

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PEPGLIDER: ATTRIBUTE REGULARIZED VAE FOR IN- TERPRETABLE AND CONTROLLABLE PEPTIDE DESIGN

Anonymous authors

Paper under double-blind review

ABSTRACT

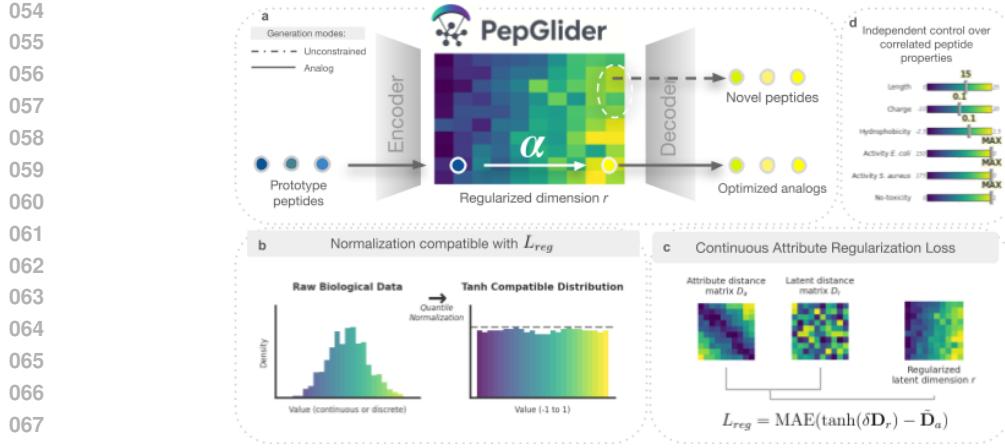
Computational peptide design requires precise control over physicochemical properties that often exhibit complex correlations. Existing generative models rely on simplistic discrete conditioning mechanisms rather than precise targeting of specific property values. We present PepGlider, a continuous attribute regularization framework that enables direct control over specific attribute values. The method achieves structured latent space and displays smooth property gradients with superior disentanglement quality. Experimental results demonstrate that PepGlider enables independent control of naturally correlated properties, and supports both unconstrained generation and targeted optimization of existing peptides. PepGlider applied to antimicrobial peptide design allows generation of candidates with desired antibacterial activity profile. Unlike existing approaches, PepGlider provides precise control over continuous property distributions while maintaining generation quality, offering a generalizable solution for therapeutic and materials applications requiring exact property specifications.

1 INTRODUCTION

Peptide design across diverse biomedical applications confronts a fundamental optimization challenge: achieving precise control over continuous peptide properties that often exhibit complex correlations or direct conflicts. Antimicrobial peptide (AMP) design has emerged as particularly urgent due to the escalating antimicrobial resistance crisis. Multidrug-resistant pathogens cause over 700,000 deaths annually, with projections reaching 10 million by 2050 without intervention (O'Neill, 2016). AMPs offer promising alternatives with broad-spectrum activity, rapid bacterial killing kinetics, and reduced resistance development compared to conventional antibiotics (Hancock & Sahl, 2006). The need for controllable peptide design is particularly evident in AMPs, where antimicrobial efficacy depends on complex interplay between physicochemical properties such as charge or hydrophobicity. Introducing positively charged amino acids to increase net charge - crucial for membrane interaction - often disrupts the distribution of hydrophobic residues essential for bacterial killing. Such property interdependencies complicate the optimization of antimicrobial activity, exemplifying the broader challenge of achieving precise control over functional outcomes through correlated molecular characteristics.

Deep generative models have emerged as powerful tools for peptide sequence design, but current approaches exhibit significant limitations in controllability and precision. Existing conditional generation frameworks rely predominantly on discrete conditioning mechanisms that fail to enable precise targeting of specific continuous property values. This limits optimization to coarse-grained categories rather than exact property ranges required for functional applications (Szymczak & Szcurek, 2023). Recent advances in attribute-controllable generation, particularly AR-VAE (Pati & Lerch, 2021), structure latent spaces such that specific dimensions encode target attributes through monotonic relationships. However, AR-VAE's discrete signum-based regularization of the loss function only enable relative ordering between samples, not precise targeting of specific property values. This limitation renders AR-VAE unsuitable for peptide design applications, where achieving functional outcomes requires precise control over exact property ranges.

To address these challenges in controllable peptide design, we present PepGlider, a continuous attribute regularization framework that achieves precise, independent control over correlated peptide properties. Our approach makes three main contributions: (i) we extend AR-VAE with continuous

069 **Figure 1: PepGlider: Continuous attribute regularization for controlled peptide design.**
070

071 loss formulations that enable precise targeting of specific peptide property values rather than relative
072 orderings, (ii) we introduce attribute-specific normalization that ensures mathematical compatibility
073 with continuous loss while preserving biological relevance, particularly adaptive range normalization
074 for clinically relevant antimicrobial potency ranges, and (iii) we demonstrate independent ma-
075 nipulation of naturally correlated physicochemical properties through structured latent space design,
076 enabling multi-objective optimization across conflicting attributes. The resulting framework offers
077 a generalizable methodology for precise property control across diverse peptide design applications.
078

079 2 METHODS

080 2.1 BACKGROUND

083 We build PepGlider upon the Attribute-Regularized VAE framework (Pati & Lerch, 2021), which
084 structures latent representations such that specific dimensions encode target attributes in a monotonic
085 fashion. Let \mathbf{x} denote a data sample (here, a peptide sequence) and \mathbf{z} represent the corresponding
086 latent representation obtained through the VAE encoder. For each mini-batch of size m , the method
087 constructs attribute and latent distance matrices for all pairs of samples $i, j \in \{1, \dots, m\}$:

$$088 \mathbf{D}_a(i, j) = a(\mathbf{x}_i) - a(\mathbf{x}_j) \quad (1)$$

$$089 \mathbf{D}_r(i, j) = z_i^r - z_j^r \quad (2)$$

091 where $a(\cdot)$ represents the attribute function, r denotes the regularized latent dimension, \mathbf{D}_a is the
092 attribute distance matrix, and \mathbf{D}_r is the latent distance matrix. The regularization loss enforces
093 alignment between these distance matrices:

$$095 \mathcal{L}_{\text{attr}} = \text{MAE}(\tanh(\delta \mathbf{D}_r) - \text{sign}(\mathbf{D}_a)) \quad (3)$$

097 The complete AR-VAE objective combines this with standard VAE components:

$$099 \mathcal{L}_{\text{AR-VAE}} = \mathcal{L}_{\text{recon}} + \beta \mathcal{L}_{\text{KL}} + \gamma \sum_{r, a} \mathcal{L}_{\text{attr}}, \quad (4)$$

101 where β controls the weight of the Kullback-Leibler regularization term, while the parameter δ
102 controls the spread of latent representations, and γ weights the overall attribute-based regularization
103 strength.

105 2.2 PEPGLIDER FRAMEWORK

107 PepGlider is designed for general peptide design applications requiring precise property control
across diverse peptide optimization objectives.

108 2.2.1 CONTINUOUS ATTRIBUTE REGULARIZATION
109110 The discrete nature of the signum function in AR-VAE creates discrete comparisons that limit con-
111 trollability to relative ordering rather than absolute values. We address this limitation through two
112 key innovations:113 **Continuous Attribute-Based Regularization** We replace the signum-based comparison with a
114 continuous regularization formulation. The modified PepGlider loss becomes:

116
$$\mathcal{L}_{\text{PepGlider}} = \mathcal{L}_{\text{recon}} + \beta \mathcal{L}_{\text{KL}} + \gamma \sum_{r,a} \mathcal{L}_{\text{reg}} \quad (5)$$

117

118 where the continuous property regularization term becomes:

120
$$\mathcal{L}_{\text{reg}} = \text{MAE}(\tanh(\delta \mathbf{D}_r) - \tilde{\mathbf{D}}_a) \quad (6)$$

121

122 **Attribute Normalization** $\tilde{\mathbf{D}}_a$ represents the attribute distance matrix scaled to $[-1, 1]$. This for-
123 mulation enables targeting of specific absolute property values rather than relative comparisons.124 The continuous framework maintains gradient information throughout optimization, enabling fine-
125 grained control while preserving numerical stability.127 2.2.2 CONTROLLED PEPTIDE GENERATION MODES
128129 Post-training, PepGlider enables two generation modes that leverage the structured latent space for
130 different peptide design objectives.132 **Unconstrained generation** samples latent codes $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ from the prior distribution and
133 applies decoder transformations $\hat{\mathbf{x}} = \text{Dec}(\mathbf{z})$ to produce diverse peptides with desired properties
134 that reflect the learned distribution of natural sequences. This mode enables exploration of the full
135 peptide design space without specific property constraints from inputted peptides.137 **Analog generation** enables targeted modification of existing peptides through latent space ma-
138 nipulation, where a prototype sequence \mathbf{x} is encoded to $\mathbf{z} = \text{Enc}(\mathbf{x})$, modified via α displacement
139 $\tilde{\mathbf{z}} = \mathbf{z} + \alpha$ to optimize specific attribute objectives, and reconstructed as $\hat{\mathbf{x}} = \text{Dec}(\tilde{\mathbf{z}})$. Here, α
140 represents the attribute shift vector that directs the latent code toward desired property values in the
141 structured latent space.142 3 EXPERIMENTAL SETUP
143

145 Datasets are described in Appendix A.4.

147 3.1 ATTRIBUTES

148 **Physicochemical features** PepGlider targets three fundamental physicochemical properties that
149 serve as key determinants of antimicrobial activity: **net charge** (C, calculated at physiological pH),
150 **hydrophobicity** (H, average across the sequence), and **sequence length** (L). The selection and com-
151 putational implementation of these attributes is described in A.4.2.153 **Antimicrobial activity against *E. coli* and *S. aureus*** We incorporate Minimum Inhibitory Con-
154 centration (MIC) values as continuous attributes predicted by APEX (Wan et al., 2024), a deep learn-
155 ing model for antimicrobial activity prediction trained on experimentally validated data. We obtain
156 pathogen-specific MIC predictions for two key bacterial species: MIC against *Escherichia coli* (*E.*
157 *coli*), averaged over predictions for strains ATCC 11775, AIG222, and AIG221; and MIC against
158 *Staphylococcus aureus* (*S. aureus*), averaged over ATCC 12600 and ATCC BAA-1556 MRSA.160 **Non-toxicity** To enable safety assessment of generated peptides, we trained a binary classifier to
161 predict hemolytic toxicity. Hemolytic activity data was extracted from the DBAASP database, focus-
ing on HC50 measurements (peptide concentration causing 50% hemolysis). Raw toxicity values

underwent rule-based binarization (detailed procedure in A.4.3). Peptide sequences were featurized using a comprehensive set of physicochemical property values, comprising over 100 molecular descriptors including basic properties (length, charge, hydrophobicity), structural descriptors (secondary structure fractions, topological features), and specialized amino acid scales. An XGBoost classifier was trained on these features to predict binary non-toxicity (1 = non-toxic, 0 = toxic).

