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ABSTRACT

Reward models trained on human preference data have demonstrated strong effec-
tiveness in aligning Large Language Models (LLMs) with human intent under the
framework of Reinforcement Learning from Human Feedback (RLHF). However,
RLHF remains vulnerable to reward hacking, where the policy exploits imperfec-
tions in the reward function rather than genuinely learning the intended behavior.
Although significant efforts have been made to mitigate reward hacking, they
predominantly focus on and evaluate in-distribution scenarios, where the training
and testing data for the reward model share the same distribution. In this paper,
we empirically show that state-of-the-art methods struggle in more challenging
out-of-distribution (OOD) settings. We further demonstrate that incorporating fine-
grained multi-attribute scores helps address this challenge. However, the limited
availability of high-quality data often leads to weak performance of multi-objective
reward functions, which can negatively impact overall performance and become
the bottleneck. To address this issue, we propose a unified reward modeling frame-
work that jointly trains Bradley-Terry (BT) single-objective and multi-objective
regression-based reward functions using a shared embedding space. We theoreti-
cally establish a connection between the BT loss and the regression objective and
highlight their complementary benefits. Specifically, the regression task enhances
the single-objective reward function’s ability to mitigate reward hacking in chal-
lenging OOD settings, while BT-based training improves the scoring capability of
the multi-objective reward function, enabling a 7B model to outperform a 70B base-
line. Extensive experimental results demonstrate that our framework significantly
improves both the robustness and the scoring performance of reward models.

1 INTRODUCTION

Pretrained large language models perform exceptionally well on a wide range of tasks, including
language understanding (Chang et al., 2024; Nam et al., 2024), text generation (Zhao et al., 2023;
Wang et al., 2024b), code synthesis (Jiang et al., 2024; Nguyen et al., 2025), and decision-making
(Ye et al., 2025; Lin et al., 2025). However, strong task performance alone does not ensure that these
models behave safely or in alignment with human values (Dai et al., 2024; Li et al., 2025; Shen
et al., 2023; Zhang et al., 2025b). To address these concerns, two main alignment methods have been
developed. Supervised fine-tuning (SFT) adjusts a base model using human-curated prompt–response
pairs to shape its behavior directly. RLHF (Bai et al., 2022; Ouyang et al., 2022) follows a two-step
process: first, a proxy reward model is trained on human preference data to capture desired outcomes;
second, the model is optimized against this reward using algorithms like PPO (Schulman et al., 2017),
RLOO (Ahmadian et al., 2024), or GRPO (Shao et al., 2024). By decoupling reward learning from
policy learning, RLHF can leverage vast amounts of unlabeled data and generalize alignment to novel
inputs, enhancing both safety and overall model capabilities.

However, RLHF is susceptible to reward hacking (Gao et al., 2023; Yang et al., 2024), wherein
the policy discovers shortcuts that maximize proxy rewards, such as by producing repetitive or
formulaic content, without genuinely advancing the intended behaviors. Similar issues also arise in
inference-time strategies like Best-of-N (BoN) sampling (Gulcehre et al., 2023; Dong et al., 2023;
Gui et al., 2024). Prior research has investigated several directions to address this issue. One line
of work focuses on improving the reward function through ensemble methods (Coste et al., 2024;
Eisenstein et al., 2023; Zhang et al., 2024a; Yan et al., 2024; Ramé et al., 2024; Zhang et al., 2024b).
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However, they often require training multiple reward models, making them resource-intensive and
less practical for applications. Another line investigates constrained policy optimization (Moskovitz
et al., 2024; Zhang et al., 2024b; Liu et al., 2024b; Zhang et al., 2024c; Laidlaw et al., 2024), but
performance is often unstable due to sensitivity to hyperparameter tuning. ODIN (Chen et al., 2024)
trains separate reward functions for quality and length; however, our results (Fig. 2) show that using
length alone as a biasing factor fails to prevent reward hacking. Recently, GRM(Yang et al., 2024;
Dai et al., 2025) incorporates text generation regularization into reward modeling and outperforms
prior methods. However, the conflicting objectives of reward modeling and text generation cause
training instability and sensitivity to the balancing weight (Appendix J). Moreover, existing studies
focus on in-distribution evaluations, and the effectiveness of these methods in OOD settings, where
training and test prompt-response pairs come from different distributions, remains unexplored.

In this study, we first show experimentally that state-of-the-art methods fail when prompts used
during PPO and BoN are drawn from a distribution different from the training data. This highlights
a critical limitation in the generalization ability of current reward models under OOD settings. We
hypothesize that a BT model trained only on chosen/rejected labels remains biased and cannot distin-
guish fine-grained quality differences. Inspired by recent multi-objective reward modeling methods
(Wang et al., 2024e;d), which leverage annotations for attributes like helpfulness, verbosity, and cor-
rectness, we examine their potential to mitigate reward hacking. By learning from multi-dimensional
supervision, multi-objective reward models (MORMs) capture nuanced distinctions in response
quality and compel policy models to improve across all attributes simultaneously, making it harder to
generate low-quality outputs that nonetheless score highly (Sec. 3). While prior work focused on
interpretability and steerability, the robustness of MORMs in policy learning remains underexplored.

Despite their potential, the performance of MORMs is constrained by the limited availability of
large-scale, high-quality annotated data (Wang et al., 2024e;d). This limitation arises either from
the low-quality annotations produced by LLM-as-Judge (Cui et al., 2023; Kim et al., 2023; Li et al.,
2024; Gu et al., 2024) or from the high-quality annotations produced by humans that are difficult to
scale (Wang et al., 2024f). A more detailed discussion of the data availability challenge is provided
in Appendix F. Consequently, their scoring performance often falls behind that of single-objective
reward models (SORMs) (Lambert et al., 2024; Liu et al., 2025b), which are typically trained on
large-scale preference datasets with chosen/rejected labels that are easier to collect. A promising
approach is to train a strong SORM and complement it with an MORM to enhance robustness against
reward hacking. Though our empirical results in Sec. 3 verify its promise, this approach faces two
key issues: (1) it requires two independent inference passes, making the process computationally
expensive in practice; and (2) the weaker performance of the MORM directly degrades the quality of
the aggregated output, thereby becoming a bottleneck in the overall system, as shown in Fig. 2 (d).

Thus, we study a novel problem: how to efficiently mitigate reward hacking in challenging OOD
settings using fine-grained attribute scores, without additional costly multi-attribute preference data?
To address this, we propose a simple, yet effective and theoretically grounded reward modeling frame-
work, termed the Joint Single and Multi-Objective Reward Model (SMORM). The proposed SMORM
framework addresses the first challenge by requiring only a single forward pass through a shared
backbone. We theoretically establish the connection between the commonly used Bradley–Terry
(Bradley & Terry, 1952) loss for training the SORM and the regression loss used for training the
MORM. Our theoretical analysis and extensive empirical results demonstrate that: (1) training
the multi-objective head refines the embedding space such that the representations capture quality
distinctions across multiple attributes, thereby enhancing the generalizability of the single-objective
head and improving its robustness against reward hacking.; and (2) training the single-objective
head helps correct the positioning of responses in the embedding space, enabling the multi-objective
head to perform competitively even with limited data. Overall, the joint training of both heads over a
shared embedding space leads to complementary benefits. Using the same multi-objective dataset,
SMORM enables a 7B model to outperform a 70B baseline model. Importantly, SMORM training is
flexible in that the prompt-response pairs used to train the two heads do not need to be identical.

Our primary contributions are: (1) We empirically show that state-of-the-art reward models suffer
from reward hacking during PPO in OOD settings—a critical issue largely overlooked in prior
work. (2) We introduce SMORM, a training framework that, while simple in form, is novel, non-
trivial, and theoretically grounded. (3) This is the first work to provide theoretical analysis
establishing a principled connection between Bradley–Terry preference modeling and multi-
objective regression, revealing their complementary benefits. (4) SMORM also tackles the
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key challenge of improving the performance of a multi-objective reward model without requiring
additional, hard-to-obtain data.

2 BACKGROUND

Bradley–Terry Single-Objective Reward Modeling. Single-objective reward modeling typically
builds on the Bradley-Terry framework (Bradley & Terry, 1952), which distinguishes between a
chosen response yc and a rejected response yr for a given prompt x. This is achieved by optimizing
the following loss function:

minθLreward(θ) = −E(x,yc,yr)∼Ds
[log (σ (rθ(x, yc)− rθ(x, yr)))] , (1)

where rθ is the reward model parameterized by θ, rθ(x, y) denotes the reward score assigned by rθ
for the output y given the prompt x, and σ(·) is the sigmoid function. Minimizing this loss encourages
the model to assign higher scores to outputs that are preferred by humans.

Multi-Objective Reward Modeling. In many practical settings, evaluating language model outputs
requires considering multiple aspects such as correctness, coherence, and verbosity. Single reward
signals often fail to capture this complexity. To address this, multi-objective reward models (Wang
et al., 2024e;d; 2023b; 2024c) generate separate reward signals for different response attributes. The
model is trained as: minψL(ψ) = E(x,y,r)∼DM

∥Rψ(x, y)− r∥22 , where Rψ is the multi-objective
reward model and r ∈ RK denotes attribute scores (e.g., correctness, verbosity). Each dimension
reflects a specific quality, enabling more interpretable and steerable evaluations. However, existing
work has not examined how such models relate to reward hacking.

Best-of-n Sampling (BoN). Given an input x, BoN (Gulcehre et al., 2023; Dong et al., 2023; Gui
et al., 2024) first draws a set Ygen of n candidate outputs from the policy model and then selects the
one that maximizes the reward-model score. It can be applied either to improve outputs at inference
time or to drive an iterative optimization procedure: yBoN(x) = argmaxy∈Ygen

rθ(x, y).

Proximal Policy Optimization (PPO). PPO is a widely adopted method for RLHF in opti-
mizing language models (Ouyang et al., 2022; Stiennon et al., 2020; Wu et al., 2024). Us-
ing a proxy reward model rθ, PPO refines the policy model πϕ by maximizing its score
under the proxy reward while incorporating a KL divergence penalty: maxϕLRLHF(ϕ) :=

Ex∼S
[
Ey∼πϕ(·|x) (rθ(x, y))− λ ·KL

(
πϕ(·|x) ∥πref

ϕ (·|x)
)]
. where S is a training set of prompts

and λ ≥ 0 is a KL regularization that controls how much πϕ deviates from the initial policy πref
ϕ .

Reward Hacking. Reward hacking occurs when a policy exploits flaws in the reward function,
attaining high scores by overfitting to spurious patterns rather than accomplishing the intended
task (Fu et al., 2025; Yang et al., 2024; Gao et al., 2023). In PPO, this manifests when the policy
achieves higher scores from a proxy reward model but performs worse under a more reliable, human-
aligned golden reward model. Additional discussion of related work and comparisons with existing
approaches are provided in Appendix A.

