true value of λ1

as n tends to +∞.

In practical computations, we approximate the integral using the classical rectangle method, and the
segmentation is 2000 intervals. For derivable cases, for instance, in DDPM, the error is approximately
0.0007. The computational time is about 2 hours. However, the calculation is performed on an Intel
Core i5-9300H processor using MATLAB. Hence, if executed on hardware with higher specifications
as model training and generation, the time is expected to be significantly reduced.

This method ensures tractable eigenvalue estimation, enabling the design of tuning the L-generator
in the following subsection. We remark that, Eq. 7 demonstrates that convergence rate regulation
requires eigenvalue estimation, as mere tuning of hyperparameters a(x) and b(x) yields suboptimal
control accuracy.

3.3 HOW TO CHOOSE THE L-GENERATOR

It can be seen from Eq. 7 that the magnitude of the principal eigenvalue of the L-generator is
determined by a(x) and b(x). Therefore, we can regulate the L-generator by selecting different forms
of a(x) and b(x) under the guidance of this eigenvalue. This paper considers the case where both a(x)
and b(x) are polynomial functions. It is a relatively common form both in theory and application.
And, other common continuous functions can be approximated by polynomial functions, which is
guaranteed by the Weierstrass approximation theorem (Stone, 1948). The selection of L-generator
could be guided by the following three (empirical) principles:

Principle I : As theoretically analyzed in Subsection 3.1, a(x) and b(x) need to fulfill Eq. 5, ensuring
that the forward diffusion process can converge to a positive stationary distribution. Eq. 5 can be
readily verified through numerical experiments. Based on this verification, we have summarized the
characteristics of relevant functions in 7 and 8 in Appendix .
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Principle II: The following Theorem 3 reveals how the principle eigenvalue varies when linear
transformations are applied to a(x) and b(x), providing another guiding principle for choosing the
L-generator.
Theorem 3. Let a∗(x) = ka(x) and b∗(x) = kb(x), where k is a positive constant. Then the
principle eigenvalue λ∗

1 of L∗ = a∗(x) d2
dx2 + b∗(x) d

dx is equal to kλ1.

Observation I: According to Subsection 3.2, we have computed the eigenvalues corresponding to
multiple (a, b) pairs, as detailed in Tables 1-5. These computed values can serve as references and are
amenable to minor adjustments, since the eigenvalues change continuously with (a, b) under certain
conditions—a fact corroborated by Kato-Rellich theorem (Kato, 2013). Figure 5 in the Appendix C.1
shows the evolution law of the principal eigenvalue as the degrees of x in the polynomials a(x) and
b(x) increase, providing a more intuitive visual representation.

4 EXPERIMENTS

We conduct experiments to evaluate the impact of the L-generator, especially its principal eigenvalue,
on diffusion model performance.

4.1 EXPERIMENT SETUP AND EVALUATION METRICS

Experiment setup. Following the theoretical principles established in last section, we instantiate the
L-generator by selecting appropriate functions a(x) and b(x). These choices give rise to different
diffusion processes and spectral properties, corresponding to specific instances of our proposed
EGEA-DM framework.

We implement our model using a U-Net architecture. All training processes were conducted on an
NVIDIA GeForce RTX 4090 GPU. Key training parameters included: an initial learning rate of
1× 10−5. The model was optimized using the Adam optimizer with default momentum parameters
(β1 = 0.9, β2 = 0.999). For fair comparison, we retain the linear, uniformly increasing noise
schedule βt used in the original DDPM framework (Ho et al., 2020). We evaluate performance on two
standard image generation benchmarks: CIFAR-10 (Krizhevsky, 2009), CelebA-HQ (Gábor Mélyi &
Felippo, 2020), Image-NetDeng et al. (2009) 128×128 and 256×256.

Evaluatation metrics. To assess both the generation quality and acceleration efficiency of EGEA-
DM, we employ four evaluation metrics: 1) Fréchet Inception Distance (FID) (Tim Salimans,
2016). A standard metric that measures the distance between real and generated image distributions.
Lower FID indicates better visual quality and diversity. 2) Convergence Discrepancy (Ddisc). Ddisc
quantifies the proximity between the forward distribution Pt(x) and the stationary distribution π:
Ddisc = ∥Pt − π∥Var ≈ 1

2

∑
∆xi

|Pt (∆xi)− π (∆xi)| functioning as the guidance indicator for
Tconv determination.Lower Ddisc means smaller error between the reverse sampling process and the
training distribution at time T . This is because the training phase draws samples from the distribution
PT , while the sampling phase operates based on the distribution π. 3) Step Count Tconv. Tconv is the
required noise injection steps to make Ddisc suffciently small, indicating the convergence speed. 4)
Training Time (Tspend). The total wall-clock time to train the model, used for comparing computational
efficiency across methods.

4.2 EFFICIENCY GAINS VIA EIGENVALUE CONTROL

From Theorem 2, the eigenvalue λ1 of the L-generator should be directly correlated with the model’s
training convergence rate. Specifically, a larger eigenvalue will require fewer training iterations (or
less time) to reach the same loss threshold. The experimental results confirm this prediction.

Based on the analysis in Subsection 3.3, two configurations are considered: 1) Fixing a(x) with
different orders and varying the coefficient of b(x) (Tables 1-4); 2) Fixing eigenvalues with varying
a(x) and b(x) (Table 5). The results reveal the following pattern.

