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ABSTRACT

Diffusion models have achieved remarkable success in generating high-quality
data, yet challenges remain in training convergence, interpretability, and fine-
grained controllability. Additionally, the high computational cost of training is
often overlooked from a theoretical perspective. To address these limitations,
we propose Eigenvalue-Guided Explainable and Accelerated Diffusion Model
(EGEA-DM), a novel framework grounded in ergodic theory. EGEA-DM leverages
the L-generator’s principal eigenvalue to control the forward diffusion speed,
enabling adaptive adjustment of reverse steps during both training and sampling.
By modulating the forward process through the L-generator’s coefficients, our
method establishes a unified mechanism for explainable and fine-grained control.
This control, in turn, enables more efficient training and allows for the optimization
of the speed-quality trade-off. Extensive experiments validate the effectiveness of
EGEA-DM, demonstrating its potential to advance the practical applicability of
diffusion models.

1 INTRODUCTION

Diffusion models are a powerful class of generative models that have achieved outstanding perfor-
mance in various fields, such as image synthesis (Dhariwal & Nichol, 2021}, audio generation (Huang
et al.,|2023)), and time-series prediction (Shen & Kwokl 2023)). These models operate by employing a
forward process that iteratively adds noise to the data, gradually transforming the data distribution
into a stationary distribution. The reverse process is then learned to progressively denoise the data,
reconstructing the original distribution.

Diffusion models primarily fall into two categories: Denoising Diffusion Probabilistic Models
(DDPM) (Ho et al.| [2020) and Score-Based Generative Models (SGM) (Song et al.,2020c). DDPM-
based methods, such as FastDPM (Kong & Ping} 2021)), Truncated Diffusion Models (Zheng et al.,
2022), and ES-DDPM (Lyu et al., [2022)), optimize noise scheduling, truncation, and sampling effi-
ciency. SGM employs score functions with stochastic differential equations (SDEs) or probability
flow ODEs, with advancements like Lévy Stable Diffusion (Song & Zhang, [2023), MSGM (Liu
& Wang| [2024), and adaptive step-size methods (Franzese et al., [2023)), enhancing flexibility, ro-
bustness, and efficiency. These advancements collectively highlight the versatility and potential of
diffusion models in addressing complex generative tasks while motivating further exploration into
their theoretical foundations and practical applications.

Despite their major advances and impressive capabilities, diffusion models face two key challenges:
1) Theoretical gaps in diffusion sampling: Diffusion models typically involve a large number of
time steps (often exceeding 1000), which leads to significant computational overhead—especially
during sampling—due to the need for repeated evaluations of a neural network in the reverse
denoising process. While these models have shown impressive empirical performance, the theoretical
understanding of this inefficiency and how to mitigate it remains limited. 2) Lack of interpretability
and controllability: While various methods (Kim et al., 2025} [Fu et al., 2025} Jiang et al., [2024)
etc. have been proposed to mitigate the computational cost of diffusion models, many lack a
solid theoretical foundation. This limits their interpretability and constrains fine-grained control
over the diffusion process, ultimately hindering systematic optimization and adaptation for diverse
applications.
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To address the computational inefficiency and lack of theoretical interpretability in diffusion models,
we propose the Eigenvalue-Guided Explainable and Accelerated Diffusion Model (EGEA-DM), a
novel framework grounded in ergodic theory. In EGEA-DM, we model the forward diffusion process
using a continuous-time Markov generator governed by an L-generator. The convergence rate toward
the stationary distribution is mainly determined by the spectral gap of this generator, which is equal
to the magnitude of its principal (first non-zero) eigenvalue.

We modulate the coefficients of the L-generator to control the spectral decay, enabling fine-grained
regulation of the forward diffusion dynamics. By estimating the deviation between the data distri-
bution at step 7" and the stationary distribution under a given generator, we determine the minimal
number of forward (and hence reverse) steps required for effective denoising, thereby reducing the
computational cost of both training and sampling.

Crucially, we observe that aggressive acceleration—i.e., maximizing the principal eigenvalue—can
degrade generation quality due to insufficient representation of intermediate data states. To balance
quality and efficiency, we incorporate empirical quality metrics into the eigenvalue-guided tuning
process. This yields an interpretable trade-off curve between diffusion speed and generation fidelity.

A central technical challenge lies in estimating the principal eigenvalue of the L-generator. We adopt
Chen’s estimation theory (Chen, |[2012), combined with iterative numerical methods, to efficiently
approximate this quantity. This allows us to characterize and control the diffusion process via a
theoretically grounded mechanism.

We remark that, although the eigenvalue estimation incurs additional computational overhead, it is
substantially outweighed by the training acceleration achieved. Moreover, while other factors such
as initial and stationary distributions do affect model convergence, the spectral properties exhibit
dominant influence. Ultimately, while alternative theories can characterize convergence rates, they
generally lack precise estimation bounds for generic diffusion processes.

Overall, EGEA-DM provides a principled and explainable approach to accelerating diffusion models,
achieving joint optimization of computational efficiency and generative quality through spectral
control. Our contributions are summarized as follows:

* Interpretable diffusion via egodic theory: We reinterpret diffusion models through the lens of
ergodic theory, linking the convergence rate of the forward process to the principal eigenvalue of
the L-generator. This provides a theoretical foundation for understanding and analyzing diffusion
dynamics and noise injection schemes.

* Controllable optimization via L-generator modulation: By adjusting the coefficients of the
L-generator based on its principal eigenvalue, we introduce a flexible mechanism to control the
speed and stability of the diffusion process.

* Spectral characterization via numerical estimation: We adopt the iterative method (Chen, [2012)
to efficiently estimate the principal eigenvalue of the L-generator, enabling quantitative control of
diffusion speed and providing a metric for generator design.

* Generalization across dataset and methods: EGEA-DM demonstrates strong generalization
on multiple datasets and integrates seamlessly with a variety of DDPM extensions, validating its
robustness across tasks and architectures. Our framework is also compatible with score-based
models, offering a theory-informed and systematic methodology approach for selecting and tuning
L-generators across diverse generative frameworks, opening up new possibilities for expanding
research on baseline models.