Attribute Normalization We employ quantile normalization (QN) for physicochemical properties and introduce adaptive range normalization for MIC values, providing granular representation of clinically relevant ranges (0-32 $\mu\text{g/ml}$) while maintaining the $[-1, 1]$ scaling required for direct alignment with $\tanh(\delta D_r)$ outputs. Technical implementation details are in Appendix A.2.1, with data distribution before and after normalization procedure shown in Figure 7.

3.2 BASELINES

We evaluate PepGlider against six baseline approaches that represent different paradigms for controlled peptide generation and enable systematic assessment of our methodological contributions. These include ablation variants to isolate the impact of our key innovations (VAE, AR-VAE, PepGlider w/o QN, PepGlider w/ sign, PepGlider w/ z-norm), described in A.4.4, and established VAE-based models for controlled AMP generation (HydrAMP (Szymczak et al., 2023), Transformer-128 (Renaud & Mansbach, 2023)), with detailed descriptions in A.4.5.

3.3 EVALUATION METHODOLOGY

Implementation details and training procedure are in Appendix A.4.6. We evaluate our continuous attribute regularization framework across two complementary aspects: fundamental controllability capabilities and domain-specific application. First, we assess core framework capabilities required for controllable peptide design, including latent space disentanglement quality, continuous property control precision, and independent manipulation of correlated physicochemical properties. Second, we demonstrate framework applicability through antimicrobial peptide optimization, showcasing how general controllability enables complex, domain-specific biological objectives. Generated peptides are evaluated using antimicrobial activity predictions, safety assessment, sequence quality metrics (validity, diversity, novelty, antimicrobial potential), and disentanglement quality measures. Detailed evaluation methodology is provided in A.4.7

4 RESULTS

4.1 DISENTANGLEMENT QUALITY

Effective disentanglement is crucial for controllable generation, as it determines whether individual attributes can be manipulated independently through latent space traversal without unintended side effects on other properties at the same time. Following Pati & Lerch (2021), we assess PepGlider’s disentanglement quality using five established objective metrics: Interpretability, Spearman Correlation Coefficient (SCC), Modularity, Mutual Information Gap (MIG), and Separated Attribute Predictability (SAP) averaged across charge, length, and hydrophobicity (Appendix A.4.7, Table 1).

Model	Interpretability (\uparrow)	SCC (\uparrow)	Modularity (\uparrow)	MIG (\uparrow)	SAP (\uparrow)
VAE	0.175	0.389	0.833	0.003	0.023
HydrAMP	0.231	0.487	0.864	0.012	0.025
Transformer-128	0.104	0.365	0.845	0.005	0.039
AR-VAE	0.954	0.995	0.984	0.450	0.741
PepGlider w/ signum	0.955	0.995	0.984	0.453	0.739
PepGlider w/o normalization	0.981	0.995	0.987	0.479	0.771
PepGlider w z-score normalization	0.966	0.995	0.987	0.478	0.753
PepGlider	0.931	0.995	0.985	0.449	0.719

Table 1: **Disentanglement quality metrics for PepGlider and baseline and ablation methods.** Mean scores across three peptide attributes (charge, length, hydrophobicity). Higher scores indicate better disentanglement for all metrics. Attribute-specific results in Table 5.

All AR-VAE variants, including PepGlider, achieve substantially superior disentanglement compared to baseline methods (VAE, HydrAMP, Transformer-128). AR-VAE and its variants demonstrate near-perfect SCC scores (≥ 0.995) and high performance across most metrics, with ablation variants occasionally outperforming PepGlider itself. This pattern validates that our modifications preserve the strong disentanglement properties of the original AR-VAE framework while enabling continuous control. The moderate Modularity scores for AR-VAE variants reflect biologically realistic attribute interdependencies in peptide properties, while the dramatic improvements in Interpretability (0.931 vs. 0.231 for best baseline) and MIG (0.449 vs. 0.012) demonstrate effective latent space organization for controllable generation.

4.1.1 CONTINUOUS ATTRIBUTE CONTROL

Practical peptide design requires smooth, predictable property transitions during latent space traversal to enable systematic peptide optimization toward target properties values. We evaluate PepGlider’s continuous control capability using 2D attribute surface plots across regularized latent dimensions and an example, not regularized one. Latent vectors are systematically sampled, decoded, and evaluated for property values.

The resulting surfaces demonstrate smooth, continuous transitions across length, charge, and hydrophobicity (Figure 2, upper panel), enabling precise navigation through the latent space. The quality of latent space traversal is the highest for PepGlider when contrasted with baseline models (Appendix A.5.3). Critically, PepGlider maintains consistently high validity throughout latent space navigation, measured as FBD to training data (A.4.7). Validity assessment across systematic latent shifts (Figure 2, lower panel) shows PepGlider outperforms all baseline models, including VAE, Transformer, and HydrAMP, while AR-VAE variants perform similarly to PepGlider. PepGlider’s consistent validity during traversal ensures that property optimization preserves biological plausibility of generated sequences. Additional amino acid frequency analysis confirms that PepGlider maintains realistic compositional patterns that closely match the training data distribution (Figure 9).

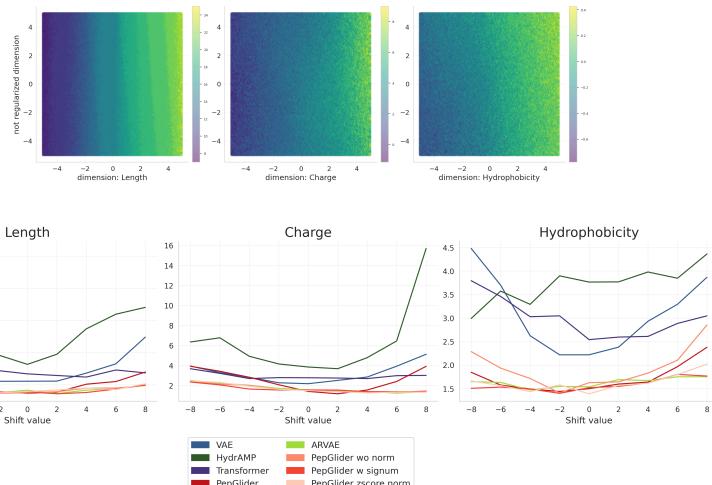


Figure 2: Continuous attribute control through latent space manipulation. **Upper panel:** PepGlider 2D attribute surface plots for length, charge, and hydrophobicity showing smooth property transitions. **Lower panel:** Validity (FBD to training data) across latent shifts for PepGlider, baselines, and ablation variants.

4.1.2 INDEPENDENT CONTROL OF CORRELATED PROPERTIES

The ability to manipulate correlated properties addresses conflicting optimization objectives in peptide design. We evaluate PepGlider’s performance in this task through multi-attribute conditioning experiments, constraining different property combinations: individual attributes (L, C, or H), pairs (L+C, L+H, or C+H), or all three simultaneously (L+C+H), measuring target property responses while monitoring cross-interference effects.

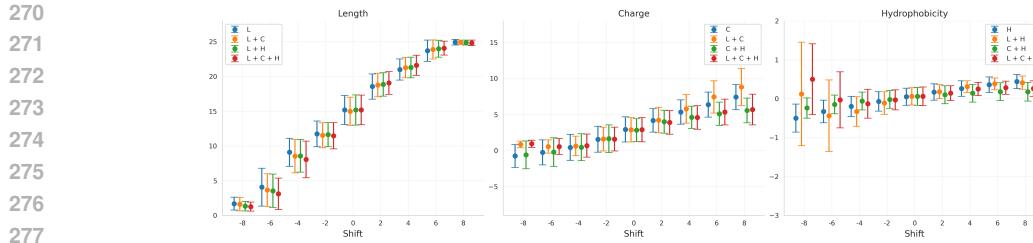


Figure 3: **Independent control of correlated peptide properties through selective attribute conditioning.** Property values across latent space shifts for (a) net charge, (b) sequence length, and (c) hydrophobicity under single-attribute (blue), dual-attribute (orange), and tri-attribute (green) conditioning scenarios. Error bars represent mean \pm standard deviation.