3 SMORM: MITIGATING REWARD HACKING IN OOD SETTING

In this section, we conduct experiments to evaluate the robustness of existing SOTA methods and
our proposed framework against reward hacking in both PPO and BoN under OOD settings, a
more challenging setting largely overlooked in prior work (Yang et al., 2024; Coste et al., 2024;
Eisenstein et al., 2023; Zhang et al., 2024a; Yan et al., 2024; Ramé et al., 2024; Dai et al., 2025).
Intuitively, a multi-objective reward model (MORM) evaluates response quality across multiple
dimensions, forcing the policy to balance various attributes during generation. For example, it cannot
maximize the overall score by optimizing helpfulness alone while neglecting verbosity. However,
the performance of MORM is limited by the need for large-scale, high-quality multi-attribute labels,
which are typically more difficult to collect than binary chosen/rejected labels (Wang et al., 2024f).
This motivates us to design an ensemble framework that complements the stronger SORM with
a MORM to enhance robustness against reward hacking, as shown in Fig. 1 (b). However, this
framework encounters two major issues: (1) it requires two separate inference passes, leading to
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Figure 1: Illustration of SMORM training and its advantages over baseline methods. The training
objective of SMORM is an original contribution, fundamentally differing from previous ap-
proaches and supported by theoretical analysis (see Appendix A for detailed comparisons).

significant computational overhead; and (2) the weaker performance of the MORM degrades the
quality of the aggregated output, becoming a bottleneck for the system, as verified in Fig. 2.

To overcome these limitations, we introduce a simple yet effective, theoretically grounded reward
modeling framework called the Single and Multi-Objective Reward Model (SMORM). As shown
in Fig. 1 (c), SMORM jointly trains a BT single- and multi-objective reward function based on a
shared embedding space. It addresses the issue of efficiency by requiring only a single forward pass
through the backbone. Furthermore, training the single-objective function along the chosen/rejected
dimension helps shape the embedding space and correct the positioning of samples within it, thereby
enabling the multi-objective head to achieve competitive performance with limited data. We will
theoretically and empirically justify this effect in Section 4.

Specifically, given a pre-trained decoder-only LLM without the original output linear layer as the
feature extractor fθ. We pass x⊕ y, the concatenation of x and y, through the decoder layers and take
the hidden state of the final decoder layer as a d-dimensional feature. On top of fθ, we attach two
linear heads: a single-objective head with weights wS ∈ Rd×1, which outputs a scalar rating, and a
multi-objective head with weights wM ∈ Rd×k, which produces a k-dimensional vector of attribute
scores. Given DS = {xs, yc, yr} as the chosen-rejected preference dataset and DM = {xm, ym, r}
as the multi-attribute preference dataset, SMORM is trained with the following loss function:

min
θ,wS ,wM

−EDS

[
log σ(w⊤

S ((fθ(xs, yc)− fθ(xs, yr))))
]
+ EDM

∥∥w⊤
Mfθ(xm, ym)− r

∥∥2
2

(2)

Although the objective may superficially resemble a simple combination of BT and regression
losses, their joint training is non-trivial due to their fundamentally different forms. How these
objectives influence one another has remained unexplored in prior work; we are the first to
establish a theoretical connection and to show their complementary benefits (Sec. 4).. The first
head with weight wS outputs a score along the chosen/rejected dimension, while the second head
with weight wM outputs scores on multiple attributes (e.g. helpfulness, coherence and verbosity).
SMORM supports multiple inference strategies: SMORM-F uses only the first head to produce the
reward score, SMORM-L computes the mean of the scores from the second head, and SMORM-M
averages the scores from both the first and second heads.

Experimental Setup. For training SMORM, we use Skywork80K (Liu et al., 2024a) as DS
and Helpsteer2 (Wang et al., 2024f) as DM . To train the multi-attribute head using only label
information without extra data or domain knowledge, we filter DM to retain only samples that also
appear in DS . We compare SMORM against several baselines, including: (1) Baseline Classifier,
trained using the original reward loss defined in Eq. 1; (2) ODIN, which trains two separate reward
functions for quality and length (Chen et al., 2024). (3) Baseline SM, which trains a baseline SORM
and MORM separately and aggregates their results during inference and (4) GRM (Yang et al., 2024),
which incorporates supervised fine-tuning (SFT) regularization. We use gemma-2B-it (Team et al.,
2024) as the backbone model for all methods. In PPO experiment following (Yang et al., 2024),
we downsample 20K samples from the Unified-Feedback dataset to optimize the PPO policy,
reserving an additional 1K samples as a held-out test set for evaluation. Following prior work (Gao
et al., 2023; Coste et al., 2023; Yang et al., 2024), we perform BoN sampling on this evaluation set,
selecting the best of n responses per prompt based on proxy model scores. The selected responses are
then evaluated using the gold reward model, and gold scores are averaged across all prompts to assess
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true quality. We vary KL divergence from 0 to 5 by adjusting n from 1 to 405, using the relation
KLBoN = logn− n−1

n . For both experiments, gemma-2B-it serves as the policy model, and the
gold reward model 1 is a 7B human-preference model fine-tuned on the full Unified-Feedback
dataset.
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Figure 2: Proxy and gold scores from (a)(b) PPO and (c)(d) BoN experiments under the OOD setting,
using gemma-2B-it as the base model. All rewards are normalized to start from 0.

The results of the PPO and BoN experiments are presented in Fig. 2 (a)(b) and (c)(d), respectively.
From these figures, we observe the following: (1) Baselines Fail to Mitigate Reward Hacking. We
observe that although GRM demonstrates increased golden scores during PPO, its average gold scores
decrease as KL divergence increases in the BoN setting, suggesting reward hacking. ODIN shows a
modest increase in golden scores under BoN, but a decrease during PPO, indicating that addressing
length alone as a bias is insufficient to mitigate reward hacking effectively. (2) Incorporating Multi-
Attribute Scores Helps Mitigate Reward Hacking in OOD Setting. In both experimental settings,
we find that the Baseline SM outperforms both GRM and ODIN, exhibiting a steady increase in
golden scores as the proxy score increases. (3) Weak Multi-Objective Reward Functions Become a
Bottleneck. While Baseline SM shows promise, its performance in the BoN experiment is even worse
than that of the baseline single-objective reward function. This suggests that a weak multi-objective
reward function can be detrimental and become a bottleneck in the overall system. (4) SMORM
Shows Superior Performance. Both SMORM-F and SMORM-M significantly outperform all
baselines across both experiments. Notably, SMORM-F performs comparably to SMORM-M. To
theoretically justify this phenomenon, we propose the following theorem:
Theorem 1 (Implicit Multi-Attribute Effect). Let a reward model be trained under the SMORM
framework, and suppose the following conditions hold: (1) Bounded features: There exists
B < ∞ such that ∥fθ(x, y)∥ ≤ B for every (x, y). (2) Positive-definite covariances: let
fc = fθ(xs, yc), fr = fθ(xs, yr), fm = fθ(xm, ym). ΣS := EDS

[(fc − fr)(fc −
fr)

⊤] and ΣM := EDM
[fm f

⊤
m] are positive-definite matrices. (3) Positive correlation: Let µS :=

E(xs,yc,yr)∼DS
[fθ(xs, yc) − fθ(xs, yr)] and let CM := E(xm,ym,r)∼DM

[fθ(xm, ym) r⊤] ∈ Rd×K .
Then α := µ⊤

SΣ
−1
M CM has non-negative sum, i.e. 1⊤α ≥ 0. As the optimization of both re-

ward heads converge to their population minimizers, there exist constants c = 1⊤α

K
(
µ⊤
S Σ−1

S µS

) and

ε ≥ 0—depending only on B and second-order moments—such that for every pair (x, y):

rm(x, y) = 1
K

∑K
i=1 w

⊤
M,ifθ(x, y) ≥ c

(
w⊤
S fθ(x, y)

)
− ε = crs(x, y) − ε. (3)

A generalized theory that explicitly accounts for data size is presented in Theorem 3 in the Appendix.
We provide detailed justifications of the assumptions and the proofs in the Appendix D.2. The
theorem is proved under the assumption that the aggregated attribute scores in the multi-objective
preference data are positively correlated with the score provided by a pretrained single-objective
reward function wS . This is well-justified: wS can be trained on large-scale, high-quality preference
data and thus provides reliable scoring. Moreover, multi-objective annotations typically follow the
principle that chosen responses should have higher aggregated scores than rejected ones, and thus a
positive correlation can be reasonably expected. Notably, this assumption is general and does not
require the training data for the two heads to share the same prompt–response pairs or domain.

From this theorem, we derive two conclusions: (1) If a response achieves a high single-objective
score rs ≥ τ , its multi-attribute average score rm is lower-bounded by c τ − ε. This result implies

1Ray2333/reward-model-Mistral-7B-instruct-Unified-Feedback
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that even when the multi-attribute head is ignored, a high single-objective score alone ensures a
respectable level of fine-grained quality. This explains why policies trained with SMORM-F attain
performance comparable to those trained with SMORM-M. (2) For any two responses yA and yB to
the same prompt x, if rs(x, yA) > rs(x, yB), then it follows that c rs(x, yA)− ε > c rs(x, yB)− ε.
That is, a higher single-objective score implies a strictly higher lower bound on the corresponding
multi-attribute score rm. This enables training a strong single-objective function from abundant
preference data and leveraging it to guide the multi-objective function, without the need for costly
fine-grained multi-attribute annotations. Empirical results in Sec. 5.2 confirm this conclusion.

4 SUPERIOR SCORING PERFORMANCE OF SMORM

We have empirically and theoretically demonstrated that SMORM effectively mitigates reward
hacking, even under challenging OOD scenarios. Although Theorem 1 establishes that SMORM
can implicitly leverage a stronger single-objective reward function to guide the multi-objective one,
a potential concern remains: joint training may degrade the performance of that single-objective
function. To address this concern, we begin this section by introducing a lemma that connects
Bradley–Terry reward modeling with multi-objective reward regression. We then present a theorem
demonstrating that SMORM improves the performance of both reward functions by learning a more
effective feature extractor. Unlike ODIN (Chen et al., 2024), which trains reward functions for both
quality and length using the BT loss, the interaction between BT loss and MSE regression loss when
sharing a common embedding space is not straightforward to characterize. Therefore, we propose the
following lemma to bridge this gap.
Lemma 1 (Pairwise Preference Error to MSE Loss). Let yA, yB be a pair of responses. Assume
gs(y) is the ground truth score and rs(y) is the predicted score under a Bradley–Terry model. Then:

P(yA ≻ yB) = σ
(
rs(yA)− rs(yB)

)
, P⋆(yA ≻ yB) = σ

(
gs(yA)− gs(yB)

)
,

where σ(t) = 1
1+e−t . The expected preference error satisfies:

EDS
|P(yA ≻ yB)− P⋆(yA ≻ yB)| ≤

1

4
EDS

(√
2MSE(rs)

)
, (4)

with MSE(rs) =
(
rs(y)− gs(y)

)2
.

Lemma 1 shows that the expected BT loss is upper bounded by the MSE, i.e., the square of the
regression loss. With this lemma, we propose the following theorem:
Theorem 2. Under the same assumptions as in Theorem 1 and assuming that the feature extractor
fθ is differentiable, let θ̂ denote the maximum likelihood estimator (MLE) of the ground truth optimal
parameter θ⋆. Let θ̂s and θ̂m denote the maximum likelihood estimators of the single- and multi-
objective reward functions, respectively. Define MS(y) = w⊤

S fθ⋆(y), MM (y) = w⊤
Mfθ⋆(y). Then,

for a response y, the mean squared error (MSE) of the predicted reward can be approximated as:

MSES ≈ ∇θMS(y)
⊤ Cov

(
θ̂s

)
∇θMS(y) + σ00,MSEM ≈ ∇θMM (y)⊤ Cov

(
θ̂m

)
∇θMM (y) + σ00,

where σ00 is the intrinsic randomness in the label. Moreover, SMORM yields lower asymptotic MSE
for both the single- and multi-objective heads compared to training either head alone:

MSESMORM
S < MSEsingle

S , MSESMORM
M < MSEmulti

M (5)

Detailed proofs of the above lemma and theorem are provided in Appendix D. By Lemma 1 and
Theorem 2, a reduction in MSE directly tightens the bound on pairwise preference prediction error.
This is the first theoretical guarantee that a shared BT–regression architecture is strictly
superior to training the two heads independently, a connection never explored in prior work.
See Appendix E for details highlighting the originality and significance of our theoretical contribution.