2 PRELIMINARY

We briefly review score-based generative models (SGMs) and the associated L-generator. Here we
focus on the one-dimensional case without loss of generality. In fact, although the experimental
data distribution is high-dimensional and contains both semantic and spatial information, each
dimension undergoes noise injection and removal independently according to the same Stochastic
Differential Equations (SDEs), and thus shares the same L-generator, stationary distribution and
principle eigenvalue. The only distinction lies in the potentially different initial distributions across
dimensions. Consequently, the convergence rate of the high-dimensional data can be characterized
mainly by this identical eigenvalue.
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2.1 SCORE-BASED GENERATIVE MODEL

In SGMs, the forward diffusion process gradually perturbs data X into noise, with the distribution
of the final data X7 at time T" approaching a stationary distribution. This process is governed by the
following SDE:

dXy = f( Xy, t) dt + g(Xy, t) AW, ey
where W, is a standard Wiener process, f(z,t) : R x [0,T] — R is the drift coefficient dictating the

deterministic dynamics, and g(z,t) : R x [0,7] — R is the diffusion coefficient scaling the random
noise at each step.

The reverse process starts from samples of X7 and iteratively denoises the data to recover X. This
is described by the reverse-time SDE:

dX; = [f(Xe, 1) — g( X4, 1)V, log pe(Xo)] At + (X, t) AW,

where W, is a standard Wiener process when time flows backward from 7" to 0, and V, log p;(x)
is the score function, i.e., the gradient of the log-probability density of X (typically unknown).
V. log pi(x) could be learned via sliced score matching (SSM), where a neural network is trained to
approximate the gradients of perturbed data distributions across multiple noise scales. SSM trains the
score matching function sy(X¢, t) by the following equaiton

" . 1
e=M@@E{MMh@&mwmnbmm&wﬁ+ﬁwmwwmﬂ},

where the random vector v follows a Gaussian distribution, and A : [0, 7] — R~ is a weight function,
taken as A o< 1/E [Hvxt log pot (X | X0)||§] (Song et al., 2020cib).

2.2  L;-GENERATOR

In addition to the SDE in Eq. [T} the forward diffusion process can be fully characterized by the

infinitesimal generator L;-generator, defined as L; ¢(x) = limy,_, ]E[¢(X‘+h)|Xt 21=¢@) \here @is
an infinitely differentiable function with compact support (Stroock & Varadhan 1997). ThlS generator
specifies the evolution of X; at each infinitesimal time step. Using It&’s formula, the L,-generator
can be expressed as:

1 d? d
Ly = 503 (ta) 55 + f{t.) 2 @
which encapsulates both the drift and diffusion components of the process. Note that if % g (t,x) =
a(x) and f(t,x) = b(z) for all ¢, then L; is time-independent in ¢.

3 EGEA-DM

This section will present the detailed formulation of our proposed EGEA-DM. We adopt the SGM as
the foundational framework and employ the L-generator to regulate the model. The adoption of the
SGM is grounded in its rigorous theoretical guarantees for score matching, while the L-generator
serving as an effective controller of the diffusion model.

Subsection [3.1| will develop the theoretical model design, including the generator structure, conver-
gence conditions and principle eigenvalue-convergence rate correspondence. Subsection will
provide the numerical method to estimate the convergence speed, enabling model adjustment guided
by the principle eigenvalue. Subsection [3.3| will present the empirical observations for selecting the
L-generator, thereby enabling effective control of EGEA-DM.

3.1 ERGODIC THEORY

For EGEA-DM, the forward diffusion process X is designed to satisfy the SDE

dX; = B(t)b(Xy)dt + /26(t)a(X¢)dWr, 3)
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so that its L;-generator has the form

d2 d

where a(z) > 0 and b(z) are both first-order continuous functions on R, the scheduling function 3(t)
is integrable and 0 < fpin < B(t) < Pmax < 00.

Note that, once 3(¢) is selected, the generation and properties of X; will be determined by L.

Before demonstrating the correlation between the convergence rate of X; and the principle eigenvalue
of L, we should ensure the solution uniqueness and ergodicity of X;. Solution uniqueness implies
the convergence of X, while ergodicity guarantees that X; converges almost surely to a positive
stationary distribution. The beolw Theorem|I|specifies what conditions on a(z) > 0 and b(z) ensure
both uniqueness and ergodicity of X, .

Theorem 1 (Uniqueness and Ergodicity). Given X, the solution X; of Eq.|3|is unique and ergodic
if and only if

Clw)

a(u)

K(+00) = 400 = k(—00), Z:= / du < +00, 5)
i

where r(x f e~ CW) fu Pac(( ) dvdu, and C(x f

stationary dzstrlbutzon is w(dx) = Zal(m) eC®) dx for zeR

a(u

du forx € R. IfEq. Iholds then the

Let L?() be the real measure space {f 7r(f2) < oo} equipped With the norm || f|| = [x(f?)]'/?
and the inner product (f, g fR m(dx), where 7(g fR m(dx) for general g. The
principle eigenvalue \; of L is deﬁned as

A= nf{(f,=Lf): f € (L), =(f) = 0, || f]| = 1}, (©)
with 2(L) the domain of L in L?(r). Since L has one trivial eigenvalue \g = 0, the spectral gap
A1 — Ag is equal to \; (Chen & Maol 2021)).

For any B € B, define P;(B) = P{X; € B}, where B is the collection of all Borel sets on R. Then
P, characterizes the distribution of X;, while the stationary distribution 7 ( f BT ). The total
variation distance between P, and  is defined as || P, — 7||var = SUppgcp |Pt( ) — 7r(B)|

The theorem below describes the convergence rate of X, toward to .

Theorem 2 (Convergence Rate). Under the condition in Eq[3| of Theorem[l] it holds that

||Pt - 7T||Vur < HPO — 7T||Var e*>\1 fot B(s)ds

From Theorem [2} the convergence rate of X, increases monotonically with the magnitude of Aq,
through which we could precisely control the speed of the forward diffusion process. While Py and
7 do affect convergence speed, A; dominates the long-term dynamics, which is also shown in our
experiments in Section ]

However, \; is typically difficult to obtain with exact precision, which explains why the next
subsection performs its numerical estimation.

3.2 ESTIMATION OF THE PRINCIPAL EIGENVALUE

This subsection outlines an iterative algorithm for numerically estimating A;, based on Chen’s
theoretical estimation for this principle eigenvalue (Chen, 2012).
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Initialize a function f;(z) as follows:

WHEER RN b
. a(“}x m?‘(’l a0 : if 2 <,
L oo a(u)
T,y t) = r roo c(u) 1/2
fi() / ) ] ) ife <z<y,
L)y
-/oo <> 1/2
, if z > y.
i a(u) ]
For the n-th step, define
i (z), ifz <Oy
ful2) = {fﬁ[(z) if 2 > 0,
where
z ec(u) On +oo C(u) ( )
I (z :/ —du-/ e~ O Y (dt, (2 :/ ——du - / o ey
( ) e CL(U) u 1() ( ) ; a(u) 9, ()

and 6,, is obtained by solving the below equation for every (z,y):

On c(u) On +oo e(u) w
/ ¢ du - / efc(t)f L()dt = / e du - / efc(t)f(gfl/) (t)dt
—oo a(u) u 6 a(u) 0

Then the n-th estimation for the \; is

N =t {S“p fff?z)*)} Y {S‘ip fijf?i)} ' @

By Chen’s theory, this sequence asymptotically and increasingly approaches to the true value of A\;
as n tends to +o00.

