

000 001 002 003 004 005 EGEA-DM: EIGENVALUE-GUIDED EXPLAINABLE AND 006 ACCELERATED DIFFUSION MODEL 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Diffusion models have achieved remarkable success in generating high-quality data, yet challenges remain in training convergence, interpretability, and fine-grained controllability. Additionally, the high computational cost of training is often overlooked from a theoretical perspective. To address these limitations, we propose Eigenvalue-Guided Explainable and Accelerated Diffusion Model (EGEA-DM), a novel framework grounded in ergodic theory. **EGEA-DM leverages the L -generator's principal eigenvalue to control the forward diffusion speed, enabling adaptive adjustment of reverse steps during both training and sampling. By modulating the forward process through the L -generator's coefficients, our method establishes a unified mechanism for explainable and fine-grained control.** This control, in turn, enables more efficient training and allows for the optimization of the speed-quality trade-off. Extensive experiments validate the effectiveness of EGEA-DM, demonstrating its potential to advance the practical applicability of diffusion models.

1 INTRODUCTION

Diffusion models are a powerful class of generative models that have achieved outstanding performance in various fields, such as image synthesis (Dhariwal & Nichol, 2021), audio generation (Huang et al., 2023), and time-series prediction (Shen & Kwok, 2023). These models operate by employing a forward process that iteratively adds noise to the data, gradually transforming the data distribution into a stationary distribution. The reverse process is then learned to progressively denoise the data, reconstructing the original distribution.

Diffusion models primarily fall into two categories: Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) and Score-Based Generative Models (SGM) (Song et al., 2020c). DDPM-based methods, such as FastDPM (Kong & Ping, 2021), Truncated Diffusion Models (Zheng et al., 2022), and ES-DDPM (Lyu et al., 2022), optimize noise scheduling, truncation, and sampling efficiency. SGM employs score functions with stochastic differential equations (SDEs) or probability flow ODEs, with advancements like Lévy Stable Diffusion (Song & Zhang, 2023), MSGM (Liu & Wang, 2024), and adaptive step-size methods (Franzese et al., 2023), enhancing flexibility, robustness, and efficiency. These advancements collectively highlight the versatility and potential of diffusion models in addressing complex generative tasks while motivating further exploration into their theoretical foundations and practical applications.

Despite their major advances and impressive capabilities, diffusion models face two key challenges: 1) *Theoretical gaps in diffusion sampling*: Diffusion models typically involve a large number of time steps (often exceeding 1000), which leads to significant computational overhead—especially during sampling—due to the need for repeated evaluations of a neural network in the reverse denoising process. While these models have shown impressive empirical performance, the theoretical understanding of this inefficiency and how to mitigate it remains limited. 2) *Lack of interpretability and controllability*: While various methods (Kim et al., 2025; Fu et al., 2025; Jiang et al., 2024) etc. have been proposed to mitigate the computational cost of diffusion models, many lack a solid theoretical foundation. This limits their interpretability and constrains fine-grained control over the diffusion process, ultimately hindering systematic optimization and adaptation for diverse applications.

054 To address the computational inefficiency and lack of theoretical interpretability in diffusion models,
 055 we propose the Eigenvalue-Guided Explainable and Accelerated Diffusion Model (EGEA-DM), a
 056 novel framework grounded in ergodic theory. In EGEA-DM, we model the forward diffusion process
 057 using a continuous-time Markov generator governed by an L -generator. The convergence rate toward
 058 the stationary distribution is mainly determined by the spectral gap of this generator, which is equal
 059 to the magnitude of its principal (first non-zero) eigenvalue.

060 We modulate the coefficients of the L -generator to control the spectral decay, enabling fine-grained
 061 regulation of the forward diffusion dynamics. By estimating the deviation between the data distri-
 062 bution at step T and the stationary distribution under a given generator, we determine the minimal
 063 number of forward (and hence reverse) steps required for effective denoising, thereby reducing the
 064 computational cost of both training and sampling.

065 Crucially, we observe that aggressive acceleration—i.e., maximizing the principal eigenvalue—can
 066 degrade generation quality due to insufficient representation of intermediate data states. To balance
 067 quality and efficiency, we incorporate empirical quality metrics into the eigenvalue-guided tuning
 068 process. This yields an interpretable trade-off curve between diffusion speed and generation fidelity.

069 A central technical challenge lies in estimating the principal eigenvalue of the L -generator. We adopt
 070 Chen’s estimation theory (Chen, 2012), combined with iterative numerical methods, to efficiently
 071 approximate this quantity. This allows us to characterize and control the diffusion process via a
 072 theoretically grounded mechanism.

073 We remark that, although the eigenvalue estimation incurs additional computational overhead, it is
 074 substantially outweighed by the training acceleration achieved. Moreover, while other factors such
 075 as initial and stationary distributions do affect model convergence, the spectral properties exhibit
 076 dominant influence. Ultimately, while alternative theories can characterize convergence rates, they
 077 generally lack precise estimation bounds for generic diffusion processes.

078 Overall, EGEA-DM provides a principled and explainable approach to accelerating diffusion models,
 079 achieving joint optimization of computational efficiency and generative quality through spectral
 080 control. *Our contributions are summarized as follows:*

- **Interpretable diffusion via ergodic theory:** We reinterpret diffusion models through the lens of ergodic theory, linking the convergence rate of the forward process to the principal eigenvalue of the L -generator. This provides a theoretical foundation for understanding and analyzing diffusion dynamics and noise injection schemes.
- **Controllable optimization via L -generator modulation:** By adjusting the coefficients of the L -generator based on its principal eigenvalue, we introduce a flexible mechanism to control the speed and stability of the diffusion process.
- **Spectral characterization via numerical estimation:** We adopt the iterative method (Chen, 2012) to efficiently estimate the principal eigenvalue of the L -generator, enabling quantitative control of diffusion speed and providing a metric for generator design.
- **Generalization across dataset and methods:** EGEA-DM demonstrates strong generalization on multiple datasets and integrates seamlessly with a variety of DDPM extensions, validating its robustness across tasks and architectures. *Our framework is also compatible with score-based models, offering a theory-informed and systematic methodology approach for selecting and tuning L -generators across diverse generative frameworks, opening up new possibilities for expanding research on baseline models.*

2 PRELIMINARY

101 We briefly review score-based generative models (SGMs) and the associated L -generator. Here we
 102 focus on the one-dimensional case without loss of generality. In fact, although the experimental
 103 data distribution is high-dimensional and contains both semantic and spatial information, each
 104 dimension undergoes noise injection and removal independently according to the same Stochastic
 105 Differential Equations (SDEs), and thus shares the same L -generator, stationary distribution and
 106 principle eigenvalue. The only distinction lies in the potentially different initial distributions across
 107 dimensions. Consequently, the convergence rate of the high-dimensional data can be characterized
 mainly by this identical eigenvalue.

108 2.1 SCORE-BASED GENERATIVE MODEL
109110 In SGMs, the forward diffusion process gradually perturbs data X_0 into noise, with the distribution
111 of the final data X_T at time T approaching a stationary distribution. This process is governed by the
112 following SDE:

113
$$dX_t = f(X_t, t) dt + g(X_t, t) dW_t, \quad (1)$$

114 where W_t is a standard Wiener process, $f(x, t) : \mathbb{R} \times [0, T] \rightarrow \mathbb{R}$ is the drift coefficient dictating the
115 deterministic dynamics, and $g(x, t) : \mathbb{R} \times [0, T] \rightarrow \mathbb{R}$ is the diffusion coefficient scaling the random
116 noise at each step.117 The reverse process starts from samples of X_T and iteratively denoises the data to recover X_0 . This
118 is described by the reverse-time SDE:
119

120
$$dX_t = [f(X_t, t) - g(X_t, t)^2 \nabla_x \log p_t(X_t)] dt + g(X_t, t) d\tilde{W}_t,$$

121

122 where \tilde{W}_t is a standard Wiener process when time flows backward from T to 0, and $\nabla_x \log p_t(x)$
123 is the score function, i.e., the gradient of the log-probability density of X_t (typically unknown).
124 $\nabla_x \log p_t(x)$ could be learned via sliced score matching (SSM), where a neural network is trained to
125 approximate the gradients of perturbed data distributions across multiple noise scales. SSM trains the
126 score matching function $s_\theta(X_t, t)$ by the following equaiton

127
$$\theta^* = \arg \min_{\theta} \mathbb{E}_t \left\{ \lambda(t) \mathbb{E}_{X_0} \mathbb{E}_{X_t} \mathbb{E}_{v \sim \mathcal{N}(0, 1)} \left[\frac{1}{2} \|s_\theta(X_t, t)\|_2^2 + \text{Tr}(\nabla_{X_t} s_\theta(X_t, t)) \right] \right\},$$

128

130 where the random vector v follows a Gaussian distribution, and $\lambda : [0, T] \rightarrow \mathbb{R}_{>0}$ is a weight function,
131 taken as $\lambda \propto 1/\mathbb{E} \left[\|\nabla_{X_t} \log p_{0t}(X_t | X_0)\|_2^2 \right]$ (Song et al., 2020c;b).
132133 2.2 L_t -GENERATOR
134135 In addition to the SDE in Eq. 1, the forward diffusion process can be fully characterized by the
136 infinitesimal generator L_t -generator, defined as $L_t \phi(x) = \lim_{h \rightarrow 0} \frac{\mathbb{E}[\phi(X_{t+h}) | X_t = x] - \phi(x)}{h}$, where ϕ is
137 an infinitely differentiable function with compact support (Stroock & Varadhan, 1997). This generator
138 specifies the evolution of X_t at each infinitesimal time step. Using Itô's formula, the L_t -generator
139 can be expressed as:
140

141
$$L_t = \frac{1}{2} g^2(t, x) \frac{d^2}{dx^2} + f(t, x) \frac{d}{dx}, \quad (2)$$