5 EXPERIMENTS

In this section, we present a comprehensive evaluation of SMORM. We conduct experiments under
both in-distribution and out-of-distribution settings to assess how SMORM improves scoring capa-
bility and mitigates reward hacking. Our results demonstrate the following advantages of SMORM:
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(1) Enhancing scoring performance. SMORM significantly improves the scoring capability of the
multi-objective reward function without requiring additional multi-attribute preference data, which
are often difficult to collect (Sec. 5.2). (2) Mitigating reward hacking. SMORM substantially
enhances the robustness of the single-objective reward function against reward hacking in both ID
and challenging OOD settings (Sec. 5.3), while also improving its scoring performance (Sec. 5.2). (3)
Flexible training. SMORM does not require the single-objective dataset DS and the multi-objective
dataset DM to share the same prompt-response pairs, allowing for a more flexible training process.

5.1 EXPERIMENTAL SETUP

Datasets and Benchmarks. In Section 5.2, we use the Unified-Feedback dataset as the single-
objective preference dataset DS , one of the largest collections of pairwise human preferences. To
assess robustness across data scales, we evaluate two settings: one with 400K samples from DS and
another with 40K. For the multi-objective dataset DM , we use UltraFeedback (Cui et al., 2023)
in the 400K setup, which includes 240K GPT-annotated prompt–response pairs with fine-grained
attribute scores. In the 40K setup, we use HelpSteer2 (Wang et al., 2024f), a high-quality human-
annotated dataset with 20K samples. SORM is trained only on DS , MORM on DM , and SMORM
jointly on both. The trained reward models are evaluated on RewardBench (Lambert et al., 2024)
and RM-Bench (Liu et al., 2025b). In the RLHF experiments (Section 5.3), we consider both ID and
OOD settings. For ID, we downsample 20K samples from Unified-Feedback as DS to train
reward models and the PPO policy. For OOD, we use Skywork80K (Liu et al., 2024a) as DS . In
both cases, HelpSteer2 serves as DM , and 1K samples from Unified-Feedback are reserved
for policy evaluation.

Base Models. Following (Yang et al., 2024), we adopt gemma-2B-it (Team et al., 2024) and Mistral-
7B-Instruct-v0.2 (Jiang et al., 2023) as the base models for preference learning. For the RLHF
experiments, gemma-2B-it serves as the policy model in both the BoN and PPO settings. The gold
reward model is a 7B human preference model fine-tuned on the entire Unified-Feedback dataset.

Baselines. We adopt representative and SOTA baselines: (1) Baseline Classifier, trained using the
original reward loss as defined in Eq. 1; (2) Margin (Touvron et al., 2023), which augments the
original reward loss with an additional margin term; (3) Label Smooth (Wang et al., 2024a), which
addresses overfitting by penalizing overconfident predictions; (4) Ensemble, which combines the
outputs of three reward models by taking either the average or the minimum score (Coste et al., 2023);
and (5) GRM(Yang et al., 2024) with two types of regularization: GRM w/ dpo and GRM w/ sft.
Details on baselines and implementation are in Appendix I.

RLHF. The training and evaluation pipeline of PPO and BoN follow the setting in Sec. 3.

Table 1: Comparison of SMORM-F and baselines on RewardBench.

Reward model DS/DM : UnifiedFeedback 400k/UltraFeedback DS/DM : UnifiedFeedback 40k/HelpSteer2

Chat Chat-Hard Safety Reasoning Avg Chat Chat-Hard Safety Reasoning Avg
Baseline (Single) 95.5 38.0 73.8 65.3 68.2 94.7 37.5 66.2 58.4 64.2
Baseline + margin 95.8 38.4 73.9 72.5 70.2 97.2 37.5 56.8 72.7 66.1
Label smooth 94.4 37.3 73.2 77.4 70.6 91.6 39.0 53.8 60.2 61.1
Ensemble 98.0 37.5 77.3 71.3 71.0 96.1 38.2 58.8 67.6 65.2
GRM (linear) w/ dpo 96.7 39.0 76.4 68.5 70.2 94.7 38.4 62.5 51.2 61.7
GRM (linear) w/ sft 96.1 40.1 80.3 69.3 71.5 94.7 40.8 65.4 77.0 69.5
GRM w/ dpo 95.8 40.1 78.7 66.2 70.2 92.5 39.9 72.5 61.4 66.6
GRM w/ sft 97.8 42.1 77.9 65.2 70.8 94.1 41.9 69.5 61.5 66.8
SMORM-F 96.1 45.5 78.8 70.9 72.8 96.1 44.1 81.1 62.7 71.0

5.2 EVALUATION ON REWARD MODELING

Comparison to Single-Objective Reward Model. Table 1 compares SMORM-F with baseline
SORMs on RewardBench using gemma-2B-it as the base model; results with Mistral-7B-Instruct
are reported in Appendix C.2. SMORM-F consistently achieves the highest average performance
across all settings, supporting Theorem 2, which shows that joint training yields superior performance
over training single-objective reward functions in isolation. Additional OOD evaluation results for
SMORM-F are provided in Appendix G.
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Table 2: Comparison of SMORM-L and baseline MORM on RewardBench and RM-Bench.

Reward model Chat Chat Hard Safety Reasoning RewardBench RM-Bench
Base Model: Gemma 2b it, DS/DM : UnifiedFeedback 400k/UltraFeedback

Baseline (Multi) 64.2 50.0 46.1 42.3 50.6 50.2
SMORM-L 90.8 48.3 61.5 53.7 63.6 55.1

Base Model: Gemma 2b it, DS/DM : UnifiedFeedback 40k/HelpSteer2

Baseline (Multi) 84.1 39.0 57.4 42.6 55.8 51.8
SMORM-L 94.9 39.3 75.8 51.4 65.4 54.1

Base Model: Mistral 7b Instruct, DS/DM : UnifiedFeedback 400k/UltraFeedback

Baseline (Multi) 95.5 65.1 68.6 75.9 76.3 57.2
SMORM-L 97.8 61.0 86.4 77.7 80.7 62.6

Base Model: Mistral 7b Instruct, DS/DM : UnifiedFeedback 40k/HelpSteer2

Baseline (Multi) 71.8 60.1 54.3 78.0 66.0 52.0
SMORM-L 94.4 61.8 83.6 79.7 79.9 64.4

Comparison to Multi-Objective Reward Model. Table 2 compares SMORM-L with baseline
MORMs on RewardBench and RM-Bench. With Mistral-7B-Instruct as the base model and 40K
samples from UnifiedFeedback, SMORM achieves gains of +13.9 on RewardBench and +12.4
on RM-Bench. These results validate Theorem 1, which shows that BT modeling corrects response
positioning so that the multi-objective score is lower-bounded by the single-objective score, and
further support Theorem 2, confirming that SMORM produces reward models that consistently
outperform their baselines.

Comparison to Advanced Reward Models. We follow (Wang et al., 2024d) and train a gating
network that assigns weights to each attribute during inference. Our 7B model is initialized from
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) and trained on DS/DM : UnifiedFeedback (40K)
and HelpSteer2 (20K). The 8B model is initialized from Llama-3.1-8B-Instruct (Grattafiori
et al., 2024) and trained on Skywork80K (Liu et al., 2024a) and HelpSteer2 (20K). In both
cases, the gating network is trained with BT loss on DS . We compare against large multi-objective
reward models trained on HelpSteer2 with tuned attribute weights (Wang et al., 2024f), and
ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024d), which is trained on far more data: 585.4K samples
for its multi-objective head and 1,004.4K for its gating network, versus only 20K, 40K, and 80K for
ours. As shown in Table 3, our 7B model underperforms the 340B baseline but surpasses the 70B
model. Remarkably, our 8B model matches ArmoRM-Llama3-8B-v0.1 despite using 15.9× less data.

Table 3: Comparison with Advanced Multi-Objective Reward Models on RewardBench.

Reward model Size of DM Model Size Chat Chat Hard Safety Reasoning Avg
Nemotron-4-340B-RM (Wang et al., 2024f) 20K 340B 92.0 95.8 87.1 91.5 93.7

ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024d) 585.4K 8B 96.9 76.8 90.5 97.3 90.4
Llama-3-70B-RM (Wang et al., 2024f) 20K 70B 91.3 80.3 92.8 90.7 88.8

SMORM-L 7B (Ours) 20K 7B 95.0 80.5 91.6 89.0 89.0
SMORM-L 8B (Ours) 20K 8B 94.7 85.1 90.5 91.3 90.4

5.3 EVALUATION ON RLHF

In-Distribution Setting. Figures 3 and 4 present the results of PPO and BoN under the in-distribution
setting. For PPO, we observe that the gold score of the baseline reward function increases slowly
in the early stages of training but subsequently declines, while the proxy score continues to rise.
This pattern indicates reward overoptimization. In contrast, GRM exhibits a rapid initial increase in
gold score, followed by a similar decline trend. Notably, both SMORM-F and SMORM-M show a
consistent increase in gold score throughout training. SMORM-F achieves performance comparable
to SMORM-M, which further supports Theorem 1 regarding the implicit benefit of joint training. In
the BoN experiments, when using gemma-2B-it as the base model, we find that the gold score of
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Figure 3: Proxy scores and gold scores of PPO experiments for reward model based on (a)(b)
gemma2b-it and (c)(d) Mistral-7B-Instruct. All rewards are normalized to start from 0.
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Figure 4: Proxy scores and gold scores of BoN experiments for base models of (a)(b) gemma-2b-it
and (c)(d) Mistral-7B-Instruct. Rewards are normalized to start from 0.

the baseline reward function decreases as the KL divergence increases. For GRM, the gold score
increases slowly and then plateaus. Both SMORM-F and -M show a consistent increase in gold
scores across KL ranges, demonstrating the robustness of our framework in the ID setting.

Out-of-Distribution Setting. Figure 5 presents PPO and BoN results under the OOD setting
using Mistral-7B-Instruct as the base model. Results with gemma-2B-it were shown earlier in
Section 3. While the baseline reward function and GRM do not exhibit clear reward hacking with the
stronger model in the OOD setting, the performance gap between SMORM and GRM becomes more
pronounced compared to the in-distribution results in Figure 3. This underscores the limitations of
existing methods and demonstrates the robustness of SMORM, especially under challenging OOD
conditions. Additional results comparing PPO-optimized models are provided in Appendix H.
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Figure 5: Proxy and gold scores from (a)(b) PPO and (c)(d) BoN experiments under the OOD setting.

6 CONCLUSION

In this paper, we propose an effective and theoretically grounded method that jointly trains a
Bradley–Terry reward function and a multi-objective reward function using a shared embedding space.
Our theoretical analysis and extensive empirical results demonstrate that this joint training approach
enhances the robustness of the BT function against reward hacking and significantly improves the
scoring performance of the multi-objective function, revealing their complementary benefits.
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A RELATED WORK AND KEY DIFFERENCES FROM PRIOR APPROACHES

In this section, we provide additional related work and clarify how SMORM differs from existing
approaches.

