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ABSTRACT

Computational peptide design requires precise control over physicochemical prop-
erties that often exhibit complex correlations. Existing generative models rely on
simplistic discrete conditioning mechanisms rather than precise targeting of spe-
cific property values. We present PepGlider, a continuous attribute regularization
framework that enables direct control over specific attribute values. The method
achieves structured latent space and displays smooth property gradients with supe-
rior disentanglement quality. Experimental results demonstrate that PepGlider en-
ables independent control of naturally correlated properties, and supports both un-
constrained generation and targeted optimization of existing peptides. PepGlider
applied to antimicrobial peptide design allows generation of candidates with de-
sired antibacterial activity profile. Unlike existing approaches, PepGlider provides
precise control over continuous property distributions while maintaining genera-
tion quality, offering a generalizable solution for therapeutic and materials appli-
cations requiring exact property specifications.

1 INTRODUCTION

Peptide design across diverse biomedical applications confronts a fundamental optimization chal-
lenge: achieving precise control over continuous peptide properties that often exhibit complex
correlations or direct conflicts. Antimicrobial peptide (AMP) design has emerged as particularly
urgent due to the escalating antimicrobial resistance crisis. Multidrug-resistant pathogens cause
over 700,000 deaths annually, with projections reaching 10 million by 2050 without interven-
tion (O’Neill, 2016). AMPs offer promising alternatives with broad-spectrum activity, rapid bacte-
rial killing kinetics, and reduced resistance development compared to conventional antibiotics (Han-
cock & Sahl, 2006). The need for controllable peptide design is particularly evident in AMPs,
where antimicrobial efficacy depends on complex interplay between physicochemical properties
such as charge or hydrophobicity. Introducing positively charged amino acids to increase net charge
- crucial for membrane interaction - often disrupts the distribution of hydrophobic residues essential
for bacterial killing. Such property interdependencies complicate the optimization of antimicrobial
activity, exemplifying the broader challenge of achieving precise control over functional outcomes
through correlated molecular characteristics.

Deep generative models have emerged as powerful tools for peptide sequence design, but current ap-
proaches exhibit significant limitations in controllability and precision. Existing conditional genera-
tion frameworks rely predominantly on discrete conditioning mechanisms that fail to enable precise
targeting of specific continuous property values. This limits optimization to coarse-grained cate-
gories rather than exact property ranges required for functional applications (Szymczak & Szczurek,
2023). Recent advances in attribute-controllable generation, particularly AR-VAE (Pati & Lerch,
2021), structure latent spaces such that specific dimensions encode target attributes through mono-
tonic relationships. However, AR-VAE’s discrete signum-based regularization of the loss function
only enable relative ordering between samples, not precise targeting of specific property values. This
limitation renders AR-VAE unsuitable for peptide design applications, where achieving functional
outcomes requires precise control over exact property ranges.

To address these challenges in controllable peptide design, we present PepGlider, a continuous at-
tribute regularization framework that achieves precise, independent control over correlated peptide
properties. Our approach makes three main contributions: (i) we extend AR-VAE with continuous
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Figure 1: PepGlider: Continuous attribute regularization for controlled peptide design.

loss formulations that enable precise targeting of specific peptide property values rather than relative
orderings, (ii) we introduce attribute-specific normalization that ensures mathematical compatibility
with continuous loss while preserving biological relevance, particularly adaptive range normaliza-
tion for clinically relevant antimicrobial potency ranges, and (iii) we demonstrate independent ma-
nipulation of naturally correlated physicochemical properties through structured latent space design,
enabling multi-objective optimization across conflicting attributes. The resulting framework offers
a generalizable methodology for precise property control across diverse peptide design applications.

2 METHODS

2.1 BACKGROUND

We build PepGlider upon the Attribute-Regularized VAE framework (Pati & Lerch, 2021), which
structures latent representations such that specific dimensions encode target attributes in a monotonic
fashion. Let x denote a data sample (here, a peptide sequence) and z represent the corresponding
latent representation obtained through the VAE encoder. For each mini-batch of size m, the method
constructs attribute and latent distance matrices for all pairs of samples i, j ∈ {1, ...,m}:

Da(i, j) = a(xi)− a(xj) (1)
Dr(i, j) = zri − zrj (2)

where a(·) represents the attribute function, r denotes the regularized latent dimension, Da is the
attribute distance matrix, and Dr is the latent distance matrix. The regularization loss enforces
alignment between these distance matrices:

Lattr = MAE(tanh(δDr)− sign(Da)) (3)

The complete AR-VAE objective combines this with standard VAE components:

LAR-VAE = Lrecon + βLKL + γ
∑
r,a

Lattr, (4)

where β controls the weight of the Kullback-Leibler regularization term, while the parameter δ
controls the spread of latent representations, and γ weights the overall attribute-based regularization
strength.

2.2 PEPGLIDER FRAMEWORK

PepGlider is designed for general peptide design applications requiring precise property control
across diverse peptide optimization objectives.
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2.2.1 CONTINUOUS ATTRIBUTE REGULARIZATION

The discrete nature of the signum function in AR-VAE creates discrete comparisons that limit con-
trollability to relative ordering rather than absolute values. We address this limitation through two
key innovations:

Continuous Attribute-Based Regularization We replace the signum-based comparison with a
continuous regularization formulation. The modified PepGlider loss becomes:

LPepGlider = Lrecon + βLKL + γ
∑
r,a

Lreg (5)

where the continuous property regularization term becomes:

Lreg = MAE(tanh(δDr)− D̃a) (6)

Attribute Normalization D̃a represents the attribute distance matrix scaled to [−1, 1]. This for-
mulation enables targeting of specific absolute property values rather than relative comparisons.

The continuous framework maintains gradient information throughout optimization, enabling fine-
grained control while preserving numerical stability.

2.2.2 CONTROLLED PEPTIDE GENERATION MODES

Post-training, PepGlider enables two generation modes that leverage the structured latent space for
different peptide design objectives.