142

143 which encapsulates both the drift and diffusion components of the process. Note that if $\frac{1}{2} g^2(t, x) \equiv$
144 $a(x)$ and $f(t, x) \equiv b(x)$ for all t , then L_t is time-independent in t .
145146 3 EGEA-DM
147148 This section will present the detailed formulation of our proposed EGEA-DM. We adopt the SGM as
149 the foundational framework and employ the L -generator to regulate the model. The adoption of the
150 SGM is grounded in its rigorous theoretical guarantees for score matching, while the L -generator
151 serving as an effective controller of the diffusion model.152 Subsection 3.1 will develop the theoretical model design, including the generator structure, conver-
153 gence conditions and principle eigenvalue-convergence rate correspondence. Subsection 3.2 will
154 provide the numerical method to estimate the convergence speed, enabling model adjustment guided
155 by the principle eigenvalue. Subsection 3.3 will present the empirical observations for selecting the
156 L -generator, thereby enabling effective control of EGEA-DM.
157158 3.1 ERGODIC THEORY
159160 For EGEA-DM, the forward diffusion process X_t is designed to satisfy the SDE
161

162
$$dX_t = \beta(t) b(X_t) dt + \sqrt{2\beta(t)a(X_t)} dW_t, \quad (3)$$

162 so that its L_t -generator has the form
 163

$$164 \quad L_t = \beta(t) \cdot L \text{ with } L = a(x) \frac{d^2}{dx^2} + b(x) \frac{d}{dx}, \quad (4)$$

$$165$$

$$166$$

167 where $a(x) > 0$ and $b(x)$ are both first-order continuous functions on \mathbb{R} , the scheduling function $\beta(t)$
 168 is integrable and $0 < \beta_{\min} \leq \beta(t) \leq \beta_{\max} < \infty$.
 169

170 Note that, once $\beta(t)$ is selected, the generation and properties of X_t will be determined by L .
 171

172 Before demonstrating the correlation between the convergence rate of X_t and the principle eigenvalue
 173 of L , we should ensure the solution uniqueness and ergodicity of X_t . Solution uniqueness implies
 174 the convergence of X_t , while ergodicity guarantees that X_t converges almost surely to a positive
 175 stationary distribution. The below Theorem 1 specifies what conditions on $a(x) > 0$ and $b(x)$ ensure
 176 both uniqueness and ergodicity of X_t .
 177

Theorem 1 (Uniqueness and Ergodicity). *Given X_0 , the solution X_t of Eq. 3 is unique and ergodic
 if and only if*

$$179 \quad \kappa(+\infty) = +\infty = \kappa(-\infty), \quad Z := \int_{\mathbb{R}} \frac{e^{C(u)}}{a(u)} du < +\infty, \quad (5)$$

$$180$$

$$181$$

$$182$$

183 where $\kappa(x) = \int_0^x e^{-C(u)} \int_0^u \frac{e^{C(v)}}{a(v)} dv du$ and $C(x) = \int_0^x \frac{b(u)}{a(u)} du$ for $x \in \mathbb{R}$. If Eq. 5 holds, then the
 184 stationary distribution is $\pi(dx) = \frac{1}{Za(x)} e^{C(x)} dx$ for $x \in \mathbb{R}$.
 185

186 Let $L^2(\pi)$ be the real measure space $\{f : \pi(f^2) < \infty\}$ equipped with the norm $\|f\| = [\pi(f^2)]^{1/2}$
 187 and the inner product $(f, g) = \int_{\mathbb{R}} f(x)g(x)\pi(dx)$, where $\pi(g) = \int_{\mathbb{R}} g(x)\pi(dx)$ for general g . The
 188 principle eigenvalue λ_1 of L is defined as
 189

$$190 \quad \lambda_1 = \inf \{(f, -Lf) : f \in \mathcal{D}(L), \pi(f) = 0, \|f\| = 1\}, \quad (6)$$

$$191$$

$$192$$

193 with $\mathcal{D}(L)$ the domain of L in $L^2(\pi)$. Since L has one trivial eigenvalue $\lambda_0 = 0$, the spectral gap
 194 $\lambda_1 - \lambda_0$ is equal to λ_1 (Chen & Mao, 2021).
 195

196 For any $B \in \mathcal{B}$, define $P_t(B) = \mathbb{P}\{X_t \in B\}$, where \mathcal{B} is the collection of all Borel sets on \mathbb{R} . Then
 197 P_t characterizes the distribution of X_t , while the stationary distribution $\pi(B) = \int_B \pi(dx)$. The total
 198 variation distance between P_t and π is defined as $\|P_t - \pi\|_{\text{Var}} = \sup_{B \in \mathcal{B}} |P_t(B) - \pi(B)|$.
 199

The theorem below describes the convergence rate of X_t toward to π .
 200

Theorem 2 (Convergence Rate). *Under the condition in Eq. 5 of Theorem 1, it holds that*

$$202 \quad \|P_t - \pi\|_{\text{Var}} \leq \|P_0 - \pi\|_{\text{Var}} e^{-\lambda_1 \int_0^t \beta(s) ds}.$$

$$203$$

$$204$$

205 From Theorem 2, the convergence rate of X_t increases monotonically with the magnitude of λ_1 ,
 206 through which we could precisely control the speed of the forward diffusion process. While P_0 and
 207 π do affect convergence speed, λ_1 dominates the long-term dynamics, which is also shown in our
 208 experiments in Section 4.
 209

210 However, λ_1 is typically difficult to obtain with exact precision, which explains why the next
 211 subsection performs its numerical estimation.
 212

213 3.2 ESTIMATION OF THE PRINCIPAL EIGENVALUE

$$214$$

215 This subsection outlines an iterative algorithm for numerically estimating λ_1 , based on Chen's
 216 theoretical estimation for this principle eigenvalue (Chen, 2012).
 217

216 Initialize a function $f_1(z)$ as follows:
 217

$$218 \quad 219 \quad 220 \quad 221 \quad 222 \quad 223 \quad 224 \quad 225 \quad 226$$

$$f_1^{x,y}(t) = \begin{cases} \left[\frac{\int_y^r \frac{e^{c(u)}}{a(u)} du \cdot \int_{-\infty}^z \frac{e^{c(u)}}{a(u)} du}{\int_{-\infty}^x \frac{e^{c(u)}}{a(u)} du} \right]^{1/2}, & \text{if } z \leq x, \\ \left[\int_y^{\infty} \frac{e^{c(u)}}{a(u)} du \right]^{1/2}, & \text{if } x \leq z \leq y, \\ \left[\int_t^{\infty} \frac{e^{c(u)}}{a(u)} du \right]^{1/2}, & \text{if } z \geq y. \end{cases}$$

227 For the n -th step, define
 228

$$229 \quad 230 \quad f_n(z) = \begin{cases} f_n^-(z), & \text{if } z \leq \theta_n; \\ f_n^+(z) & \text{if } z > \theta_n, \end{cases}$$

231 where
 232

$$233 \quad 234 \quad 235 \quad f_n^-(z) = \int_{-\infty}^z \frac{e^{c(u)}}{a(u)} du \cdot \int_u^{\theta_n} e^{-c(t)} f_{n-1}^{x,y}(t) dt, \quad f_n^+(z) = \int_z^{+\infty} \frac{e^{c(u)}}{a(u)} du \cdot \int_{\theta_n}^u e^{-c(t)} f_{n-1}^{(x,y)}(t) dt,$$

236 and θ_n is obtained by solving the below equation for every (x, y) :
 237

$$238 \quad 239 \quad 240 \quad \int_{-\infty}^{\theta_n} \frac{e^{c(u)}}{a(u)} du \cdot \int_u^{\theta_n} e^{-c(t)} f_{n-1}^{x,y}(t) dt = \int_{\theta_n}^{+\infty} \frac{e^{c(u)}}{a(u)} du \cdot \int_{\theta_n}^u e^{-c(t)} f_{n-1}^{(x,y)}(t) dt.$$

241 Then the n -th estimation for the λ_1 is
 242

$$243 \quad 244 \quad \lambda_1^{(n)} = \inf_{x < y} \left[\sup_z \frac{f_n^-(z)}{f_{n-1}(z)} \right] \vee \left[\sup_z \frac{f_n^+(z)}{f_{n-1}(z)} \right]. \quad (7)$$

246 By Chen's theory, this sequence asymptotically and increasingly approaches to the true value of λ_1
 247 as n tends to $+\infty$.
 248

249 In practical computations, we approximate the integral using the classical rectangle method, and the
 250 segmentation is 2000 intervals. For derivable cases, for instance, in DDPM, the error is approximately
 251 0.0007. The computational time is about 2 hours. However, the calculation is performed on an Intel
 252 Core i5-9300H processor using MATLAB. Hence, if executed on hardware with higher specifications
 253 as model training and generation, the time is expected to be significantly reduced.
 254

255 This method ensures tractable eigenvalue estimation, enabling the design of tuning the L -generator
 256 in the following subsection. We remark that, Eq. 7 demonstrates that convergence rate regulation
 257 requires eigenvalue estimation, as mere tuning of hyperparameters $a(x)$ and $b(x)$ yields suboptimal
 258 control accuracy.
 259

260 3.3 HOW TO CHOOSE THE L -GENERATOR

261 It can be seen from Eq. 7 that the magnitude of the principal eigenvalue of the L -generator is
 262 determined by $a(x)$ and $b(x)$. Therefore, we can regulate the L -generator by selecting different forms
 263 of $a(x)$ and $b(x)$ under the guidance of this eigenvalue. This paper considers the case where both $a(x)$
 264 and $b(x)$ are polynomial functions. It is a relatively common form both in theory and application.
 265 And, other common continuous functions can be approximated by polynomial functions, which is
 266 guaranteed by the Weierstrass approximation theorem (Stone, 1948). The selection of L -generator
 267 could be guided by the following three (empirical) principles:
 268

269 **Principle I :** As theoretically analyzed in Subsection 3.1, $a(x)$ and $b(x)$ need to fulfill Eq. 5, ensuring
 270 that the forward diffusion process can converge to a positive stationary distribution. Eq. 5 can be
 271 readily verified through numerical experiments. Based on this verification, we have summarized the
 272 characteristics of relevant functions in 7 and 8 in Appendix .
 273

270 **Principle II:** The following Theorem 3 reveals how the principle eigenvalue varies when linear
 271 transformations are applied to $a(x)$ and $b(x)$, providing another guiding principle for choosing the
 272 L -generator.