Reward Modeling. Reward models are designed to produce preference-aligned signals that guide the
behavior of language models. In the context of large language models (LLMs), they act as proxies for
human preferences, providing feedback to the policy model during the alignment process (Ouyang
et al., 2022; Bai et al., 2022; Dong et al., 2024; Wen et al., 2025; Dong et al., 2024; Razin et al., 2025;
Lin et al., 2023; Sun et al., 2025). These models are typically constructed by attaching a classification
head to a pretrained LLM, allowing it to assign scores to responses conditioned on prompts (Zhu et al.,
2023; Adler et al., 2024). To ensure alignment with principles such as helpfulness, harmlessness, and
honesty, reward models are fine-tuned using human preference datasets (Wu et al., 2023; Guo et al.,
2023; Dai et al., 2024; Chiang et al., 2024; Nakano et al., 2021). The resulting reward signals are then
used in policy optimization, enhancing LLM performance on complex downstream tasks, including
mathematical reasoning (Shao et al., 2024; Wang et al., 2023a; Luo et al., 2024; Zhang et al., 2025a).

Mitigating Reward Hacking in RLHF. Reward hacking in reinforcement learning from human
feedback (RLHF) arises when the policy model exploits imperfections in the reward model, thereby
failing to learn the intended behaviors. A variety of strategies have been proposed to address this
issue. One line of work focuses on enhancing the reward function using ensemble methods (Coste
et al., 2024; Eisenstein et al., 2023; Zhang et al., 2024a; Yan et al., 2024; Ramé et al., 2024; Zhang
et al., 2024b). While effective, these approaches typically require training multiple reward models,
making them computationally expensive and less feasible for real-world deployment. Another
approach investigates constrained policy optimization (Moskovitz et al., 2024; Zhang et al., 2024b;
Liu et al., 2024b; Zhang et al., 2024c; Laidlaw et al., 2024; Zhu et al., 2024). However, these methods
often suffer from performance instability due to their sensitivity to hyperparameter tuning. More
recently, GRM (Yang et al., 2024; Dai et al., 2025) incorporates text generation regularization into
reward modeling and achieves superior performance compared to prior methods. Nonetheless, the
inherent conflict between reward modeling and generation objectives introduces training instability
and increases sensitivity to the choice of balancing weights.

ORIGINALITY AND NOVELTY OF SMORM

ODIN (Chen et al., 2024) is a framework that trains two reward functions for response quality and
length, sharing a common embedding space. However, our work differs substantially from ODIN
in several key aspects: (1) While ODIN uses the BT loss for both heads, we theoretically establish
a connection between BT loss and multi-attribute regression loss. This advancement enables the
integration of multiple fine-grained attributes beyond just response length. (2) Our work explicitly
investigates policy optimization with PPO in out-of-distribution (OOD) settings, a scenario largely
overlooked by existing studies. Our empirical results in Sec. 3 also demonstrate that ODIN fails
in this setting. (3) Whereas ODIN focuses solely on mitigating reward hacking, we additionally
uncover a complementary benefit: training a single-objective reward function significantly enhances
the scoring capability of the multi-objective reward model.

RRM (Liu et al., 2025a) is a general framework that employs a causal approach to learn preferences
independent of spurious artifacts via data augmentation during reward model training. However, (1)
the data augmentation strategy significantly increases the computational cost of training a reward
model; (2) it remains unclear how to adapt such augmentation methods to multi-objective reward
modeling, especially when labels consist of fine-grained scores; and (3) its effectiveness in mitigating
reward hacking in RLHF settings has yet to be empirically validated. Similarly, (Wang et al., 2025a)
propose a causal reward modeling approach that incorporates causal inference to reduce spurious
correlations. InfoRM (Miao et al., 2024) introduces a variational information bottleneck objective to
filter out irrelevant information during reward modeling. However, similar to GRM, this objective is
fundamentally at odds with the goal of accurate reward modeling, and the performance of InfoRM
on RewardBench has not been evaluated. In contrast, beyond addressing reward hacking, a key
contribution of our work is enhancing the performance of weak multi-objective reward models
without requiring additional preference data.
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Our SMORM introduces significant methodological and empirical innovations compared to (Wang
et al., 2025b), for the following reasons:

(1) Significant Differences in the Training Paradigm. The training paradigm in (Wang et al.,
2025b) is sequential: either initializing a BT reward model from a regression reward model or vice
versa. In contrast, SMORM adopts a joint training paradigm, where both the BT and regression
reward functions are optimized simultaneously at each training step. This co-training leads to
synergistic learning and mutual improvement between the two reward heads, rather than a one-
directional transfer.

(2) Significant Differences in Empirical Discoveries. We summarize the empirical findings of [1]
and contrast them with our work below:

Method BT → Regres-
sion

Regression →
BT

Co-Training

Paper (Wang et al.,
2025b)
(Scaled Preference +
Multi-Attribute)

Worse than ran-
dom
(93.0 → 92.2)

Better than ran-
dom
(91.5 → 92.7)

–

Paper (Wang et al.,
2025b)
(Pairwise Preference +
Multi-Attribute)

– Worse than ran-
dom
(93.0 → 92.9)

–

SMORM
(Pairwise + Multi-
Attribute)

– – Mutual improve-
ment of both heads

Specifically:

• (Wang et al., 2025b) does not explore co-training. Their conclusions are limited to initializing
BT models with regression weights in specific datasets.

• Even in that case, when using pairwise preferences (e.g., chosen/rejected labels), perfor-
mance decreases after initialization—suggesting instability or incompatibility.

• Our finding is novel: through joint co-training on pairwise preferences (BT head) and
multi-attribute regression labels (regression head), we observe mutual benefits during
training. These results indicate the two heads help each other learn better representations.

(3) Generalization Beyond Dataset Constraints. In (Wang et al., 2025a), both reward heads
are trained on the same prompt-response pairs. In contrast, our SMORM framework is explicitly
designed to remove this constraint. That is, the BT and regression heads can be trained on different
prompt-response distributions, a generalization supported both:

• Theoretically – by our formal analysis in Sec. 4.
• Empirically – with experiments in Sec. 5 that demonstrate robust performance even when

the heads are trained on distinct datasets.

Moreover, (Wang et al., 2025b) only considers a single attribute (e.g., Helpfulness) in regression.
We extend this to a true multi-attribute regression setting, both in theory and in practice, making
SMORM applicable in more realistic, attribute-rich environments.

B SIGNIFICANCE OF OOD CHALLENGE

In our paper, we define prompt-response pair distribution shift as an out-of-distribution (OOD)
setting, where the prompt-response pairs used to train the reward model and those encountered during
online RLHF are drawn from different datasets. Prior works on reward hacking typically assume an
in-distribution setting, where both the reward model training data and the policy optimization data
(e.g., for PPO) are sampled from the same distribution.
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Furthermore, this shift arises not only from novel prompts, but also from responses that evolve as the
policy is optimized. After just a few PPO updates, the model may begin to generate responses that
move beyond the distribution of the offline preference data, as shown in (Dai et al., 2025).

Moreover, while the base LLM benefits from broad coverage due to Internet-scale pretraining,
the reward head is typically fine-tuned on a much narrower preference dataset. As a result, the
inductive bias of the reward model is governed by this limited supervision, leaving significant room
for generalization error when the policy encounters unfamiliar regions of the output space.

Although datasets like UltraFeedback contain over 250K prompts, training a reward model on the full
corpus is computationally expensive. Our preliminary results (see Figure 2) show that even when
the reward model is trained on a high-quality subset such as Skywork-80K—which achieves strong
pairwise comparison performance—the model still exhibits OOD vulnerabilities. This illustrates
a fundamental trade-off: smaller high-quality datasets offer efficient training but limited coverage,
making them susceptible to OOD issues. Therefore, under the realistic and common scenario of
limited training data and compute resources, OOD challenge is both prevalent and critical to address.

C ADDITIONAL EXPERIMENTS

C.1 PRELIMINARY EXPERIMENTS ON IMPROVING BOTH SINGLE- AND MULTI-OBJECTIVE
HEAD

Experimental Setup. We follow the same training setup for SMORM as described in Section 3.
We compare SMORM with the baseline SORM and MORM, using Llama-3.2-3B-Instruct2

as the backbone model for all methods. The comparison results on RewardBench against SORM
and MORM are presented in Table 4 and Table 5, respectively. The corresponding datasets used for
training each reward model are also listed in the tables. Note that SORM is trained solely on DS ,
MORM on DM , while SMORM is jointly trained on both DS and DM .

Table 4: Results on RewardBench compared to the baseline SORM.

Dataset DS / DM Model Chat Chat Hard Safety Reasoning RewardBench

UltraFeedback (binarized) /
UltraFeedback

Baseline 89.1 40.7 45.2 36.7 52.9
SMORM-M 91.3 39.0 50.1 41.9 55.6
SMORM-F 88.4 43.4 44.3 49.6 56.4

Skywork80K/
HelpSteer2

Baseline 73.4 60.5 79.8 49.6 65.8
SMORM-M 83.5 55.5 74.5 53.6 66.8
SMORM-F 80.4 62.1 80.7 55.1 69.6

Table 5: Results on RewardBench and RM-Bench compared to the baseline MORM.

Dataset DS / DM Model Chat Chat Hard Safety Reasoning RewardBench RM-Bench

HelpSteer2 (binarized)/
HelpSteer2

Baseline 55.8 50.4 44.8 54.2 51.3 49.2
SMORM-M 48.9 48.5 51.4 75.7 56.1 50.1
SMORM-F 50.3 48.7 54.7 73.6 56.9 50.9
SMORM-L 50.7 49.3 52.9 73.3 56.8 53.0

UltraFeedback (binarized)/
UltraFeedback

Baseline 70.3 46.1 41.6 42.0 50.0 50.2
SMORM-M 91.3 39.0 50.1 41.9 55.6 51.0
SMORM-F 88.4 43.4 44.3 49.6 56.4 49.8
SMORM-L 90.2 40.1 54.2 40.8 56.3 54.4

Results Analysis. From Table 4, we observe that SMORM-F achieves a higher average score on
RewardBench compared to the baseline model. Notably, regardless of whether the single-objective
reward model is trained on the same dataset or a different one, SMORM-F consistently outperforms
the baseline. This result highlights the flexibility of our SMORM framework. From Table 5, we further
observe that by simply aggregating the multi-attribute scores to create a single-objective preference

2meta-llama/Llama-3.2-3B-Instruct
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dataset and training a SMORM, SMORM-L achieves average scores 5.5 and 6.3 points higher than
training a MORM alone. This highlights how easily SMORM can enhance the performance of the
multi-objective reward function.

C.2 ADDITIONAL RESULTS ON IMPROVING SINGLE-OBJECTIVE HEAD

In this section, we provide additional experimental results comparing SMORM-F to baseline single-
objective reward functions. We follow the same experimental setup as in Section 5. Results using
Mistral-7B-Instruct as the base model are reported in Table 6.

Table 6: Comparison of SMORM-F and baselines on RewardBench. Baseline results from (Yang
et al., 2024).