In practical computations, we approximate the integral using the classical rectangle method, and the
segmentation is 2000 intervals. For derivable cases, for instance, in DDPM, the error is approximately
0.0007. The computational time is about 2 hours. However, the calculation is performed on an Intel
Core 15-9300H processor using MATLAB. Hence, if executed on hardware with higher specifications
as model training and generation, the time is expected to be significantly reduced.

This method ensures tractable eigenvalue estimation, enabling the design of tuning the L-generator
in the following subsection. We remark that, Eq. [7]demonstrates that convergence rate regulation
requires eigenvalue estimation, as mere tuning of hyperparameters a(x) and b(x) yields suboptimal
control accuracy.

3.3 How TO CHOOSE THE L-GENERATOR

It can be seen from Eq. [7] that the magnitude of the principal eigenvalue of the L-generator is
determined by a(z) and b(x). Therefore, we can regulate the L-generator by selecting different forms
of a(x) and b(x) under the guidance of this eigenvalue. This paper considers the case where both a(x)
and b(x) are polynomial functions. It is a relatively common form both in theory and application.
And, other common continuous functions can be approximated by polynomial functions, which is
guaranteed by the Weierstrass approximation theorem (Stonel |1948). The selection of L-generator
could be guided by the following three (empirical) principles:

Principle I : As theoretically analyzed in Subsection[3.1] a(x) and b(x) need to fulfill Eq. [5] ensuring
that the forward diffusion process can converge to a pos1t1ve stationary distribution. Eq. [5]can be
readily verified through numerical experiments. Based on this verification, we have summarized the
characteristics of relevant functions in[7]and[8]in Appendix .
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Principle II: The following Theorem [3| reveals how the principle eigenvalue varies when linear
transformations are applied to a(z) and b(z), providing another guiding principle for choosing the
L-generator.

Theorem 3. Let a*(x) = ka(x) and b*(x) = kb(z), where k is a positive constant. Then the
principle eigenvalue \; of L* = a*(z)% + b*(x) L is equal to k).

Observation I: According to Subsection[3.2} we have computed the eigenvalues corresponding to
multiple (a, b) pairs, as detailed in Tables 1-5. These computed values can serve as references and are
amenable to minor adjustments, since the eigenvalues change continuously with (a, b) under certain
conditions—a fact corroborated by Kato-Rellich theorem (Kato| 2013). Figure3]in the Appendix [C1]
shows the evolution law of the principal eigenvalue as the degrees of « in the polynomials a(x) and
b(x) increase, providing a more intuitive visual representation.

4 EXPERIMENTS

We conduct experiments to evaluate the impact of the L-generator, especially its principal eigenvalue,
on diffusion model performance.

4.1 EXPERIMENT SETUP AND EVALUATION METRICS

Experiment setup. Following the theoretical principles established in last section, we instantiate the
L-generator by selecting appropriate functions a(x) and b(x). These choices give rise to different
diffusion processes and spectral properties, corresponding to specific instances of our proposed
EGEA-DM framework.

We implement our model using a U-Net architecture. All training processes were conducted on an
NVIDIA GeForce RTX 4090 GPU. Key training parameters included: an initial learning rate of
1 x 1075, The model was optimized using the Adam optimizer with default momentum parameters
(B1 = 0.9, B2 = 0.999). For fair comparison, we retain the linear, uniformly increasing noise
schedule 3; used in the original DDPM framework (Ho et al.,[2020). We evaluate performance on two
standard image generation benchmarks: CIFAR-10 (Krizhevsky) 2009), CelebA-HQ (Gabor Mélyi &
Felippol 2020), Image-NetDeng et al.| (2009) 128x128 and 256x256.

Evaluatation metrics. To assess both the generation quality and acceleration efficiency of EGEA-
DM, we employ four evaluation metrics: 1) Fréchet Inception Distance (FID) (Tim Salimans|
2016). A standard metric that measures the distance between real and generated image distributions.
Lower FID indicates better visual quality and diversity. 2) Convergence Discrepancy (D gis). Diyisc
quantifies the proximity between the forward distribution P;(x) and the stationary distribution 7:
Dgise = ||Py — 7llvar ® 234 2, [Pt (Ax;) — 7 (Az;)| functioning as the guidance indicator for
Teonv determination.Lower Dy;sc means smaller error between the reverse sampling process and the
training distribution at time 7. This is because the training phase draws samples from the distribution
Pr, while the sampling phase operates based on the distribution 7. 3) Step Count T,p,. Teony is the
required noise injection steps to make Dy;s. suffciently small, indicating the convergence speed. 4)
Training Time (Tp,enq). The total wall-clock time to train the model, used for comparing computational
efficiency across methods.

4.2 EFFICIENCY GAINS VIA EIGENVALUE CONTROL

From Theorem 2, the eigenvalue \; of the L-generator should be directly correlated with the model’s
training convergence rate. Specifically, a larger eigenvalue will require fewer training iterations (or
less time) to reach the same loss threshold. The experimental results confirm this prediction.

Based on the analysis in Subsection two configurations are considered: 1) Fixing a(x) with
different orders and varying the coefficient of b(x) (Tables 1-4); 2) Fixing eigenvalues with varying
a(x) and b(zx) (Table 5). The results reveal the following pattern.