Unconstrained generation samples latent codes z ∼ N (0, I) from the prior distribution and
applies decoder transformations x̂ = Dec(z) to produce diverse peptides with desired properties
that reflect the learned distribution of natural sequences. This mode enables exploration of the full
peptide design space without specific property constraints from inputed peptides.

Analog generation enables targeted modification of existing peptides through latent space ma-
nipulation, where a prototype sequence x is encoded to z = Enc(x), modified via α displacement
z̃ = z + α to optimize specific attribute objectives, and reconstructed as x̂ = Dec(z̃). Here, α
represents the attribute shift vector that directs the latent code toward desired property values in the
structured latent space.

3 EXPERIMENTAL SETUP

Datasets are described in Appendix A.4.

3.1 ATTRIBUTES

Physicochemical features PepGlider targets three fundamental physicochemical properties that
serve as key determinants of antimicrobial activity: net charge (C, calculated at physiological pH),
hydrophobicity (H, average across the sequence), and sequence length (L). The selection and com-
putational implementation of these attributes is described in A.4.2.

Antimicrobial activity against E. coli and S. aureus We incorporate Minimum Inhibitory Con-
centration (MIC) values as continuous attributes predicted by APEX (Wan et al., 2024), a deep learn-
ing model for antimicrobial activity prediction trained on experimentally validated data. We obtain
pathogen-specific MIC predictions for two key bacterial species: MIC against Escherichia coli (E.
coli), averaged over predictions for strains ATCC 11775, AIG222, and AIG221; and MIC against
Staphylococcus aureus (S. aureus), averaged over ATCC 12600 and ATCC BAA-1556 MRSA.

Non-toxicity To enable safety assessment of generated peptides, we trained a binary classifier to
predict hemolytic toxicity. Hemolytic activity data was extracted from the DBAASP database, focus-
ing on HC50 measurements (peptide concentration causing 50% hemolysis). Raw toxicity values
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underwent rule-based binarization (detailed procedure in A.4.3). Peptide sequences were featur-
ized using a comprehensive set of physicochemical property values, comprizing over 100 molecular
descriptors including basic properties (length, charge, hydrophobicity), structural descriptors (sec-
ondary structure fractions, topological features), and specialized amino acid scales. An XGBoost
classifier was trained on these features to predict binary non-toxicity (1 = non-toxic, 0 = toxic).

Attribute Normalization We employ quantile normalization (QN) for physicochemical properties
and introduce adaptive range normalization for MIC values, providing granular representation of
clinically relevant ranges (0-32 µg/ml) while maintaining the [−1, 1] scaling required for direct
alignment with tanh(δDr) outputs. Technical implementation details are in Appendix A.2.1, with
data distribution before and after normalization procedure shown in Figure 7.

3.2 BASELINES

We evaluate PepGlider against six baseline approaches that represent different paradigms for con-
trolled peptide generation and enable systematic assessment of our methodological contributions.
These include ablation variants to isolate the impact of our key innovations (VAE, AR-VAE,
PepGlider w/o QN, PepGlider w/ sign, PepGlider w/ z-norm), described in A.4.4, and estab-
lished VAE-based models for controlled AMP generation (HydrAMP (Szymczak et al., 2023),
Transformer-128 (Renaud & Mansbach, 2023)), with detailed descriptions in A.4.5.

3.3 EVALUATION METHODOLOGY

Implementation details and training procedure are in Appendix A.4.6. We evaluate our continuous
attribute regularization framework across two complementary aspects: fundamental controllability
capabilities and domain-specific application. First, we assess core framework capabilities required
for controllable peptide design, including latent space disentanglement quality, continuous property
control precision, and independent manipulation of correlated physicochemical properties. Sec-
ond, we demonstrate framework applicability through antimicrobial peptide optimization, showcas-
ing how general controllability enables complex, domain-specific biological objectives. Generated
peptides are evaluated using antimicrobial activity predictions, safety assessment, sequence quality
metrics (validity, diversity, novelty, antimicrobial potential), and disentanglement quality measures.
Detailed evaluation methodology is provided in A.4.7

4 RESULTS

4.1 DISENTANGLEMENT QUALITY

Effective disentanglement is crucial for controllable generation, as it determines whether individual
attributes can be manipulated independently through latent space traversal without unintended side
effects on other properties at the same time. Following Pati & Lerch (2021), we assess PepGlider’s
disentanglement quality using five established objective metrics: Interpretability, Spearman Cor-
relation Coefficient (SCC), Modularity, Mutual Information Gap (MIG), and Separated Attribute
Predictability (SAP) averaged across charge, length, and hydrophobicity (Appendix A.4.7, Table 1).

Model Interpretability (↑) SCC (↑) Modularity (↑) MIG (↑) SAP (↑)
VAE 0.175 0.389 0.833 0.003 0.023
HydrAMP 0.231 0.487 0.864 0.012 0.025
Transformer-128 0.104 0.365 0.845 0.005 0.039

AR-VAE 0.954 0.995 0.984 0.450 0.741
PepGlider w/ signum 0.955 0.995 0.984 0.453 0.739
PepGlider w/o normalization 0.981 0.995 0.987 0.479 0.771
PepGlider w z-score normalization 0.966 0.995 0.987 0.478 0.753

PepGlider 0.931 0.995 0.985 0.449 0.719

Table 1: Disentanglement quality metrics for PepGlider and baseline and ablation methods.
Mean scores across three peptide attributes (charge, length, hydrophobicity). Higher scores indicate
better disentanglement for all metrics. Attribute-specific results in Table 5.
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All AR-VAE variants, including PepGlider, achieve substantially superior disentanglement com-
pared to baseline methods (VAE, HydrAMP, Transformer-128). AR-VAE and its variants demon-
strate near-perfect SCC scores (≥0.995) and high performance across most metrics, with ablation
variants occasionally outperforming PepGlider itself. This pattern validates that our modifications
preserve the strong disentanglement properties of the original AR-VAE framework while enabling
continuous control. The moderate Modularity scores for AR-VAE variants reflect biologically re-
alistic attribute interdependencies in peptide properties, while the dramatic improvements in Inter-
pretability (0.931 vs. 0.231 for best baseline) and MIG (0.449 vs. 0.012) demonstrate effective
latent space organization for controllable generation.