PepGlider demonstrates precise independent property control across conditioning scenarios (Figure 3). Individual property constraints yield precise linear control over target attributes while leaving non-target properties unchanged. Multi-property conditioning maintains this selective control, with the exception of simultaneous charge and hydrophobicity control (C+H), which shows impairment due to inherent physicochemical constraints where hydrophobic residues are typically uncharged. Non-conflicting combinations (L+C, L+H) achieve precise multi-objective control, where each target property responds predictably to its corresponding latent dimension manipulation.

Comprehensive ablation analysis (Figure 11) reveals PepGlider achieves the greatest range of controllable values across all variants. This expanded dynamic range enables more effective targeting of specific property values and systematic exploration of property regions inaccessible to other approaches, establishing PepGlider’s capability for simultaneous multi-property optimization while maintaining biological realism.

4.2 ANTIMICROBIAL ACTIVITY OPTIMIZATION

To demonstrate real-world applicability, we apply our framework to antimicrobial peptide optimization, where complex biological activity must be balanced against multiple physicochemical constraints. While previous sections established continuous control over basic peptide properties, practical utility depends on whether this controllability extends to biological activity predictions. Validity analysis (Figure 12) demonstrates that separating these attribute types enables more stable generation quality across the controllable space, ensuring that complex biological objectives can be pursued without compromising sequence plausibility. Therefore, we proceed with a model trained exclusively on activity and non-toxicity data.

4.2.1 ANTIMICROBIAL ACTIVITY CONTROL

To evaluate whether PepGlider’s continuous control extends to complex biological functions, we generate 2D surface plots, where decoded peptides are evaluated using APEX MIC prediction models for *E. coli* and *S. aureus*. The smooth activity gradients across latent space demonstrate systematic control over antimicrobial potency (Figure 4, upper panels). Validation through scatterplot analysis of in-house dataset peptides projected into PepGlider’s latent space reveals that experimentally verified high-activity peptides (low MIC values) naturally cluster in regions associated with predicted antimicrobial efficacy (Figure 4, lower panels), confirming that learned representations capture genuine biological function rather than arbitrary encodings.

4.2.2 UNCONSTRAINED GENERATION FOR HIGH-ACTIVITY PEPTIDE DISCOVERY

We evaluate PepGlider’s ability to generate peptides with enhanced antimicrobial activity in the unconstrained generation mode via sampling from high-activity latent regions (see 2.2.2), by comparing its performance against established generative approaches. Two complementary assessments demonstrate both controllability and biological relevance: (1) antimicrobial potential approximated through FBD to active peptides during targeted sampling from high-activity latent regions (Figure 5, upper panel), and (2) direct APEX-predicted MIC distributions for sequences from unconstrained

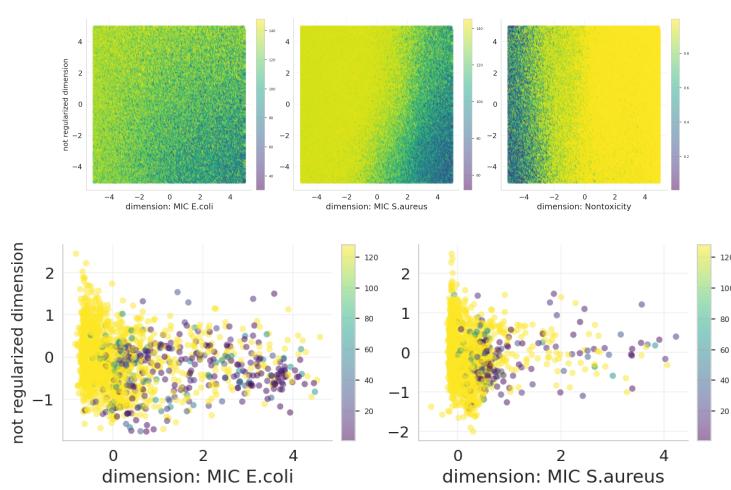


Figure 4: **Continuous antimicrobial activity control in PepGlider latent space.** **Upper panels:** 2D surface plots showing APEX-predicted MIC values across latent space for *E. coli* (left), *S. aureus* (middle), and non-toxicity predictions (right). **Lower panels:** Validation scatterplots showing peptides from proprietary dataset A.4.7 projected into latent space, colored by experimental MIC values for *E. coli* (left) and *S. aureus* (right).

generation (Figure 5, lower panel). Based on Figure 5, we select the best shift combination per strain (+8.0 for *E. coli*, +2.0 for *S. aureus*) and use this setup to calculate sequence metrics, including validity, novelty, and diversity, provided in Table 2.

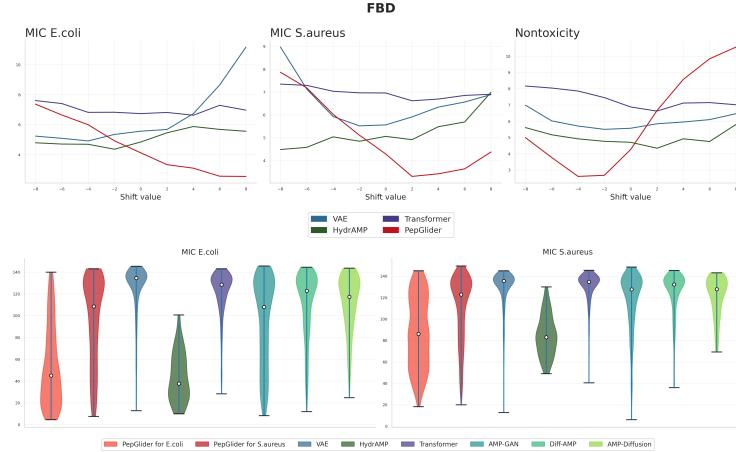
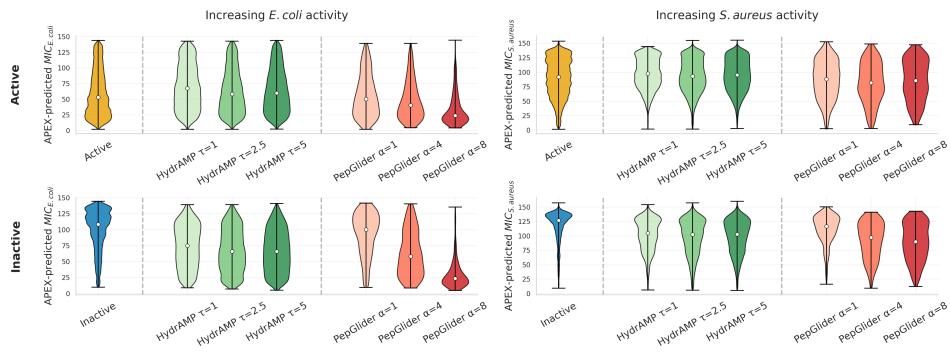


Figure 5: **High-activity peptide generation through strategic latent space sampling.** Fréchet Biological Distance (FBD) scores comparing PepGlider to baseline methods when generating peptides from latent space regions corresponding to low MIC predictions. FBD computed between generated samples and reference set of highly active antimicrobial peptides using fine-tuned ESM2 embeddings. Lower FBD scores indicate greater similarity to genuine high-activity antimicrobial peptides.

The results demonstrate PepGlider’s superior performance in unconstrained generation of high-activity antimicrobial candidates. APEX predictions (Figure 5, lower panel) show that PepGlider-generated sequences achieve substantially lower MIC distributions for both *E. coli* and *S. aureus* compared to all baseline and external methods. For *E. coli*, PepGlider’s unconstrained generation produces a concentrated distribution around 40-60 $\mu\text{g}/\text{ml}$ with significant density below 32 $\mu\text{g}/\text{ml}$ (clinically relevant threshold), while competing methods show broader distributions centered at higher MIC values. Similarly, for *S. aureus*, PepGlider maintains low MIC predictions with

378
379
380
381
382
383

Model	Validity (↓)	AMP potential (↓)	Novelty (↑)	Diversity (↑)
VAE	2.201	5.671	1.0	0.988
HydrAMP	3.616	4.950	1.0	0.897
Transformer	2.668	6.827	1.0	1.144
AMP-GAN	2.202	5.705	1.0	0.990
Diff-AMP	3.237	4.254	1.0	0.940
AMP _{Diffusion}	3.936	8.036	1.0	0.825
PepGlider*	1.498	2.935	1.0	0.956

384
385
386
387
Table 2: **Sequence quality metrics for unconstrained generation across generative models.**
Comparison of validity, AMP potential, novelty, and diversity for PepGlider and baseline/external
generative methods. *PepGlider results averaged over *E. coli* and *S. aureus* predictions.388
389
390
391
392
393
394
395
396
397
398
399400
401
402
403
Figure 6: **Existing peptide improvement through analog generation.** Violin plots showing anti-
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
149

432 this trade-off through simultaneous manipulation of MIC and non-toxicity regularized dimensions.
 433 While manipulating MIC-regularized dimensions to enhance antimicrobial activity against *E. coli*
 434 and *S. aureus*, we simultaneously apply different non-toxicity regularization strategies ($\alpha = -2, 0,$
 435 $+2$ for non-toxicity regularized dimension, as well as random control) to assess whether toxicity
 436 increases can be mitigated.

437 The results (Figure 13) demonstrate PepGlider’s capacity for controlled multi-objective optimization.
 438 As expected, shifting toward lower MIC values in the regularized dimensions successfully
 439 enhances predicted antimicrobial activity for both bacterial targets. Critically, simultaneous non-
 440 toxicity regularization ($\alpha = +2$) helps maintain higher non-toxicity scores compared to unregularized
 441 approaches, demonstrating that PepGlider can partially decouple the activity-safety trade-off. This
 442 capability enables rational optimization of therapeutic windows, allowing researchers to enhance
 443 antimicrobial potency while minimizing safety risks.