Observation II: From Tables 1-5, on the same dataset, the greater the eigenvalue, the fewer steps
(T:onv) and the less training time (Tspenq) are required to achieve convergence discrepancy (Diyisc).
And similar eigenvalues incur comparable time costs. These both demonstrate that the eigenvalue
predominantly govern the model’s convergence rate, which is consistent with the Theorem 2]
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Table 1: L-generators with fewer steps on CIFAR-10

o(z) b(z) Bigemvalie Tam D FID FID (NFE=15) FID (NFE=15)

(SDE solver) (dpm solver) (dpm solver++) ~ *Pend

% -0.25z 0.24 1000 0.241 4.76 4.89 4.76 52h
i 05z 0.48 1000 0.208 4.44 4.59 4.44 45h
1 -z 1.03 825 0.209 3.15 3.74 3.15 35h
1 2z 2.04 750 0.208 3.19 3.23 3.19 30h
1 -5z 6.15 525 0.209 4.30 4.43 4.30 26h
1 10z 10.70 350 0.208 6.33 6.55 6.33 20h

Table 2: L-generators with fewer steps on CelebA-HQ-64

. . FID FID (NFE=20) FID (NFE=20)

a(z) b(z) Eigenvalue Teom Daisc (SDE solver) (dpm solver) (dpm solver++) Tspena
% -0.25z 0.24 1000 0.242 4.02 4.29 4.06 136h
i 05z 0.48 1000 0.208 3.82 3.95 3.90 104h
3 -z 1.03 800 0.209 3.34 3.88 3.54 67h
3 2z 2.04 750 0.209 3.67 3.96 3.73 61h
i Sz 6.15 500 0.210 5.03 5.71 5.34 51h
i -10z 10.70 300 0.209 7.41 8.09 7.99 45h

4.3 GENERATION PERFORMANCE UNDER EIGENVALUE GUIDANCE

Tables 1-5 show that generation quality is primarily governed by three factors: model complexity (as
reflected in the functional forms of a and b), the eigenvalue, and the dataset. The findings exhibit the
following regularity.

Observation III: From Tables 1-5, greater model or dataset complexity achieves lower FID at a
relatively slower convergence rate, while under similar complexity and fixed dataset, generation
quality — dominated by the eigenvalue — follows a concave trend characterized by an initial FID
decrease succeeded by an increase beyond an eigenvalue threshold.

The phenomena described above are readily explicable. Increased model complexity amplifies the
data-dependent variability of SDE (Eq. [3) coefficients, raising the variance of the learned data
distribution and thereby degrading training stability and generative fidelity. Similarly, datasets
of higher intrinsic complexity demand more iterations to capture fine-grained structural details.
Consequently, greater complexity in either domain heightens sensitivity to the convergence rate.
Under fixed complexity conditions, the convergence speed—governed by the eigenvalue—directly
modulates the thoroughness of representation learning, ultimately determining generation quality.

4.4 QUANTIFYING THE EFFICIENCY-QUALITY TRADE-OFF

By Observation II and III above, under similar model-complexity and dataset conditions, the eigen-
value dominates both training speed and generative quality. Therefore, balancing these two factors
could be achieved through eigenvalue modulation.

For linear (a, b), we scale the coefficient of b(x) in Tables|l|-[2} and report the corresponding results
as in Tables [3] Eigenvalues in the range of approximately (0.48,5) on CIFAR-10 and (0.48,4) on
CelebA-HQ-64 achieve an optimal balance between efficiency and quality relative to the baseline
model, while the value 1.03 both achieve this on Image-Net 128x128 and Image-Net 256x256 as in
Tables [[4]and

However, for nonlinear (a, b), the eigenvalue range may contract, as shown in Table Moreover,
with unknown (a, b) or datasets, the range may still fluctuate. To avoid this uncertainty, we can adapt
the scheduling function §(t) according to the eigenvalue to achieve a balance. For example, when
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Table 3: Comparison of optimal eigenvalue ranges for CIFAR-10 and CelebA-HQ-64

(a) CIFAR-10 (b) CelebA-HQ-64

. FID . FID
a(z) b(z) Eigenvalue Teony Diisc (SDE) Tipend a(r) b(x) Eigenvalue Tiony Duisc (SDE) Tipend

-5z 6.15 525 0.209 4.30 26h
-5.25x 6.40 512 0.209 448 27h
-5.5z 6.65 500 0.209 4.63 26h
-6x 7.20 475 0.209 497 26h
-Tx 8.30 425 0.209 547 26h
-8z 9.40 375 0.209 592 24h
-9z 10.50 325 0.209 6.28 21h
-10x 10.70 350 0.208 6.33 20h

-2z 2.04 750 0.209 3.67 61h
-3z 3.06 650 0.210 3.78 58h
-4z 4.08 550 0.210 3.80 55h
-4.5x 4.59 525 0.210 3.97 55h
-4.75z 5.48 515 0.210 4.45 55h
-5z 6.15 500 0.210 5.03 S1h

D[ D= N[= N[= N= N =

[T O T N T N T N T Y [ Y TS O [

(a,b) = (4, —10z), the model has a large eigenvalue 10.7 but a high FID 6.33. Then taking 13- 3(t)
as the new scheduling function, we get the balance as in Table In fact, for a general (a, b) needing
fine-tuning, takeing the new scheduling function around (or marginally higher than) % B(t)is a
recommended strategy, where 0.48 is the eigenvalue of the baseline.

This adjustment method works because, according to Theorem [2| speed also depends on S(t).
Crucially, 3(t) should be tuned with reference to the eigenvalue; otherwise the adjustment is blind.
This demonstrates that controlling model efficiency and generation quality via the eigenvalue is
feasible, and also shows that EGEA-DM is not a parameter-search model-—even though some
parameter tuning might sometimes be needed.

Figures B}fd]in Appendix [C.I]show representative samples, confirming that spectral control preserves
generation quality while accelerating diffusion.

4.5 COMPLEMENTARY STUDIES ON OTHER FACTORS

To guarantee adequate noise injection, the (T¢,,,) is finalized only after the Dy;s. declines to a
sufficiently low level and stabilizes. Empirical validation shows that further increasing the step count
results in only marginal fluctuations in FID. A detailed analysis is provided in Appendix [C.3} [C.4]and
Tables 9] - [[2] there.

The final Dy differs among models as it relates to both the stationary and initial distributions by
Theorem [2| Linear (a, b) (Tables |1 - |3)) exhibit more consistent distances owing to their relative
simplicity and stability compared to nonlinear models (Tables [] - [5] in Appendix [C). From the
experimental results, Dg;sc does not significantly affect FID. See Appendix [C.3]for more analysis.

Different (a, b) typically correspond to distinct stationary distributions, yet changes in the stationary
distribution have no significant impact on FID differences. See the Appendix [C.6]

4.6 EGEA-DM AS A PLUG-AND-PLAY MODULE FOR DDPM ENHANCEMENTS

We evaluate EGEA-DM with classical ODE-based samplers, including DPM-Solver and DPM-
Solver++ (Lu et al.l [2022ajb). Tables |I| and |Z| show that combining them with EGEA-DM can
significantly achieve better generation quality. (Gray annotations correspond to DDPM.) Figures I
and[2] and the corresponding Table [6]in Appendix [C.T]illustrate the trend of FID with respect to the
number of function evaluations (NFE), indicating that EGEA-DM outperforms the baseline DDPM
and reflecting the stability of the our model.