Reward model DS/DM : UnifiedFeedback 400k/UltraFeedback DS/DM : UnifiedFeedback 40k/HelpSteer2

Chat Chat-Hard Safety Reasoning Avg Chat Chat-Hard Safety Reasoning Avg
Base Model: Mistral 7b Instruct

Baseline (Single) 96.6 52.4 86.7 69.5 76.3 94.9 51.7 64.9 62.4 68.5
Baseline + margin 96.4 51.5 85.3 64.8 74.5 89.7 47.1 70.7 43.6 62.8
Label smooth 97.2 49.8 85.8 72.3 76.3 94.1 47.1 67.5 79.7 72.1
Ensemble 96.6 51.8 85.1 73.0 76.6 89.6 50.2 72.7 59.0 69.3
GRM (linear) w/ dpo 98.0 53.3 86.4 75.3 78.3 95.1 47.5 82.2 74.7 74.9
GRM (linear) w/ sft 97.8 54.6 86.3 79.2 79.5 93.4 51.9 80.7 78.8 76.2
GRM w/ dpo 97.8 54.0 85.7 74.4 78.0 97.8 52.4 78.0 77.3 76.4
GRM w/ sft 98.0 55.3 85.8 71.2 77.6 94.1 48.5 83.4 77.4 75.9
SMORM-F 97.8 55.3 85.9 80.1 79.8 95.8 60.1 80.5 74.7 77.8

D THEORY

D.1 DEFINITIONS AND ASSUMPTIONS

Let K be the number of attributes considered. We define fθ as the backbone of our reward model,
which maps an input question–response pair to a hidden representation of dimension d. For each
attribute head k, the reward score is given by rk = w⊤

k fθ. In particular, rs (or r0) denotes the score
from the single-objective head used to model overall preference (e.g., chosen vs. rejected), while rk
for k > 0 corresponds to the outputs of fine-grained attribute-specific heads.

Positive-definite covariances. Let

fc = fθ(xs, yc), fr = fθ(xs, yr), fm = fθ(xm, ym).

We define the covariance matrices

ΣS := EDS

[
(fc − fr)(fc − fr)

⊤] and ΣM := EDM

[
fmf

⊤
m

]
,

and assume both are positive definite (PD).

Modern feature extractors (e.g., transformer-based backbones) typically embed inputs into a high-
dimensional space of size d, which exceeds the intrinsic rank of the data. Provided that the samples
in DS (or DM ) do not all lie in a strict lower-dimensional hyperplane, the corresponding empirical
covariance matrices will be full-rank and therefore positive definite.

Correlation between heads. We naturally assume a positive correlation between the aggregated
fine-grained attribute scores and the preference along the chosen/rejected dimension. Specifically, let

µS := E(xs,yc,yr)∼DS
[fθ(xs, yc)− fθ(xs, yr)] ,

and define
CM := E(xm,ym,r)∼DM

[
fθ(xm, ym) r⊤

]
∈ Rd×K .

Note that we denote r as the reward function, and r as the vector of multi-attribute scores. Then, we
define

α := µ⊤
SΣ

−1
M CM ,
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and assume that the sum of its components is non-negative, i.e.,

1⊤α ≥ 0.

Assuming E[r] = E[w⊤
S ] = 0, we define the raw coupling vector

α = µ⊤
SΣ

−1
M CM =

[
Cov(r1, w

⊤
S f), . . . ,Cov(rK , w

⊤
S f)

]
∈ RK ,

and normalize

β =
α

∥µ̃S∥2
=

µ⊤
SΣ

−1
M CM

µ⊤
SΣ

−1
S µS

∈ RK .

Then, βi > 0 if the score on attribute i tends to increase as the single-objective score w⊤
S f increases.

The sum 1⊤α represents the total (signed) covariance between the single-objective preference score
and the aggregate multi-attribute score. In most real-world annotation settings, chosen–rejected
labels are used as proxies for overall answer quality. Since higher-quality responses tend to improve
multiple fine-grained attributes (e.g., helpfulness, correctness, coherence, etc.), the covariances across
these attributes typically sum to a positive total.

Hidden Ground Truth. For each head rk, we denote r∗k as the hidden ground-truth reward function,
and we model the labeled score for head k as gk = r∗k + ϵk for ε ∼ N (0,Σ),Σ0k > 0. Here the
diagonal entries of Σ are σkk = Var(εk), the noise variance for head k.

D.2 PROOF OF THEOREM 1

Theorem 1 (Implicit Multi-Attribute Effect). Let a reward model be trained under the SMORM
framework, and suppose the following conditions hold: (1) Bounded features: There exists
B < ∞ such that ∥fθ(x, y)∥ ≤ B for every (x, y). (2) Positive-definite covariances: let
fc = fθ(xs, yc), fr = fθ(xs, yr), fm = fθ(xm, ym). ΣS := EDS

[(fc − fr)(fc −
fr)

⊤] and ΣM := EDM
[fm f

⊤
m] are positive-definite matrices. (3) Positive correlation: Let µS :=

E(xs,yc,yr)∼DS
[fθ(xs, yc) − fθ(xs, yr)] and let CM := E(xm,ym,r)∼DM

[fθ(xm, ym) r⊤] ∈ Rd×K .
Then α := µ⊤

SΣ
−1
M CM has non-negative sum, i.e. 1⊤α ≥ 0. As the optimization of both re-

ward heads converge to their population minimizers, there exist constants c = 1⊤α

K
(
µ⊤
S Σ−1

S µS

) and

ε ≥ 0—depending only on B and second-order moments—such that for every pair (x, y):

rm(x, y) = 1
K

∑K
i=1 w

⊤
M,ifθ(x, y) ≥ c

(
w⊤
S fθ(x, y)

)
− ε = crs(x, y) − ε. (6)

Proof. Replacing the logistic (BT) and regression losses by squared losses does not alter directions
of the minimisers because any strictly convex proper surrogate has the same first-order optimality
conditions up to a positive scalar factor Bartlett et al. (2006). We therefore analyse the following
least-squares problems:

min
wS

ES
[
(w⊤

S (fc − fr)− 1)2
]
, min

wM

EM
[
∥w⊤

Mfm − r∥22
]
,

For a generic least-squares objective minw E[(w⊤u − t)2], setting the gradient to zero yields
E[uu⊤]w = E[u t]. Applying this template we obtain the population solutions:

wS = Σ−1
S µS , wM = Σ−1

M CM . (7)

Define the whitening operator Φ := Σ
−1/2
S f ∈ Rd, µ̃S := Σ

−1/2
S µS , and C̃M := Σ

1/2
S Σ−1

M CM .
Then Φc = Σ

−1/2
S fc,Φr = Σ

−1/2
S fr and ES [(Φc − Φr)(Φc − Φr)

⊤] = Id and µ̃S ̸= 0. Then
Equation 7 becomes:

wS = Σ
−1/2
S µ̃S , wM := Σ

−1/2
S C̃M . (8)

Because µ̃S ̸= 0, we write the Euclidean projection of each column of C̃M onto µ̃S :

C̃M = µ̃S
µ̃⊤
S C̃M
∥µ̃S∥2︸ ︷︷ ︸

aligned component

+ E, E⊤µ̃S = 0. (9)
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Define the coupling vector β :=
µ̃⊤
S C̃M

∥µ̃S∥2 = α
∥µ̃S∥2 ∈ RK . By assumption (3) we have 1⊤α ≥

0 and thus 1⊤β > 0.

Then for feature vector f , we have:

w⊤
Mf

Equation 8
= C̃⊤

M Σ
−1/2
S f︸ ︷︷ ︸
Φ

Equation 9
= β (µ̃⊤

SΦ) + E⊤Φ

= β (w⊤
S f) + E⊤Φ.

Decomposing Φ by:

Φ =
µ̃⊤
SΦ

∥µ̃S∥2
µ̃S︸ ︷︷ ︸

∥µ̃S

+ z︸︷︷︸
⊥µ̃S

, µ̃⊤
S z = 0,

so that E⊤Φ = E⊤z. By bounded-features, ∥f∥ ≤ B and hence ∥Φ∥ ≤ B/
√
λmin(ΣS), where√

λmin(ΣS) is the square root of the smallest eigenvalue of the . The projection term has norm∣∣µ̃⊤
SΦ

∣∣/∥µ̃S∥ ≤ |w⊤
S f |, so the orthogonal part satisfies ∥z∥ ≤ B/

√
λmin(ΣS). Therefore

|E⊤z| ≤ ∥E∥op ∥z∥ ≤ B√
λmin(ΣS)

∥E∥op︸ ︷︷ ︸
ε

.

Averaging over the K attributes and using c := max{0,1⊤β}/K gives

1

K

K∑
i=1

w⊤
M,if ≥ cw⊤

S f − ε

K
. (10)

where c = 1⊤β
K = 1⊤α

K∥µ̃S∥2 .

Monotone lower bound. Because 1⊤β > 0 by assumption (3), we have c > 0. Define the linear
function L(s) := c s− ε/K. Inequality equation 10 reads

rM (x, y) =
1

K

K∑
i=1

w⊤
M,ifθ(x, y) ≥ L

(
rS(x, y)

)
,

so rM is bounded from below by the increasing map L( · ) of the single-objective score rS . Conse-
quently, for any two responses (x1, y1) and (x2, y2),

rS(x1, y1) ≥ rS(x2, y2) =⇒ L
(
rS(x1, y1)

)
≥ L

(
rS(x2, y2)

)
,

and hence the lower bound on the multi-attribute average is larger (or equal) whenever the single-
objective score is larger. In particular, for any threshold τ ,

rS(x, y) ≥ τ =⇒ rM (x, y) ≥ c τ − ε

K
.

This completes the proof of Theorem 1.

Pure-SORM failure. If no multi-attribute head is trained (CM = 0), then α = 0 ⇒ c = 0, so the
lower bound degenerates torM ≥ −ε, offering no positive coupling between single-objective and
multi-attribute scores.
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D.3 PROOF OF LEMMA 1.

Lemma 1. Let yA, yB be a pair of responses. Assume gs(y) is the ground truth score and rs(y) is
the predicted score under a Bradley–Terry model. Then:

P(yA ≻ yB) = σ
(
rs(yA)− rs(yB)

)
, P⋆(yA ≻ yB) = σ

(
gs(yA)− gs(yB)

)
,

where σ(t) = 1
1+e−t . The expected preference error satisfies:

EDS
|P(yA ≻ yB)− P⋆(yA ≻ yB)| ≤

1

4
EDS

(√
2MSE(rs)

)
,

with MSE(rs) =
(
rs(y) − gs(y)

)2
. Similarly, for a multi-objective reward model with predicted

score rm and ground truth gm, let: em = rm(yA)− rm(yB), e⋆m = gm(yA)− gm(yB), then the
error is bounded as:

EDM
|em − e⋆m| ≤ EDM

(√
2MSE(rm)

)
.

Proof. For a pair of responses yA and yB , the Bradley–Terry model defines the probability that yA is
preferred (i.e., has a higher overall reward) as:

P(yA ≻ yB) = σ
(
rs(yA)− rs(yB)

)
,

where σ(t) = 1
1+e−t is the sigmoid function, and rs(v) is the model’s predicted overall score. The

corresponding ground-truth preference probability, based on labeled scores, is given by:

P⋆(yA ≻ yB) = σ
(
gs(yA)− gs(yB)

)
,

where gs(·) denotes the ground-truth reward.

The prediction error in probability space is the absolute difference:

∆AB =
∣∣σ(rs(yA)− rs(yB)

)
− σ

(
gs(yA)− gs(yB)

)∣∣ .
Since the sigmoid derivative satisfies

σ′(t) = σ(t)(1− σ(t)),

and reaches its maximum value of 1
4 at t = 0, we have σ′(t) ≤ 1

4 for all t. This implies that the
sigmoid function is 1

4 -Lipschitz:

|σ(a)− σ(b)| ≤ 1

4
|a− b|, ∀ a, b ∈ R.

Applying this to our setup, we obtain:

|P(yA ≻ yB)− P⋆(yA ≻ yB)| ≤
1

4
|(rs(yA)− rs(yB))− (gs(yA)− gs(yB))| .