4.1.1 CONTINUOUS ATTRIBUTE CONTROL

Practical peptide design requires smooth, predictable property transitions during latent space
traversal to enable systematic peptide optimization toward target properties values. We evaluate
PepGlider’s continuous control capability using 2D attribute surface plots across regularized latent
dimensions and an example, not regularized one. Latent vectors are systematically sampled, de-
coded, and evaluated for property values.

The resulting surfaces demonstrate smooth, continuous transitions across length, charge, and hy-
drophobicity (Figure 2, upper panel), enabling precise navigation through the latent space. The
quality of latent space traversal is the highest for PepGlider when contrasted with baseline models
(Appendix A.5.3). Critically, PepGlider maintains consistently high validity throughout latent space
navigation, measured as FBD to training data (A.4.7). Validity assessment across systematic latent
shifts (Figure 2, lower panel) shows PepGlider outperforms all baseline models, including VAE,
Transformer, and HydrAMP, while AR-VAE variants perform similarily to PepGlider. PepGlider’s
consistent validity during traversal ensures that property optimization preserves biological plau-
sibility of generated sequences. Additional amino acid frequency analysis confirms that PepGlider
maintains realistic compositional patterns that closely match the training data distribution (Figure 9).

Figure 2: Continuous attribute control through latent space manipulation. Upper panel:
PepGlider 2D attribute surface plots for length, charge, and hydrophobicity showing smooth prop-
erty transitions. Lower panel: Validity (FBD to training data) across latent shifts for PepGlider,
baselines, and ablation variants.

4.1.2 INDEPENDENT CONTROL OF CORRELATED PROPERTIES

The ability to manipulate correlated properties addresses conflicting optimization objectives in pep-
tide design. We evaluate PepGlider’s performance in this task through multi-attribute conditioning
experiments, constraining different property combinations: individual attributes (L, C, or H), pairs
(L+C, L+H, or C+H), or all three simultaneously (L+C+H), measuring target property responses
while monitoring cross-interference effects.
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Figure 3: Independent control of correlated peptide properties through selective attribute con-
ditioning. Property values across latent space shifts for (a) net charge, (b) sequence length, and (c)
hydrophobicity under single-attribute (blue), dual-attribute (orange), and tri-attribute (green) condi-
tioning scenarios. Error bars represent mean ± standard deviation.

PepGlider demonstrates precise independent property control across conditioning scenarios (Fig-
ure 3). Individual property constraints yield precise linear control over target attributes while leaving
non-target properties unchanged. Multi-property conditioning maintains this selective control, with
the exception of simultaneous charge and hydrophobicity control (C+H), which shows impairment
due to inherent physicochemical constraints where hydrophobic residues are typically uncharged.
Non-conflicting combinations (L+C, L+H) achieve precise multi-objective control, where each tar-
get property responds predictably to its corresponding latent dimension manipulation.

Comprehensive ablation analysis (Figure 11) reveals PepGlider achieves the greatest range of con-
trollable values across all variants. This expanded dynamic range enables more effective targeting
of specific property values and systematic exploration of property regions inaccessible to other ap-
proaches, establishing PepGlider’s capability for simultaneous multi-property optimization while
maintaining biological realism.

4.2 ANTIMICROBIAL ACTIVITY OPTIMIZATION

To demonstrate real-world applicability, we apply our framework to antimicrobial peptide opti-
mization, where complex biological activity must be balanced against multiple physicochemical
constraints. While previous sections established continuous control over basic peptide properties,
practical utility depends on whether this controllability extends to biological activity predictions.
Validity analysis (Figure 12) demonstrates that separating these attribute types enables more stable
generation quality across the controllable space, ensuring that complex biological objectives can be
pursued without compromising sequence plausibility. Therefore, we proceed with a model trained
exclusively on activity and non-toxicity data.

4.2.1 ANTIMICROBIAL ACTIVITY CONTROL

To evaluate whether PepGlider’s continuous control extends to complex biological functions, we
generate 2D surface plots, where decoded peptides are evaluated using APEX MIC prediction mod-
els for E. coli and S. aureus. The smooth activity gradients across latent space demonstrate sys-
tematic control over antimicrobial potency (Figure 4, upper panels). Validation through scatterplot
analysis of in-house dataset peptides projected into PepGlider’s latent space reveals that experimen-
tally verified high-activity peptides (low MIC values) naturally cluster in regions associated with
predicted antimicrobial efficacy (Figure 4, lower panels), confirming that learned representations
capture genuine biological function rather than arbitrary encodings.

4.2.2 UNCONSTRAINED GENERATION FOR HIGH-ACTIVITY PEPTIDE DISCOVERY

We evaluate PepGlider’s ability to generate peptides with enhanced antimicrobial activity in the
unconstrained generation mode via sampling from high-activity latent regions (see 2.2.2), by com-
paring its performance against established generative approaches. Two complementary assessments
demonstrate both controllability and biological relevance: (1) antimicrobial potential approximated
through FBD to active peptides during targeted sampling from high-activity latent regions (Figure 5,
upper panel), and (2) direct APEX-predicted MIC distributions for sequences from unconstrained
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Figure 4: Continuous antimicrobial activity control in PepGlider latent space. Upper panels:
2D surface plots showing APEX-predicted MIC values across latent space for E. coli (left). S. au-
reus (middle), and non-toxicity predictions (right). Lower panels: Validation scatterplots showing
peptides from proprietary dataset A.4.7 projected into latent space, colored by experimental MIC
values for E. coli (left) and S. aureus (right).

generation (Figure 5, lower panel). Based on Figure 5, we select the best shift combination per strain
(+8.0 for E. coli, +2.0 for S. aureus) and use this setup to calculate sequence metrics, including va-
lidity, novelty, and diversity, provided in Table 2.

Figure 5: High-activity peptide generation through strategic latent space sampling. Fréchet Bi-
ological Distance (FBD) scores comparing PepGlider to baseline methods when generating peptides
from latent space regions corresponding to low MIC predictions. FBD computed between generated
samples and reference set of highly active antimicrobial peptides using fine-tuned ESM2 embed-
dings. Lower FBD scores indicate greater similarity to genuine high-activity antimicrobial peptides.