Observation II: From Tables 1-5, on the same dataset, the greater the eigenvalue, the fewer steps
(Tconv) and the less training time (Tspend) are required to achieve convergence discrepancy (Ddisc).
And similar eigenvalues incur comparable time costs. These both demonstrate that the eigenvalue
predominantly govern the model’s convergence rate, which is consistent with the Theorem 2.

6
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Table 1: L-generators with fewer steps on CIFAR-10

a(x) b(x) Eigenvalue Tconv Ddisc
FID

(SDE solver)
FID (NFE=15)
(dpm solver)

FID (NFE=15)
(dpm solver++) Tspend

1
2

-0.25x 0.24 1000 0.241 4.76 4.89 4.76 52h
1
2

-0.5x 0.48 1000 0.208 4.44 4.59 4.44 45h
1
2

-x 1.03 825 0.209 3.15 3.74 3.15 35h
1
2

-2x 2.04 750 0.208 3.19 3.23 3.19 30h
1
2

-5x 6.15 525 0.209 4.30 4.43 4.30 26h
1
2

-10x 10.70 350 0.208 6.33 6.55 6.33 20h

Table 2: L-generators with fewer steps on CelebA-HQ-64

a(x) b(x) Eigenvalue Tconv Ddisc
FID

(SDE solver)
FID (NFE=20)
(dpm solver)

FID (NFE=20)
(dpm solver++) Tspend

1
2

-0.25x 0.24 1000 0.242 4.02 4.29 4.06 136h
1
2

-0.5x 0.48 1000 0.208 3.82 3.95 3.90 104h
1
2

-x 1.03 800 0.209 3.34 3.88 3.54 67h
1
2

-2x 2.04 750 0.209 3.67 3.96 3.73 61h
1
2

-5x 6.15 500 0.210 5.03 5.71 5.34 51h
1
2

-10x 10.70 300 0.209 7.41 8.09 7.99 45h

4.3 GENERATION PERFORMANCE UNDER EIGENVALUE GUIDANCE

Tables 1-5 show that generation quality is primarily governed by three factors: model complexity (as
reflected in the functional forms of a and b), the eigenvalue, and the dataset. The findings exhibit the
following regularity.

Observation III: From Tables 1-5, greater model or dataset complexity achieves lower FID at a
relatively slower convergence rate, while under similar complexity and fixed dataset, generation
quality — dominated by the eigenvalue — follows a concave trend characterized by an initial FID
decrease succeeded by an increase beyond an eigenvalue threshold.

The phenomena described above are readily explicable. Increased model complexity amplifies the
data-dependent variability of SDE (Eq. 3) coefficients, raising the variance of the learned data
distribution and thereby degrading training stability and generative fidelity. Similarly, datasets
of higher intrinsic complexity demand more iterations to capture fine-grained structural details.
Consequently, greater complexity in either domain heightens sensitivity to the convergence rate.
Under fixed complexity conditions, the convergence speed—governed by the eigenvalue—directly
modulates the thoroughness of representation learning, ultimately determining generation quality.

4.4 QUANTIFYING THE EFFICIENCY-QUALITY TRADE-OFF

By Observation II and III above, under similar model-complexity and dataset conditions, the eigen-
value dominates both training speed and generative quality. Therefore, balancing these two factors
could be achieved through eigenvalue modulation.

For linear (a, b), we scale the coefficient of b(x) in Tables 1 - 2, and report the corresponding results
as in Tables 3. Eigenvalues in the range of approximately (0.48, 5) on CIFAR-10 and (0.48, 4) on
CelebA-HQ-64 achieve an optimal balance between efficiency and quality relative to the baseline
model, while the value 1.03 both achieve this on Image-Net 128×128 and Image-Net 256×256 as in
Tables 14 and 16.

However, for nonlinear (a, b), the eigenvalue range may contract, as shown in Table 4. Moreover,
with unknown (a, b) or datasets, the range may still fluctuate. To avoid this uncertainty, we can adapt
the scheduling function β(t) according to the eigenvalue to achieve a balance. For example, when

7
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Table 3: Comparison of optimal eigenvalue ranges for CIFAR-10 and CelebA-HQ-64

(a) CIFAR-10

a(x) b(x) Eigenvalue Tconv Ddisc
FID

(SDE) Tspend

1
2

-5x 6.15 525 0.209 4.30 26h
1
2

-5.25x 6.40 512 0.209 4.48 27h
1
2

-5.5x 6.65 500 0.209 4.63 26h
1
2

-6x 7.20 475 0.209 4.97 26h
1
2

-7x 8.30 425 0.209 5.47 26h
1
2

-8x 9.40 375 0.209 5.92 24h
1
2

-9x 10.50 325 0.209 6.28 21h
1
2

-10x 10.70 350 0.208 6.33 20h

(b) CelebA-HQ-64

a(x) b(x) Eigenvalue Tconv Ddisc
FID

(SDE) Tspend

1
2

-2x 2.04 750 0.209 3.67 61h
1
2

-3x 3.06 650 0.210 3.78 58h
1
2

-4x 4.08 550 0.210 3.80 55h
1
2

-4.5x 4.59 525 0.210 3.97 55h
1
2

-4.75x 5.48 515 0.210 4.45 55h
1
2

-5x 6.15 500 0.210 5.03 51h

(a, b) = ( 12 ,−10x), the model has a large eigenvalue 10.7 but a high FID 6.33. Then taking 1
10.7β(t)

as the new scheduling function, we get the balance as in Table 18. In fact, for a general (a, b) needing
fine-tuning, takeing the new scheduling function around (or marginally higher than) 0.48

λ β(t) is a
recommended strategy, where 0.48 is the eigenvalue of the baseline.