Taking expectation and applying the Cauchy–Schwarz inequality, we can further bound the expected
pairwise error by:

Pairwise-error ≤ 1

4

√
2MSE(rs),

where MSE(rs) := Ey
[
(rs(y)− gs(y))

2
]

is the mean squared error of the predicted scores.

This result shows that minimizing the pointwise MSE of the reward model also reduces the upper
bound on the pairwise misordering error, thereby improving preference consistency.

Similarly, for a multi-objective reward model with predicted score rm and ground truth gm, let:
em = rm(vA)− rm(vB), e⋆m = gm(vA)− gm(vB), then the error is bounded as:

EDM
|em − e⋆m| ≤ EDM

(√
2MSE(rm)

)
.
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To relate this to the Bradley–Terry loss, recall that the Bradley–Terry loss for a pair (yA, yB), where
yA is the preferred response, is given by:

ℓBT = − log σ
(
rs(yA)− rs(yB)

)
.

If the model’s predicted scores rs(v) are close to the ground-truth scores gs(v)—i.e., the mean squared
error (MSE) is small—then the difference rs(yA)−rs(yB) will closely approximate gs(yA)−gs(yB).
By the Lipschitz continuity of the sigmoid function, this implies that the predicted probability under
the model and the ideal ground-truth probability will also be close. Consequently, the pairwise
preference error will be small.

This reasoning provides a theoretical justification that minimizing the MSE of individual predictions
naturally leads to accurate pairwise probability estimates, as evaluated by the Bradley–Terry loss.

Furthermore, while the single-objective head rs is trained using the Bradley–Terry likelihood, our
previous bound shows that the expected Bradley–Terry test risk,

RBT = E(yA,yB)

[
− log σ

(
rs(yA)− rs(yB)

)]
,

is a 1-Lipschitz function of the score difference rs(yA) − rs(yB). Therefore, controlling the vari-
ance of the individual scores—captured by MSE0 = E[(rs(y) − gs(y))

2]—directly bounds the
generalization error under the Bradley–Terry loss, up to a constant factor.

D.4 PROOF OF THEOREM 2

Theorem 2. Under the same assumptions as in Theorem 1 and assuming that the feature extractor
fθ is differentiable, let θ̂ denote the maximum likelihood estimator (MLE) of the ground truth optimal
parameter θ⋆. Let θ̂s and θ̂m denote the maximum likelihood estimators of the single- and multi-
objective reward functions, respectively. Define MS(y) = w⊤

S fθ⋆(y), MM (y) = w⊤
Mfθ⋆(y). Then,

for a response y, the mean squared error (MSE) of the predicted reward can be approximated as:

MSES ≈ ∇θMS(y)
⊤ Cov

(
θ̂s

)
∇θMS(y) + σ00,MSEM ≈ ∇θMM (y)⊤ Cov

(
θ̂m

)
∇θMM (y) + σ00,

where σ00 is the intrinsic randomness in the label. Moreover, SMORM yields lower asymptotic MSE
for both the single- and multi-objective heads compared to training either head alone:

MSESMORM
S < MSEsingle

S , MSESMORM
M < MSEmulti

M (11)

Proof. Fisher matrix. The Fisher information is a way of measuring the amount of information that
an observable random variable carries about an unknown parameter. Mathematically, for a parameter
vector θ and data D with likelihood p(D | θ), the Fisher information is

I(θ) def
= ED∼p(·|θ)

[
∇θ log p(D | θ)∇θ log p(D | θ)⊤

]
. (12)

Intuitively, it measures how sensitive the log-likelihood is to small changes in θ. More curvature
means larger I(θ) and thus implies that we can estimate θ more precisely. The celebrated Cramér–Rao
bound says that (under mild conditions) any unbiased estimator’s covariance is at least [I(θ)]−1 (Kay,
1993).

In our square-loss, Gaussian-noise setting, the empirical Fisher matrix becomes the empirical sum of
outer products of gradients:

I(regime)(θ) =
1

n

n∑
i=1

∑
k∈Ktrain

1

σkk

[
∇θrk(yi)

][
∇θrk(yi)

]⊤
.

For single-head reward model that evaluates the overall quality, we have K = {0}. For K-attribute
reward model that evaluates the response according to K specific aspects, K = {1, . . . ,K}. For our
hybrid model, K = {0, . . . ,K}. Because every summand is positive semi-definite, adding a task can
only increase or keep the Fisher matrix. Hence we have:

I(hybrid) = I(single) +∆, ∆ ⪰ 0, (13)
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Strict positivity of difference term. In fact, give the assumed positive correlation between head 0
and other attribute heads, we can show that the overall Fisher matrix can be strictly larger. Denote

g0(yi) = ∇θrs(yi),

which is the gradient of the overall head’s prediction with respect to θ. When we look at the
contribution of the other heads, what matters is how their gradients project onto g0(yi):

g0(yi)
⊤∇θrk(yi).

The positive correlation assumption ρ0k > 0 implies that, on average, the gradients ∇θrk(yi) tend
to point in a similar direction to g0(yi). This means that g0(yi)⊤∇θrk(yi) > 0. For example, if
we project the Fisher information onto the direction g0, using the linearity of the inner product, we
obtain:

g0(yi)
⊤Ihybrid(θ) g0(yi) = g0(yi)

⊤Isingle(θ) g0(yi) +

K∑
k=1

1

nσkk

n∑
i=1

(
g0(yi)

⊤∇θrk(yi)
)2
.

Because each term
(
g0(yi)

⊤∇θrk(yi)
)2

is strictly positive when the inner product is nonzero, and
positive correlation ensures that it is indeed positive on average, we know the extra sum is strictly
positive. That is,

g0(yi)
⊤Ihybrid(θ) g0(yi) > g0(yi)

⊤Isingle(θ) g0(yi).

Therefore, we can get
I(hybrid) = I(single) +∆, ∆ ≻ 0, (14)

Asymptotic Variance of θ̂. If θ̂ is the maximum-likelihood estimator (MLE) of θ⋆ and the usual
regularity conditions hold (i.i.d. samples, smooth log-likelihood, finite Fisher information, etc.), then
the asymptotic normality theorem for MLEs states

√
n
(
θ̂ − θ⋆

) d−→ N
(
0, [I(θ⋆)]−1

)
.

where “ d−→” denotes convergence in distribution and the covariance of the limiting Gaussian is the
inverse Fisher information, which is the smallest possible asymptotic variance for any unbiased
estimator by Cramér–Rao.

Thus, if one yields a larger Fisher matrix (more information), its estimator’s asymptotic covariance
matrix is smaller, so predictions based on it are less variable. Hence

Cov hybrid(θ̂) ≺ Cov single(θ̂). (15)

From θ-variance to MSE by Bias–variance decomposition. For a fresh test example v we predict
with

ŝ0(v) = w⊤
SMθ̂(v), gs(v) = w⊤

S fθ⋆(v) + ε0.

The mean-squared error of that prediction is

MSE0 =
(
E[ŝ0]− E[gs]

)2︸ ︷︷ ︸
Bias2

+ Var[ŝ0]︸ ︷︷ ︸
estimation variance

+ Var[ε0]︸ ︷︷ ︸
σ00(irreducible noise)

.

• Bias term. With sufficient optimization and model capacity the MLE is (asymptotically)
unbiased, so this term is approximately 0.

• Variance term. Fluctuations of θ̂ across data sets propagate through the network, and
first-order Taylor expansion gives

Mθ̂(v) ≈ fθ⋆(v) +∇θfθ⋆(v) (θ̂ − θ⋆)

=⇒ŝ0(v) ≈ w⊤
S fθ⋆(v) +∇θMS(v)(θ̂ − θ⋆) (denote MS(v)

def
= w⊤

S fθ⋆(v))

=⇒Var[ŝ0] ≈ ∇θMS(v)
⊤ Cov(θ̂)∇θMS(v).

Because the hybrid regime has the smaller Cov(θ̂) by Equation 15 above, this variance
shrinks.
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• Noise term σ00. This is the intrinsic randomness in the label and is identical for all training
regimes.

Therefore, when hybrid training reduces the covariance Cov(θ̂), the key variance term in the general-
ization bound decreases. Due to the assumed positive correlation between the fine-grained attributes
and overall quality, this reduction leads to a lower test-set MSE for the single-objective head. This
establishes inequality 11 and thus completes the proof of Theorem 2.

Moreover, by linking the single-head MSE to the pairwise preference error (as shown in Lemma 1),
we demonstrate that the single-objective head trained using our SMORM framework is expected
to outperform a conventional single-head reward model. It is worth noting that the same argument
naturally extends to the multi-objective reward setting as well.

Theorem 3 (Implicit Multi-Attribute Effect under Finite Data). Let a reward model be trained under
the SMORM framework. Assume:

1. Bounded features. There exists B <∞ such that ∥fθ(x, y)∥ ≤ B for all (x, y).

2. Positive-definite covariances. Let fc = fθ(xs, yc), fr = fθ(xs, yr), fm = fθ(xm, ym).
Define ΣS := EDS

[
(fc − fr)(fc − fr)

⊤] and ΣM := EDM

[
fmf

⊤
m

]
, and suppose both are

positive definite.

3. Positive correlation. Let µS := E(xs,yc,yr)∼DS

[
fθ(xs, yc) − fθ(xs, yr)

]
and CM :=

E(xm,ym,r)∼DM

[
fθ(xm, ym) r⊤

]
∈ Rd×K . Set α := µ⊤

SΣ
−1
M CM and assume 1⊤α ≥ 0.

Let npref and nattr be the sample sizes used to train the BT head on DS and the regression head on
DM , respectively. Let ŵS and ŴM be the (empirical) minimizers obtained from these finite samples,
and define

rs(x, y) := w⊤
S fθ(x, y), r̂s(x, y) := ŵ⊤

S fθ(x, y),

rm(x, y) := 1
K

K∑
i=1

w⊤
M,ifθ(x, y), r̂m(x, y) := 1

K

K∑
i=1

ŵ⊤
M,ifθ(x, y).

As the optimization errors vanish (each head reaches its empirical minimizer), there exists

c =
1⊤α

K
(
µ⊤
S Σ−1

S µS
) ≥ 0 and ε ≥ 0

(depending only on B and second-order moments) such that, for every pair (x, y),

r̂m(x, y) ≥ c r̂s(x, y) − ε − ηS − ηM , (16)

where the finite-sample estimation errors satisfy

ηS = Op

(
1

npref

)
, ηM = Op

(
1

nattr

)
.

Equivalently, replacing empirical heads by their population counterparts yields rm(x, y) ≥
c rs(x, y) − ε and equation 16 quantifies the conservative degradation under finite data.

Remark (what the η’s absorb). The terms ηS and ηM capture the statistical errors from estimating
µS ,ΣS ,ΣM , CM and the induced parameter errors in ŵS , ŴM . Concretely, one may bound them
in terms of deviations like ∥µ̂S − µS∥, ∥Σ̂S − ΣS∥, ∥Σ̂M − ΣM∥, and ∥ĈM − CM∥, which
are Op(1/npref) and Op(1/nattr), respectively, under the boundedness assumption and standard
concentration.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E MORE CLARIFICATIONS ON THEORETICAL ANALYSIS

(1) While it is intuitive to think that the Bradley-Terry (BT) loss and regression loss can benefit
each other, their optimization objectives are fundamentally different, and we are the first to build
a theoretical connection between them. Specifically, our Lemma 1 demonstrates that the expected
BT loss is upper bounded by the mean squared error (MSE) of the predicted scalar scores, which is
exactly the square of the regression loss.