The results demonstrate PepGlider’s superior performance in unconstrained generation of high-
activity antimicrobial candidates. APEX predictions (Figure 5, lower panel) show that PepGlider-
generated sequences achieve substantially lower MIC distributions for both E. coli and S. aureus
compared to all baseline and external methods. For E. coli, PepGlider’s unconstrained genera-
tion produces a concentrated distribution around 40-60 µg/ml with significant density below 32
µg/ml (clinically relevant threshold), while competing methods show broader distributions centered
at higher MIC values. Similarly, for S. aureus, PepGlider maintains low MIC predictions with
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Model Validity (↓) AMP potential (↓) Novelty (↑) Diversity (↑)
VAE 2.201 5.671 1.0 0.988
HydrAMP 3.616 4.950 1.0 0.897
Transformer 2.668 6.827 1.0 1.144
AMP-GAN 2.202 5.705 1.0 0.990
Diff-AMP 3.237 4.254 1.0 0.940
AMPDiffusion 3.936 8.036 1.0 0.825

PepGlider* 1.498 2.935 1.0 0.956

Table 2: Sequence quality metrics for unconstrained generation across generative models.
Comparison of validity, AMP potential, novelty, and diversity for PepGlider and baseline/external
generative methods. *PepGlider results averaged over E. coli and S. aureus predictions.

Figure 6: Existing peptide improvement through analog generation. Violin plots showing an-
timicrobial activity improvement distributions for PepGlider and HydrAMP analog generation meth-
ods across positive prototypes (initially high activity) and negative prototypes (initially low activity),
measured using the APEX regressor.

dense concentration in the high-activity range, contrasting with the elevated MIC distributions of
VAE, Transformer, and external generative models including AMP-GAN (Van Oort et al., 2021),
Diff-AMP (Wang et al., 2024), and AMP-Diffusion (Torres et al., 2025). HydrAMP shows mod-
erate performance, but fails to achieve PepGlider’s consistent low-MIC generation. These results
demonstrate that PepGlider’s continuous attribute regularization framework successfully achieves
practically relevant biological activity enhancement through unconstrained generation.

4.2.3 ANALOG GENERATION FOR OPTIMIZING AMP ACTIVITY

We evaluate PepGlider’s ability to optimize existing peptides through targeted latent manipulation,
and we compare against HydrAMP, the only baseline model equipped with analog generation. Start-
ing from active and inactive prototypes, we apply analog generation to enhance predicted activity
against E. coli and S. aureus. HydrAMP parameters include temperature values (τ = 1, 2.5, 5)
with conditioning parameters targeting high activity. PepGlider uses shift magnitudes (α = 1, 4, 8)
controlling latent space displacement toward higher predicted activity.

PepGlider demonstrates superior activity enhancement across both bacterial targets (Figure 6). Start-
ing from both active and inactive prototypes, PepGlider consistently achieves lower predicted MIC
values than HydrAMP across all parameters, with α=8 reaching clinically relevant potency around
32 µg/mL. PepGlider shows robust improvement even from inactive peptides, effectively transform-
ing low-activity sequences into promising candidates. S. aureus activity improvement proves more
challenging than E. coli, particularly from already active prototypes. Notably, PepGlider enables
independent optimization for each bacterial strain through separate regularized dimensions, a ca-
pability rarely achieved in antimicrobial peptide design frameworks where strain-specific targeting
typically requires distinct models or post-hoc filtering approaches Szymczak & Szczurek (2023).

4.2.4 MULTI-OBJECTIVE OPTIMIZATION: ACTIVITY-SAFETY TRADE-OFFS

A critical challenge in antimicrobial peptide development is balancing efficacy against safety, as en-
hanced activity often correlates with increased toxicity. We evaluate PepGlider’s ability to navigate
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this trade-off through simultaneous manipulation of MIC and non-toxicity regularized dimensions.
While manipulating MIC-regularized dimensions to enhance antimicrobial activity against E. coli
and S. aureus, we simultaneously apply different non-toxicity regularization strategies (α = -2, 0,
+2 for non-toxicity regularized dimension, as well as random control) to assess whether toxicity
increases can be mitigated.

The results (Figure 13) demonstrate PepGlider’s capacity for controlled multi-objective optimiza-
tion. As expected, shifting toward lower MIC values in the regularized dimensions successfully
enhances predicted antimicrobial activity for both bacterial targets. Critically, simultaneous non-
toxicity regularization (α = +2) helps maintain higher non-toxicity scores compared to unregularized
approaches, demonstrating that PepGlider can partially decouple the activity-safety trade-off. This
capability enables rational optimization of therapeutic windows, allowing researchers to enhance
antimicrobial potency while minimizing safety risks.

5 DISCUSSION

PepGlider addresses fundamental limitations in controllable peptide design through continuous
attribute regularization and adaptive normalization strategies. Our framework enables indepen-
dent manipulation of correlated properties while maintaining biological plausibility, demonstrated
through superior latent quality evaluation and systematic property control across challenging sce-
narios like activity-safety trade-offs.

Key limitations include reduced performance for inherently conflicting objectives, particularly the
activity-safety trade-off where enhanced antimicrobial potency often correlates with increased tox-
icity. Future developments should prioritize methods that efficiently utilize sparse biological ex-
perimental data directly, reducing dependence on intermediate prediction models while maintaining
controllability. The current attribute set, while comprehensive for basic physicochemical properties,
could be expanded to include synthesizability constraints, structural features (secondary structure
propensity, flexibility), and manufacturing considerations critical for therapeutic translation.

The continuous attribute regularization framework’s versatility extends beyond antimicrobial pep-
tides to diverse therapeutic applications, providing a flexible framework for controllable generation.