444

445 5 DISCUSSION

446

447 PepGlider addresses fundamental limitations in controllable peptide design through continuous
 448 attribute regularization and adaptive normalization strategies. Our framework enables indepen-
 449 dent manipulation of correlated properties while maintaining biological plausibility, demonstrated
 450 through superior latent quality evaluation and systematic property control across challenging sce-
 451 narios like activity-safety trade-offs.

452

453 Key limitations include reduced performance for inherently conflicting objectives, particularly the
 454 activity-safety trade-off where enhanced antimicrobial potency often correlates with increased tox-
 455 icticity. Future developments should prioritize methods that efficiently utilize sparse biological ex-
 456 perimental data directly, reducing dependence on intermediate prediction models while maintaining
 457 controllability. The current attribute set, while comprehensive for basic physicochemical properties,
 458 could be expanded to include synthesizability constraints, structural features (secondary structure
 459 propensity, flexibility), and manufacturing considerations critical for therapeutic translation.

460

461 The continuous attribute regularization framework’s versatility extends beyond antimicrobial pep-
 462 tides to diverse therapeutic applications, providing a flexible framework for controllable generation.

463

464 6 ETHICS STATEMENT

465

466 This research involves computational design of antimicrobial peptides using machine learning meth-
 467 ods. All datasets used for training and evaluation consist of publicly available peptide sequences
 468 and experimental measurements from established databases (AMPScanner, dbAMP, DRAMP,
 469 DBAASP). No human subjects, animal experiments, or clinical trials were involved in this com-
 470 putational study. The potential therapeutic applications of designed antimicrobial peptides could
 471 contribute to addressing antimicrobial resistance, a significant global health challenge. However,
 472 any peptides generated by this framework require extensive experimental validation, safety testing,
 473 and regulatory approval before clinical consideration. The hemolytic toxicity predictions used in
 474 this work are computational estimates and cannot replace experimental safety assessment.

475

476

477 7 REPRODUCIBILITY STATEMENT

478

479 We provide comprehensive implementation details to ensure reproducibility. Model architectures,
 480 hyperparameters, and training procedures are detailed in the main text and appendix (Table 3). All
 481 normalization procedures, including quantile transformation and adaptive range normalization, are
 482 mathematically specified with explicit equations. Evaluation metrics and baseline comparisons use
 483 established methods with clear mathematical definitions. The proprietary validation dataset con-
 484 tains experimental MIC measurements that enable independent performance assessment, though
 485 specific data cannot be shared due to proprietary restrictions. Code and trained models will be made
 486 available upon publication to facilitate reproduction and extension of this work. The framework’s
 487 implementation using standard deep learning libraries ensures compatibility with common research
 488 environments.

486 8 LLM USAGE
487488 Large language models were used as writing assistance tools during the preparation of this
489 manuscript. Specifically, Claude was employed for improving clarity and flow of technical expla-
490 nitions, and generating alternative phrasings for complex methodological concepts, proofreading and
491 copy-editing assistance.492 All scientific content, experimental design, results, and conclusions are entirely the work of the
493 human authors. LLMs were not used for experimental design decisions, or scientific reasoning. The
494 core contributions, methodological innovations, and technical implementations represent original
495 research by the authors. All factual claims and experimental results were verified independently by
496 the research team.
497498 REFERENCES
499500 Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. *arXiv*
501 *preprint arXiv:1509.00519*, 2015.502 Payel Das, Tom Sercu, Kahini Wadhawan, Inkit Padhi, Sebastian Gehrmann, Flaviu Cipcigan, Vijil
503 Chenthamarakshan, Hendrik Strobelt, Cicero Dos Santos, Pin-Yu Chen, et al. Accelerated an-
504 timicrobial discovery via deep generative models and molecular dynamics simulations. *Nature*
505 *Biomedical Engineering*, 5(6):613–623, 2021.506
507 Xiaojie Guo, Yuanqi Du, and Liang Zhao. Property controllable variational autoencoder via invert-
508 ible mutual dependence. In *International Conference on Learning Representations*, 2020.509
510 Robert EW Hancock and Hans-Georg Sahl. Antimicrobial and host-defense peptides as new anti-
511 infective therapeutic strategies. *Nature biotechnology*, 24(12):1551–1557, 2006.512 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
513 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
514 *neural information processing systems*, 30, 2017.515
516 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
517 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
518 constrained variational framework. In *International conference on learning representations*, 2017.519
520 Xinyue Kang, Fanyi Dong, Cheng Shi, Shicai Liu, Jian Sun, Jiaxin Chen, Haiqi Li, Hanmei Xu,
521 Xingzhen Lao, and Heng Zheng. Dramp 2.0, an updated data repository of antimicrobial peptides.
522 *Scientific data*, 6(1):148, 2019.523
524 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
525 *arXiv:1312.6114*, 2013.526
527 Jack Klys, Jake Snell, and Richard Zemel. Learning latent subspaces in variational autoencoders.
528 *Advances in neural information processing systems*, 31, 2018.529
530 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
531 Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
532 protein structure with a language model. *Science*, 379(6637):1123–1130, 2023.533
534 Alex T Müller, Gisela Gabernet, Jan A Hiss, and Gisbert Schneider. modlamp: Python for antimicro-
535 bial peptides. *Bioinformatics*, 33(17):2753–2755, 2017.536
537 Jim O'Neill. Tackling drug-resistant infections globally: final report and recommendations. *The*
538 *Review on Antimicrobial Resistance*, 2016.539
540 Amir Pandi, David Adam, Amir Zare, Van Tuan Trinh, Stefan L Schaefer, Marie Burt, Björn
541 Klabunde, Elizaveta Bobkova, Manish Kushwaha, Yeganeh Foroughijabbari, et al. Cell-free
542 biosynthesis combined with deep learning accelerates de novo-development of antimicrobial pep-
543 tides. *Nature Communications*, 14(1):7197, 2023.

540 Ashis Pati and Alexander Lerch. Attribute-based regularization of latent spaces for variational auto-
 541 encoders. *Neural Computing and Applications*, 33(9):4429–4444, 2021.
 542

543 Malak Pirtskhalava, Anthony A Armstrong, Maia Grigolava, Mindia Chubinidze, Evgenia Alim-
 544 barashvili, Boris Vishnepolsky, Andrei Gabrielian, Alex Rosenthal, Darrell E Hurt, and Michael
 545 Tartakovsky. Dbaasp v3: database of antimicrobial/cytotoxic activity and structure of peptides
 546 as a resource for development of new therapeutics. *Nucleic acids research*, 49(D1):D288–D297,
 547 2021.

548 Samuel Renaud and Rachael A Mansbach. Latent spaces for antimicrobial peptide design. *Digital
 549 Discovery*, 2(2):441–458, 2023.
 550

551 Yechiel Shai and Ziv Oren. From “carpet” mechanism to de-novo designed diastereomeric cell-
 552 selective antimicrobial peptides. *Peptides*, 22(10):1629–1641, 2001.

553 Paulina Szymczak and Ewa Szczurek. Artificial intelligence-driven antimicrobial peptide discovery.
 554 *Current Opinion in Structural Biology*, 83:102733, 2023.
 555

556 Paulina Szymczak, Marcin Mozejko, Tomasz Grzegorzek, Radoslaw Jurczak, Marta Bauer, Damian
 557 Neubauer, Karol Sikora, Michal Michalski, Jacek Sroka, Piotr Setny, et al. Discovering highly
 558 potent antimicrobial peptides with deep generative model hydram. *nature communications*, 14
 559 (1):1453, 2023.

560 Sophia Tang, Yinuo Zhang, and Pranam Chatterjee. Peptune: De novo generation of therapeutic
 561 peptides with multi-objective-guided discrete diffusion. *ArXiv*, pp. arXiv–2412, 2025.
 562

563 Marcelo DT Torres, Leo Tianlai Chen, Fangping Wan, Pranam Chatterjee, and Cesar de la Fuente-
 564 Nunez. Generative latent diffusion language modeling yields anti-infective synthetic peptides.
 565 *Cell Biomaterials*, 2025.

566 Colin M Van Oort, Jonathon B Ferrell, Jacob M Remington, Safwan Wshah, and Jianing Li. Ampgan
 567 v2: machine learning-guided design of antimicrobial peptides. *Journal of chemical information
 568 and modeling*, 61(5):2198–2207, 2021.

569 Daniel Veltri, Uday Kamath, and Amarda Shehu. Deep learning improves antimicrobial peptide
 570 recognition. *Bioinformatics*, 34(16):2740–2747, 2018.
 571

572 Fangping Wan, Marcelo DT Torres, Jacqueline Peng, and Cesar de la Fuente-Nunez. Deep-learning-
 573 enabled antibiotic discovery through molecular de-extinction. *Nature Biomedical Engineering*, 8
 574 (7):854–871, 2024.
 575

576 Rui Wang, Tao Wang, Linlin Zhuo, Jinhang Wei, Xiangzheng Fu, Quan Zou, and Xiaojun Yao. Diff-
 577 amp: tailored designed antimicrobial peptide framework with all-in-one generation, identification,
 578 prediction and optimization. *Briefings in Bioinformatics*, 25(2), 2024.

579 Shiyu Wang, Xiaojie Guo, Xuanyang Lin, Bo Pan, Yuanqi Du, Yinkai Wang, Yanfang Ye, Ashley
 580 Petersen, Austin Leitgeb, Saleh AlKhalifa, et al. Multi-objective deep data generation with cor-
 581 related property control. *Advances in neural information processing systems*, 35:28889–28901,
 582 2022.