This adjustment method works because, according to Theorem 2, speed also depends on β(t).
Crucially, β(t) should be tuned with reference to the eigenvalue; otherwise the adjustment is blind.
This demonstrates that controlling model efficiency and generation quality via the eigenvalue is
feasible, and also shows that EGEA-DM is not a parameter-search model—even though some
parameter tuning might sometimes be needed.

Figures 3-4 in Appendix C.1 show representative samples, confirming that spectral control preserves
generation quality while accelerating diffusion.

4.5 COMPLEMENTARY STUDIES ON OTHER FACTORS

To guarantee adequate noise injection, the (Tconv) is finalized only after the Ddisc declines to a
sufficiently low level and stabilizes. Empirical validation shows that further increasing the step count
results in only marginal fluctuations in FID. A detailed analysis is provided in Appendix C.3, C.4 and
Tables 9 - 12 there.

The final Ddisc differs among models as it relates to both the stationary and initial distributions by
Theorem 2. Linear (a, b) (Tables 1 - 3) exhibit more consistent distances owing to their relative
simplicity and stability compared to nonlinear models (Tables 4 - 5 in Appendix C). From the
experimental results, Ddisc does not significantly affect FID. See Appendix C.5 for more analysis.

Different (a, b) typically correspond to distinct stationary distributions, yet changes in the stationary
distribution have no significant impact on FID differences. See the Appendix C.6.

4.6 EGEA-DM AS A PLUG-AND-PLAY MODULE FOR DDPM ENHANCEMENTS

We evaluate EGEA-DM with classical ODE-based samplers, including DPM-Solver and DPM-
Solver++ (Lu et al., 2022a;b). Tables 1 and 2 show that combining them with EGEA-DM can
significantly achieve better generation quality. (Gray annotations correspond to DDPM.) Figures 1
and 2 and the corresponding Table 6 in Appendix C.1 illustrate the trend of FID with respect to the
number of function evaluations (NFE), indicating that EGEA-DM outperforms the baseline DDPM
and reflecting the stability of the our model.

These findings highlight the flexibility of EGEA-DM as a plug-in module for enhancing a wide range
of diffusion model variants. Future work may explore adaptive eigenvalue scheduling to dynamically
balance quality and efficiency.

8
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Figure 1: FID obtained by sampling
CIFAR-10 under different NFE

Figure 2: FID obtained by sampling
CIFAR-10 under different NFE

4.7 GENERALIZATION EXPERIMENT: DIFFERENT METHODS AND DATASETS

Based on the observations from the experimental results in the previous sections, we conducted
generalization experiments on high-resolution datasets using SDE-based diffusion methods. The
details are as follows:

The original DDPM model was trained on the ImageNet-128×128 dataset. Different sizes of linear
operators were selected, and the appropriate Tconv was determined with reference to the Ddisc of the
baseline model. The results in the Table 14 indicate that the dominant eigenvalue governs the training
time, and a slightly larger dominant eigenvalue leads to improved FID scores.

The EDMKarras et al. (2022) model was adopted for experiments on the CIFAR-10 dataset using
the same parameters as those in the aforementioned table. The results in Table 15 consistently
demonstrate the same trend as observed in the previous table.

The DiT(Diffusion Transformer)Peebles & Xie (2023) model was trained on the ImageNet-256×256
dataset with a fixed training duration, followed by multiple sampling processes. Table 16 show that
the integration of EGEA achieves a lower FID score.

The DDIMSong et al. (2020a) method was used for sampling models under different operators to
verify the robustness of EGEA - DM in the context of accelerated sampling. As indicated by the
Table 17, EGEA - DM exhibits considerable stability.

4.8 EXPERIMENT SUMMARY

To summarize, this study conducts an in-depth investigation into the EGEA-DM model, with a par-
ticular focus on eigenvalue-related impacts and its plug-and-play capability. Experiments involving
eigenvalue adjustment via a(x) and b(x) demonstrate that a larger principal eigenvalue generally
leads to higher training efficiency, which is consistent with the conclusions derived from theoretical
deductions. However, generative quality is affected by the coupling of multiple factors (e.g., the
form of the diffusion operator, differences in dataset distributions, and the stationary distribution).
Therefore, simultaneous improvements in both training speed and generative quality can be achieved
by selecting an appropriate diffusion operator. Notably, when EGEA-DM is integrated with classical
ODE-based samplers such as DPM-Solver and DPM-Solver++, its generative quality exhibits a signif-
icant improvement compared to DDPM, validating the model’s flexibility as a plug-in. Furthermore,
the generalization ability of EGEA-DM has been fully verified through integration with models
including EDM, DiT and DDIM, as well as training and evaluation across a diverse range of datasets.

5 RELATED WORK

Diffusion Models (DMs) have demonstrated remarkable performance in generative tasks, yet their
training process is plagued by critical limitations: substantial computational and memory overhead,

9
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slow convergence rates, and the challenge of balancing generation quality with efficiency. These
issues hinder their deployment in real-time applications.