6 ETHICS STATEMENT

This research involves computational design of antimicrobial peptides using machine learning meth-
ods. All datasets used for training and evaluation consist of publicly available peptide sequences
and experimental measurements from established databases (AMPScanner, dbAMP, DRAMP,
DBAASP). No human subjects, animal experiments, or clinical trials were involved in this com-
putational study. The potential therapeutic applications of designed antimicrobial peptides could
contribute to addressing antimicrobial resistance, a significant global health challenge. However,
any peptides generated by this framework require extensive experimental validation, safety testing,
and regulatory approval before clinical consideration. The hemolytic toxicity predictions used in
this work are computational estimates and cannot replace experimental safety assessment.

7 REPRODUCIBILITY STATEMENT

We provide comprehensive implementation details to ensure reproducibility. Model architectures,
hyperparameters, and training procedures are detailed in the main text and appendix (Table 3). All
normalization procedures, including quantile transformation and adaptive range normalization, are
mathematically specified with explicit equations. Evaluation metrics and baseline comparisons use
established methods with clear mathematical definitions. The proprietary validation dataset con-
tains experimental MIC measurements that enable independent performance assessment, though
specific data cannot be shared due to proprietary restrictions. Code and trained models will be made
available upon publication to facilitate reproduction and extension of this work. The framework’s
implementation using standard deep learning libraries ensures compatibility with common research
environments.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 LLM USAGE

Large language models were used as writing assistance tools during the preparation of this
manuscript. Specifically, Claude was employed for improving clarity and flow of technical explana-
tions, and generating alternative phrasings for complex methodological concepts, proofreading and
copy-editing assistance.

All scientific content, experimental design, results, and conclusions are entirely the work of the
human authors. LLMs were not used for experimental design decisions, or scientific reasoning. The
core contributions, methodological innovations, and technical implementations represent original
research by the authors. All factual claims and experimental results were verified independently by
the research team.
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A APPENDIX

A.1 RELATED WORK

Controllable peptide design intersects multiple research areas, including conditional generation and
latent space regularization, each addressing different aspects of the challenge of navigating corre-
lated peptide properties.

Controllable Peptide Design Current approaches to controllable peptide generation, particularly
for AMPs, employ three main strategies: conditional generation, post-hoc filtering, and guidance
during sampling. While conditional methods like HydrAMP (Szymczak et al., 2023) directly in-
corporate constraints, they are limited to binary classification or struggle with multiple objectives.
Post-hoc approaches (Das et al., 2021; Pandi et al., 2023; Torres et al., 2025) suffer from severe
efficiency limitations when targeting rare property combinations. The exponential search space of
peptide sequences makes exhaustive sampling impractical, particularly when multiple properties
must be optimized simultaneously. Guidance-based methods attempt to steer the generation process
toward desired properties during sampling, including approaches that use Monte Carlo Tree Guid-
ance (Tang et al., 2025) and reinforcement learning with property-based rewards (Wang et al., 2024).
However, guidance approaches operate at the sampling level rather than embedding controllability
into the learned representation, making them computationally expensive during generation and un-
able to leverage the structured relationships between properties for more efficient optimization.

Latent Space Regularization Latent space regularization methods from other domains learn rep-
resentations where properties naturally align with latent structure. VAE-based approaches have
pioneered this direction through various regularization strategies. CorrVAE (Wang et al., 2022) ad-
dresses property correlations through specialized loss functions designed to handle interdependent
data characteristics. Property-controllable VAE (Guo et al., 2020) incorporates property predic-
tion losses directly into the variational objective, creating latent representations that encode desired
features. Conditional Subspace VAE (Klys et al., 2018) partitions the latent space according to
property-specific regions, enabling targeted sampling from relevant subspaces. AR-VAE (Pati &
Lerch, 2021) aligns latent and attribute spaces through distance matrix matching to create mono-
tonic relationships between latent dimensions and target properties. While these latent space meth-
ods offer promising frameworks for controllable generation, they have not been adapted to address
the specific challenges of peptide design, particularly the need for precise property targeting across
correlated physicochemical characteristics and efficient access to rare, but functional attribute com-
binations essential for therapeutic applications.

A.2 EXTENDED METHODS

A.2.1 ATTRIBUTE NORMALIZATION PROCEDURES

We introduce attribute-specific normalization strategies as a core methodological contribution that
ensures compatibility with our continuous loss formulation while preserving biological meaning.

Quantile Normalization Applied to charge, length, hydrophobicity, and non-toxicity predictions.
Raw values are transformed via quantile transformation Q(·) to uniform distribution U(0, 1), then
linearly scaled:

p̃i = 2Q(pi)− 1 (7)
This ensures uniform property space coverage and eliminates scale bias while maintaining the re-
quired [−1, 1] range.

Adaptive Range Normalization A normalization strategy that addresses the clinical importance of
low MIC values while maintaining loss compatibility. The approach allocates 70% of the normalized
range to therapeutically relevant concentrations (0-32 µg/ml) and 30% to higher values:

Higher concentrations (>32 µg/ml) → [-1, -0.4]:
p̃out = −1 + 0.6 · CDFout(p) (8)

Clinically relevant range (0-32 µg/ml) → [-0.4, 1]:
p̃ROI = −0.4 + 1.4 · CDFROI(p) (9)
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where CDFROI and CDFout are empirical cumulative distribution functions computed within each
region using histogram-based quantile mapping.

This normalization framework enables precise property control by ensuring all normalized attributes
operate within the same bounded range as the latent regularization terms. Unlike the discrete ap-
proach that rely on signum function, our continuous formulation maintains gradient information
throughout optimization, enabling fine-grained control over peptide properties while preserving
compatibility with standard VAE training procedures.

Figure 7: Two-stage normalization procedure for continuous attribute regularization. Distribu-
tion comparison of peptide properties before (upper panel) and after (lower panel) the normalization
procedure.

A.3 EXTENDED EXPERIMENTAL SETUP

A.4 DATASETS

The training dataset comprises 27331 curated antimicrobial peptide sequences derived from
four comprehensive databases: AMPScanner (Veltri et al., 2018), dbAMP (Yao et al., 2025),
DRAMP (Kang et al., 2019), and DBAASP (Pirtskhalava et al., 2021). Sequences are restricted
to a maximum of 25 amino acid residues, capturing the predominant length range of naturally oc-
curring antimicrobial peptides. Duplicate sequences are removed across databases to ensure unique
representation within the training corpus.