273 **Theorem 3.** *Let $a^*(x) = ka(x)$ and $b^*(x) = kb(x)$, where k is a positive constant. Then the
 274 principle eigenvalue λ_1^* of $L^* = a^*(x) \frac{d^2}{dx^2} + b^*(x) \frac{d}{dx}$ is equal to $k\lambda_1$.*

276 **Observation I:** According to Subsection 3.2, we have computed the eigenvalues corresponding to
 277 multiple (a, b) pairs, as detailed in Tables 1-5. These computed values can serve as references and are
 278 amenable to minor adjustments, since the eigenvalues change continuously with (a, b) under certain
 279 conditions—a fact corroborated by Kato-Rellich theorem (Kato, 2013). Figure 5 in the Appendix C.1
 280 shows the evolution law of the principal eigenvalue as the degrees of x in the polynomials $a(x)$ and
 281 $b(x)$ increase, providing a more intuitive visual representation.

282 4 EXPERIMENTS

285 We conduct experiments to evaluate the impact of the L -generator, especially its principal eigenvalue,
 286 on diffusion model performance.

288 4.1 EXPERIMENT SETUP AND EVALUATION METRICS

290 **Experiment setup.** Following the theoretical principles established in last section, we instantiate the
 291 L -generator by selecting appropriate functions $a(x)$ and $b(x)$. These choices give rise to different
 292 diffusion processes and spectral properties, corresponding to specific instances of our proposed
 293 EGEA-DM framework.

294 We implement our model using a U-Net architecture. All training processes were conducted on an
 295 NVIDIA GeForce RTX 4090 GPU. Key training parameters included: an initial learning rate of
 296 1×10^{-5} . The model was optimized using the Adam optimizer with default momentum parameters
 297 ($\beta_1 = 0.9$, $\beta_2 = 0.999$). For fair comparison, we retain the linear, uniformly increasing noise
 298 schedule β_t used in the original DDPM framework (Ho et al., 2020). We evaluate performance on two
 299 standard image generation benchmarks: CIFAR-10 (Krizhevsky, 2009), CelebA-HQ (Gábor Mélyi &
 300 Felippo, 2020), Image-NetDeng et al. (2009) 128×128 and 256×256.

301 **Evaluation metrics.** To assess both the generation quality and acceleration efficiency of EGEA-
 302 DM, we employ four evaluation metrics: 1) *Fréchet Inception Distance (FID)* (Tim Salimans,
 303 2016). A standard metric that measures the distance between real and generated image distributions.
 304 Lower FID indicates better visual quality and diversity. 2) *Convergence Discrepancy* (D_{disc}). D_{disc}
 305 quantifies the proximity between the forward distribution $P_t(x)$ and the stationary distribution π :
 306 $D_{\text{disc}} = \|P_t - \pi\|_{\text{Var}} \approx \frac{1}{2} \sum_{\Delta x_i} |P_t(\Delta x_i) - \pi(\Delta x_i)|$ functioning as the guidance indicator for
 307 T_{conv} determination. Lower D_{disc} means smaller error between the reverse sampling process and the
 308 training distribution at time T . This is because the training phase draws samples from the distribution
 309 P_T , while the sampling phase operates based on the distribution π . 3) *Step Count* T_{conv} . T_{conv} is the
 310 required noise injection steps to make D_{disc} sufficiently small, indicating the convergence speed. 4)
 311 *Training Time* (T_{spend}). The total wall-clock time to train the model, used for comparing computational
 312 efficiency across methods.

313 4.2 EFFICIENCY GAINS VIA EIGENVALUE CONTROL

314 From Theorem 2, the eigenvalue λ_1 of the L -generator should be directly correlated with the model’s
 315 training convergence rate. Specifically, a larger eigenvalue will require fewer training iterations (or
 316 less time) to reach the same loss threshold. The experimental results confirm this prediction.

318 Based on the analysis in Subsection 3.3, two configurations are considered: 1) *Fixing $a(x)$ with
 319 different orders and varying the coefficient of $b(x)$ (Tables 1-4); 2) *Fixing eigenvalues with varying
 320 $a(x)$ and $b(x)$ (Table 5)*. The results reveal the following pattern.*

321 **Observation II:** From Tables 1-5, on the same dataset, the greater the eigenvalue, the fewer steps
 322 (T_{conv}) and the less training time (T_{spend}) are required to achieve convergence discrepancy (D_{disc}).
 323 And similar eigenvalues incur comparable time costs. These both demonstrate that the eigenvalue
 324 predominantly govern the model’s convergence rate, which is consistent with the Theorem 2.

324
325
326 Table 1: L -generators with fewer steps on CIFAR-10
327
328
329
330
331
332
333
334

$a(x)$	$b(x)$	Eigenvalue	T_{conv}	D_{disc}	FID (SDE solver)	FID (NFE=15) (dpm solver)	FID (NFE=15) (dpm solver++)	T_{spend}
$\frac{1}{2}$	$-0.25x$	0.24	1000	0.241	4.76	4.89	4.76	52h
$\frac{1}{2}$	$-0.5x$	0.48	1000	0.208	4.44	4.59	4.44	45h
$\frac{1}{2}$	$-x$	1.03	825	0.209	3.15	3.74	3.15	35h
$\frac{1}{2}$	$-2x$	2.04	750	0.208	3.19	3.23	3.19	30h
$\frac{1}{2}$	$-5x$	6.15	525	0.209	4.30	4.43	4.30	26h
$\frac{1}{2}$	$-10x$	10.70	350	0.208	6.33	6.55	6.33	20h

335
336 Table 2: L -generators with fewer steps on CelebA-HQ-64
337

$a(x)$	$b(x)$	Eigenvalue	T_{conv}	D_{disc}	FID (SDE solver)	FID (NFE=20) (dpm solver)	FID (NFE=20) (dpm solver++)	T_{spend}
$\frac{1}{2}$	$-0.25x$	0.24	1000	0.242	4.02	4.29	4.06	136h
$\frac{1}{2}$	$-0.5x$	0.48	1000	0.208	3.82	3.95	3.90	104h
$\frac{1}{2}$	$-x$	1.03	800	0.209	3.34	3.88	3.54	67h
$\frac{1}{2}$	$-2x$	2.04	750	0.209	3.67	3.96	3.73	61h
$\frac{1}{2}$	$-5x$	6.15	500	0.210	5.03	5.71	5.34	51h
$\frac{1}{2}$	$-10x$	10.70	300	0.209	7.41	8.09	7.99	45h

348
349 4.3 GENERATION PERFORMANCE UNDER EIGENVALUE GUIDANCE350
351 Tables 1-5 show that generation quality is primarily governed by three factors: model complexity (as
352 reflected in the functional forms of a and b), the eigenvalue, and the dataset. The findings exhibit the
353 following regularity.354
355 **Observation III:** From Tables 1-5, greater model or dataset complexity achieves lower FID at a
356 relatively slower convergence rate, while under similar complexity and fixed dataset, generation
357 quality — dominated by the eigenvalue — follows a concave trend characterized by an initial FID
decrease succeeded by an increase beyond an eigenvalue threshold.358
359 The phenomena described above are readily explicable. Increased model complexity amplifies the
360 data-dependent variability of SDE (Eq. 3) coefficients, raising the variance of the learned data
361 distribution and thereby degrading training stability and generative fidelity. Similarly, datasets
362 of higher intrinsic complexity demand more iterations to capture fine-grained structural details.
363 Consequently, greater complexity in either domain heightens sensitivity to the convergence rate.
364 Under fixed complexity conditions, the convergence speed—governed by the eigenvalue—directly
365 modulates the thoroughness of representation learning, ultimately determining generation quality.366
367 4.4 QUANTIFYING THE EFFICIENCY-QUALITY TRADE-OFF368
369 By Observation II and III above, under similar model-complexity and dataset conditions, the eigen-
370 value dominates both training speed and generative quality. Therefore, balancing these two factors
371 could be achieved through eigenvalue modulation.372
373 For linear (a, b) , we scale the coefficient of $b(x)$ in Tables 1 - 2, and report the corresponding results
374 as in Tables 3. Eigenvalues in the range of approximately (0.48, 5) on CIFAR-10 and (0.48, 4) on
375 CelebA-HQ-64 achieve an optimal balance between efficiency and quality relative to the baseline
376 model, while the value 1.03 both achieve this on Image-Net 128×128 and Image-Net 256×256 as in
377 Tables 14 and 16.378
379 However, for nonlinear (a, b) , the eigenvalue range may contract, as shown in Table 4. Moreover,
380 with unknown (a, b) or datasets, the range may still fluctuate. To avoid this uncertainty, we can adapt
381 the scheduling function $\beta(t)$ according to the eigenvalue to achieve a balance. For example, when