To address these limitations, researchers have developed three key complementary categories of
efficient training techniques. Firstly, latent diffusion maps data to low-dimensional latent spaces
via autoencoders (AE), variational autoencoders (VAE). This approach enables a balance between
generation quality and efficiency, as exemplified by models like LDMs(Rombach et al., 2022) and
Stable Diffusion, which preserve high-quality generation while significantly improving training and
inference efficiency. Secondly, loss function design is critical for DM efficiency and generation
quality, such as CLDDockhorn et al. (2021) injects noise into data-coupled auxiliary variables to
simplify learning. Thirdly, training tricks enhance DM efficiency, convergence, and quality. Such as
DiGressVignac et al. (2022) optimizes efficiency for chemical molecules/social networks.

6 PRACTICAL GUIDELINES FOR USING EGEA-DM

Relative to nonlinear (a, b) , linear models exhibit superior stability and generation fidelity. Hence, we
recommend the linear case as a preferred initialization. For either model class, appropriate (a, b) can
be selected by consulting the principles, empirical patterns and observations presented in Subsection
3.3 and Section 4. Additional fine-tuning may then be applied to attain a more desirable operating
point on the speed–quality Pareto front.

When encountering novel (a, b) configurations or unfamiliar datasets, if the initial performance (in
either quality or speed) is suboptimal, our framework offers a principled two-step refinement protocol:
(i) compute the principal eigenvalue via the analytical procedure outlined in Subsection 3.2 to locate
the current operating regime; (ii) perform targeted adjustment using the β(t)-modulation method
described in Section 4.4, which preserves theoretical guarantees while efficiently steering the model
toward a satisfactory balance.

7 CONCLUSION

This paper proposes EGEA-DM, an eigenvalue-guided diffusion model framework that achieves
principled acceleration and interpretability of diffusion models through spectral analysis of the L-
generator. Leveraging ergodic theory, we relate the principal eigenvalue to convergence dynamics and
introduce an adjustable mechanism to accelerate the training process without sacrificing generative
quality. Extensive experiments across various datasets and models validate the effectiveness and
efficiency of the framework. Adjusting the spectral properties of the diffusion generator shortens
training time and significantly reduces the number of sampling steps while maintaining or improving
generative quality (measured by the FID metric), demonstrating strong cross-architecture gener-
alization ability. Furthermore, EGEA-DM can naturally integrate with existing methods such as
DPM-Solver, exhibiting robust modularity.
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A THEORY OF TIME-HOMOGENEOUS DIFFUSION

Consider the diffusion process corresponding to L-generator in Eq. 4, the related diffusion equation
of which is

dYτ = b(Yτ )dτ +
√

2a(Yτ )dWτ , (8)

The following theorem is about the uniqueness and ergodicity of the diffusion process related to L,
which is given in (Chen & Mao, 2021, Section 7.4).
Theorem 4. Given Y0, the solution Yτ of Eq. 8 is unique and ergodic if and only if

κ(+∞) = +∞ = κ(−∞), (9)

and

Z :=

∫
R

eC(u)

a(u)
du < +∞, (10)

where

κ(y) =

∫ y

0

e−C(z)

(∫ z

0

eC(ξ)

a(ξ)
dξ

)
dz, C(z) =

∫ z

0

b(ξ)

a(ξ)
dξ.

If 10 holds, then the stationary distribution is

π(dy) =
1

Za(y)
eC(y)dy, y ∈ R. (11)
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The principal eigenvalue λ1 in Eq. 6 has the variational formula as below. See (Chen, 2012, Theorem
3.2) for detail.

Theorem 5. Under the condition 5, the variational formula of the principal eigenvalue λ1 in Eq. 6 is

λ1 = sup
f∈C+

[
inf
z<θ

II−(f)(z)−1

]∧[
inf
z>θ

II+(f)(z)−1

]
.

Here

II±(f) =
h±

f
, C+ = {f ∈ C (−∞,∞) : f > 0} ,

where

h−(z) =

∫ z

−∞
e−C(x) dx

∫ θ

x

eCf

a
, z ⩽ θ,

h+(z) =

∫ ∞

z

e−C(x) dx

∫ x

θ

eCf

a
, z > θ,

and θ = θ(f) is the unique root of the equation h−(θ) = h+(θ).

For any B ∈ B, define P ∗
t (B) = P{Yt ∈ B}. Denote the stationary distribution of Yt by π∗(B) =∫

B
π∗(dx). Then the convergence rate of Yt toward to π∗ is shown as below. See (Chen, 2005,

Chapter 8).

Theorem 6. Under the uniqueness and ergodicity conditions as in Theorem 4, it holds that

∥P ∗
t − π∗∥Var ≤ ∥P ∗

0 − π∗∥Var e
−λ1t.

B PROOFS

B.1 PROOF OF THEOREM 1

Proof. Theorem 1 is derived directly from Theorem 4 and Lemma 1 and Lemma 2 below.

The following two lemmas show that Eq. 3 and 8 not only have the same uniqueness and ergodicity
conditions, but have the same stationary distribution. The idea of proof is from (Bobrowski, 2008).