A.4.1 EVALUATION DATASET

For evaluation of PepGlider, we utilize a proprietary dataset containing experimental MIC measure-
ments for 1,736 peptides tested against 11 clinically relevant bacterial strains. The dataset includes
measurements against Gram-negative bacteria (A. baumannii ATCC 19606, E. coli ATCC 11775,
E. coli AIC221, carbapenem-resistant E. coli AIC222, K. pneumoniae ATCC 13883, P. aeruginosa
PAO1 and PA14) and Gram-positive bacteria (S. aureus ATCC 12600, methicillin-resistant S. au-
reus ATCC BAA-1556, vancomycin-resistant E. faecalis ATCC 700802, and vancomycin-resistant
E. faecium ATCC 700221). This comprehensive dataset enables validation of generated peptides
against both standard reference strains and clinically significant drug-resistant isolates, providing
robust assessment of antimicrobial activity across diverse bacterial targets.

A.4.2 PHYSICOCHEMICAL PROPERTIES

We selected net charge, hydrophobicity, and sequence length as target attributes for PepGlider based
on their established roles in antimicrobial peptide function and their ability to discriminate between
active and inactive peptides.
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Figure 8: Discriminative physicochemical properties between active and inactive antimicrobial
peptides. Distribution comparison of net charge, hydrophobicity, and sequence length between
active peptides (green) and inactive peptides (orange) from the curated dataset.

Net Charge plays a critical role in the initial electrostatic interactions between cationic antimi-
crobial peptides and negatively charged bacterial membranes (Yeaman & Yount, 2003). Positively
charged residues facilitate binding to bacterial lipopolysaccharides and phospholipids, while exces-
sive charge can lead to reduced membrane permeation and potential cytotoxicity (Hancock & Sahl,
2006). Net charge is calculated at physiological pH (7.0), accounting for the ionization state of
terminal groups and ionizable side chains based on their respective pKa values from the modlamp
implementation.

Hydrophobicity determines the peptide’s ability to partition into and disrupt bacterial mem-
branes (Wieprecht et al., 1997). Optimal hydrophobic content enables membrane insertion while
preventing aggregation or excessive hemolytic activity. Average hydrophobicity is computed using
established amino acid hydrophobicity scales:

H(x) =
1

L

L∑
i=1

hi (10)

where hi represents the hydrophobicity value for amino acid i and L is the sequence length.

Sequence length constrains both structural flexibility and membrane interaction mechanisms.
Shorter peptides typically adopt extended conformations that facilitate membrane carpet forma-
tion, while longer sequences may form more complex secondary structures affecting activity and
selectivity (Shai & Oren, 2001). Sequence length is a direct enumeration of amino acid residues:

L(x) = |x| (11)

Physicochemical properties are computed using the modlamp (Müller et al., 2017) package, imple-
menting algorithms for antimicrobial peptide analysis:

To validate these properties as discriminative features, we analyzed their distributions across ac-
tive (MIC ≤ 32 µg/ml) and inactive (MIC ≥ 128 µg/ml) peptides in our curated dataset (Fig-
ure 8). Active peptides exhibit distinct distributions for all three properties: moderate positive charge
(mean ± SD), intermediate hydrophobicity values, and concentrated length distributions around 10-
25 residues. These clear distributional differences support their selection as target attributes for
continuous control in the PepGlider framework.

A.4.3 NON-TOXICITY

Data Extraction and Preprocessing Hemolytic activity measurements were extracted from
DBAASP (Pirtskhalava et al., 2021), focusing on records containing HC50 values and percentage
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hemolysis data. Activity measure values and groups were normalized to lowercase for consistent
processing. Percentage hemolysis values were extracted using regex parsing with two prioritized
patterns: (1) values with standard deviations (e.g., “15.2±3.1% hemolysis”), taking the primary
value before ±, and (2) range formats (e.g., “10-20% hemolysis”), using the midpoint average.

Binary Toxicity Classification Rules For peptides with single measurements, the following hier-
archy was applied:

• Direct non-toxic assignment: 0% hemolysis records → non-toxic (1)
• Activity-based toxic assignment: activity ≤32 µg/mL AND >1% hemolysis → toxic (0)
• Activity-based non-toxic assignment: activity >32 µg/mL AND ≤10% hemolysis → non-

toxic (1)
• Hemolysis threshold: >50% hemolysis → toxic (0)
• HC50-specific rules: HC50 ≤256 µg/mL → toxic (0), otherwise non-toxic (1)

For peptides with multiple measurements, consensus rules were applied:

• Any measurement <32 µg/mL → toxic (0)
• All measurements >128 µg/mL → non-toxic (1)
• All measurements ≤10% hemolysis → evaluate based on activity (<32 µg/mL threshold

for toxic (0))
• HC50 measurements prioritized when available, using 128 µg/mL threshold (toxic (0) if
≤128 µg/mL)

Peptides not meeting any classification criteria were excluded from the training dataset.

Feature Engineering The physicochemical property calculation framework computed 100+ fea-
tures per sequence, including:

• Basic properties: length, charge, isoelectric point, molecular weight, aromaticity
• Hydrophobicity scales: AASI, Argos, Eisenberg, GRAVY, Kyte-Doolittle (16 scales total)
• Structural descriptors: secondary structure fractions, flexibility, entropy
• Specialized scales: Z-scales (5D), Kidera factors (10D), VHSE scales (8D), FASGAI vec-

tors (6D)
• Topological features: polar surface area, H-bond acceptors/donors, rotatable bonds
• Compositional features: amino acid frequencies, structural class distributions

Model Training and Validation XGBoost classifier hyperparameters were optimized on the train-
ing set with 974,582 peptides (1,157 toxic and 973,425 non-toxic) balanced using focal loss set to
handle the imbalanced dataset. Model performance was assessed on the independent HydrAMP
dataset containing experimentally validated antimicrobial peptides with known hemolytic profiles
(Accuracy = 0.8333, F1-Score = 0.9048).