583 Torsten Weprecht, Margitta Dathe, Eberhard Krause, Michael Beyermann, W Lee Maloy,
 584 Dorothy L MacDonald, and Michael Bienert. Modulation of membrane activity of amphipathic,
 585 antibacterial peptides by slight modifications of the hydrophobic moment. *FEBS letters*, 417(1):
 586 135–140, 1997.
 587

588 Lantian Yao, Jiahui Guan, Peilin Xie, Chia-Ru Chung, Zhihao Zhao, Danhong Dong, Yilin Guo,
 589 Wenyang Zhang, Junyang Deng, Yuxuan Pang, et al. dbamp 3.0: updated resource of antimicro-
 590 bial activity and structural annotation of peptides in the post-pandemic era. *Nucleic acids
 591 research*, 53(D1):D364–D376, 2025.

592 Michael R Yeaman and Nannette Y Yount. Mechanisms of antimicrobial peptide action and resis-
 593 tance. *Pharmacological reviews*, 55(1):27–55, 2003.

594 **A APPENDIX**
595596 **A.1 RELATED WORK**
597598 Controllable peptide design intersects multiple research areas, including conditional generation and
599 latent space regularization, each addressing different aspects of the challenge of navigating corre-
600 lated peptide properties.601 **Controllable Peptide Design** Current approaches to controllable peptide generation, particularly
602 for AMPs, employ three main strategies: conditional generation, post-hoc filtering, and guidance
603 during sampling. While conditional methods like HydrAMP (Szymczak et al., 2023) directly in-
604 incorporate constraints, they are limited to binary classification or struggle with multiple objectives.
605 Post-hoc approaches (Das et al., 2021; Pandi et al., 2023; Torres et al., 2025) suffer from severe
606 efficiency limitations when targeting rare property combinations. The exponential search space of
607 peptide sequences makes exhaustive sampling impractical, particularly when multiple properties
608 must be optimized simultaneously. Guidance-based methods attempt to steer the generation process
609 toward desired properties during sampling, including approaches that use Monte Carlo Tree Guid-
610 ance (Tang et al., 2025) and reinforcement learning with property-based rewards (Wang et al., 2024).
611 However, guidance approaches operate at the sampling level rather than embedding controllability
612 into the learned representation, making them computationally expensive during generation and un-
613 able to leverage the structured relationships between properties for more efficient optimization.614 **Latent Space Regularization** Latent space regularization methods from other domains learn rep-
615 resentations where properties naturally align with latent structure. VAE-based approaches have
616 pioneered this direction through various regularization strategies. CorrVAE (Wang et al., 2022) ad-
617 dresses property correlations through specialized loss functions designed to handle interdependent
618 data characteristics. Property-controllable VAE (Guo et al., 2020) incorporates property predic-
619 tion losses directly into the variational objective, creating latent representations that encode desired
620 features. Conditional Subspace VAE (Klys et al., 2018) partitions the latent space according to
621 property-specific regions, enabling targeted sampling from relevant subspaces. AR-VAE (Pati &
622 Lerch, 2021) aligns latent and attribute spaces through distance matrix matching to create mono-
623 tonic relationships between latent dimensions and target properties. While these latent space meth-
624 ods offer promising frameworks for controllable generation, they have not been adapted to address
625 the specific challenges of peptide design, particularly the need for precise property targeting across
626 correlated physicochemical characteristics and efficient access to rare, but functional attribute com-
627 binations essential for therapeutic applications.628 **A.2 EXTENDED METHODS**
629630 **A.2.1 ATTRIBUTE NORMALIZATION PROCEDURES**
631632 We introduce attribute-specific normalization strategies as a core methodological contribution that
633 ensures compatibility with our continuous loss formulation while preserving biological meaning.634 **Quantile Normalization** Applied to charge, length, hydrophobicity, and non-toxicity predictions.
635 Raw values are transformed via quantile transformation $Q(\cdot)$ to uniform distribution $U(0, 1)$, then
636 linearly scaled:

637
$$\tilde{p}_i = 2Q(p_i) - 1 \tag{7}$$

638 This ensures uniform property space coverage and eliminates scale bias while maintaining the re-
639 quired $[-1, 1]$ range.640 **Adaptive Range Normalization** A normalization strategy that addresses the clinical importance of
641 low MIC values while maintaining loss compatibility. The approach allocates 70% of the normalized
642 range to therapeutically relevant concentrations (0-32 $\mu\text{g/ml}$) and 30% to higher values:643 *Higher concentrations ($>32 \mu\text{g/ml}$) $\rightarrow [-1, -0.4]$:*

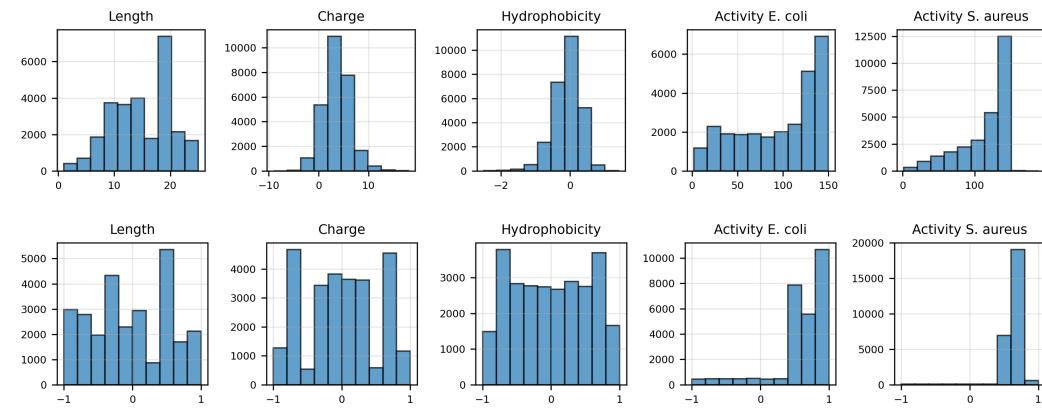
644
$$\tilde{p}_{out} = -1 + 0.6 \cdot \text{CDF}_{out}(p) \tag{8}$$

645 *Clinically relevant range (0-32 $\mu\text{g/ml}$) $\rightarrow [-0.4, 1]$:*

646
$$\tilde{p}_{ROI} = -0.4 + 1.4 \cdot \text{CDF}_{ROI}(p) \tag{9}$$

648 where CDF_{ROI} and CDF_{out} are empirical cumulative distribution functions computed within each
 649 region using histogram-based quantile mapping.
 650

651 This normalization framework enables precise property control by ensuring all normalized attributes
 652 operate within the same bounded range as the latent regularization terms. Unlike the discrete ap-
 653 proach that rely on signum function, our continuous formulation maintains gradient information
 654 throughout optimization, enabling fine-grained control over peptide properties while preserving
 655 compatibility with standard VAE training procedures.
 656



657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672 **Figure 7: Two-stage normalization procedure for continuous attribute regularization.** Distribu-
 673 tion comparison of peptide properties before (upper panel) and after (lower panel) the normaliza-
 674 tion procedure.
 675
 676

A.3 EXTENDED EXPERIMENTAL SETUP

A.4 DATASETS

680 The training dataset comprises 27331 curated antimicrobial peptide sequences derived from
 681 four comprehensive databases: AMPScanner (Veltri et al., 2018), dbAMP (Yao et al., 2025),
 682 DRAMP (Kang et al., 2019), and DBAASP (Pirtskhala et al., 2021). Sequences are restricted
 683 to a maximum of 25 amino acid residues, capturing the predominant length range of naturally oc-
 684 ccurring antimicrobial peptides. Duplicate sequences are removed across databases to ensure unique
 685 representation within the training corpus.
 686

A.4.1 EVALUATION DATASET

687 For evaluation of PepGlider, we utilize a proprietary dataset containing experimental MIC measure-
 688 ments for 1,736 peptides tested against 11 clinically relevant bacterial strains. The dataset includes
 689 measurements against Gram-negative bacteria (*A. baumannii* ATCC 19606, *E. coli* ATCC 11775,
 690 *E. coli* AIC221, carbapenem-resistant *E. coli* AIC222, *K. pneumoniae* ATCC 13883, *P. aeruginosa*
 691 PAO1 and PA14) and Gram-positive bacteria (*S. aureus* ATCC 12600, methicillin-resistant *S. au-*
 692 *reus* ATCC BAA-1556, vancomycin-resistant *E. faecalis* ATCC 700802, and vancomycin-resistant
 693 *E. faecium* ATCC 700221). This comprehensive dataset enables validation of generated peptides
 694 against both standard reference strains and clinically significant drug-resistant isolates, providing
 695 robust assessment of antimicrobial activity across diverse bacterial targets.
 696

A.4.2 PHYSICOCHEMICAL PROPERTIES

697 We selected net charge, hydrophobicity, and sequence length as target attributes for PepGlider based
 698 on their established roles in antimicrobial peptide function and their ability to discriminate between
 699 active and inactive peptides.
 700

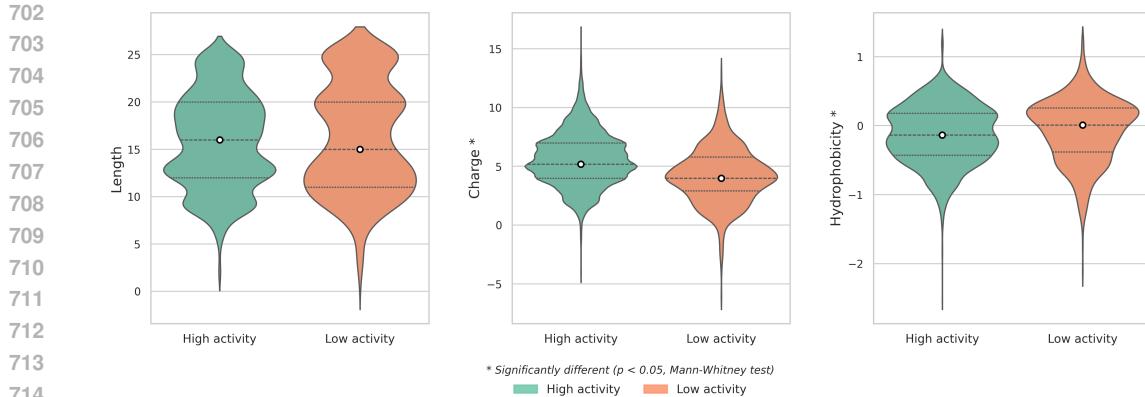


Figure 8: **Discriminative physicochemical properties between active and inactive antimicrobial peptides.** Distribution comparison of net charge, hydrophobicity, and sequence length between active peptides (green) and inactive peptides (orange) from the curated dataset.