Lemma 1. The following conditions are equivalent:

(i) Given X0, the solution Xt to Eq. 3 is unique;

(ii) Given Y0, the solution Yτ to Eq. 8 is unique;

(iii) The boundary measure function κ(y) satisfies 9.

Proof. Define the time transformation

ϕ(t) =

∫ t

0

β(s)ds.

From equations Eq. 3 and Eq. 8, Xt and Yτ are related by

Xt = Yϕ(t), Yτ = Xϕ−1(τ).

Thus (i) and (ii) are equivalent. By Theorem 4, (ii) and (iii) are equivalent, which completes the
equivalence of conditions (i)-(iii).

Lemma 2. If the solutions to diffusion equations 3 and equation 8 are unique, then the following
conditions are equivalent:

(i) The solution Xt to Eq.3 is ergodic;

(ii) The solution Yτ to Eq. equation 8 is ergodic;

(iii) The normalization constant satisfies 5.
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Proof. By Lemma 1, Yτ has uniqueness if and only if κ(±∞) = ∞. According to Theorem 4, if Yτ

has uniqueness, then it is ergodic if and only if Z < ∞, with stationary distribution π(y) in Eq. 11.
Since τ(t) covers the entire time axis, for any Borel set A ⊂ R,

lim
t→∞

P(Xt ∈ A) = lim
τ→∞

P(Yτ ∈ A) = π(A).

Therefore, the limiting distribution of Xt coincides with the stationary distribution of Yτ , and its
ergodicity is equivalent to that of Yτ , proving the equivalence of conditions (i)-(iii).

B.2 PROOF OF THEOREM 2

Proof. Combine Theorem 6 and Lemma 1, we have

∥Pt − π∥Var =
∥∥∥P ∗

ϕ(t) − π∗
∥∥∥

Var
≤ ∥P ∗

0 − π∗∥Var e
−λ1t

= ∥P0 − π∥Var e
−λ1

∫ t
0
β(s)ds.

This completes the proof.

B.3 PROOF OF THEOREM 3

Proof. Suppose the proportion ality coefficient satisfies b2
a2

= b1
a1

(i.e., k = 1), and the diffusion
coefficient satisfies a2(x) = c · a1(x) where c > 0 is a constant.

Define the original operator:
L1 = a1(x)∂xx + b1(x)∂x

and the scaled operator:
L2 = a2(x)∂xx + b2(x)∂x = ca1(x)∂xx + b2(x)∂x

From the proportionality condition b2
a2

= b1
a1

, substituting a2 = ca1 gives b2(x) = c · b1(x). Thus:

L2 = c [a1(x)∂xx + b1(x)∂x] = cL1

meaning the scaled operator is a constant multiple of the original operator.

Let L∗ denote the adjoint operator of L. The stationary distribution π1 of L1 satisfies:
L∗
1π1 = 0

The adjoint of the scaled operator satisfies L∗
2 = cL∗

1, so:
L∗
2π2 = 0 ⇐⇒ cL∗

1π2 = 0 ⇐⇒ L∗
1π2 = 0

Since the solution space of the adjoint equation L∗
1π = 0 is one-dimensional under normalization,

we have π2 = π1, i.e., the stationary distributions are identical.

In the L2(π) space, for any function f satisfying π(f) =
∫
fπdx = 0, the Dirichlet form of the

scaled operator is:
E2(f, f) = ⟨f,−L2f⟩π = ⟨f,−cL1f⟩π = c⟨f,−L1f⟩π = c · E1(f, f)

Here, the norm ∥f∥2π =
∫
f2πdx depends only on the stationary distribution π and is independent of

the operator coefficients.

The spectral gap is defined as the infimum of the Dirichlet form under the constraints π(f) = 0 and
∥f∥π = 1:

λ(2) = inf
f :π(f)=0,
∥f∥π=1

E2(f, f)

Substituting the Dirichlet form relation yields:

λ(2) = inf
f :π(f)=0,
∥f∥π=1

c · E1(f, f) = c · inf
f :π(f)=0,
∥f∥π=1

E1(f, f) = c · λ(1)

When the diffusion coefficient is scaled by a constant factor and the drift term maintains the same
proportionality, the spectral gap is proportional to the scaling factor of the diffusion coefficient, while
the stationary distribution remains unchanged.
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Table 4: Effect of b(x) changes in nonlinear L-generators on CIFAR-10 and CelebA-HQ-64