A.4.4 ABLATIONS

VAE Baseline serves as our primary ablation control, employing the identical transformer-based
VAE architecture as PepGlider with Importance Weighted Autoencoder components and β-VAE
regularization. The model is trained on the same dataset with identical quantile normalization,
but without the continuous attribute regularization loss (γ = 0) and and 10-times decreased β.
This configuration isolates the contribution of our continuous regularization framework from the
architectural and preprocessing components.

AR-VAE (Pati & Lerch, 2021) represents the original attribute regularization formulation using the
signum function for discrete ordinal comparisons and standard preprocessing without quantile nor-
malization. This baseline evaluates the impact of our continuous loss formulation and normalization
improvements.
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PepGlider w/o QN removes quantile normalization while retaining the continuous loss formulation
and signum replacement. Raw attribute values are used directly in the loss computation, isolating
the contribution of the normalization procedure.

PepGlider w/ sign retains the original signum function from AR-VAE while incorporating our quan-
tile normalization approach. This variant evaluates whether normalization alone can improve dis-
crete attribute regularization.

PepGlider w/ z-norm replaces quantile normalization with standard z-score normalization (zero
mean, unit variance), testing alternative normalization strategies while maintaining the continuous
loss formulation.

A.4.5 BASELINE MODELS

HydrAMP (Szymczak et al., 2023) is a conditional variational autoencoder for antimicrobial peptide
generation. The model employs Jacobian-based disentanglement regularization to enforce indepen-
dence between latent representations z and discrete conditioning variables (cAMP , cMIC ∈ {0, 1}).
Property control is achieved through conditional decoding Dec(z, c) with binary labels for antimi-
crobial activity and potency. In contrast to PepGlider’s continuous attribute regularization in latent
space, HydrAMP guides generation through discrete conditions fed directly to the decoder. The
model supports unconstrained generation and temperature-controlled analogue generation modes.

Transformer-128 (Renaud & Mansbach, 2023) employs a transformer-based autoencoder architec-
ture with a 128-dimensional latent space for peptide generation. The model learns implicit parti-
tioning of the latent space into regions corresponding to high and low AMP probabilities without
explicit incorporation of mechanisms for continuous property control.

A.4.6 PEPGLIDER IMPLEMENTATION

PepGlider employs a transformer-based VAE architecture (Kingma & Welling, 2013) optimized
for variable-length biological sequences. The encoder Enc(·) maps peptide sequences x ∈
{A,C,D, ..., Y }L to latent representations z ∈ Rd through CLS token aggregation, where a learn-
able classification token attends to all sequence positions via multi-head self-attention mechanisms.
The encoder outputs parameterize a Gaussian posterior q(z|x) with mean µ(x) and standard devi-
ation σ(x). The decoder Dec(·) reconstructs sequences from latent codes by replicating the latent
vector across sequence positions and applying positional encodings for position-specific token gen-
eration. The architecture incorporates β-VAE regularization (Higgins et al., 2017) and Importance
Weighted Autoencoder components (Burda et al., 2015) to enhance posterior distribution approxi-
mation and latent space disentanglement capabilities.

All models were trained on NVIDIA A100 GPUs with 8GB memory. PepGlider and baseline models
were trained for approximately 48 hours. The hyperparameter details are presented in Table 3.

Training Schedule: The β and γ parameter follow linear annealing schedules from their initial to
final values over the specified warmup steps, after which they remain constant. The KL divergence
weight β gradually increases to prevent posterior collapse.

A.4.7 EVALUATION METHODOLOGY

Antimicrobial Activity and Non-toxicity Assessment We evaluate antimicrobial activity using
APEX (Wan et al., 2024) predictions for E. coli and S. aureus providing species-specific MIC predic-
tions for clinically relevant pathogens. Toxicity assessment is performed using our trained hemolytic
toxicity classifier as described in A.4.3

Fréchet Biological Distance To evaluate the quality of generated peptides in biologically relevant
embedding space, we compute Fréchet Biological Distance (FBD) using fine-tuned ESM2 embed-
dings. The ESM2-t12 model (Lin et al., 2023) was fine-tuned for binary antimicrobial activity
classification using active/inactive labels with thresholds of ≤ 32 µg/ml for active and ≥ 128 µg/ml
for inactive peptides.
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r

Table 3: Model hyperparameters and training details.
Parameter Value
Architecture

Attention Heads 4
Transformer Layers 6
Latent Dimension 56
Positional Encoding Additive
Dropout Rate 0.1
Layer Normalization Enabled

Training
Optimizer Adam
Learning Rate 0.001
Batch Size 512
Epochs 3100
IWAE Samples (K) 10

VAE Regularization
β Initial 0.00001
β Final 0.1
β Warmup Steps 8000

Attribute Regularization
Regularized Dimensions [0, 1, 2, 3, 4, 5]
γ Initial 0.00001
γ Final 20
γ Warmup Steps 8000
γ Triggered epoch 1000
δ 0.1 for PepGlider for physicochemical attributes

0.6 for PepGlider only antimicrobial attributes

Data
Max Sequence Length 25
Vocabulary Size 20
Property Normalization Quantile (10 bins)
Properties Regularized Length, Charge, Hydrophobicity, MIC E.coli, MIC S.aureus, Non-toxicity
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FBD is computed analogously to Fréchet Inception Distance (Heusel et al., 2017) by modeling the
distributions of ESM2 embeddings as multivariate Gaussians:

FBD = ||µreal − µgen||22 + Tr(Σreal +Σgen − 2(ΣrealΣgen)
1/2) (12)

where µ and Σ represent the mean and covariance of the embedding distributions for real and
generated peptides, respectively.

Sequence Quality Metrics

• Validity measures how well generated peptides conform to the training distribution by
computing FBD between generated sequences and the training dataset using ESM2 em-
beddings.

• Diversity is a fraction of unique generated sequences not present in the training dataset.

• Novelty is cmputed using average pairwise Levenshtein distance among generated se-
quences.

