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Abstract
Estimating heterogeneous treatment effects in domains such as healthcare or social science often in-
volves sensitive data where protecting privacy is important. We introduce a general meta-algorithm
for estimating conditional average treatment effects (CATE) with differential privacy (DP) guaran-
tees. Our meta-algorithm can work with simple, single-stage CATE estimators such as S-learner
and more complex multi-stage estimators such as DR and R-learner. We perform a tight privacy
analysis by taking advantage of sample splitting in our meta-algorithm and the parallel composition
property of differential privacy. In this paper, we implement our approach using DP-EBMs as the
base learner. DP-EBMs are interpretable, high-accuracy models with privacy guarantees, which
allow us to directly observe the impact of DP noise on the learned causal model. Our experiments
show that multi-stage CATE estimators incur larger accuracy loss than single-stage CATE or ATE
estimators and that most of the accuracy loss from differential privacy is due to an increase in
variance, not biased estimates of treatment effects.
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1. Introduction

Understanding how treatment effects may vary across a population is critical for policy evaluations
and optimizing treatment decisions. Estimating such treatment effect heterogeneity is common in
medicine, marketing, and social science. Existing methods, however, may leak information about
specific observations used in estimation. We propose a general way to estimate flexible heteroge-
neous treatment effect models in a privacy-preserving manner and show empirically how privacy
guarantees impact estimation accuracy.

Using the potential outcomes framework (Neyman, 1923; Rubin, 1974), we focus on estimating
the Conditional Average Treatment Effect (CATE) τ(x) = E[Y (1)− Y (0)|X = x] where Y is the
outcome of interest, X are observed covariates (features), T is a binary treatment, and Y (1), Y (0)
are the potential outcomes under treatment and control. The setting can be experimental, where T
is a randomized manipulation, or observational, where T is not explicitly randomized.

Privacy concerns arise when data includes sensitive information, such as healthcare data, fi-
nance data, or digital footprint. In these settings, mining population-wide patterns using algorithms
without explicit privacy protection can reveal individuals’ private information (Carlini et al., 2019;
Melis et al., 2019; Shokri et al., 2017). The same concern extends to treatment effect estimation,
especially CATE estimation, as the flexibly estimated CATE function at fine granularity could po-
tentially reveal individual covariates, treatment status, or potential outcomes, all of which could be
highly sensitive.

Differential privacy (DP) has emerged as a standard mathematical definition of privacy and has
been widely adopted by U.S. Census Bureau and companies like Apple and Google for data publi-
cation and analysis (Erlingsson et al., 2014; Abowd, 2018). DP provides a robust, cryptographically
motivated framework for tracking privacy loss and protects against privacy attacks even when an
adversary has significant external information (Dwork et al., 2006). In this work, we show how to
add DP guarantees to many popular CATE estimation frameworks.

The main contributions of this paper are:

1. We introduce a general meta-algorithm for multi-stage learning under privacy constraints.
We apply this to CATE estimation, but it may be independently useful for other multi-stage
estimation tasks, especially those using machine learning models to estimate nuisance pa-
rameters. Our meta-algorithm can work with simple, single-stage CATE estimators such as
S-learner and more complex multi-stage estimators such as DR and R-learner.

2. We perform a tight privacy analysis by taking advantage of sample splitting in our meta-
algorithm and the parallel composition property of differential privacy.

3. We study the trade-off between privacy and estimation accuracy using synthetic experiments
and a differentially private interpretable ML model, DP-EBM (Nori et al., 2021), as the base
learner. Our work clearly shows the change in estimation quality as privacy guarantees and
sample size change. We show that flexible multi-stage CATE estimators incur larger accu-
racy loss than single-stage CATE or ATE estimators and that most of the accuracy loss from
differential privacy is due to an increase in variance, not biased estimates of treatment effects.

1.1. Related Work

Our work builds on those from CATE estimation and differential privacy.
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The modern CATE literature has focused on adapting flexible machine learning models to esti-
mate CATE while utilizing sample-splitting to avoid biases due to overfitting. This includes meth-
ods that specify particular ML methods (Athey and Imbens, 2016; Wager and Athey, 2018)) and
“meta-learners” that can utilize general ML algorithms (Nie and Wager, 2020; Künzel et al., 2019;
Kennedy, 2020; Chernozhukov et al., 2018; Van der Laan and Rose, 2011). Our paper builds on the
latter line of literature and provides a general recipe to make the existing meta-learners differentially
private.

Differentially private algorithms have been proposed for many prediction tasks, such as classi-
fication, regression, and forecasting. These algorithms typically involve adding differential privacy
guarantees to existing machine learning algorithms. For example, DP variants exist for linear mod-
els (Chaudhuri et al., 2011), decision tree classifiers (Jagannathan et al., 2009), stochastic gradient
descent, and deep neural networks (Abadi et al., 2016). All of these models can be used as base
components in our meta-algorithm.