(a) CIFAR-10

a(x) b(x) Eigenvalue Tconv Ddisc
FID↓
(SDE) Tspend

|x|+c
2

-0.4x 0.42 800 0.175 3.45 45h
|x|+c

2
-0.5x 0.52 730 0.192 3.22 41h

|x|+c
2

-0.6x 0.62 680 0.210 3.85 38h
|x|+c

2
-x 1.04 650 0.265 3.96 35h

|x|+c
2

-2x 2.08 625 0.475 4.60 33h

x2+c
2

-0.5x 0.66 700 0.320 3.45 43h
x2+c

2
-0.65x 0.86 650 0.355 4.12 40h

x2+c
2

-x 1.32 625 0.380 4.17 38h
x2+c

2
-2x 2.64 600 0.410 4.85 35h

|x|3+c
2

-0.35x 1.08 700 0.375 3.21 42h
|x|3+c

2
-0.5x 1.54 625 0.410 3.35 38h

|x|3+c
2

-0.75x 2.31 550 0.475 4.60 33h
|x|3+c

2
-x 3.35 525 0.500 4.80 31h

|x|3+c
2

-2x 6.16 475 0.550 4.97 28h

(b) CelebA-HQ-64

a(x) b(x) Eigenvalue Tconv Ddisc
FID↓
(SDE) Tspend

|x|+c
2

-0.3x 0.31 900 0.475 4.12 110h
|x|+c

2
-0.5x 0.52 825 0.463 3.88 101h

|x|+c
2

-0.7x 0.73 750 0.525 5.07 92h
|x|+c

2
-x 1.04 725 0.550 5.60 88h

x2+c
2

-0.4x 0.53 850 0.475 4.05 105h
x2+c

2
-0.5x 0.66 775 0.510 3.86 96h

x2+c
2

-0.6x 0.79 725 0.560 5.33 92h
x2+c

2
-x 1.32 700 0.575 5.77 84h

Table 5: L-generators with varying a(x) and b(x)

Datasets a(x) b(x) Eigenvalue Tconv Ddisc
FID

(SDE solver) Tspend

CIFAR-10 0.5x2 + 0.1 −1.05x 1.03 820 0.205 3.12 34h
CIFAR-10 0.3|x|3 + 0.2 −0.95x 1.02 830 0.211 3.18 36h

CelebA-HQ-64 0.5x2 + 0.1 −1.05x 1.03 795 0.495 5.05 89h
CelebA-HQ-64 0.3|x|3 + 0.2 −0.95x 1.02 805 0.485 5.11 88h

C ADDITIONAL EXPERIMENT DESCRIPTION

C.1 ADDITIONAL EXPERIMENT RESULTS

Figures 3 and 4 show the image sampling results. Tables 6 present the specific values corresponding to
Figures 1 and 2. Figure 5 illustrates the variation trend of the principal eigenvalue of the corresponding
diffusion operator as the orders of a(x) and b(x) change. It can be observed that as the orders increase,
the eigenvalues exhibit an upward trend. We explore the influence trend of ergodic theory on model
performance under the scenario of nonlinear L-generator, and the results are presented in the Tables
4 and 5.

C.2 VERIFICATION OF THE ERGODICITY AND UNIQUENESS OF THE DIFFUSION OPERATOR

See Table 8 and Table 7, we provide the verification results regarding the ergodicity and uniqueness
of multiple diffusion operators for readers’ reference, where ✓ denotes satisfaction and × denotes
non-satisfaction.

C.3 VERIFY THE IMPACT OF TCONV ON FID

Regarding the research on the impact on FID scores, to rule out the possibility that insufficient Tconv
were the cause, we additionally trained some operators in the Table 1 using the same Tconv. It can be
seen that the FID scores showed almost no fluctuation due to the change in Tconv in Table 9. This
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Figure 3: The generated image results
of EGEA-DM on CIFAR-10

Figure 4: The generated image results
of EGEA-DM on CelebA

Figure 5: The principal eigenvalues of the generator depend on the orders of the functions a and b, it
shows the trend of changes in the principal eigenvalues as the order of a and b varies, which define its
structure.

also indicates that compared with the baseline, the reduction in FID scores is not attributable to the
decrease in Tconv.

C.4 ABOUT DDISC

In Tables 1-5, we explored the performance of various a(x) and b(x) when choosing a suitable Tconv.
In this section, we investigate how the model’s performance changes when a(x) and b(x) are varied
under a fixed Tconv. As shown in the Table 12, compared with Table 4 (a), increasing Tconv does
not lead to a decrease in Ddisc, which indicates that the distribution has converged. Meanwhile, the
FID score does not fluctuate significantly and still shows the trend observed in Table 4 (a). This
also suggests that the degradation of generative quality is not caused by insufficient sampling steps.
Table 11 illustrates the variation trend of model performance when the Tconv in the forward noising
process is insufficient. It can be observed that as the Tconv increases and the distribution approaches
the stationary distribution more closely, the FID score exhibits a decreasing trend.

C.5 ABOUT D0

Based on the experimental results, it can be observed that under the linear condition, the Ddisc
consistently decreases as the eigenvalue increases, which aligns with our expectations. However,
under the nonlinear condition, a distinct pattern emerges: despite the increase in eigenvalues, the
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Table 6: FID obtained by sampling CIFAR-10

(a) FID obtained by sampling CIFAR-10 under different NFE

a(x) b(x) solver Eigenvalue NFE=5 NFE=8 NFE=10 NFE=12 NFE=13 NFE=14

1
2

-0.5x dpm solver 0.48 8.50 7.40 5.10 4.30 4.40 4.40
1
2

-x dpm solver 1.03 14.00 11.10 7.60 3.90 3.78 3.60
|x|+c

2
-0.5x sde solver 0.52 15.20 11.50 8.30 3.80 3.60 3.50

x2+c
2

-0.5x sde solver 0.66 16.30 12.40 9.70 4.90 3.60 3.50
|x|3+c

2
-0.5x sde solver 1.54 15.50 11.80 8.50 4.10 3.70 3.40

(b) FID obtained by sampling CIFAR-10 under different NFE

a(x) b(x) solver NFE=600 NFE=650 NFE=700 NFE=730 NFE=825 NFE=1000

1
2

-0.5x dpm solver 4.42 4.44 4.43 4.44 4.43 4.44
1
2

-x dpm solver 3.24 3.21 3.19 3.18 3.15 -
|x|+c

2
-0.5x sde solver 3.29 3.26 3.20 3.22 - -

x2+c
2

-0.5x sde solver 3.54 3.51 3.45 - - -
|x|3+c

2
-0.5x sde solver 3.28 3.24 3.21 - - -

Table 7: Cases where the diffusion operator satisfies ergodicity

a(x)