Net Charge plays a critical role in the initial electrostatic interactions between cationic antimicrobial peptides and negatively charged bacterial membranes (Yeaman & Yount, 2003). Positively charged residues facilitate binding to bacterial lipopolysaccharides and phospholipids, while excessive charge can lead to reduced membrane permeation and potential cytotoxicity (Hancock & Sahl, 2006). Net charge is calculated at physiological pH (7.0), accounting for the ionization state of terminal groups and ionizable side chains based on their respective pKa values from the *modlamp* implementation.

Hydrophobicity determines the peptide’s ability to partition into and disrupt bacterial membranes (Wieprecht et al., 1997). Optimal hydrophobic content enables membrane insertion while preventing aggregation or excessive hemolytic activity. Average hydrophobicity is computed using established amino acid hydrophobicity scales:

$$H(\mathbf{x}) = \frac{1}{L} \sum_{i=1}^L h_i \quad (10)$$

where h_i represents the hydrophobicity value for amino acid i and L is the sequence length.

Sequence length constrains both structural flexibility and membrane interaction mechanisms. Shorter peptides typically adopt extended conformations that facilitate membrane carpet formation, while longer sequences may form more complex secondary structures affecting activity and selectivity (Shai & Oren, 2001). Sequence length is a direct enumeration of amino acid residues:

$$L(\mathbf{x}) = |\mathbf{x}| \quad (11)$$

Physicochemical properties are computed using the *modlamp* (Müller et al., 2017) package, implementing algorithms for antimicrobial peptide analysis:

To validate these properties as discriminative features, we analyzed their distributions across active ($\text{MIC} \leq 32 \mu\text{g/ml}$) and inactive ($\text{MIC} \geq 128 \mu\text{g/ml}$) peptides in our curated dataset (Figure 8). Active peptides exhibit distinct distributions for all three properties: moderate positive charge (mean \pm SD), intermediate hydrophobicity values, and concentrated length distributions around 10–25 residues. These clear distributional differences support their selection as target attributes for continuous control in the PepGlider framework.

A.4.3 NON-TOXICITY

Data Extraction and Preprocessing Hemolytic activity measurements were extracted from DBAASP (Pirtskhala et al., 2021), focusing on records containing HC50 values and percentage

756 hemolysis data. Activity measure values and groups were normalized to lowercase for consistent
 757 processing. Percentage hemolysis values were extracted using regex parsing with two prioritized
 758 patterns: (1) values with standard deviations (e.g., “15.2±3.1% hemolysis”), taking the primary
 759 value before \pm , and (2) range formats (e.g., “10-20% hemolysis”), using the midpoint average.
 760

761 **Binary Toxicity Classification Rules** For peptides with single measurements, the following hier-
 762 archy was applied:

- 763 • Direct non-toxic assignment: 0% hemolysis records \rightarrow non-toxic (1)
- 764 • Activity-based toxic assignment: activity $\leq 32 \mu\text{g/mL}$ AND $> 1\%$ hemolysis \rightarrow toxic (0)
- 765 • Activity-based non-toxic assignment: activity $> 32 \mu\text{g/mL}$ AND $\leq 10\%$ hemolysis \rightarrow non-
 766 toxic (1)
- 767 • Hemolysis threshold: $> 50\%$ hemolysis \rightarrow toxic (0)
- 768 • HC50-specific rules: $\text{HC50} \leq 256 \mu\text{g/mL} \rightarrow$ toxic (0), otherwise non-toxic (1)

771 For peptides with multiple measurements, consensus rules were applied:

- 772 • Any measurement $< 32 \mu\text{g/mL} \rightarrow$ toxic (0)
- 773 • All measurements $> 128 \mu\text{g/mL} \rightarrow$ non-toxic (1)
- 774 • All measurements $\leq 10\%$ hemolysis \rightarrow evaluate based on activity ($< 32 \mu\text{g/mL}$ threshold
 775 for toxic (0))
- 776 • HC50 measurements prioritized when available, using $128 \mu\text{g/mL}$ threshold (toxic (0) if
 777 $\leq 128 \mu\text{g/mL}$)

780 Peptides not meeting any classification criteria were excluded from the training dataset.

781 **Feature Engineering** The physicochemical property calculation framework computed 100+ fea-
 782 tures per sequence, including:

- 783 • Basic properties: length, charge, isoelectric point, molecular weight, aromaticity
- 784 • Hydrophobicity scales: AASI, Argos, Eisenberg, GRAVY, Kyte-Doolittle (16 scales total)
- 785 • Structural descriptors: secondary structure fractions, flexibility, entropy
- 786 • Specialized scales: Z-scales (5D), Kidera factors (10D), VHSE scales (8D), FASGAI vec-
 787 tors (6D)
- 788 • Topological features: polar surface area, H-bond acceptors/donors, rotatable bonds
- 789 • Compositional features: amino acid frequencies, structural class distributions

790 **Model Training and Validation** XGBoost classifier hyperparameters were optimized on the train-
 791 ing set with 974,582 peptides (1,157 toxic and 973,425 non-toxic) balanced using focal loss set to
 792 handle the imbalanced dataset. Model performance was assessed on the independent HydrAMP
 793 dataset containing experimentally validated antimicrobial peptides with known hemolytic profiles
 (Accuracy = 0.8333, F1-Score = 0.9048).

794 A.4.4 ABLATIONS

801 **VAE Baseline** serves as our primary ablation control, employing the identical transformer-based
 802 VAE architecture as PepGlider with Importance Weighted Autoencoder components and β -VAE
 803 regularization. The model is trained on the same dataset with identical quantile normalization,
 804 but without the continuous attribute regularization loss ($\gamma = 0$) and and 10-times decreased β .
 805 This configuration isolates the contribution of our continuous regularization framework from the
 806 architectural and preprocessing components.

807 **AR-VAE** (Pati & Lerch, 2021) represents the original attribute regularization formulation using the
 808 signum function for discrete ordinal comparisons and standard preprocessing without quantile nor-
 809 malization. This baseline evaluates the impact of our continuous loss formulation and normalization
 improvements.

810 **PepGlider w/o QN** removes quantile normalization while retaining the continuous loss formulation
 811 and signum replacement. Raw attribute values are used directly in the loss computation, isolating
 812 the contribution of the normalization procedure.

813 **PepGlider w/ sign** retains the original signum function from AR-VAE while incorporating our quan-
 814 tile normalization approach. This variant evaluates whether normalization alone can improve dis-
 815 crete attribute regularization.

816 **PepGlider w/ z-norm** replaces quantile normalization with standard z-score normalization (zero
 817 mean, unit variance), testing alternative normalization strategies while maintaining the continuous
 818 loss formulation.

820 A.4.5 BASELINE MODELS

821 **HydrAMP** (Szymczak et al., 2023) is a conditional variational autoencoder for antimicrobial peptide
 822 generation. The model employs Jacobian-based disentanglement regularization to enforce indepen-
 823 dence between latent representations \mathbf{z} and discrete conditioning variables ($c_{AMP}, c_{MIC} \in \{0, 1\}$).
 824 Property control is achieved through conditional decoding $\text{Dec}(\mathbf{z}, c)$ with binary labels for anti-
 825 microbial activity and potency. In contrast to PepGlider’s continuous attribute regularization in latent
 826 space, HydrAMP guides generation through discrete conditions fed directly to the decoder. The
 827 model supports unconstrained generation and temperature-controlled analogue generation modes.

828 **Transformer-128** (Renaud & Mansbach, 2023) employs a transformer-based autoencoder architec-
 829 ture with a 128-dimensional latent space for peptide generation. The model learns implicit parti-
 830 tioning of the latent space into regions corresponding to high and low AMP probabilities without
 831 explicit incorporation of mechanisms for continuous property control.

832 A.4.6 PEPGLIDER IMPLEMENTATION

833 PepGlider employs a transformer-based VAE architecture (Kingma & Welling, 2013) optimized
 834 for variable-length biological sequences. The encoder $\text{Enc}(\cdot)$ maps peptide sequences $\mathbf{x} \in$
 835 $\{A, C, D, \dots, Y\}^L$ to latent representations $\mathbf{z} \in \mathbb{R}^d$ through CLS token aggregation, where a learn-
 836 able classification token attends to all sequence positions via multi-head self-attention mechanisms.
 837 The encoder outputs parameterize a Gaussian posterior $q(\mathbf{z}|\mathbf{x})$ with mean $\mu(\mathbf{x})$ and standard devi-
 838 ation $\sigma(\mathbf{x})$. The decoder $\text{Dec}(\cdot)$ reconstructs sequences from latent codes by replicating the latent
 839 vector across sequence positions and applying positional encodings for position-specific token
 840 generation. The architecture incorporates β -VAE regularization (Higgins et al., 2017) and Importance
 841 Weighted Autoencoder components (Burda et al., 2015) to enhance posterior distribution approxi-
 842 mation and latent space disentanglement capabilities.