378 Table 3: Comparison of optimal eigenvalue ranges for CIFAR-10 and CelebA-HQ-64
379
380
381

(a) CIFAR-10							(b) CelebA-HQ-64						
$a(x)$	$b(x)$	Eigenvalue	T_{conv}	D_{disc}	FID (SDE)	T_{spend}	$a(x)$	$b(x)$	Eigenvalue	T_{conv}	D_{disc}	FID (SDE)	T_{spend}
$\frac{1}{2}$	$-5x$	6.15	525	0.209	4.30	26h	$\frac{1}{2}$	$-2x$	2.04	750	0.209	3.67	61h
$\frac{1}{2}$	$-5.25x$	6.40	512	0.209	4.48	27h	$\frac{1}{2}$	$-3x$	3.06	650	0.210	3.78	58h
$\frac{1}{2}$	$-5.5x$	6.65	500	0.209	4.63	26h	$\frac{1}{2}$	$-4x$	4.08	550	0.210	3.80	55h
$\frac{1}{2}$	$-6x$	7.20	475	0.209	4.97	26h	$\frac{1}{2}$	$-4.5x$	4.59	525	0.210	3.97	55h
$\frac{1}{2}$	$-7x$	8.30	425	0.209	5.47	26h	$\frac{1}{2}$	$-4.75x$	5.48	515	0.210	4.45	55h
$\frac{1}{2}$	$-8x$	9.40	375	0.209	5.92	24h	$\frac{1}{2}$	$-5x$	6.15	500	0.210	5.03	51h
$\frac{1}{2}$	$-9x$	10.50	325	0.209	6.28	21h							
$\frac{1}{2}$	$-10x$	10.70	350	0.208	6.33	20h							

(a, b) = ($\frac{1}{2}, -10x$), the model has a large eigenvalue 10.7 but a high FID 6.33. Then taking $\frac{1}{10.7}\beta(t)$ as the new scheduling function, we get the balance as in Table 18. In fact, for a general (a, b) needing fine-tuning, taking the new scheduling function around (or marginally higher than) $\frac{0.48}{\lambda}\beta(t)$ is a recommended strategy, where 0.48 is the eigenvalue of the baseline.

This adjustment method works because, according to Theorem 2, speed also depends on $\beta(t)$. Crucially, $\beta(t)$ should be tuned with reference to the eigenvalue; otherwise the adjustment is blind. This demonstrates that controlling model efficiency and generation quality via the eigenvalue is feasible, and also shows that EGEA-DM is not a parameter-search model—even though some parameter tuning might sometimes be needed.

Figures 3-4 in Appendix C.1 show representative samples, confirming that spectral control preserves generation quality while accelerating diffusion.

4.5 COMPLEMENTARY STUDIES ON OTHER FACTORS

To guarantee adequate noise injection, the (T_{conv}) is finalized only after the D_{disc} declines to a sufficiently low level and stabilizes. Empirical validation shows that further increasing the step count results in only marginal fluctuations in FID. A detailed analysis is provided in Appendix C.3, C.4 and Tables 9 - 12 there.

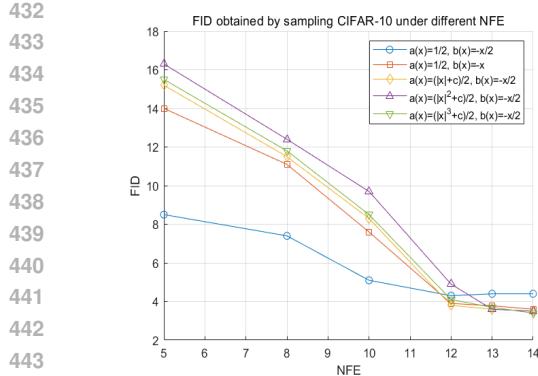
The final D_{disc} differs among models as it relates to both the stationary and initial distributions by Theorem 2. Linear (a, b) (Tables 1 - 3) exhibit more consistent distances owing to their relative simplicity and stability compared to nonlinear models (Tables 4 - 5 in Appendix C). From the experimental results, D_{disc} does not significantly affect FID. See Appendix C.5 for more analysis.

Different (a, b) typically correspond to distinct stationary distributions, yet changes in the stationary distribution have no significant impact on FID differences. See the Appendix C.6.

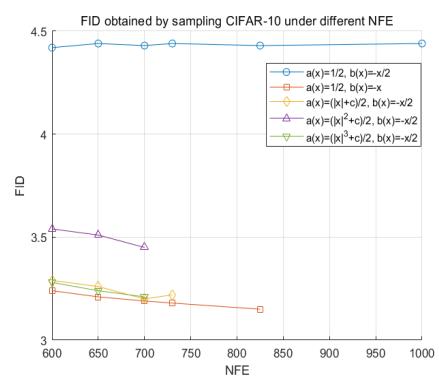
4.6 EGEA-DM AS A PLUG-AND-PLAY MODULE FOR DDPM ENHANCEMENTS

We evaluate EGEA-DM with classical ODE-based samplers, including DPM-Solver and DPM-Solver++ (Lu et al., 2022a;b). Tables 1 and 2 show that combining them with EGEA-DM can significantly achieve better generation quality. (Gray annotations correspond to DDPM.) Figures 1 and 2 and the corresponding Table 6 in Appendix C.1 illustrate the trend of FID with respect to the number of function evaluations (NFE), indicating that EGEA-DM outperforms the baseline DDPM and reflecting the stability of the our model.

These findings highlight the flexibility of EGEA-DM as a plug-in module for enhancing a wide range of diffusion model variants. Future work may explore adaptive eigenvalue scheduling to dynamically balance quality and efficiency.



445 Figure 1: FID obtained by sampling
446 CIFAR-10 under different NFE
447



450 Figure 2: FID obtained by sampling
451 CIFAR-10 under different NFE
452

4.7 GENERALIZATION EXPERIMENT: DIFFERENT METHODS AND DATASETS

453 Based on the observations from the experimental results in the previous sections, we conducted
454 generalization experiments on high-resolution datasets using SDE-based diffusion methods. The
455 details are as follows:

456 The original DDPM model was trained on the ImageNet-128×128 dataset. Different sizes of linear
457 operators were selected, and the appropriate T_{conv} was determined with reference to the D_{disc} of the
458 baseline model. The results in the Table 14 indicate that the dominant eigenvalue governs the training
459 time, and a slightly larger dominant eigenvalue leads to improved FID scores.

460 The EDMKarras et al. (2022) model was adopted for experiments on the CIFAR-10 dataset using
461 the same parameters as those in the aforementioned table. The results in Table 15 consistently
462 demonstrate the same trend as observed in the previous table.

463 The DiT(Diffusion Transformer)Peebles & Xie (2023) model was trained on the ImageNet-256×256
464 dataset with a fixed training duration, followed by multiple sampling processes. Table 16 show that
465 the integration of EGEA achieves a lower FID score.

466 The DDIMSong et al. (2020a) method was used for sampling models under different operators to
467 verify the robustness of EGEA - DM in the context of accelerated sampling. As indicated by the
468 Table 17, EGEA - DM exhibits considerable stability.

4.8 EXPERIMENT SUMMARY

470 To summarize, this study conducts an in-depth investigation into the EGEA-DM model, with a par-
471 ticular focus on eigenvalue-related impacts and its plug-and-play capability. Experiments involving
472 eigenvalue adjustment via $a(x)$ and $b(x)$ demonstrate that a larger principal eigenvalue generally
473 leads to higher training efficiency, which is consistent with the conclusions derived from theoretical
474 deductions. However, generative quality is affected by the coupling of multiple factors (e.g., the
475 form of the diffusion operator, differences in dataset distributions, and the stationary distribution).
476 Therefore, simultaneous improvements in both training speed and generative quality can be achieved
477 by selecting an appropriate diffusion operator. Notably, when EGEA-DM is integrated with classical
478 ODE-based samplers such as DPM-Solver and DPM-Solver++, its generative quality exhibits a signif-
479 icant improvement compared to DDPM, validating the model's flexibility as a plug-in. Furthermore,
480 the generalization ability of EGEA-DM has been fully verified through integration with models
481 including EDM, DiT and DDIM, as well as training and evaluation across a diverse range of datasets.

5 RELATED WORK

482 Diffusion Models (DMs) have demonstrated remarkable performance in generative tasks, yet their
483 training process is plagued by critical limitations: substantial computational and memory overhead,

486 slow convergence rates, and the challenge of balancing generation quality with efficiency. These
 487 issues hinder their deployment in real-time applications.
 488

489 To address these limitations, researchers have developed three key complementary categories of
 490 efficient training techniques. Firstly, latent diffusion maps data to low-dimensional latent spaces
 491 via autoencoders (AE), variational autoencoders (VAE). This approach enables a balance between
 492 generation quality and efficiency, as exemplified by models like LDMs(Rombach et al., 2022) and
 493 Stable Diffusion, which preserve high-quality generation while significantly improving training and
 494 inference efficiency. Secondly, loss function design is critical for DM efficiency and generation
 495 quality, such as CLDDockhorn et al. (2021) injects noise into data-coupled auxiliary variables to
 496 simplify learning. Thirdly, training tricks enhance DM efficiency, convergence, and quality. Such as
 497 DiGressVignac et al. (2022) optimizes efficiency for chemical molecules/social networks.
 498

498 6 PRACTICAL GUIDELINES FOR USING EGEA-DM

500 Relative to nonlinear (a, b) , linear models exhibit superior stability and generation fidelity. Hence, we
 501 recommend the linear case as a preferred initialization. For either model class, appropriate (a, b) can
 502 be selected by consulting the principles, empirical patterns and observations presented in Subsection
 503 3.3 and Section 4. Additional fine-tuning may then be applied to attain a more desirable operating
 504 point on the speed-quality Pareto front.

505 When encountering novel (a, b) configurations or unfamiliar datasets, if the initial performance (in
 506 either quality or speed) is suboptimal, our framework offers a principled two-step refinement protocol:
 507 (i) compute the principal eigenvalue via the analytical procedure outlined in Subsection 3.2 to locate
 508 the current operating regime; (ii) perform targeted adjustment using the $\beta(t)$ -modulation method
 509 described in Section 4.4, which preserves theoretical guarantees while efficiently steering the model
 510 toward a satisfactory balance.