• AMP Potential evaluates similarity to experimentally validated antimicrobial peptides by
computing FBD to a curated set of active peptides with documented MIC ≤ 32 µg/ml
against at least one bacterial strain in DBAASP.

Disentanglement Quality Metrics Following Pati & Lerch (2021), we assess PepGlider’s disen-
tanglement quality using five established objective metrics:

• Interpretability measures how well individual latent dimensions align with specific at-
tributes by evaluating the variance explained by the most informative dimension for each
attribute:

Interpretability =
1

K

K∑
k=1

max
j

R2(ak, zj) (13)

where K is the number of attributes, ak is the k-th attribute, and R2(ak, zj) is the coeffi-
cient of determination between attribute k and latent dimension j.

• Spearman Correlation Coefficient (SCC) quantifies the monotonic relationship between
latent dimensions and target attributes:

SCC =
1

K

K∑
k=1

max
j

|ρs(ak, zj)| (14)

where ρs denotes the Spearman correlation coefficient.

• Modularity assesses whether each attribute is controlled by a distinct set of latent dimen-
sions, measuring the degree of separation between attribute-dimension associations.

• Mutual Information Gap (MIG) evaluates disentanglement by measuring the difference
between the top two mutual information values:

MIG =
1

K

K∑
k=1

I(ak; zj(1))− I(ak; zj(2))

H(ak)
(15)

where j(1) and j(2) are the indices of the latent dimensions with highest and second-highest
mutual information with attribute k, and H(ak) is the entropy of attribute k.

• Separated Attribute Predictability (SAP) measures how well attributes can be predicted
from individual latent dimensions while being unpredictable from others, indicating effec-
tive separation of attribute control.

Results across all metrics are reported in Table A.5.1.
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A.5 EXTENDED RESULTS

A.5.1 DISENTANGLEMENT DETAILED ANALYSIS

Model Attribute Interpretability (↑) SCC (↑) Modularity (↑) MIG (↑) SAP (↑)

VAE
Length 0.542 0.754 0.893 0.012 0.022
Charge 0.088 0.320 0.660 0.001 0.026
Hydrophobicity 0.080 0.309 0.736 0.000 0.009

HydrAMP
Length 0.951 0.973 0.957 0.056 0.020
Charge 0.024 0.439 0.868 0.003 0.042
Hydrophobicity 0.178 0.440 0.867 0.000 0.029

Transformer
Length 0.014 0.289 0.799 0.005 0.038
Charge 0.022 0.333 0.723 0.004 0.013
Hydrophobicity 0.261 0.494 0.975 0.008 0.121

ARVAE
Length 0.994 0.995 0.999 0.895 0.948
Charge 0.947 0.994 0.979 0.280 0.655
Hydrophobicity 0.921 0.996 0.177 0.211 0.621

PepGlider
Length 0.977 0.995 0.999 0.856 0.927
Charge 0.934 0.991 0.980 0.292 0.649
Hydrophobicity 0.881 0.998 0.976 0.211 0.587

PepGlider w/o normalization
Length 0.994 0.995 0.999 0.884 0.953
Charge 0.958 0.992 0.981 0.297 0.670
Hydrophobicity 0.990 0.997 0.983 0.257 0.690

PepGlider with signum
Length 0.994 0.995 0.999 0.896 0.951
Charge 0.950 0.994 0.980 0.285 0.655
Hydrophobicity 0.921 0.996 0.973 0.177 0.612

PepGlider w z-score normalization
Length 0.996 0.995 0.999 0.882 0.959
Charge 0.966 0.982 0.982 0.321 0.668
Hydrophobicity 0.937 0.998 0.980 0.231 0.631

Table 4: Detailed disentanglement quality metrics for PepGlider and baseline and ablation
methods. Higher scores indicate better disentanglement for all metrics.

Model Attribute Interpretability (↑) SCC (↑) Modularity (↑) MIG (↑) SAP (↑)

VAE
MIC E. coli 0.087 0.287 0.815 0.001 0.029
MIC S. aureus 0.076 0.275 0.795 0.001 0.027
Nontoxicity 0.054 0.550 0.897 0.002 0.020

HydrAMP
MIC E. coli 0.000 0.295 0.928 0.000 0.020
MIC S. aureus 0.000 0.248 0.931 0.001 0.012
Nontoxicity 0.007 0.320 0.931 0.002 0.009

Transformer
MIC E. coli 0.129 0.365 0.945 0.001 0.008
MIC S. aureus 0.090 0.304 0.932 0.000 0.006
Nontoxicity 0.039 0.371 0.945 0.001 0.027

PepGlider
MIC E. coli 0.566 0.962 0.992 0.074 0.022
MIC S. aureus 0.758 0.933 0.991 0.062 0.236
Nontoxicity 0.332 0.992 0.994 0.075 0.123

Table 5: Detailed attribute-specific disentanglement quality metrics results across antimicro-
bial properties (MIC E. coli, MIC S. aureus, nontoxicity) for PepGlider and baseline methods.
Higher scores indicate better disentanglement for all metrics.
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A.5.2 RECONSTRUCTION

Figure 9: Reconstruction quality assessment for PepGlider-generated peptides. Amino acid
frequency distributions comparing generated peptides (green bars) with training data (black bars),
demonstrating that PepGlider maintains realistic compositional patterns despite attribute regulariza-
tion constraints. Amino acids crucial for hydrophobicity are highlighted in orange, and amino acids
contributing to positive charge and negative charge are highlighted in pink and gray, respectively.
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A.5.3 ABLATIONS

Figure 10: Latent ablations

Latent visualizations
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Figure 11: Multiconditioning

Multiconditioning
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Figure 12: Caption

Figure 13: Multi-objective optimization of antimicrobial activity and non-toxicity. MIC predic-
tions for E. coli (upper left) and S. aureus (lower left) when manipulating respective MIC-regularized
dimensions, with simultaneous non-toxicity predictions (upper and lower right) under different non-
toxicity regularization strategies: α = -2 (blue), α = 0 (orange), α = +2 (green), and random control
(red). Error bars represent standard deviation across generated peptides.
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