843 All models were trained on NVIDIA A100 GPUs with 8GB memory. PepGlider and baseline models
 844 were trained for approximately 48 hours. The hyperparameter details are presented in Table 3.

845 **Training Schedule:** The β and γ parameter follow linear annealing schedules from their initial to
 846 final values over the specified warmup steps, after which they remain constant. The KL divergence
 847 weight β gradually increases to prevent posterior collapse.

848 A.4.7 EVALUATION METHODOLOGY

849 **Antimicrobial Activity and Non-toxicity Assessment** We evaluate antimicrobial activity using
 850 APEX (Wan et al., 2024) predictions for *E. coli* and *S. aureus* providing species-specific MIC predic-
 851 tions for clinically relevant pathogens. Toxicity assessment is performed using our trained hemolytic
 852 toxicity classifier as described in A.4.3

853 **Fréchet Biological Distance** To evaluate the quality of generated peptides in biologically relevant
 854 embedding space, we compute Fréchet Biological Distance (FBD) using fine-tuned ESM2 embed-
 855 dings. The ESM2-t12 model (Lin et al., 2023) was fine-tuned for binary antimicrobial activity
 856 classification using active/inactive labels with thresholds of $\leq 32 \mu\text{g/ml}$ for active and $\geq 128 \mu\text{g/ml}$
 857 for inactive peptides.

864
865
866
867
868
869
870
871
872
873
874
875
876

r

Table 3: Model hyperparameters and training details.

Parameter	Value
Architecture	
Attention Heads	4
Transformer Layers	6
Latent Dimension	56
Positional Encoding	Additive
Dropout Rate	0.1
Layer Normalization	Enabled
Training	
Optimizer	Adam
Learning Rate	0.001
Batch Size	512
Epochs	3100
IWAE Samples (K)	10
VAE Regularization	
β Initial	0.00001
β Final	0.1
β Warmup Steps	8000
Attribute Regularization	
Regularized Dimensions	[0, 1, 2, 3, 4, 5]
γ Initial	0.00001
γ Final	20
γ Warmup Steps	8000
γ Triggered epoch	1000
δ	0.1 for PepGlider for physicochemical attributes 0.6 for PepGlider only antimicrobial attributes
Data	
Max Sequence Length	25
Vocabulary Size	20
Property Normalization	Quantile (10 bins)
Properties Regularized	Length, Charge, Hydrophobicity, MIC E.coli, MIC S.aureus, Non-toxicity

907
908
909
910
911
912
913
914
915
916
917

918 FBD is computed analogously to Fréchet Inception Distance (Heusel et al., 2017) by modeling the
 919 distributions of ESM2 embeddings as multivariate Gaussians:
 920

$$921 \quad \text{FBD} = \|\boldsymbol{\mu}_{\text{real}} - \boldsymbol{\mu}_{\text{gen}}\|_2^2 + \text{Tr}(\boldsymbol{\Sigma}_{\text{real}} + \boldsymbol{\Sigma}_{\text{gen}} - 2(\boldsymbol{\Sigma}_{\text{real}}\boldsymbol{\Sigma}_{\text{gen}})^{1/2}) \quad (12)$$

922 where $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ represent the mean and covariance of the embedding distributions for real and
 923 generated peptides, respectively.
 924

925 Sequence Quality Metrics

- 928 • **Validity** measures how well generated peptides conform to the training distribution by
 929 computing FBD between generated sequences and the training dataset using ESM2 em-
 930 beddings.
- 931 • **Diversity** is a fraction of unique generated sequences not present in the training dataset.
- 932 • **Novelty** is computed using average pairwise Levenshtein distance among generated se-
 933 quences.
- 934 • **AMP Potential** evaluates similarity to experimentally validated antimicrobial peptides by
 935 computing FBD to a curated set of active peptides with documented MIC $\leq 32 \mu\text{g/ml}$
 936 against at least one bacterial strain in DBAASP.

938 **Disentanglement Quality Metrics** Following Pati & Lerch (2021), we assess PepGlider’s disen-
 939 tanglement quality using five established objective metrics:
 940

- 941 • **Interpretability** measures how well individual latent dimensions align with specific at-
 942 tributes by evaluating the variance explained by the most informative dimension for each
 943 attribute:

$$944 \quad \text{Interpretability} = \frac{1}{K} \sum_{k=1}^K \max_j R^2(a_k, z_j) \quad (13)$$

945 where K is the number of attributes, a_k is the k -th attribute, and $R^2(a_k, z_j)$ is the coeffi-
 946 cient of determination between attribute k and latent dimension j .
 947

- 948 • **Spearman Correlation Coefficient (SCC)** quantifies the monotonic relationship between
 949 latent dimensions and target attributes:
 950

$$951 \quad \text{SCC} = \frac{1}{K} \sum_{k=1}^K \max_j |\rho_s(a_k, z_j)| \quad (14)$$

952 where ρ_s denotes the Spearman correlation coefficient.
 953

- 954 • **Modularity** assesses whether each attribute is controlled by a distinct set of latent dimen-
 955 sions, measuring the degree of separation between attribute-dimension associations.
 956
- 957 • **Mutual Information Gap (MIG)** evaluates disentanglement by measuring the difference
 958 between the top two mutual information values:
 959

$$960 \quad \text{MIG} = \frac{1}{K} \sum_{k=1}^K \frac{I(a_k; z_{j^{(1)}}) - I(a_k; z_{j^{(2)}})}{H(a_k)} \quad (15)$$

961 where $j^{(1)}$ and $j^{(2)}$ are the indices of the latent dimensions with highest and second-highest
 962 mutual information with attribute k , and $H(a_k)$ is the entropy of attribute k .
 963

- 964 • **Separated Attribute Predictability (SAP)** measures how well attributes can be predicted
 965 from individual latent dimensions while being unpredictable from others, indicating effec-
 966 tive separation of attribute control.
 967

968 Results across all metrics are reported in Table A.5.1.
 969
 970

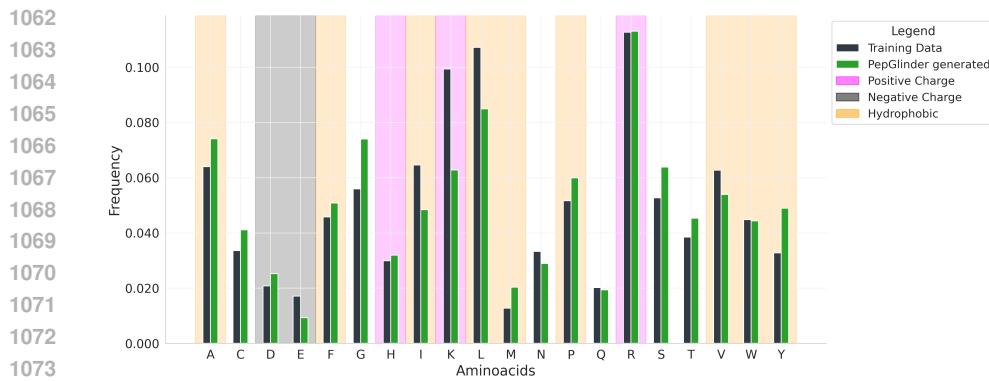
972 A.5 EXTENDED RESULTS
973
974975 A.5.1 DISENTANGLEMENT DETAILED ANALYSIS
976
977
978
979
980

Model	Attribute	Interpretability (\uparrow)	SCC (\uparrow)	Modularity (\uparrow)	MIG (\uparrow)	SAP (\uparrow)
VAE	Length	0.542	0.754	0.893	0.012	0.022
	Charge	0.088	0.320	0.660	0.001	0.026
	Hydrophobicity	0.080	0.309	0.736	0.000	0.009
HydrAMP	Length	0.951	0.973	0.957	0.056	0.020
	Charge	0.024	0.439	0.868	0.003	0.042
	Hydrophobicity	0.178	0.440	0.867	0.000	0.029
Transformer	Length	0.014	0.289	0.799	0.005	0.038
	Charge	0.022	0.333	0.723	0.004	0.013
	Hydrophobicity	0.261	0.494	0.975	0.008	0.121
ARVAE	Length	0.994	0.995	0.999	0.895	0.948
	Charge	0.947	0.994	0.979	0.280	0.655
	Hydrophobicity	0.921	0.996	0.177	0.211	0.621
PepGlider	Length	0.977	0.995	0.999	0.856	0.927
	Charge	0.934	0.991	0.980	0.292	0.649
	Hydrophobicity	0.881	0.998	0.976	0.211	0.587
PepGlider w/o normalization	Length	0.994	0.995	0.999	0.884	0.953
	Charge	0.958	0.992	0.981	0.297	0.670
	Hydrophobicity	0.990	0.997	0.983	0.257	0.690
PepGlider with signum	Length	0.994	0.995	0.999	0.896	0.951
	Charge	0.950	0.994	0.980	0.285	0.655
	Hydrophobicity	0.921	0.996	0.973	0.177	0.612
PepGlider w z-score normalization	Length	0.996	0.995	0.999	0.882	0.959
	Charge	0.966	0.982	0.982	0.321	0.668
	Hydrophobicity	0.937	0.998	0.980	0.231	0.631

999
1000 Table 4: **Detailed disentanglement quality metrics for PepGlider and baseline and ablation**
1001 **methods.** Higher scores indicate better disentanglement for all metrics.
1002
1003
1004
1005
1006
1007