Finally, there has been some initial work on differentially private causal inference methods. Lee
et al. (2019) proposed a privacy-preserving inverse propensity score estimator for estimating average
treatment effect (ATE). Their method ties with a specific differentially private prediction method
for ATE estimation, which falls into the meta-algorithm framework in this paper. Komarova and
Nekipelov (2020) studied the impact of differential privacy on the identification of statistical models
and demonstrated identification of causal parameters failed in regression discontinuity design under
differential privacy. Agarwal and Singh (2021) studied estimation of a finite-dimensional causal
parameter under the local differential privacy framework. Our paper uses the central differential
privacy framework, which gives weaker privacy protection and retains much higher data utility.

2. Background

2.1. Heterogeneous Treatment Effect Estimation

We assume our data consists of iid observations Zi = (Yi, Ti, Xi), where Y ∈ R is the outcome,
T ∈ {0, 1} is a binary treatment, and X ∈ Rd are the observed covariates, and i ∈ {1, ..., n}. We
define several nuisance functions:

e(x) = P(T = 1|X = x)

µ(t, x) = E[Y |T = t,X = x]

η(x) = E[Y |X = x]

where e(·) is the propensity score, µ(·, ·) is the joint response surface, and η(·) is the mean outcome
regression. We aim to estimate τ(x) = µ(1, x) − µ(0, x), which is referred to as CATE. We will
assume standard causal assumptions such as no unmeasured confounding ( {Yi(0), Yi(1)} ⊥⊥ Ti|Xi,
i.e. conditional on X , treatment is independent of potential outcomes) and overlap of the treated
and control propensity score distributions (0 < e(x) < 1, ∀x). These are trivially satisfied for
randomized experiments but typically takes domain knowledge to verify for observational studies.

2.2. Differential Privacy

Differential privacy is a widely adopted privacy definition based on the notion of a randomized
algorithm’s sensitivity to any single data point (Dwork et al., 2006). It is formally defined as:
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Definition 1 ((ε, δ)-Differential Privacy) A randomized algorithm A : Zn → H is (ε ,δ)-
differentially private if for all neighboring datasets S, S′ ∈ Zn, and for all O ⊂ H:

P(A(S) ∈ O) ≤ eεP(A(S′) ∈ O) + δ,

where neighboring datasets are defined as two datasets that differ in at most one observation.

Intuitively, differential privacy is a promise to each individual that the output of a DP algorithm will
be approximately the same irrespective of its data. The privacy parameters ε and δ parameterize the
strength of the privacy guarantee – smaller values of ε and δ ensure that the output distributions of
A(S) and A(S′) are closer, thereby ensuring more privacy. Algorithms typically achieve differen-
tial privacy guarantees by adding calibrated, symmetric noise to their outputs. Decreasing ε or δ
necessitates adding more noise to a model, which leads to an implicit trade-off between privacy and
accuracy. We explore this trade-off for the CATE setting in Section 5.

We also leverage a refined notion of differential privacy called f -DP, which provides better
mathematical tools for the privacy analysis of our algorithms (Dong et al., 2019). f -DP conceptual-
izes the privacy task as providing minimum error rates on statistical tests that would try to determine
which of two potential samples were used to generate a statistic. It therefore parameterizes the pri-
vacy guarantees with a function, called a “trade-off function,” that relates how Type-I and Type-II
error can be traded-off in such a test. (ε, δ)-DP is a special case of the f -DP framework. Our main
theorem will be presented in terms of the more general f -DP space. Our experimental results will
be shown in the more widely used (ε, δ)-DP space. The following definitions are due to Dong et al.
(2019), which we copy here for completeness.

Definition 2 (f -Differential Privacy) Let f be a trade-off function. A randomized algorithm A is
said to be f -differentially private if for all neighboring datasets S and S′,

T
(
A(S),A(S′)

)
≥ f.

Definition 3 (Trade-off Functions) Let P and Q be any two probability distributions on the same
space. Let ϕ be any (possibly randomized) rejection rule for testing H0 : P against H1 : Q. Define
the trade-off function T (P,Q) : [0, 1] → [0, 1] as

α 7→ inf
ϕ
{1− EQ[ϕ] : EP [ϕ] ≤ α},

where the infimum is taken over all rejection rules.

3. Privacy-preserving CATE Learners

In this section, we present a meta-algorithm of conditional treatment effect estimation with simple
and tight privacy guarantees. The meta-algorithm can be used with leading CATE learners in the
literature, including DR-learner, R-learner, and S-learner, among others. Multiple sample splitting,
i.e., using different parts of the sample to estimate different components of an estimator, is the
key feature of this algorithm and enables the application of the parallel composition property of
differential privacy. The privacy guarantee we give is learner-model-agnostic, i.e., it applies for any
meta-learner in the literature and sub-algorithm modules as long as each sub-algorithm module is
differentially private on its own.
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3.1. Construction

In this subsection, we present our proposed meta-algorithm.