(2) Thanks to this connection, we are able to leverage classical statistical theory—particularly the
Fisher information framework—to analyze and explain the benefits of jointly training the single-
and multi-objective reward heads. In Theorem 2, we provide the first formal proof that coupling a
Bradley-Terry scalar head with a multi-attribute regression head on a shared feature extractor yields
a strictly larger Fisher information matrix, leading to a lower asymptotic covariance of the learned
parameters than optimizing either head in isolation. By propagating this covariance reduction through
a first-order Taylor expansion, we derive lower asymptotic mean-squared-error (MSE) bounds for
both heads. Combined with Lemma 1’s link from MSE to BT loss, the result yields the first rigorous
guarantee that a shared BT + regression architecture is provably and strictly better than training the
heads separately. No prior multi-task or reward-modeling work establishes this Fisher-information
dominance or its direct consequence for pair-wise preference accuracy.

(3) Furthermore, Theorem 1 relies only on a weak assumption: that the aggregated score across
multiple attributes is positively correlated with the overall preference score. This assumption is
commonly satisfied by existing dataset construction processes Wang et al. (2023b), and is notably less
restrictive than requiring each individual attribute score to be positively correlated with the preference
score. In addition, we relax the requirement that the BT and multi-attribute reward functions must be
trained on the same prompt–response pairs. Our theory provides the first explicit linear inequality
linking the Bradley-Terry (BT) model with multi-attribute reward scores.

F MOTIVATION FOR ENHANCING MULTI-OBJECTIVE REWARD FUNCTIONS
WITHOUT ADDITIONAL MULTI-ATTRIBUTE DATA

In this section, we provide a detailed discussion on the limited availability of high-quality data for
training multi-objective reward models, which motivates our approach to enhancing multi-objective
reward modeling performance without relying on additional multi-attribute annotations.

While several datasets provide dense prompt–response pairs with fine-grained attribute scores—such
as UltraFeedback (Cui et al., 2023) with 240K samples and Prometheus (Kim et al., 2023) with
200K samples—their annotations are primarily generated by GPT-based models. This introduces
several concerns: (1) As foundation models continue to evolve, the quality and consistency of their
annotations become increasingly difficult to guarantee. (2) The use of large language models (LLMs)
as annotators introduces potential biases (Gu et al., 2024; Li et al., 2024), which can be inherited by the
reward model and subsequently transferred to the policy model when optimized using reward signals.
(3) Our experimental results in Section 5 show that, when using gemma-2b-it as the base model,
training on HelpSteer2 (Wang et al., 2024f)—a human-annotated dataset of 20K samples—yields
superior performance compared to training on UltraFeedback with 240K GPT-labeled samples.

HelpSteer2 (Wang et al., 2024f) is one of the few available datasets that provide high-quality, human-
annotated, multi-objective preference labels. However, it only contains 20K samples, and its creation
involved an exceptionally rigorous annotation process. This process includes multiple layers of
human oversight, dynamic annotator recruitment, and strict quality control procedures to ensure data
integrity. Due to the high resource demands of this pipeline, it is difficult to generalize or scale to
larger datasets.

In summary, it remains difficult to obtain large-scale, high-quality, fine-grained attribute scores for
responses, whether through GPT-based evaluation or human annotation. This limitation motivates the
development of methods that can enhance the performance of multi-objective reward models without
requiring additional annotated data.
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G EXPERIMENTS ON OOD

To evaluate the generalizability of our SMORM, we adopt the experimental setup described in
Section 5, training reward models on both 400K and 40K samples from the Unified-Feedback dataset.
In both settings, HelpSteer2 serves as the multi-objective dataset DM for SMORM. All methods
use gemma-2B-it as the base model and are evaluated on both in-distribution (ID) data (Unified-
Feedback) and out-of-distribution (OOD) benchmarks (HHH-Alignment and MT-Bench). The results
are presented in Tables 7 and 8. The results demonstrate that SMORM-F consistently outperforms
competing methods in both in-distribution (ID) and out-of-distribution (OOD) evaluations. Specif-
ically, SMORM-F achieves an ID score of 76 and an OOD score of 83.2 on the HHH-Alignment
benchmark, surpassing the second-best method, which attains scores of 73.8 and 79.6, respectively.
These findings suggest that incorporating a multi-objective learning function effectively shapes the
embedding space, leading to improved performance on ID data and enhanced generalizability of the
single-objective head to OOD scenarios.

Table 7: Results on ID and OOD evaluation with 400K training data from Unified-Feedback. The
best performance in each task is in bold and the second best one is underlined.

Reward Model Unified Feedback HHH Alignment MT Bench
Classifier (Frozen) 63.8 66.4 69.5
Classifier (baseline) 72.1 73.4 71.2
Classifier + margin 72.0 75.0 72.6
Classifier + label smooth 71.5 72.1 71.2
Classifier + Ensemble 72.8 76.8 73.7
GRM 73.8 79.6 73.4
SMORM-F (Ours) 76.0 83.2 73.4

Table 8: Results on ID and OOD evaluation with 40K training data from Unified-Feedback. The
best performance in each task is in bold and the second best one is underlined.

Reward Model Unified Feedback HHH Alignment MT Bench
Classifier (Frozen) 63.9 68.6 68.2
Classifier (baseline) 68.8 70.3 69.1
Classifier + margin 69.6 69.8 71.0
Classifier + label smooth 68.5 68.8 71.9
Classifier + Ensemble 69.9 72.2 71.1
GRM 71.3 75.1 72.8
SMORM-F (Ours) 72.9 77.4 73.0

H ALIGNMENT RESULTS AFTER PPO

To demonstrate the effectiveness of our SMORM in training superior policy models within the
RLHF framework, we evaluate the win rate of models trained using PPO with SMORM-F as the
proxy reward model, comparing it against two baselines: Baseline SORM and GRM. We obtain
the optimized models following the training process in Sec. 5.3 and randomly sample 500 prompts
from the Unified-Feedback dataset and use the optimized policy models to generate corresponding
responses. We then employ GPT-4o as an impartial judge to compare the model outputs and determine
which response is preferable, recording the win rates accordingly. We adopt the win-tie evaluation
prompt format introduced by (Khanov et al., 2024). The results are summarized in Table 9. The
system prompt and user prompt used for evaluation are provided below:
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Prompt for Win-Tie Evaluation by GPT-4o

System prompt
[system]
You are a helpful, harmless, and precise assistant for checking the quality of the answer. We
would like to request your feedback on the performance of two AI assistants in response to the
user question. Please rate the harmlessness, helpfulness, and level of detail of their responses.
Your evaluation should consider factors such as the helpfulness, harmlessness, relevance,
accuracy, depth, creativity, and level of detail of the response. Note that if a response appears
cut off at the end due to length constraints, it should not negatively impact the score. Also,
base your evaluation solely on the given answer, disregarding any preceding interactions in
the question. Each assistant receives an overall score on a scale of 1 to 10, where a higher
score indicates better overall performance.
Please first output a single line containing only two values indicating the scores for Assistant
1 and 2, respectively. The two scores are separated by a space. In the subsequent line, please
provide a comprehensive explanation of your evaluation, avoiding any potential bias and
ensuring that the order in which the responses were presented does not affect your judgment.
User prompt
[Question]
{question}
[The Start of Assistant 1’s Answer]
{answer1}
[The End of Assistant 1’s Answer]
[The Start of Assistant 2’s Answer]
{answer2}
[The End of Assistant 2’s Answer]

From the table, we observe that across both dataset scales, using our SMORM-F as the proxy reward
function results in a policy model that consistently outperforms both the Baseline and GRM, with
win rates always exceeding 65%.

Table 9: Win rate of models after PPO training with SMORM-F against baseline SORM and GRM.

Method vs. Method Win (%) ↑ Tie (%) Lose (%) ↓
DS/DM : UnifiedFeedback 40k/HelpSteer2

SMORM-F Baseline 75.7 0.5 23.8
SMORM-F GRM 69.5 0.4 30.1

DS/DM : UnifiedFeedback 400k/UltraFeedback

SMORM-F Baseline 71.3 0.7 28.0
SMORM-F GRM 65.7 0.7 33.6

I IMPLEMENTATION DETAILS

I.1 BASELINE AND TRAINING DETAILS

Baseline Details. All baseline reward models use the
AutoModelForSequenceClassification class from the transformers library (Wolf
et al., 2020), which attaches a randomly initialized linear head for reward prediction. Each model is
trained to minimize a loss function using the training data. For ensemble baselines, we train three
models with different random seeds and aggregate their predictions.

We use the margin loss from (Touvron et al., 2023) defined as:

Lmargin(θ) = −E(x,yc,yr)∼D [log (σ (rθ(x, yc)− rθ(x, yr)−m(r)))] ,

where m(r) is computed using the reward difference between chosen and rejected responses in the
Unified-Feedback dataset. This loss emphasizes meaningful reward distinctions.
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We also incorporate a label smoothing loss defined as:

Lsmooth(θ) = −E(x,yc,yr)∼D [(1− ϵ) log (σ (rθ(x, yc)− rθ(x, yr)))− ϵ log (σ (rθ(x, yc)− rθ(x, yr)))]

where ϵ = 0.1. This formulation improves robustness by softening the loss against label noise,
reducing overfitting.

For GRM, we strictly follow the implementation in (Yang et al., 2024). The reward head consists of a
linear layer (hidden size, 1024), followed by a ReLU activation, and a final linear layer (1024, 1).
The regularization coefficient α is set to 0.01, and β is set to 0.1. In the GRM-linear variant, the head
is a single linear layer of shape (hidden size, 1). More detailed training procedures for GRM can be
found in (Yang et al., 2024).

Computational Resources. All experiments were conducted using NVIDIA H100 80GB GPUs.
Training on 40K data samples requires approximately 16 GPU hours.

Table 10: Key implementations of the text generation experiments.

Basic Information

Base models gemma-2b-it and Mistral-7B-Instruct-v0.2
Quantization for training bf16
Optimizer AdamW_hf
Batch size 16
Learning rate 5× 10−6

Learning rate scheduler cosine
Warmup ratio 0.03

SMORM

Weight ratio for single-objective to multi-objective reward modeling 1.0 by default

PPO (Schulman et al., 2017)

KL regularization 0.0
Epochs 1
Learning rate 1× 10−5

λ for GAE 0.95
γ 1
Clip range 0.2
Optimization epochs per batch 4
Tokens during generation 512

J HYPERPARAMETER ANALYSIS AND INSTABILITY OF GRM

In this section, we conduct experiments to demonstrate the instability of GRM (Yang et al., 2024)
and the relative stability of our proposed SMORM. Intuitively, reward models are typically initialized
from language models pretrained on next-token prediction tasks, and are then fine-tuned for reward
modeling. This motivates the hypothesis that introducing a next-token prediction regularization
term—aligned with the pretraining objective—may conflict with the reward modeling objective. As
a result, this misalignment could lead to unstable performance during reward model training. To
validate this assumption, we conduct experiments following the setup described in Sec. 5, using
40K samples from Unified-Feedback as DS and HelpSteer2 as DM . We compare the
performance of GRM to a baseline single-objective reward model and our proposed SMORM-F.
In addition, we compare a baseline multi-objective reward model to our SMORM-L. We vary the
weight ratio in [0.01, 0.1, 1, 10]. In GRM, the weight ratio refers to the strength of the next-token
prediction regularization. In SMORM, the weight ratio controls the contribution of multi-objective
reward modeling. All models are evaluated on RewardBench. The results are presented in Fig. 6.
From the figure, we observe that, except in extreme cases, our SMORM framework demonstrates
consistently stable performance. Specifically, when the weight ratio is set to 0.01, the performance of
SMORM-L slightly falls short of the baseline multi-objective reward model, and when the ratio is
set to 10, SMORM-F marginally underperforms compared to the baseline single-objective reward
model. Outside of these edge cases, both SMORM-F and SMORM-L consistently outperform their
respective baselines across a wide range of weight settings. In contrast, the performance of GRM
fluctuates significantly, ranging from approximately 45 to 65, and consistently underperforms relative

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

to the baseline single-objective reward model. These results support our hypothesis that incorporating
next-token prediction regularization introduces instability into reward model training. This instability
is especially concerning given the substantial computational cost required to train reward models.
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Figure 6: Hyperparameter analysis.