Model	Attribute	Interpretability (\uparrow)	SCC (\uparrow)	Modularity (\uparrow)	MIG (\uparrow)	SAP (\uparrow)
VAE	MIC <i>E. coli</i>	0.087	0.287	0.815	0.001	0.029
	MIC <i>S. aureus</i>	0.076	0.275	0.795	0.001	0.027
	Nontoxicity	0.054	0.550	0.897	0.002	0.020
HydrAMP	MIC <i>E. coli</i>	0.000	0.295	0.928	0.000	0.020
	MIC <i>S. aureus</i>	0.000	0.248	0.931	0.001	0.012
	Nontoxicity	0.007	0.320	0.931	0.002	0.009
Transformer	MIC <i>E. coli</i>	0.129	0.365	0.945	0.001	0.008
	MIC <i>S. aureus</i>	0.090	0.304	0.932	0.000	0.006
	Nontoxicity	0.039	0.371	0.945	0.001	0.027
PepGlider	MIC <i>E. coli</i>	0.566	0.962	0.992	0.074	0.022
	MIC <i>S. aureus</i>	0.758	0.933	0.991	0.062	0.236
	Nontoxicity	0.332	0.992	0.994	0.075	0.123

1020
1021 Table 5: **Detailed attribute-specific disentanglement quality metrics results across antimicro-**
1022 **bial properties (MIC *E. coli*, MIC *S. aureus*, nontoxicity) for PepGlider and baseline methods.**
1023 Higher scores indicate better disentanglement for all metrics.
1024
1025

1026 A.5.2 RECONSTRUCTION
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

1076 Figure 9: **Reconstruction quality assessment for PepGlider-generated peptides.** Amino acid
1077 frequency distributions comparing generated peptides (green bars) with training data (black bars),
1078 demonstrating that PepGlider maintains realistic compositional patterns despite attribute regulariza-
1079 tion constraints. Amino acids crucial for hydrophobicity are highlighted in orange, and amino acids
contributing to positive charge and negative charge are highlighted in pink and gray, respectively.

1080
1081

A.5.3 ABLATIONS

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

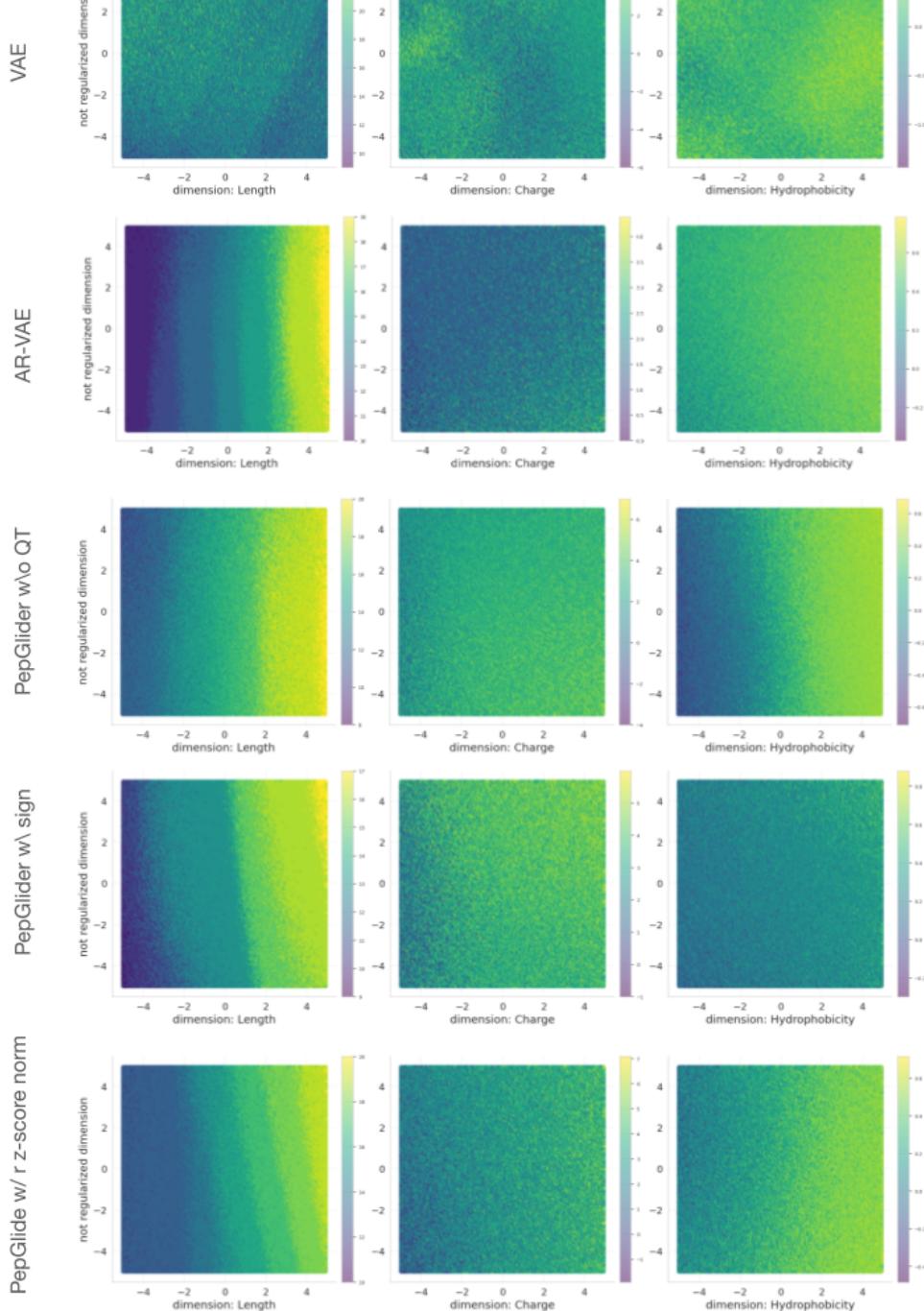


Figure 10: Latent ablations

Latent visualizations

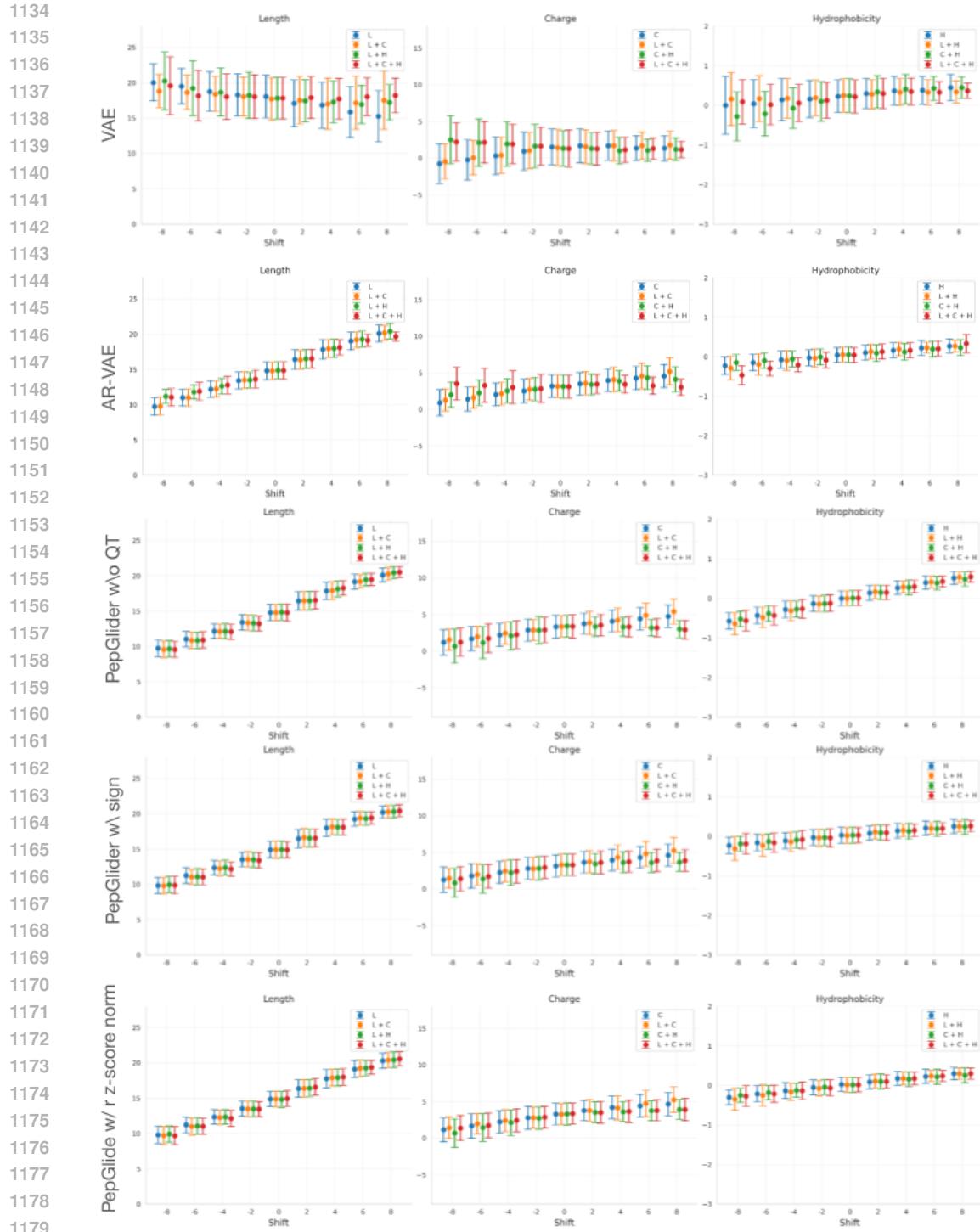


Figure 11: Multiconditioning

Multiconditioning