These findings highlight the flexibility of EGEA-DM as a plug-in module for enhancing a wide range
of diffusion model variants. Future work may explore adaptive eigenvalue scheduling to dynamically
balance quality and efficiency.
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4.7 GENERALIZATION EXPERIMENT: DIFFERENT METHODS AND DATASETS

Based on the observations from the experimental results in the previous sections, we conducted
generalization experiments on high-resolution datasets using SDE-based diffusion methods. The
details are as follows:

The original DDPM model was trained on the ImageNet-128x128 dataset. Different sizes of linear
operators were selected, and the appropriate 7¢,, Was determined with reference to the Dyg;s. of the
baseline model. The results in the Table [T4]indicate that the dominant eigenvalue governs the training
time, and a slightly larger dominant eigenvalue leads to improved FID scores.

The EDMKarras et al.| (2022)) model was adopted for experiments on the CIFAR-10 dataset using
the same parameters as those in the aforementioned table. The results in Table [I3] consistently
demonstrate the same trend as observed in the previous table.

The DiT(Diffusion Transformer)Peebles & Xie|(2023)) model was trained on the ImageNet-256x256
dataset with a fixed training duration, followed by multiple sampling processes. Table[T6]show that
the integration of EGEA achieves a lower FID score.

The DDIMSong et al.| (2020a)) method was used for sampling models under different operators to
verify the robustness of EGEA - DM in the context of accelerated sampling. As indicated by the
Table[T7] EGEA - DM exhibits considerable stability.

4.8 EXPERIMENT SUMMARY

To summarize, this study conducts an in-depth investigation into the EGEA-DM model, with a par-
ticular focus on eigenvalue-related impacts and its plug-and-play capability. Experiments involving
eigenvalue adjustment via a(z) and b(z) demonstrate that a larger principal eigenvalue generally
leads to higher training efficiency, which is consistent with the conclusions derived from theoretical
deductions. However, generative quality is affected by the coupling of multiple factors (e.g., the
form of the diffusion operator, differences in dataset distributions, and the stationary distribution).
Therefore, simultaneous improvements in both training speed and generative quality can be achieved
by selecting an appropriate diffusion operator. Notably, when EGEA-DM is integrated with classical
ODE-based samplers such as DPM-Solver and DPM-Solver++, its generative quality exhibits a signif-
icant improvement compared to DDPM, validating the model’s flexibility as a plug-in. Furthermore,
the generalization ability of EGEA-DM has been fully verified through integration with models
including EDM, DiT and DDIM, as well as training and evaluation across a diverse range of datasets.

5 RELATED WORK

Diffusion Models (DMs) have demonstrated remarkable performance in generative tasks, yet their
training process is plagued by critical limitations: substantial computational and memory overhead,
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slow convergence rates, and the challenge of balancing generation quality with efficiency. These
issues hinder their deployment in real-time applications.

To address these limitations, researchers have developed three key complementary categories of
efficient training techniques. Firstly, latent diffusion maps data to low-dimensional latent spaces
via autoencoders (AE), variational autoencoders (VAE). This approach enables a balance between
generation quality and efficiency, as exemplified by models like LDMs(Rombach et al.,[2022)) and
Stable Diffusion, which preserve high-quality generation while significantly improving training and
inference efficiency. Secondly, loss function design is critical for DM efficiency and generation
quality, such as CLDDockhorn et al.| (2021)) injects noise into data-coupled auxiliary variables to
simplify learning. Thirdly, training tricks enhance DM efficiency, convergence, and quality. Such as
DiGressVignac et al.|(2022) optimizes efficiency for chemical molecules/social networks.

6 PRACTICAL GUIDELINES FOR USING EGEA-DM

Relative to nonlinear (a, b) , linear models exhibit superior stability and generation fidelity. Hence, we
recommend the linear case as a preferred initialization. For either model class, appropriate (a, b) can
be selected by consulting the principles, empirical patterns and observations presented in Subsection
[3.3]and Section[d] Additional fine-tuning may then be applied to attain a more desirable operating
point on the speed—quality Pareto front.

When encountering novel (a, b) configurations or unfamiliar datasets, if the initial performance (in
either quality or speed) is suboptimal, our framework offers a principled two-step refinement protocol:
(i) compute the principal eigenvalue via the analytical procedure outlined in Subsection [3.2]to locate
the current operating regime; (ii) perform targeted adjustment using the 3(¢)-modulation method
described in Section[f.4] which preserves theoretical guarantees while efficiently steering the model
toward a satisfactory balance.

7 CONCLUSION

This paper proposes EGEA-DM, an eigenvalue-guided diffusion model framework that achieves
principled acceleration and interpretability of diffusion models through spectral analysis of the L-
generator. Leveraging ergodic theory, we relate the principal eigenvalue to convergence dynamics and
introduce an adjustable mechanism to accelerate the training process without sacrificing generative
quality. Extensive experiments across various datasets and models validate the effectiveness and
efficiency of the framework. Adjusting the spectral properties of the diffusion generator shortens
training time and significantly reduces the number of sampling steps while maintaining or improving
generative quality (measured by the FID metric), demonstrating strong cross-architecture gener-
alization ability. Furthermore, EGEA-DM can naturally integrate with existing methods such as
DPM-Solver, exhibiting robust modularity.
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A THEORY OF TIME-HOMOGENEOUS DIFFUSION

Consider the diffusion process corresponding to L-generator in Eq. 4] the related diffusion equation
of which is
dY; = b(Y;)d7 + v/2a(Y;)dW,, 8)

The following theorem is about the uniqueness and ergodicity of the diffusion process related to L,
which is given in (Chen & Mao, 2021} Section 7.4).

Theorem 4. Given Y, the solution Y, of Eq. [8|is unique and ergodic if and only if

K(+00) = 400 = K(—00), )
and
eC(u)
7 = / ——du < +o00, (10)
r a(u)
where

K(y) = /Oy o—C() (/O ‘;C;(;; dg) dz,C(z) = /O Zigdg.

If[I0 holds, then the stationary distribution is

m(dy) = eCWdy, yeR. (11)

1
Za(y)
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The principal eigenvalue \; in Eq. []has the variational formula as below. See (Chenl 2012] Theorem
3.2) for detail.

Theorem 5. Under the condition[3] the variational formula of the principal eigenvalue \; in Eq. [6]is

Al = sup {inf H‘(f)(z)‘l} N [inf Hﬂf)(z)‘l}.

fee, 17<9 2>0
Here
+ hi
11 (f):77 ‘5+={f€(€(—oo,oo):f>0},
where

z 0 C
h_(z):/ e_c(w)dx/ g, z <0,

a

[eS) z C
ht(2) :/ e~ C@) dx/ g, z>0,
z 0

a
and 0 = 0(f) is the unique root of the equation h™(0) = h™(9).