512 7 CONCLUSION

514 This paper proposes EGEA-DM, an eigenvalue-guided diffusion model framework that achieves
 515 principled acceleration and interpretability of diffusion models through spectral analysis of the L -
 516 generator. Leveraging ergodic theory, we relate the principal eigenvalue to convergence dynamics and
 517 introduce an adjustable mechanism to accelerate the training process without sacrificing generative
 518 quality. Extensive experiments across various datasets and models validate the effectiveness and
 519 efficiency of the framework. Adjusting the spectral properties of the diffusion generator shortens
 520 training time and significantly reduces the number of sampling steps while maintaining or improving
 521 generative quality (measured by the FID metric), demonstrating strong cross-architecture gener-
 522 alization ability. Furthermore, EGEA-DM can naturally integrate with existing methods such as
 523 DPM-Solver, exhibiting robust modularity.

525 REFERENCES

526 Adam Bobrowski. *Functional analysis for probability and stochastic processes*. Functional analysis
 527 for probability and stochastic processes, 2008.

529 Mu-Fa Chen. *Eigenvalues, inequalities, and ergodic theory*. Springer, 2005.

530 Mu-Fa Chen. Basic estimates of stability rate for one-dimensional diffusions. In *Probability*
 531 *Approximations and Beyond*, pp. 75–99. Springer, 2012.

533 Mu-Fa Chen and Yong-Hua Mao. *Introduction to stochastic processes*, volume 2. World Scientific,
 534 2021.

535 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 536 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 537 pp. 248–255. Ieee, 2009.

539 Prateek Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *NeurIPS*,
 2021.

540 Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with critically-
 541 damped langevin diffusion. *arXiv preprint arXiv:2112.07068*, 2021.
 542

543 Giulio Franzese, Simone Rossi, Lixuan Yang, Alessandro Finamore, Dario Rossi, Maurizio Filippone,
 544 and Pietro Michiardi. How much is enough? a study on diffusion times in score-based generative
 545 models. *Entropy*, 25(4):633, 2023.

546 Yuxiang Fu, Qi Yan, Lele Wang, Ke Li, and Renjie Liao. Moflow: One-step flow matching for
 547 human trajectory forecasting via implicit maximum likelihood estimation based distillation. In
 548 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 17282–17293, 2025.
 549

550 Cristian S. Andrei Eduardo Valle Renata T. J. Ribeiro Gábor Mélyi, Tiberiu D. Popa and Luis
 551 F. W. Felippo. Celeba-hq: A dataset for high-quality facial attribute editing. In *Proceedings*
 552 *of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2020. URL
 553 <https://github.com/nv-tlabs/celebahq-dataset>.

554 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 555 *neural information processing systems*, 33:6840–6851, 2020.
 556

557 Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Luping Liu, Mingze Li, Zhenhui Ye, Jinglin
 558 Liu, Xiang Yin, and Zhou Zhao. Make-an-audio: Text-to-audio generation with prompt-enhanced
 559 diffusion models. In *International Conference on Machine Learning*, pp. 13916–13932. PMLR,
 560 2023.

561 Max Jiang, Yijing Bai, Andre Cornman, Christopher Davis, Xiukun Huang, Hong Jeon, Sakshum
 562 Kulshrestha, John Lambert, Shuangyu Li, Xuanyu Zhou, et al. Scenediffuser: Efficient and con-
 563 trollable driving simulation initialization and rollout. *Advances in Neural Information Processing*
 564 *Systems*, 37:55729–55760, 2024.
 565

566 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 567 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
 568 2022.

569 Tosio Kato. *Perturbation theory for linear operators*, volume 132. Springer Science & Business
 570 Media, 2013.
 571

572 Dohyun Kim, Sehwan Park, Geonhee Han, Seung Wook Kim, and Paul Hongsuck Seo. Random
 573 conditioning with distillation for data-efficient diffusion model compression. *arXiv preprint*
 574 *arXiv:2504.02011*, 2025.

575 Zhifeng Kong and Wei Ping. On fast sampling of diffusion probabilistic models. *arXiv preprint*
 576 *arXiv:2106.00132*, 2021.
 577

578 Alex Krizhevsky. Learning multiple layers of features from tiny images. In *Technical Report, University*
 579 *of Toronto*, 2009. URL <https://www.cs.toronto.edu/~kriz/cifar.html>.

580 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 581 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

582 Jian Liu and Yiming Wang. Moderated score-based generative model. *arXiv preprint*
 583 *arXiv:2401.07299*, 2024.
 584

585 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 586 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in Neural*
 587 *Information Processing Systems*, 35:5775–5787, 2022a.

588 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
 589 solver for guided sampling of diffusion probabilistic models. *arXiv preprint arXiv:2211.01095*,
 590 2022b.
 591

592 Zhaoyang Lyu, Xudong Xu, Ceyuan Yang, Dahua Lin, and Bo Dai. Accelerating diffusion models
 593 via early stop of the diffusion process. *arXiv preprint arXiv:2205.12524*, 2022.

594 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 595 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.
 596

597 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 598 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 599 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

600 Lifeng Shen and James Kwok. Non-autoregressive conditional diffusion models for time series
 601 prediction. In *International Conference on Machine Learning*, pp. 31016–31029. PMLR, 2023.
 602

603 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 604 *preprint arXiv:2010.02502*, 2020a.

605 Yang Song and Xiang Zhang. Score-based generative models with lévy processes. *arXiv preprint*
 606 *arXiv:2306.11578*, 2023.

607 Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach
 608 to density and score estimation. In *Uncertainty in artificial intelligence*, pp. 574–584. PMLR,
 609 2020b.

610 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 611 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 612 *arXiv:2011.13456*, 2020c.

613 Marshall H Stone. The generalized weierstrass approximation theorem. *Mathematics Magazine*, 21
 614 (5):237–254, 1948.

615 Daniel W Stroock and SR Srinivasa Varadhan. *Multidimensional diffusion processes*, volume 233.
 616 Springer Science & Business Media, 1997.

617 Wojciech Zaremba Vinyals O. et al. Tim Salimans, Ian Goodfellow. Improved techniques for training
 618 gans. In *Proceedings of NeurIPS*, 2016. URL <https://arxiv.org/abs/1606.03498>.

619 Clement Vignac, Igor Krawczuk, Antoine Sraordin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
 620 Digress: Discrete denoising diffusion for graph generation. *arXiv preprint arXiv:2209.14734*,
 621 2022.

622 Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Truncated diffusion probabilistic
 623 models. *arXiv preprint arXiv:2202.09671*, 1(3.1):2, 2022.

628 A THEORY OF TIME-HOMOGENEOUS DIFFUSION

630 Consider the diffusion process corresponding to L -generator in Eq. 4, the related diffusion equation
 631 of which is

$$632 dY_\tau = b(Y_\tau)d\tau + \sqrt{2a(Y_\tau)}dW_\tau, \quad (8)$$

634 The following theorem is about the uniqueness and ergodicity of the diffusion process related to L ,
 635 which is given in (Chen & Mao, 2021, Section 7.4).

636 **Theorem 4.** *Given Y_0 , the solution Y_τ of Eq. 8 is unique and ergodic if and only if*

$$637 \kappa(+\infty) = +\infty = \kappa(-\infty), \quad (9)$$

638 and

$$639 Z := \int_{\mathbb{R}} \frac{e^{C(u)}}{a(u)} du < +\infty, \quad (10)$$

640 where

$$641 \kappa(y) = \int_0^y e^{-C(z)} \left(\int_0^z \frac{e^{C(\xi)}}{a(\xi)} d\xi \right) dz, C(z) = \int_0^z \frac{b(\xi)}{a(\xi)} d\xi.$$

642 If 10 holds, then the stationary distribution is

$$643 \pi(dy) = \frac{1}{Za(y)} e^{C(y)} dy, \quad y \in \mathbb{R}. \quad (11)$$

648 The principal eigenvalue λ_1 in Eq. 6 has the variational formula as below. See (Chen, 2012, Theorem
 649 3.2) for detail.

650 **Theorem 5.** *Under the condition 5, the variational formula of the principal eigenvalue λ_1 in Eq. 6 is*

$$652 \quad 653 \quad \lambda_1 = \sup_{f \in \mathcal{C}_+} \left[\inf_{z < \theta} II^-(f)(z)^{-1} \right] \wedge \left[\inf_{z > \theta} II^+(f)(z)^{-1} \right].$$

654 *Here*

$$655 \quad 656 \quad II^\pm(f) = \frac{h^\pm}{f}, \quad \mathcal{C}_+ = \{f \in \mathcal{C}(-\infty, \infty) : f > 0\},$$

657 *where*

$$658 \quad 659 \quad h^-(z) = \int_{-\infty}^z e^{-C(x)} dx \int_x^\theta \frac{e^C f}{a}, \quad z \leq \theta,$$

$$660 \quad 661 \quad h^+(z) = \int_z^\infty e^{-C(x)} dx \int_\theta^x \frac{e^C f}{a}, \quad z > \theta,$$

663 *and $\theta = \theta(f)$ is the unique root of the equation $h^-(\theta) = h^+(\theta)$.*

664 For any $B \in \mathcal{B}$, define $P_t^*(B) = \mathbb{P}\{Y_t \in B\}$. Denote the stationary distribution of Y_t by $\pi^*(B) = \int_B \pi^*(dx)$. Then the convergence rate of Y_t toward to π^* is shown as below. See (Chen, 2005, Chapter 8).