b(x) − |x|−
1
2

2 − |x|−
1
3

2 − |x|−
1
20

2 − |x|
1
20

2 − |x|
1
3

2 − |x|
1
2

2

|x|−
1
2 +c
2 × × × × × ×

|x|−
1
3 +c
2 × × × × × ×

|x|−
1
20 +c
2 × × × × × ×

|x|
1
20 +c
2 × × × × × ×

|x|
1
3 +c
2 × × × × × ×

|x|
1
2 +c
2 × × × × × ×

|x|+c
2 × × × × × ×

|x|2+c
2 × × × × × ×

|x|3+c
2 × × × × × ×

|x|4+c
2 × × × × × ×

Ddisc does not show a downward trend. Essentially, this phenomenon arises because as the diffusion
operator changes, the stationary distribution also changes, and nonlinearity further enhances the
diversity of the diffusion process.

To verify that the distance is continuously decreasing, we further analyzed the variation trend of
distance across different steps. As showed in Table 10, the results confirm that this distance exhibits
a decreasing tendency. Prior to this, we computed the corresponding Ddisc for different cases of
a(x) and b(x), which corresponds to the left-hand side of Theorem 2. Due to the fact that the
nonlinear Ddisc exhibits irregular magnitudes compared to the linear case, we proceed in this section
by analyzing the right-hand side of the expression in the Theorem 2, hereinafter referred to as D0.
Based on the results in Table 13, D0 tends to increase as Ddisc increases, which is consistent with the
inequality stated in Theorem 2.
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Table 8: Cases where the diffusion operator satisfies ergodicity

a(x)

b(x) −x
2 −x2

2 −x3

2 −x4

2 −x5

2 −x6

2 −x7

2

|x|−
1
2 +c
2 ✓ × ✓ × ✓ × ✓

|x|−
1
3 +c
2 ✓ × ✓ × ✓ × ✓

|x|−
1
20 +c
2 ✓ × ✓ × ✓ × ✓

|x|
1
20 +c
2 ✓ × ✓ × ✓ × ✓

|x|
1
3 +c
2 ✓ × ✓ × ✓ × ✓

|x|
1
2 +c
2 ✓ × ✓ × ✓ × ✓

|x|+c
2 ✓ × ✓ × ✓ × ✓

|x|2+c
2 ✓ × ✓ × ✓ × ✓

|x|3+c
2 ✓ × ✓ × ✓ × ✓

|x|4+c
2 ✓ × ✓ × ✓ × ✓

Table 9: L-generators with same steps on CIFAR-10

a(x) b(x) Eigenvalue Tconv FID Tspend

1
2

-0.25x 0.24 1000 4.76 52h
1
2

-0.5x 0.48 1000 4.44 45h
1
2

-x 1.03 1000 3.15 40h
1
2

-2x 2.04 1000 3.19 42h
1
2

-5x 6.15 1000 4.27 44h
1
2

-10x 10.70 1000 6.32 49h
|x|+c

2
-0.5x 0.52 1000 3.22 50h

|x|2+c
2

-0.5x 0.66 1000 3.33 57h
|x|3+c

2
-0.5x 1.54 1000 3.18 63h

C.6 ABOUT DS

To quantify the differences in stationary distributions corresponding to different operators, we define
Ds as the distance between the current stationary distribution and the baseline stationary distribution.
As shown in Table 13, we calculated Ds for a variety of diffusion operators, and the results indicate
that Ds varies with the operator. This not only reflects the variation trend of the stationary distribution
as the operator changes but also indirectly demonstrates that the variation trend of FID is affected by
the stationary distribution.

D DISCRETE SGM

Given the forward SDE for the diffusion process as:

dxt = β(t)b(xt)dt+
√
2β(t)a(xt)dWt

where Wt is a standard Brownian motion, β(t) is the time-dependent diffusion coefficient, b(xt) and
a(xt) are state-dependent drift/diffusion functions, xt ∈ Rd denotes the state at time t.

The probability density pt(x) of xt satisfies the Fokker-Planck equation:

∂tpt(x) = −∇x · (β(t)b(x)pt(x)) +
1

2
∇2

x ·
(
2β(t)a(x)a⊤(x)pt(x)

)
18
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Table 10: The Ddisc variation trend under different steps on CIFAR-10

a(x) b(x) Tconv=625 Tconv=650 Tconv=680 Tconv=730 Tconv=800

|x|+c
2

-0.4x 1.030 0.915 0.725 0.515 0.175
|x|+c

2
-0.5x 0.805 0.695 0.485 0.192 0.195

|x|+c
2

-0.6x 0.605 0.460 0.210 0.215 0.210
|x|+c

2
-x 0.490 0.265 0.255 0.275 0.280

|x|+c
2

-2x 0.475 0.465 0.470 0.480 0.470

Table 11: FID variation trend under different Tconv on CIFAR-10

a(x) b(x) Tconv Ddisc FID Tspend

|x|+c
2

-0.5x 625 0.805 4.9 33h
|x|+c

2
-0.5x 650 0.695 4.2 35h

|x|+c
2

-0.5x 680 0.485 3.98 38h

Reversing time s = T − t, the reverse SDE for xt (with W̃t as reverse Brownian motion) is:

dxt =
[
β(t)b(xt)− 2β(t)a(xt)a

⊤(xt)∇x log pt(xt)
]
dt+

√
2β(t)a(xt)dW̃t

where ∇x log pt(xt) = sθ(xt, t) denotes the score function (modeled by θ).