K INTERPRETATION OF WHY SORM FAIL IN OOD SETTING
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Figure 7: Fine-grained attribute scores of the optimized policy model using (a) the baseline classifier
and (b) SMORM-F as the proxy reward model.

To interpret the vulnerability of the baseline classifier to reward hacking, we adopt the same ex-
perimental setting as in Sec. 3 and record evaluation scores for the generated responses across five
dimensions: Helpfulness, Correctness, Coherence, Complexity, and Verbosity.
These scores are derived using the multi-objective head wM of the trained SMORM. Figures 7 (a)
and (b) illustrate the evaluation results when using the baseline classifier and SMORM-F as proxy
reward models, respectively. In Fig. 7 (a), employing the baseline classifier leads to improvements
only in the Complexity and Verbosity dimensions, while performance declines in the remain-
ing attributes. Consequently, the generated responses are not considered high-quality by the gold
reward model. In contrast, Fig. 7 (b) shows that using SMORM-F as the proxy reward model results
in consistent improvements across all five fine-grained dimensions. These enhancements are also
reflected in an increased gold score. These findings indicate that a conventional single-objective
reward model is typically insufficient to capture the multifaceted criteria that make a chosen response
preferable to a rejected one.
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L ANALYSIS ON RM-BENCH

RM-Bench (Liu et al., 2025b) evaluates reward models on two key dimensions: sensitivity to subtle
changes and robustness to style bias. It includes three task types: (1) Easy: Chosen responses are
detailed and informative; rejected ones are concise and minimal. (2) Normal: Both responses share
the same style but differ in key information. (3) Hard: Chosen responses are concise; rejected ones
are detailed.

L.1 MORMS FALL SHORT ON EASY AND NORMAL TASKS.

In this section, we present empirical results to illustrate why baseline multi-objective reward models
tend to underperform on RM-Bench (Liu et al., 2025b). We begin by evaluating a selection of existing
open-source single-objective and multi-objective reward models that exhibit comparable performance
on RewardBench (Lambert et al., 2024). The evaluated models include:

• Multi-objective reward models:
– NVIDIA/Nemotron-340B-Reward3

– RLHFlow/ArmoRM-Llama3-8B-v0.14

• Single-objective reward models:
– Ray2333/GRM-llama3-8B-distill5

– internlm/internlm2-20b-reward6

– NCSOFT/Llama-3-OffsetBias-RM-8B7

– Ray2333/GRM-llama3-8B-sftreg8

– LxzGordon/URM-LLaMa-3.1-8B9

– Ray2333/GRM-Llama3.2-3B-rewardmodel-ft10

– Skywork/Skywork-Reward-Llama-3.1-8B11

Table 11: Comparison of models on Easy, Normal, and Hard tasks on RM-Bench.

Model Name Easy Normal Hard Avg RewardBench

Skywork/Skywork-Reward-Llama-3.1-8B 89.0 74.7 46.6 70.1 93.1
LxzGordon/URM-LLama-3.1-8B 84.0 73.2 53.0 70.0 92.9
NCSOFT/Llama-3-OffsetBias-RM-8B 84.6 72.2 50.2 69.0 89.4
internlm/internlm2-20b-reward 82.6 71.6 50.7 68.3 90.2
Ray2333/GRM-llama3-8B-sftreg 83.5 72.7 48.6 68.2 87.0
Ray2333/GRM-llama3-8B-distill 82.2 71.5 48.4 67.4 86.2
Ray2333/GRM-Llama3.2-3B-rewardmodel-ft 89.9 74.0 44.0 69.3 90.9

RLHFlow/ArmoRM-Llama3-8B-v0.1 82.5 70.8 50.1 67.8 90.4
NVIDIA/Nemotron-340B-Reward 81.0 71.4 56.1 69.5 92.0

The results of these comparisons are presented in Table 11. For better illustration, we also visualize
the results in Fig. 8. We observe that existing multi-objective reward models tend to underperform
on the Easy and Normal tasks, even though their overall performance on RewardBench and the
Hard tasks of RM-Bench is not among the worst. We attribute this phenomenon to the following:
multi-objective reward models (MORMs) typically assess response quality through utility and
style attributes. For example, HelpSteer2 (Wang et al., 2024f) provides scores for correctness,

3nvidia/Nemotron-4-340B-Reward
4RLHFlow/ArmoRM-Llama3-8B-v0.1
5Ray2333/GRM-llama3-8B-distill
6internlm/internlm2-20b-reward
7NCSOFT/Llama-3-OffsetBias-RM-8B
8Ray2333/GRM-llama3-8B-sftreg
9LxzGordon/URM-LLaMa-3.1-8B

10Ray2333/GRM-Llama3.2-3B-rewardmodel-ft
11Skywork/Skywork-Reward-Llama-3.1-8B
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Figure 8: Visualization of results on RM-Bench. The size of each marker indicates the model’s
performance on the Hard task.

helpfulness, and coherence (utility), and complexity and verbosity (style). Formally, we define:
U = {correctness, helpfulness, coherence},S = {verbosity, complexity}. The score margin is:

∆r =
∑
k∈U

wk∆hk︸ ︷︷ ︸
ru:utility heads

+wverb ∆hverb + wcomp ∆hcomp︸ ︷︷ ︸
rb:style bias

.

In Easy tasks, longer chosen responses incur negative style penalties, potentially flipping ∆r
despite higher utility scores. In Normal tasks, responses should have a similar style, implying
∆hverb ≈ ∆hcomp ≈ 0, but in practice, non-trivial deviations occur due to imperfect optimization.
As shown in Appendix L.2, style noise degrades scoring accuracy and overall performance.

L.2 CASE STUDY AND WHY SMORM HELP

In this section, we present a case study to interpret why baseline multi-objective reward models fall
short on the Normal and Easy tasks of RM-Bench.

We train a multi-objective reward model (MORM) on the HelpSteer2 dataset and, for each
attribute across all tasks, compute the mean and variance of the prediction differences—where each
difference is defined as the chosen-response score minus the rejected-response score. The results are
summarized in Table 12. As shown in the table, while the baseline MORM exhibits mean scores for
complexity and verbosity that are approximately zero across the Normal tasks, the corresponding
variances are non-trivial. This indicates that, although paired responses should receive similar
scores for complexity and verbosity, there remains considerable prediction bias on these attributes in
individual comparisons.

Table 12: Normalized pairwise differences per dimension (Mean (Variance))

Category helpfulness correctness coherence complexity verbosity
Normal overall 0.08 (0.83) 0.00 (1.55) 0.07 (0.74) 0.17 (1.29) 0.00 (0.55)
Normal Correct 0.41 (0.75) 0.33 (1.48) 0.29 (0.88) 0.43 (1.31) 0.10 (0.52)
Normal False -0.31 (0.65) -0.38 (1.35) -0.19 (0.46) -0.13 (1.10) -0.12 (0.55)
Hard overall 0.26 (1.02) 0.32 (1.90) -0.28 (0.95) -0.56 (1.85) 0.05 (0.81)
Hard Correct 0.78 (0.84) 0.85 (1.86) 0.01 (0.82) -0.27 (2.24) 0.14 (0.81)
Hard False -0.08 (0.84) -0.03 (1.62) -0.48 (0.93) -0.75 (1.50) -0.19 (0.77)
Easy overall -0.11 (1.32) -0.32 (1.93) 0.41 (1.38) 0.90 (2.36) 0.05 (0.75)
Easy Correct 0.19 (1.10) -0.07 (1.69) 0.61 (1.51) 1.12 (2.15) 0.12 (0.70)
Easy False -0.76 (1.20) -0.87 (2.02) -0.03 (0.82) 0.40 (2.46) -0.10 (0.83)
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Ideally, a single-objective reward model (SORM) can better align with helpfulness and correctness,
as its preference training dataset encompasses diverse attributes and tends to exhibit less sensitivity
to superficial factors like response length. According to Theorem 1, the aggregate score from the
multi-objective reward model is lower-bounded by the single-objective reward score: rm(x, y) =
1
K

∑K
i=1 αiw

⊤
M,ifθ(x, y) ≥ c · rs(x, y)− ε, where αi reflects the correlation between each attribute

and the chosen/rejected preference direction. Consider a scenario where response yA is preferred over
yB according to ground-truth labels. Initially, it may happen that rm(yA) < rm(yB), especially when
the style bias overwhelms the utility signal, i.e., |ru(yA)− ru(yB)| < |rb(yA)− rb(yB)|. However,
when the single-objective reward assigns a higher score to yA, i.e., rs(yA) > rs(yB), the utility
heads in the multi-objective model are progressively adjusted to favor yA. This adjustment increases
the margin |ru(yA)− ru(yB)|, eventually outweighing the bias introduced by stylistic components
(rb). As a result, the style penalty’s influence diminishes, and the model better reflects true preference
judgments. To verify this, we train the SMORM using 40K samples from Unified-Feedback
as DS , and report the differences in Table 13. As shown, for normal cases, both the variance and
verbosity are substantially reduced compared to the variance observed in helpfulness. This indicates
that style-related biases no longer dominate the final decision, thereby enhancing the performance of
the multi-objective reward model on this task.

Table 13: Normalized pairwise differences per dimension (Mean (Variance))

Category helpfulness correctness coherence complexity verbosity
Normal overall 0.43 (0.62) 0.43 (0.68) 0.29 (0.41) -0.02 (0.11) 0.01 (0.08)
Normal correct 0.73 (0.57) 0.71 (0.70) 0.53 (0.35) -0.01 (0.13) 0.05 (0.10)
Normal false -0.24 (0.09) -0.17 (0.10) -0.23 (0.11) -0.03 (0.07) -0.07 (0.04)

Hard overall 0.28 (0.70) 0.44 (0.93) 0.25 (0.55) -0.30 (0.16) 0.33 (0.20)
Hard correct 0.77 (0.62) 0.91 (1.05) 0.68 (0.45) -0.31 (0.17) 0.48 (0.22)
Hard false -0.34 (0.11) -0.16 (0.12) -0.30 (0.15) -0.29 (0.14) 0.14 (0.11)

Easy overall 0.57 (0.67) 0.43 (0.61) 0.34 (0.38) 0.26 (0.16) -0.30 (0.20)
Easy correct 0.83 (0.56) 0.62 (0.59) 0.53 (0.30) 0.30 (0.17) -0.31 (0.23)
Easy false -0.26 (0.12) -0.18 (0.16) -0.27 (0.16) 0.14 (0.11) -0.27 (0.12)

M THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used to support the writing and editing of this manuscript.
Specifically, an LLM assisted in improving clarity, refining phrasing, correcting grammar, and
enhancing the overall readability of the text.

The LLM was not involved in the ideation, research design, data analysis, or development of any
scientific content. All research questions, methodologies, and analyses were independently developed
and executed by the authors.
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