For any B € B, define P;(B) = P{Y; € B}. Denote the stationary distribution of Y; by 7*(B) =
f B 7*(dx). Then the convergence rate of Y; toward to 7* is shown as below. See (Chen, 2005}
Chapter 8).

Theorem 6. Under the uniqueness and ergodicity conditions as in Theoremd) it holds that

-
||]Dt>.< 77T*HVar< ||}D(3k77r*||Var6 lt‘

B PROOFS

B.1 PROOF OF THEOREM/[I]

Proof. Theorem[]is derived directly from Theorem 4 and Lemma|I]and Lemma 2] below. O

The following two lemmas show that Eq. [3]and [§]not only have the same uniqueness and ergodicity
conditions, but have the same stationary distribution. The idea of proof is from (Bobrowski, [2008)).

Lemma 1. The following conditions are equivalent:
(i) Given X, the solution X, to Eq. |3|is unique;
(ii) GivenYy, the solution Y, to Eq.[8)is unique;
(iii) The boundary measure function (y) satisfies[9]

Proof. Define the time transformation

t
o0 = [ Bls)ds,
0
From equations Eq. [3]and Eq. [8] X; and Y. are related by
X =Y, Yr=Xpo1(r).

Thus (i) and (ii) are equivalent. By Theorem [ (ii) and (iii) are equivalent, which completes the
equivalence of conditions (i)-(iii). O

Lemma 2. If the solutions to diffusion equations[3|and equation [8|are unique, then the following
conditions are equivalent:

(i) The solution X, to Eq[3)is ergodic;
(ii) The solution Y, to Eq. equation|[8|is ergodic;

(iii) The normalization constant satisﬁes[ﬂ

13
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Proof. By Lemma 1, Y; has uniqueness if and only if #(+00) = co. According to Theorem 4] if Y,
has uniqueness, then it is ergodic if and only if Z < oo, with stationary distribution 7(y) in Eq.
Since 7(t) covers the entire time axis, for any Borel set A C R,

tlgrolo P(X, € A) = 7_h_)rrolo P(Y, € A) = n(A).

Therefore, the limiting distribution of X; coincides with the stationary distribution of Y., and its
ergodicity is equivalent to that of Y., proving the equivalence of conditions (i)-(iii). O

B.2 PROOF OF THEOREM[Z]

Proof. Combine Theorem [6and Lemmal|I] we have
* -2
1P =l = | Py = 7 < 1B6 =" ™

= [Py — gy e Jo P,

This completes the proof. O

B.3 PROOF OF THEOREM[3]

Proof. Suppose the proportion ality coefficient satisfies Z—z = 2—11 (i.e., k = 1), and the diffusion
coefficient satisfies as(x) = ¢ - aq(x) where ¢ > 0 is a constant.
Define the original operator:
Li=a (ac)@m + by (,T)aw
and the scaled operator:
Lo = a2(x)0ps + ba(2)0y = cay (2)0ry + ba(2)0x
ba _ b1
as - al ’
Lo = cla1(x)0py + b1(2)0:] = cLy
meaning the scaled operator is a constant multiple of the original operator.

From the proportionality condition substituting as = cay gives by(z) = ¢ - by (z). Thus:

Let L* denote the adjoint operator of L. The stationary distribution 7, of L; satisfies:
Lim =0
The adjoint of the scaled operator satisfies L3 = cLj, so:
Limo =0 <= cLimy=0 < Lime =0

Since the solution space of the adjoint equation Lj7 = 0 is one-dimensional under normalization,
we have Ty = 71, i.e., the stationary distributions are identical.

In the L?(mr) space, for any function f satisfying 7(f) = [ frdz = 0, the Dirichlet form of the
scaled operator is:

gQ(fvf): <f7_L2f>7r: <f,—CL1f>ﬂ—:C<f,—L1f>ﬂ—:C'(€1(f7f)

Here, the norm || f||2 = [ f?mdz depends only on the stationary distribution 7 and is independent of
the operator coefficients.

The spectral gap is defined as the infimum of the Dirichlet form under the constraints 7(f) = 0 and
[fllx = 1:

A2 = inf &(F,
For(f)=0, 2(£,/)
I£ll==1

Substituting the Dirichlet form relation yields:
AP = inf e &(f,f)=c- inf &(f,f)=c-AD

fim(f)=0, f:m(£)=0,
Ifll==1 I Fllw=

When the diffusion coefficient is scaled by a constant factor and the drift term maintains the same
proportionality, the spectral gap is proportional to the scaling factor of the diffusion coefficient, while
the stationary distribution remains unchanged. O

14
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Table 4: Effect of b(x) changes in nonlinear L-generators on CIFAR-10 and CelebA-HQ-64

(a) CIFAR-10

(b) CelebA-HQ-64

a(z) b(z) Eigenvalue Teony Diisc (];I]]))é) Tipend a(z) b(x) Eigenvalue Tiony Daisc (lglll))é) Tipend
lelte 04z 042 800 0.175 345 45h elte 0.3z 031 900 0475 4.12 110h
llte 050 052 730 0.192 322 4lh elte 052 052 825 0.463 3.88 10lh
lZlte 0.6z 0.62 680 0210 3.85 38h lelte 0.7z 073 750 0525 5.07 92h
lzlte 4 1.04 650 0.265 3.96 35h lelte 4 1.04 725 0550 5.60 88h
|z|+ec _

2 2 208 625 0475 460 33h 2be 04z 053 850 0475 4.05 105h
@tc 05z 066 700 0320 345 43h  £Ec 05z 066 775 0.510 3.86 96h
2’te 0650 086 650 0.355 4.12 40h ste 06z 079 725 0.560 533 92h
. 132 625 0380 4.17 38h 2 L 132 700 0.575 577 84h

2
oke ¢ 264 600 0410 4.85 35h

lePte 0350  1.08 700 0375 321 42h
l2P+e 05 154 625 0410 3.35 38h
lePte 0750 231 550 0475 4.60 33h
-z 335 525 0500 4.80 3lh
lePte g 6.16 475 0.550 4.97 28h

™

oD

Table 5: L-generators with varying a(z) and b(z)