665 **Theorem 6.** *Under the uniqueness and ergodicity conditions as in Theorem 4, it holds that*

$$666 \quad 667 \quad \|P_t^* - \pi^*\|_{Var} \leq \|P_0^* - \pi^*\|_{Var} e^{-\lambda_1 t}.$$

672 B PROOFS

673 B.1 PROOF OF THEOREM 1

674 *Proof.* Theorem 1 is derived directly from Theorem 4 and Lemma 1 and Lemma 2 below. \square

675 The following two lemmas show that Eq. 3 and 8 not only have the same uniqueness and ergodicity
 676 conditions, but have the same stationary distribution. The idea of proof is from (Bobrowski, 2008).

677 **Lemma 1.** *The following conditions are equivalent:*

- 678 (i) *Given X_0 , the solution X_t to Eq. 3 is unique;*
- 679 (ii) *Given Y_0 , the solution Y_τ to Eq. 8 is unique;*
- 680 (iii) *The boundary measure function $\kappa(y)$ satisfies 9.*

681 *Proof.* Define the time transformation

$$682 \quad 683 \quad \phi(t) = \int_0^t \beta(s) ds.$$

684 From equations Eq. 3 and Eq. 8, X_t and Y_τ are related by

$$685 \quad X_t = Y_{\phi(t)}, \quad Y_\tau = X_{\phi^{-1}(\tau)}.$$

686 Thus (i) and (ii) are equivalent. By Theorem 4, (ii) and (iii) are equivalent, which completes the
 687 equivalence of conditions (i)-(iii). \square

688 **Lemma 2.** *If the solutions to diffusion equations 3 and equation 8 are unique, then the following
 689 conditions are equivalent:*

- 690 (i) *The solution X_t to Eq. 3 is ergodic;*
- 691 (ii) *The solution Y_τ to Eq. equation 8 is ergodic;*
- 692 (iii) *The normalization constant satisfies 5.*

702 *Proof.* By Lemma 1, Y_τ has uniqueness if and only if $\kappa(\pm\infty) = \infty$. According to Theorem 4, if Y_τ
 703 has uniqueness, then it is ergodic if and only if $Z < \infty$, with stationary distribution $\pi(y)$ in Eq. 11.
 704 Since $\tau(t)$ covers the entire time axis, for any Borel set $A \subset \mathbb{R}$,

$$705 \lim_{t \rightarrow \infty} \mathbb{P}(X_t \in A) = \lim_{\tau \rightarrow \infty} \mathbb{P}(Y_\tau \in A) = \pi(A).$$

707 Therefore, the limiting distribution of X_t coincides with the stationary distribution of Y_τ , and its
 708 ergodicity is equivalent to that of Y_τ , proving the equivalence of conditions (i)-(iii). \square

709 B.2 PROOF OF THEOREM 2

711 *Proof.* Combine Theorem 6 and Lemma 1, we have

$$713 \|P_t - \pi\|_{\text{Var}} = \left\| P_{\phi(t)}^* - \pi^* \right\|_{\text{Var}} \leq \|P_0^* - \pi^*\|_{\text{Var}} e^{-\lambda_1 t} \\ 714 = \|P_0 - \pi\|_{\text{Var}} e^{-\lambda_1 \int_0^t \beta(s) ds}.$$

715 This completes the proof. \square

718 B.3 PROOF OF THEOREM 3

719 *Proof.* Suppose the proportionality coefficient satisfies $\frac{b_2}{a_2} = \frac{b_1}{a_1}$ (i.e., $k = 1$), and the diffusion
 720 coefficient satisfies $a_2(x) = c \cdot a_1(x)$ where $c > 0$ is a constant.

722 Define the original operator:

$$723 L_1 = a_1(x) \partial_{xx} + b_1(x) \partial_x$$

724 and the scaled operator:

$$725 L_2 = a_2(x) \partial_{xx} + b_2(x) \partial_x = c a_1(x) \partial_{xx} + b_2(x) \partial_x$$

727 From the proportionality condition $\frac{b_2}{a_2} = \frac{b_1}{a_1}$, substituting $a_2 = c a_1$ gives $b_2(x) = c \cdot b_1(x)$. Thus:

$$729 L_2 = c [a_1(x) \partial_{xx} + b_1(x) \partial_x] = c L_1$$

730 meaning the scaled operator is a constant multiple of the original operator.

731 Let L^* denote the adjoint operator of L . The stationary distribution π_1 of L_1 satisfies:

$$732 L_1^* \pi_1 = 0$$

733 The adjoint of the scaled operator satisfies $L_2^* = c L_1^*$, so:

$$735 L_2^* \pi_2 = 0 \iff c L_1^* \pi_2 = 0 \iff L_1^* \pi_2 = 0$$

736 Since the solution space of the adjoint equation $L_1^* \pi = 0$ is one-dimensional under normalization,
 737 we have $\pi_2 = \pi_1$, i.e., the stationary distributions are identical.

739 In the $L^2(\pi)$ space, for any function f satisfying $\pi(f) = \int f \pi dx = 0$, the Dirichlet form of the
 740 scaled operator is:

$$741 \mathcal{E}_2(f, f) = \langle f, -L_2 f \rangle_\pi = \langle f, -c L_1 f \rangle_\pi = c \langle f, -L_1 f \rangle_\pi = c \cdot \mathcal{E}_1(f, f)$$

742 Here, the norm $\|f\|_\pi^2 = \int f^2 \pi dx$ depends only on the stationary distribution π and is independent of
 743 the operator coefficients.

745 The spectral gap is defined as the infimum of the Dirichlet form under the constraints $\pi(f) = 0$ and
 746 $\|f\|_\pi = 1$:

$$747 \lambda^{(2)} = \inf_{\substack{f: \pi(f)=0, \\ \|f\|_\pi=1}} \mathcal{E}_2(f, f)$$

749 Substituting the Dirichlet form relation yields:

$$751 \lambda^{(2)} = \inf_{\substack{f: \pi(f)=0, \\ \|f\|_\pi=1}} c \cdot \mathcal{E}_1(f, f) = c \cdot \inf_{\substack{f: \pi(f)=0, \\ \|f\|_\pi=1}} \mathcal{E}_1(f, f) = c \cdot \lambda^{(1)}$$

754 When the diffusion coefficient is scaled by a constant factor and the drift term maintains the same
 755 proportionality, the spectral gap is proportional to the scaling factor of the diffusion coefficient, while
 the stationary distribution remains unchanged. \square

756 Table 4: Effect of $b(x)$ changes in nonlinear L -generators on CIFAR-10 and CelebA-HQ-64
757

(a) CIFAR-10							(b) CelebA-HQ-64						
$a(x)$	$b(x)$	Eigenvalue	T_{conv}	D_{disc}	$\text{FID} \downarrow$ (SDE)	T_{spend}	$a(x)$	$b(x)$	Eigenvalue	T_{conv}	D_{disc}	$\text{FID} \downarrow$ (SDE)	T_{spend}
$\frac{ x +c}{2}$	$-0.4x$	0.42	800	0.175	3.45	45h	$\frac{ x +c}{2}$	$-0.3x$	0.31	900	0.475	4.12	110h
$\frac{ x +c}{2}$	$-0.5x$	0.52	730	0.192	3.22	41h	$\frac{ x +c}{2}$	$-0.5x$	0.52	825	0.463	3.88	101h
$\frac{ x +c}{2}$	$-0.6x$	0.62	680	0.210	3.85	38h	$\frac{ x +c}{2}$	$-0.7x$	0.73	750	0.525	5.07	92h
$\frac{ x +c}{2}$	$-x$	1.04	650	0.265	3.96	35h	$\frac{ x +c}{2}$	$-x$	1.04	725	0.550	5.60	88h
$\frac{ x +c}{2}$	$-2x$	2.08	625	0.475	4.60	33h	$\frac{x^2+c}{2}$	$-0.4x$	0.53	850	0.475	4.05	105h
$\frac{x^2+c}{2}$	$-0.5x$	0.66	700	0.320	3.45	43h	$\frac{x^2+c}{2}$	$-0.5x$	0.66	775	0.510	3.86	96h
$\frac{x^2+c}{2}$	$-0.65x$	0.86	650	0.355	4.12	40h	$\frac{x^2+c}{2}$	$-0.6x$	0.79	725	0.560	5.33	92h
$\frac{x^2+c}{2}$	$-x$	1.32	625	0.380	4.17	38h	$\frac{x^2+c}{2}$	$-2x$	2.64	600	0.410	4.85	35h
$\frac{x^2+c}{2}$	$-2x$	2.64	600	0.410	4.85	35h	$\frac{ x ^3+c}{2}$	$-0.35x$	1.08	700	0.375	3.21	42h
$\frac{ x ^3+c}{2}$	$-0.5x$	1.54	625	0.410	3.35	38h	$\frac{ x ^3+c}{2}$	$-0.5x$	1.54	625	0.410	3.35	38h
$\frac{ x ^3+c}{2}$	$-0.75x$	2.31	550	0.475	4.60	33h	$\frac{ x ^3+c}{2}$	$-x$	3.35	525	0.500	4.80	31h
$\frac{ x ^3+c}{2}$	$-2x$	6.16	475	0.550	4.97	28h	$\frac{ x ^3+c}{2}$	$-2x$	6.16	475	0.550	4.97	28h

779 Table 5: L -generators with varying $a(x)$ and $b(x)$
780

Datasets	$a(x)$	$b(x)$	Eigenvalue	T_{conv}	D_{disc}	FID (SDE solver)	T_{spend}
CIFAR-10	$0.5x^2 + 0.1$	$-1.05x$	1.03	820	0.205	3.12	34h
CIFAR-10	$0.3 x ^3 + 0.2$	$-0.95x$	1.02	830	0.211	3.18	36h
CelebA-HQ-64	$0.5x^2 + 0.1$	$-1.05x$	1.03	795	0.495	5.05	89h
CelebA-HQ-64	$0.3 x ^3 + 0.2$	$-0.95x$	1.02	805	0.485	5.11	88h

789

C ADDITIONAL EXPERIMENT DESCRIPTION

792

C.1 ADDITIONAL EXPERIMENT RESULTS

794 Figures 3 and 4 show the image sampling results. Tables 6 present the specific values corresponding to
795 Figures 1 and 2. Figure 5 illustrates the variation trend of the principal eigenvalue of the corresponding
796 diffusion operator as the orders of $a(x)$ and $b(x)$ change. It can be observed that as the orders increase,
797 the eigenvalues exhibit an upward trend. [We explore the influence trend of ergodic theory on model](#)
798 [performance under the scenario of nonlinear \$L\$ -generator, and the results are presented in the Tables](#)
799 [4 and 5.](#)

800

C.2 VERIFICATION OF THE ERGODICITY AND UNIQUENESS OF THE DIFFUSION OPERATOR

802 See Table 8 and Table 7, we provide the verification results regarding the ergodicity and uniqueness
803 of multiple diffusion operators for readers' reference, where \checkmark denotes satisfaction and \times denotes
804 non-satisfaction.