Discretize time into 0 = t0 < t1 < · · · < tN = T , with βi = β(ti), bi = b(xti), ai = a(xti).

xi+1 = xi + βib(xi)∆t+
√
2βi∆ta(xi)zi, zi ∼ N (0, I)

Using sθ(xi+1, i+ 1) = ∇x log pi+1(xi+1), the reverse iteration is:

xi = xi+1−βi+1b(xi+1)∆t+2βi+1a(xi+1)a
⊤(xi+1)sθ(xi+1, i+1)∆t+

√
2βi+1∆ta(xi+1)z̃i+1

where z̃i+1 ∼ N (0, I) and i = 0, 1, . . . , N − 1.

Absorbing ∆t into coefficients (simplified notation):

xi = xi+1 − βi+1b(xi+1) + 2βi+1a(xi+1)a
⊤(xi+1)sθ(xi+1, i+ 1) +

√
2βi+1a(xi+1)z̃i+1

E SUPPLEMENTARY EXPERIMENTS
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Table 12: Study the influence of different a(x) and b(x) on FID with a fixed Tconv on CIFAR-10

a(x) b(x) Eigenvalue Tconv Ddisc
FID↓
(SDE) Tspend

|x|+c
2

-0.4x 0.42 800 0.175 3.45 45h
|x|+c

2
-0.5x 0.52 800 0.195 3.12 45h

|x|+c
2

-0.6x 0.62 800 0.210 3.63 45h
|x|+c

2
-x 1.04 800 0.280 3.68 45h

|x|+c
2

-2x 2.08 800 0.470 4.24 45h

Table 13: Study the Dis of different a(x) and b(x) on CIFAR-10

a(x) b(x) Eigenvalue Tconv Ddisc D0 Ds FID

1
2

-0.25x 0.24 1000 0.241 27.3 2.1 4.76
1
2

-0.5x 0.48 1000 0.208 25.8 0 4.44
1
2

-x 1.03 825 0.209 26.7 1.3 3.15
1
2

-2x 2.04 750 0.208 28.2 3.4 3.19
1
2

-5x 6.15 525 0.209 30.6 6.5 4.30
1
2

-10x 10.70 350 0.208 34.8 12.1 6.33

|x|+c
2

-0.4x 0.42 800 0.175 34.5 11.5 3.45
|x|+c

2
-0.5x 0.52 730 0.192 30.4 6.4 3.22

|x|+c
2

-0.6x 0.62 680 0.210 26.5 1.1 3.85
|x|+c

2
-x 1.04 650 0.265 27.8 2.7 3.96

|x|+c
2

-2x 2.08 625 0.475 32.5 9.4 4.60

x2+c
2

-0.5x 0.66 700 0.320 28.4 3.6 3.45

|x|3+c
2

-0.5x 1.54 700 0.375 31.2 7.5 3.21

0.5x2 + 0.1 −1.05x 1.03 820 0.205 26.9 1.5 3.12
0.3|x|3 + 0.2 −0.95x 1.02 830 0.211 27.1 1.8 3.18

Table 14: L-generators with fewer steps on Image-Net 128×128

a(x) b(x) Eigenvalue Tconv Ddisc FID Tspend

1
2

-0.5x 0.48 1000 0.763 35.24 182h
1
2

-x 1.03 800 0.765 31.63 164h
1
2

-10x 10.70 325 0.761 42.58 92h

Table 15: L-generators with fewer steps on Cifar-10 with EDM

a(x) b(x) Eigenvalue Tconv FID Tspend

1
2

-0.5x 0.48 1000 13.22 120h
1
2

-x 1.03 825 11.27 101h
1
2

-10x 10.70 350 18.48 67h

Table 16: L-generators with fewer steps with DiT on Image-Net 256×256

a(x) b(x) Eigenvalue Tconv FID1 FID2 FID3

1
2

-0.5x 0.48 1000 270 220 198
1
2

-x 1.03 825 243 200 182
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Table 17: L-generators with fewer steps on Cifar-10 with DDIM

a(x) b(x) Eigenvalue Tconv Ddisc FID Tspend

1
2

-0.25x 0.24 1000 0.241 5.08 52h
1
2

-0.5x 0.48 1000 0.208 4.72 45h
1
2

-x 1.03 825 0.209 3.38 35h
1
2

-10x 10.70 350 0.208 6.57 20h

Table 18: By modifying β(t) to correct the excessively fast speed

a(x) b(x) Eigenvalue Scheduling Function Tconv Ddisc FID Tspend

1
2

-10x 10.70 β(t) 350 0.208 6.33 20h
1
2

-10x 10.70 1.03
10.70

β(t) 700 0.208 3.88 28h
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