. FID
Datasets a(z) b(z) Eigenvalue Teony Duisc (SDE solver) Tspend
CIFAR-10 0.5z + 0.1 —1.05z 1.03 820 0.205 3.12 34h
CIFAR-10  0.3|z|®> + 0.2 —0.95z 1.02 830 0.211 3.18 36h
CelebA-HQ-64 0.52% +0.1 —1.05z 1.03 795 0.495 5.05 8%h
CelebA-HQ-64 0.3|z|®> +0.2 —0.95z 1.02 805 0.485 5.11 88h

C ADDITIONAL EXPERIMENT DESCRIPTION

C.1 ADDITIONAL EXPERIMENT RESULTS

FiguresEand@show the image sampling results. Tables[6|present the specific values corresponding to
Figures|I|and[2] Figure[S]illustrates the variation trend of the principal eigenvalue of the corresponding
diffusion operator as the orders of a(x) and b(x) change. It can be observed that as the orders increase,
the eigenvalues exhibit an upward trend. We explore the influence trend of ergodic theory on model
performance under the scenario of nonlinear L-generator, and the results are presented in the Tables

B and 3l

C.2 VERIFICATION OF THE ERGODICITY AND UNIQUENESS OF THE DIFFUSION OPERATOR
See Table[8]and Table[7] we provide the verification results regarding the ergodicity and uniqueness

of multiple diffusion operators for readers’ reference, where v~ denotes satisfaction and x denotes
non-satisfaction.

C.3 VERIFY THE IMPACT OF T¢ony ON FID
Regarding the research on the impact on FID scores, to rule out the possibility that insufficient T¢opny

were the cause, we additionally trained some operators in the Table [T]using the same T¢opy. It can be
seen that the FID scores showed almost no fluctuation due to the change in 7;,, in Table E[ This
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alde

Figure 3: The generated image results Figure 4: The generated image results
of EGEA-DM on CIFAR-10 of EGEA-DM on CelebA

VP-SDE 0.48
o

Principal Eigenvalue

Order of a(z) 8§ -1 Order of b(z)

0.2 0.4 0.6 0.8 1 12 1.4 16 18 2
Eigenvalue Magnitude

Figure 5: The principal eigenvalues of the generator depend on the orders of the functions a and b, it
shows the trend of changes in the principal eigenvalues as the order of a and b varies, which define its
structure.

also indicates that compared with the baseline, the reduction in FID scores is not attributable to the
decrease in Tgoy.

C.4 ABOUT Dyps¢

In Tables 1-5, we explored the performance of various a(x) and b(x) when choosing a suitable T¢opy .
In this section, we investigate how the model’s performance changes when a(z) and b(x) are varied
under a fixed T,ony. As shown in the Table @ compared with Table EI (a), increasing Tiony does
not lead to a decrease in Dy, which indicates that the distribution has converged. Meanwhile, the
FID score does not fluctuate significantly and still shows the trend observed in Table ] (a). This
also suggests that the degradation of generative quality is not caused by insufficient sampling steps.
Tablel];flillustrates the variation trend of model performance when the T, in the forward noising
process is insufficient. It can be observed that as the T,y increases and the distribution approaches
the stationary distribution more closely, the FID score exhibits a decreasing trend.

C.5 ABOUT Dy
Based on the experimental results, it can be observed that under the linear condition, the D

consistently decreases as the eigenvalue increases, which aligns with our expectations. However,
under the nonlinear condition, a distinct pattern emerges: despite the increase in eigenvalues, the
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Table 6: FID obtained by sampling CIFAR-10

(a) FID obtained by sampling CIFAR-10 under different NFE

a(z) b(z) solver Eigenvalue NFE=5 NFE=8 NFE=10 NFE=12 NFE=13 NFE=14

% -0.5z dpm solver 0.48 850  7.40 5.10 4.30 4.40 4.40
% -z dpm solver 1.03 14.00 11.10  7.60 3.90 3.78 3.60
‘;C -0.5z sde solver 0.52 1520 11.50 8.30 3.80 3.60 3.50
£ 2“ -0.5z sde solver 0.66 16.30 1240  9.70 4.90 3.60 3.50
WTH -0.5z sde solver 1.54 15.50 11.80 8.50 4.10 3.70 3.40

(b) FID obtained by sampling CIFAR-10 under different NFE

a(z) b(x) solver NFE=600 NFE=650 NFE=700 NFE=730 NFE=825 NFE=1000
% -0.5z dpm solver  4.42 4.44 4.43 4.44 4.43 4.44
i -z dpmsolver 3.24 3.21 3.19 3.18 3.15 -

lzlte 0.50 sdesolver  3.29 3.26 3.20 3.22 - -

2’ 05z sdesolver 3.54 351 3.45 - - -

lste 052 sdesolver 328 324 321 - - -
Table 7: Cases where the diffusion operator satisfies ergodicity
b(x) | jeF | jemd | om0 | jm® | jeld | Jegd
a(z) 2 2 2
|z 72% *e X X X X X X
lz| _2% te X X X X X X
@ X X X X X X
|| % te X X X X X X
1
2] e X X X X X X
T
lz| ;Jrc X X X X X X
‘Il;c X X X X X X
2
|m|2+c X X X X X X
3
|m|2+c X X X X X X
4
|m|2+c X X X X X X

D i does not show a downward trend. Essentially, this phenomenon arises because as the diffusion
operator changes, the stationary distribution also changes, and nonlinearity further enhances the
diversity of the diffusion process.

To verify that the distance is continuously decreasing, we further analyzed the variation trend of
distance across different steps. As showed in Table (10} the results confirm that this distance exhibits
a decreasing tendency. Prior to this, we computed the corresponding Dy for different cases of
a(x) and b(z), which corresponds to the left-hand side of Theorem [2| Due to the fact that the
nonlinear Dy, exhibits irregular magnitudes compared to the linear case, we proceed in this section
by analyzing the right-hand side of the expression in the Theorem 2] hereinafter referred to as Dy.
Based on the results in Table[13] Dy tends to increase as Dy;y. increases, which is consistent with the
inequality stated in Theorem [2]
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Table 8: Cases where the diffusion operator satisfies ergodicity

b(@) | o | _o2 | _a® | _at | _a® | _a® | _at

CL(ZL’) 2 2 2 2 2 2 2
el 2te | v | x| v | x| v | x|V
e ve | ol v x| v ] x| v
‘”l_j(”’c v X v X v X v
Ix‘%“ v X v X v X v
|= i“ v X v X v X v
]2 e V| x| v | x| v | x|V
[l te Vx| v x| v ] x]v
|x‘;+c v X v X v X v
Jaf e v x| v ] x| v]x]v
|x‘;+c v X v X v X v

Table 9: L-generators with same steps on CIFAR-10

a(z) b(x) Eigenvalue Teony FID Tspend
i -025z 024 1000 476 52h
1 05z 048 1000 4.44 45h
1 -z 103 1000 3.15 40h
1 2 204 1000 3.19 42h
-1 6.15 1000 427 44h
1 210z 1070 1000 632 49h

lZlte 05z 052 1000 3.22  50h

eP4e 050 066 1000 333 STh
eP4e 05z 154 1000 3.18 63h

C.6 ABOUT Dy

To quantify the differences in stationary distributions corresponding to different operators, we define
Dy as the distance between the current stationary distribution and the baseline stationary distribution.
As shown in Table @ we calculated Dy for a variety of diffusion operators, and the results indicate
that Dy varies with the operator. This not only reflects the variation trend of the stationary distribution
as the operator changes but also indirectly demonstrates that the variation trend of FID is affected by

the stationary distribution.