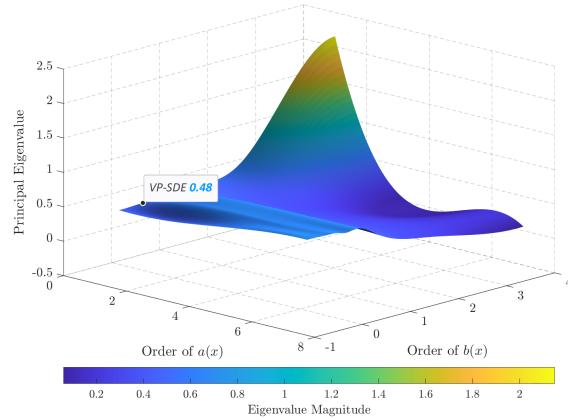
806

C.3 VERIFY THE IMPACT OF T_{CONV} ON FID

808 Regarding the research on the impact on FID scores, to rule out the possibility that insufficient T_{conv}
809 were the cause, we additionally trained some operators in the Table 1 using the same T_{conv} . It can be
seen that the FID scores showed almost no fluctuation due to the change in T_{conv} in Table 9. [This](#)

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
Figure 3: The generated image results
of EGEA-DM on CIFAR-10

823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
Figure 4: The generated image results
of EGEA-DM on CelebA



841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
Figure 5: The principal eigenvalues of the generator depend on the orders of the functions a and b , it
shows the trend of changes in the principal eigenvalues as the order of a and b varies, which define its
structure.

also indicates that compared with the baseline, the reduction in FID scores is not attributable to the decrease in T_{conv} .

C.4 ABOUT D_{disc}

In Tables 1-5, we explored the performance of various $a(x)$ and $b(x)$ when choosing a suitable T_{conv} . In this section, we investigate how the model's performance changes when $a(x)$ and $b(x)$ are varied under a fixed T_{conv} . As shown in the Table 12, compared with Table 4 (a), increasing T_{conv} does not lead to a decrease in D_{disc} , which indicates that the distribution has converged. Meanwhile, the FID score does not fluctuate significantly and still shows the trend observed in Table 4 (a). This also suggests that the degradation of generative quality is not caused by insufficient sampling steps. Table 11 illustrates the variation trend of model performance when the T_{conv} in the forward noising process is insufficient. It can be observed that as the T_{conv} increases and the distribution approaches the stationary distribution more closely, the FID score exhibits a decreasing trend.

C.5 ABOUT D_0

Based on the experimental results, it can be observed that under the linear condition, the D_{disc} consistently decreases as the eigenvalue increases, which aligns with our expectations. However, under the nonlinear condition, a distinct pattern emerges: despite the increase in eigenvalues, the

Table 6: FID obtained by sampling CIFAR-10

(a) FID obtained by sampling CIFAR-10 under different NFE

$a(x)$	$b(x)$	solver	Eigenvalue	NFE=5	NFE=8	NFE=10	NFE=12	NFE=13	NFE=14
$\frac{1}{2}$	$-0.5x$	dpm solver	0.48	8.50	7.40	5.10	4.30	4.40	4.40
$\frac{1}{2}$	$-x$	dpm solver	1.03	14.00	11.10	7.60	3.90	3.78	3.60
$\frac{ x +c}{2}$	$-0.5x$	sde solver	0.52	15.20	11.50	8.30	3.80	3.60	3.50
$\frac{x^2+c}{2}$	$-0.5x$	sde solver	0.66	16.30	12.40	9.70	4.90	3.60	3.50
$\frac{ x ^3+c}{2}$	$-0.5x$	sde solver	1.54	15.50	11.80	8.50	4.10	3.70	3.40

(b) FID obtained by sampling CIFAR-10 under different NFE

$a(x)$	$b(x)$	solver	NFE=600	NFE=650	NFE=700	NFE=730	NFE=825	NFE=1000
$\frac{1}{2}$	$-0.5x$	dpm solver	4.42	4.44	4.43	4.44	4.43	4.44
$\frac{1}{2}$	$-x$	dpm solver	3.24	3.21	3.19	3.18	3.15	-
$\frac{ x +c}{2}$	$-0.5x$	sde solver	3.29	3.26	3.20	3.22	-	-
$\frac{x^2+c}{2}$	$-0.5x$	sde solver	3.54	3.51	3.45	-	-	-
$\frac{ x ^3+c}{2}$	$-0.5x$	sde solver	3.28	3.24	3.21	-	-	-

Table 7: Cases where the diffusion operator satisfies ergodicity

$a(x)$	$b(x)$	$-\frac{ x ^{-\frac{1}{2}}}{2}$	$-\frac{ x ^{-\frac{1}{3}}}{2}$	$-\frac{ x ^{-\frac{1}{20}}}{2}$	$-\frac{ x ^{\frac{1}{20}}}{2}$	$-\frac{ x ^{\frac{1}{3}}}{2}$	$-\frac{ x ^{\frac{1}{2}}}{2}$
$\frac{ x ^{-\frac{1}{2}}+c}{2}$	\times	\times	\times	\times	\times	\times	\times
$\frac{ x ^{-\frac{1}{3}}+c}{2}$	\times	\times	\times	\times	\times	\times	\times
$\frac{ x ^{-\frac{1}{20}}+c}{2}$	\times	\times	\times	\times	\times	\times	\times
$\frac{ x ^{\frac{1}{20}}+c}{2}$	\times	\times	\times	\times	\times	\times	\times
$\frac{ x ^{\frac{1}{3}}+c}{2}$	\times	\times	\times	\times	\times	\times	\times
$\frac{ x ^{\frac{1}{2}}+c}{2}$	\times	\times	\times	\times	\times	\times	\times
$\frac{ x +c}{2}$	\times	\times	\times	\times	\times	\times	\times
$\frac{ x ^2+c}{2}$	\times	\times	\times	\times	\times	\times	\times
$\frac{ x ^3+c}{2}$	\times	\times	\times	\times	\times	\times	\times
$\frac{ x ^4+c}{2}$	\times	\times	\times	\times	\times	\times	\times

D_{disc} does not show a downward trend. Essentially, this phenomenon arises because as the diffusion operator changes, the stationary distribution also changes, and nonlinearity further enhances the diversity of the diffusion process.

To verify that the distance is continuously decreasing, we further analyzed the variation trend of distance across different steps. As showed in Table 10, the results confirm that this distance exhibits a decreasing tendency. Prior to this, we computed the corresponding D_{disc} for different cases of $a(x)$ and $b(x)$, which corresponds to the left-hand side of Theorem 2. Due to the fact that the nonlinear D_{disc} exhibits irregular magnitudes compared to the linear case, we proceed in this section by analyzing the right-hand side of the expression in the Theorem 2, hereinafter referred to as D_0 . Based on the results in Table 13, D_0 tends to increase as D_{disc} increases, which is consistent with the inequality stated in Theorem 2.

Table 8: Cases where the diffusion operator satisfies ergodicity

$a(x)$	$b(x)$	$-\frac{x}{2}$	$-\frac{x^2}{2}$	$-\frac{x^3}{2}$	$-\frac{x^4}{2}$	$-\frac{x^5}{2}$	$-\frac{x^6}{2}$	$-\frac{x^7}{2}$
$\frac{ x ^{-\frac{1}{2}}+c}{2}$	✓	✗	✓	✗	✓	✗	✓	
$\frac{ x ^{-\frac{1}{3}}+c}{2}$	✓	✗	✓	✗	✓	✗	✓	
$\frac{ x ^{-\frac{1}{20}}+c}{2}$	✓	✗	✓	✗	✓	✗	✓	
$\frac{ x ^{\frac{1}{20}}+c}{2}$	✓	✗	✓	✗	✓	✗	✓	
$\frac{ x ^{\frac{1}{3}}+c}{2}$	✓	✗	✓	✗	✓	✗	✓	
$\frac{ x ^{\frac{1}{2}}+c}{2}$	✓	✗	✓	✗	✓	✗	✓	
$\frac{ x +c}{2}$	✓	✗	✓	✗	✓	✗	✓	
$\frac{ x ^2+c}{2}$	✓	✗	✓	✗	✓	✗	✓	
$\frac{ x ^3+c}{2}$	✓	✗	✓	✗	✓	✗	✓	
$\frac{ x ^4+c}{2}$	✓	✗	✓	✗	✓	✗	✓	

Table 9: L -generators with same steps on CIFAR-10

$a(x)$	$b(x)$	Eigenvalue	T_{conv}	FID	T_{spend}
$\frac{1}{2}$	$-0.25x$	0.24	1000	4.76	52h
$\frac{1}{2}$	$-0.5x$	0.48	1000	4.44	45h
$\frac{1}{2}$	$-x$	1.03	1000	3.15	40h
$\frac{1}{2}$	$-2x$	2.04	1000	3.19	42h
$\frac{1}{2}$	$-5x$	6.15	1000	4.27	44h
$\frac{1}{2}$	$-10x$	10.70	1000	6.32	49h
$\frac{ x +c}{2}$	$-0.5x$	0.52	1000	3.22	50h
$\frac{ x ^2+c}{2}$	$-0.5x$	0.66	1000	3.33	57h
$\frac{ x ^3+c}{2}$	$-0.5x$	1.54	1000	3.18	63h

C.6 ABOUT D_s

To quantify the differences in stationary distributions corresponding to different operators, we define D_s as the distance between the current stationary distribution and the baseline stationary distribution. As shown in Table 13, we calculated D_s for a variety of diffusion operators, and the results indicate that D_s varies with the operator. This not only reflects the variation trend of the stationary distribution as the operator changes but also indirectly demonstrates that the variation trend of FID is affected by the stationary distribution.

D DISCRETE SGM

Given the forward SDE for the diffusion process as:

$$dx_t = \beta(t)b(x_t)dt + \sqrt{2\beta(t)}a(x_t)dW_t$$

where W_t is a standard Brownian motion, $\beta(t)$ is the time-dependent diffusion coefficient, $b(x_t)$ and $a(x_t)$ are state-dependent drift/diffusion functions, $x_t \in \mathbb{R}^d$ denotes the state at time t .

The probability density $p_t(x)$ of x_t satisfies the Fokker-Planck equation:

$$\partial_t p_t(x) = -\nabla_x \cdot (\beta(t)b(x)p_t(x)) + \frac{1}{2}\nabla_x^2 \cdot (2\beta(t)a(x)a^\top(x)p_t(x))$$

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 10: The D_{disc} variation trend under different steps on CIFAR-10

$a(x)$	$b(x)$	$T_{\text{conv}}=625$	$T_{\text{conv}}=650$	$T_{\text{conv}}=680$	$T_{\text{conv}}=730$	$T_{\text{conv}}=800$
$\frac{ x +c}{2}$	$-0.4x$	1.030	0.915	0.725	0.515	0.175
$\frac{ x +c}{2}$	$-0.5x$	0.805	0.695	0.485	0.192	0.195
$\frac{ x +c}{2}$	$-0.6x$	0.605	0.460	0.210	0.215	0.210
$\frac{ x +c}{2}$	$-x$	0.490	0.265	0.255	0.275	0.280
$\frac{ x +c}{2}$	$-2x$	0.475	0.465	0.470	0.480	0.470

Table 11: FID variation trend under different T_{conv} on CIFAR-10

$a(x)$	$b(x)$	T_{conv}	D_{disc}	FID	T_{spend}
$\frac{ x +c}{2}$	$-0.5x$	625	0.805	4.9	33h
$\frac{ x +c}{2}$	$-0.5x$	650	0.695	4.2	35h
$\frac{ x +c}{2}$	$-0.5x$	680	0.485	3.98	38h

Reversing time $s = T - t$, the reverse SDE for x_t (with \tilde{W}_t as reverse Brownian motion) is:

$$dx_t = [\beta(t)b(x_t) - 2\beta(t)a(x_t)a^\top(x_t)\nabla_x \log p_t(x_t)] dt + \sqrt{2\beta(t)}a(x_t)d\tilde{W}_t$$

where $\nabla_x \log p_t(x_t) = s_\theta(x_t, t)$ denotes the score function (modeled by θ).

Discretize time into $0 = t_0 < t_1 < \dots < t_N = T$, with $\beta_i = \beta(t_i)$, $b_i = b(x_{t_i})$, $a_i = a(x_{t_i})$.

$$x_{i+1} = x_i + \beta_i b(x_i) \Delta t + \sqrt{2\beta_i \Delta t} a(x_i) \mathbf{z}_i, \quad \mathbf{z}_i \sim \mathcal{N}(0, \mathbf{I})$$

Using $s_\theta(x_{i+1}, i+1) = \nabla_x \log p_{i+1}(x_{i+1})$, the reverse iteration is:

$$x_i = x_{i+1} - \beta_{i+1} b(x_{i+1}) \Delta t + 2\beta_{i+1} a(x_{i+1}) a^\top(x_{i+1}) s_\theta(x_{i+1}, i+1) \Delta t + \sqrt{2\beta_{i+1} \Delta t} a(x_{i+1}) \tilde{\mathbf{z}}_{i+1}$$

where $\tilde{\mathbf{z}}_{i+1} \sim \mathcal{N}(0, \mathbf{I})$ and $i = 0, 1, \dots, N-1$.

Absorbing Δt into coefficients (simplified notation):

$$x_i = x_{i+1} - \beta_{i+1} b(x_{i+1}) + 2\beta_{i+1} a(x_{i+1}) a^\top(x_{i+1}) s_\theta(x_{i+1}, i+1) + \sqrt{2\beta_{i+1}} a(x_{i+1}) \tilde{\mathbf{z}}_{i+1}$$

E SUPPLEMENTARY EXPERIMENTS

Table 12: Study the influence of different $a(x)$ and $b(x)$ on FID with a fixed T_{conv} on CIFAR-10

$a(x)$	$b(x)$	Eigenvalue	T_{conv}	D_{disc}	$\text{FID} \downarrow$ (SDE)	T_{spend}
$\frac{ x +c}{2}$	$-0.4x$	0.42	800	0.175	3.45	45h
$\frac{ x +c}{2}$	$-0.5x$	0.52	800	0.195	3.12	45h
$\frac{ x +c}{2}$	$-0.6x$	0.62	800	0.210	3.63	45h
$\frac{ x +c}{2}$	$-x$	1.04	800	0.280	3.68	45h
$\frac{ x +c}{2}$	$-2x$	2.08	800	0.470	4.24	45h

Table 13: Study the Dis of different $a(x)$ and $b(x)$ on CIFAR-10

$a(x)$	$b(x)$	Eigenvalue	T_{conv}	D_{disc}	D_0	D_s	FID
$\frac{1}{2}$	$-0.25x$	0.24	1000	0.241	27.3	2.1	4.76
$\frac{1}{2}$	$-0.5x$	0.48	1000	0.208	25.8	0	4.44
$\frac{1}{2}$	$-x$	1.03	825	0.209	26.7	1.3	3.15
$\frac{1}{2}$	$-2x$	2.04	750	0.208	28.2	3.4	3.19
$\frac{1}{2}$	$-5x$	6.15	525	0.209	30.6	6.5	4.30
$\frac{1}{2}$	$-10x$	10.70	350	0.208	34.8	12.1	6.33
$\frac{ x +c}{2}$	$-0.4x$	0.42	800	0.175	34.5	11.5	3.45
$\frac{ x +c}{2}$	$-0.5x$	0.52	730	0.192	30.4	6.4	3.22
$\frac{ x +c}{2}$	$-0.6x$	0.62	680	0.210	26.5	1.1	3.85
$\frac{ x +c}{2}$	$-x$	1.04	650	0.265	27.8	2.7	3.96
$\frac{ x +c}{2}$	$-2x$	2.08	625	0.475	32.5	9.4	4.60
$\frac{x^2+c}{2}$	$-0.5x$	0.66	700	0.320	28.4	3.6	3.45
$\frac{ x ^3+c}{2}$	$-0.5x$	1.54	700	0.375	31.2	7.5	3.21
$0.5x^2 + 0.1$	$-1.05x$	1.03	820	0.205	26.9	1.5	3.12
$0.3 x ^3 + 0.2$	$-0.95x$	1.02	830	0.211	27.1	1.8	3.18

Table 14: L -generators with fewer steps on Image-Net 128×128

$a(x)$	$b(x)$	Eigenvalue	T_{conv}	D_{disc}	FID	T_{spend}
$\frac{1}{2}$	$-0.5x$	0.48	1000	0.763	35.24	182h
$\frac{1}{2}$	$-x$	1.03	800	0.765	31.63	164h
$\frac{1}{2}$	$-10x$	10.70	325	0.761	42.58	92h

Table 15: L -generators with fewer steps on Cifar-10 with EDM

$a(x)$	$b(x)$	Eigenvalue	T_{conv}	FID	T_{spend}
$\frac{1}{2}$	$-0.5x$	0.48	1000	13.22	120h
$\frac{1}{2}$	$-x$	1.03	825	11.27	101h
$\frac{1}{2}$	$-10x$	10.70	350	18.48	67h

Table 16: L -generators with fewer steps with DiT on Image-Net 256×256

$a(x)$	$b(x)$	Eigenvalue	T_{conv}	FID1	FID2	FID3
$\frac{1}{2}$	$-0.5x$	0.48	1000	270	220	198
$\frac{1}{2}$	$-x$	1.03	825	243	200	182

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089

1090

Table 17: *L*-generators with fewer steps on Cifar-10 with DDIM

1091

	$a(x)$	$b(x)$	Eigenvalue	T_{conv}	D_{disc}	FID	T_{spend}
1092	$\frac{1}{2}$	$-0.25x$	0.24	1000	0.241	5.08	52h
1093	$\frac{1}{2}$	$-0.5x$	0.48	1000	0.208	4.72	45h
1094	$\frac{1}{2}$	$-x$	1.03	825	0.209	3.38	35h
1095	$\frac{1}{2}$	$-10x$	10.70	350	0.208	6.57	20h

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

Table 18: By modifying $\beta(t)$ to correct the excessively fast speed

1120

	$a(x)$	$b(x)$	Eigenvalue	Scheduling Function	T_{conv}	D_{disc}	FID	T_{spend}
1121	$\frac{1}{2}$	$-10x$	10.70	$\beta(t)$	350	0.208	6.33	20h
1122	$\frac{1}{2}$	$-10x$	10.70	$\frac{1.03}{10.70} \beta(t)$	700	0.208	3.88	28h

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133