D DISCRETE SGM

Given the forward SDE for the diffusion process as:

dxy = B(t)b(xs)dt + +/2B8(t)a(x)dWy

where W is a standard Brownian motion, 5(¢) is the time-dependent diffusion coefficient, b(x;) and
a(w,) are state-dependent drift/diffusion functions, z; € R? denotes the state at time ¢.

The probability density p;(z) of x; satisfies the Fokker-Planck equation:

Oupi(a) =~V - (B()pi (@) + 372 (2B(0)aw)a” ()i ()
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Table 10: The Dy variation trend under different steps on CIFAR-10

b(x) Teonv=0625 Teony=650 Teony=680 Teony=730 Teony=800

Q

—~
8

-~

lelte 04z 1030 0915 0725 0515 0175
llte 050 0.805  0.695 0485 0192  0.195
lrlte .60 0.605 0460 0210 0215 0210
lelte _p 0490 0265 0255 0275  0.280
e 20 0475 0465 0470 0480 0470

Table 11: FID variation trend under different 7¢,,, on CIFAR-10

CL(I}) b(l}) nonv Ddisc FID T;pend
lelte 0.52 625 0.805 4.9 33h
lelte 0.52 650 0.695 4.2 35h
|z|+c

-0.5z 680 0.485 3.98 38h

[V

Reversing time s = 1" — t, the reverse SDE for x; (with Wt as reverse Brownian motion) is:

dz, = [B(t)b(xt) - 25(15)(1(1't)aT(zt)Vm logpt(zt)] dt + \/QB(t)a(xt)th
where V. log pi(z:) = sg(x4, t) denotes the score function (modeled by 6).

Discretize time into 0 = tg < t1 < --- < ty =T, with 8; = B(t;), b; = b(xy,), a; = a(ay,).
Tit1 = X4 + ﬁlb(.’bz)At —+ \/ ZBzAta(;vl)zz, zp ~ N(O, I)

Using sg(2i41,%1 + 1) = V, log pit1(zi+1), the reverse iteration is:

T; = Tiv1 — Bir1b(is1) At +2Bi11a(xig1)a’ (Tis1)se(Tit1, i+ 1) At + /28111 Ata(wi11) Zip1
where ;11 ~N(0,I)and: =0,1,..., N — 1.
Absorbing At into coefficients (simplified notation):

Ti = Tip1 — Bip10(@it1) + 2Bi1a(@it1)a’ (Tip1)se(ip1, i+ 1) + /2Bir1a(2ip1)Ziva

E SUPPLEMENTARY EXPERIMENTS
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Table 12: Study the influence of different a(z) and b(z) on FID with a fixed T¢ony on CIFAR-10

a(r) b(z) Eigenvalue Teony Diisc (I;I]I))é’) Tipend
lzlte 04z 042 800 0.175 345 45h
elte 052 052 800 0.195 312 45h
elte 0.6z 062 800 0210 3.63 45h
lelie 4 1.04 800 0280 3.68 45h
|zl+c

-2z 2.08 800 0470 424 45h

»

Table 13: Study the Dis of different a(z) and b(z) on CIFAR-10

a(z) b(z) Eigenvalue Teony Daisc Do Ds FID
1 025z 024 1000 0241 273 2.1 476
1 0.5z 048 1000 0208 258 0 4.44
1 -z 103 825 0209 267 13 3.15
i 2z 204 750 0208 282 3.4 3.19
i -5z 6.15 525 0209 30.6 65 430
i 10z 1070 350 0.208 34.8 12.1 633
Izl +e 0.4z 042 800 0.175 345 11.5 345
|zl te 0.5z 052 730 0.192 304 64 322
lzlte 0.6z 062 680 0210 265 1.1 3.85
|zl te -z 1.04 650 0265 27.8 2.7 3.96
Lzl +e -2 208 625 0475 325 9.4 4.60
2o 0.5z 0.66 700 0320 284 3.6 3.45
ol +e -0.5z 1.54 700 0375 312 7.5 321

0.52% + 0.1 —1.05z 1.03 820 0.205 269 15 3.12
0.3|z]* + 0.2 —0.95z 1.02 830 0.211 27.1 1.8 3.18

Table 14: L-generators with fewer steps on Image-Net 128x128

a(z) b(z) Eigenvalue Tiony Ddisc FID  Tspend

-0.57 0.48 1000 0.763 35.24 182h
-z 1.03 800 0.765 31.63 164h
-10x 10.70 325 0.761 42.58 92h

N N|= N

Table 15: L-generators with fewer steps on Cifar-10 with EDM

S}
—~

8
-

b(x) Eigenvalue Teony FID  Tipena

-0.5z 0.48 1000 13.22 120h
-z 1.03 825 11.27 101h
-10x 10.70 350 18.48 67h

NI N N

Table 16: L-generators with fewer steps with DiT on Image-Net 256x256

a(z) b(z) Eigenvalue Tiony FID1 FID2 FID3

-0.5z 0.48 1000 270 220 198
-T 1.03 825 243 200 182
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Table 17: L-generators with fewer steps on Cifar-10 with DDIM

a(z) b(z) Eigenvalue Teony Ddisc FID Tspend
% -0.25z 0.24 1000 0.241 5.08 52h
% -0.5z 0.48 1000 0.208 4.72 45h
% - 1.03 825 0.209 3.38 35h
% -10x 10.70 350 0.208 6.57 20h

Table 18: By modifying /3(¢) to correct the excessively fast speed

a(z) b(x) Eigenvalue Scheduling Function Teonv Daise FID Tispend
i -10z 1070 B(t) 350 0.208 6.33 20h
i 10z 10.70 =03 3(t) 700 0.208 3.88 28h
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