Algorithm 1 A two-stage algorithm with sample splitting and data transformation
input Dataset S = {Zi}i∈[n] = {(Yi, Ti, Xi)}i∈[n], sample splitting ratio λ1,1, . . . , λ1,k and λ2

with
∑k

i=1 λ1,i + λ2 = 1
output M(S) = (A1(S1,1), . . . ,Ak(S1,k),B ◦ T (S2;A1(S1,1),A2(S1,2), . . . ,Ak(S1,k))), where

M denotes the full algorithm, Ai, i ∈ [k] and B denote algorithm modules, T is a data trans-
formation operator, S1,1, . . . , S1,k and S2 form a partition of the full dataset with sample ratio
λ1,1, . . . , λ1,k and λ2

1: Sample splitting: let (S1,1, . . . , S1,k, S2) = Partition(S;λ1,1, . . . , λ1,k, λ2) be a partition
of S that is chosen uniformly at random among all the partitions of S with sizes n1,1 = λ1,1 ·
n, . . . , n1,k = λ1,k · n and n2 = λ2 · n

2: Run first-stage algorithms on disjoint sets of samples: A1(S1,1), . . . ,Ak(S1,k)
3: Construct data with transformed outcome, S̃2, using S2 and the output of first-stage algorithms:
S̃2 = {(Xi, ψ̂i)}i∈S2 = T (S2), in which ψ̂i = φ(Zi;A1(S1,1),A2(S1,2), . . . ,Ak(S1,k))

4: Run the second-stage algorithm with the transformed outcome: B
(
S̃2

)

Algorithm 1 is expressive enough to represent many leading CATE learners. We next show
how to map the DR-learner, R-learner, and S-learner to this framework by specifying their
k,A1, . . . ,Ak, T , and B. Use L(Y ∼ X) to denote a regression estimator, which estimates
x 7→ E[Y |X = x].

• DR-learner from Kennedy (2020) uses a two-stage doubly robust learning approach. This
learner divides the data into three samples S1,1, S1,2, S2, so k = 2. The first stage estimates
two nuisance functions. A1 uses S1,1 to estimate the propensity score ê = L1,1(T ∼ X). A2

uses S1,2 to estimate the joint response surface µ̂ ∼ L1,2(Y ∼ (T,X)). The data transfor-
mation step uses ê and µ̂ to construct the doubly robust score, ψ̂(Z) = µ̂(1, X)− µ̂(0, X) +
Y−µ̂(1,X)

ê(X) 1(T = 1) − Y−µ̂(0,X)
1−ê(X) 1(T = 0). The second stage, B, uses the transformed data

generated from S2 to run the pseudo-outcome regression τ̂ = L2(ψ̂ ∼ X).

• R-learner from Nie and Wager (2020) uses a two-stage debiased machine learning approach.
This learner divides the data into three samples S1,1, S1,2, S2, so k = 2. The first stage
estimates two nuisance functions. A1 uses S1,1 to estimate the propensity score ê = L1,1(T ∼
X). A2 uses S1,2 to estimate the mean outcome regression η̂ = L1,2(Y ∼ X). The data
transformation step produces residuals from two regressions ψ̂(Z) = (Y − η̂(X), T − ê(X)).
The second stage, B, uses the transformed data generated from S2 to run an empirical risk
minimization τ̂ = argminτ

∑
i∈S2

[{Yi − η̂(Xi)} − {Ti − ê(Xi)} τ(Xi)]
2.

• S-learner from Künzel et al. (2019) uses the whole dataset S2 = S to estimate the joint
response surface µ̂ ∼ L2(Y ∼ (T,X)) and then estimates τ̂(x) = µ̂(1, x)− µ̂(0, x). In this
case k = 0 and S2 = S.
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Multiple sample splitting is a key design choice of Algorithm 1. The practice of using separate
samples for estimating the nuisance functions in the first stage and the CATE function in the second
stage is popular in the literature (Chernozhukov et al., 2018; Kennedy, 2020; Newey and Robins,
2018; Nie and Wager, 2020; Van der Laan and Rose, 2011). This is motivated by the fact that
sample splitting avoids the bias due to overfitting. Kennedy (2020) and Newey and Robins (2018)
point out that using different parts of the sample to estimate different components of an estimator,
called double sample splitting, leads to simpler and sharper risk bound analysis. On top of these, we
will see in Section 3.2 that multiple sample splitting leads to tight differential privacy guarantees by
exploiting parallel composition and post-processing properties of differential privacy.

Remark 4 Algorithm 1 releases all outputs of intermediates algorithm modules. For example, in
the DR-learner case, it releases the estimated propensity score function, estimated regression func-
tion, and the final estimated CATE function to the public. From a practical point of view, releasing
these intermediate outputs enables researchers to understand the data better and perform diagnos-
tic tests. From a theoretical point of view, it is simpler to derive DP guarantees for compositions
when intermediate outputs are released. Moreover, we cannot save any privacy budget by keep-
ing the intermediate output private given the generality of our meta-algorithm. In this sense, it is
privacy-budget-free to release all intermediates outputs.

Remark 5 Many classical semiparametric estimators and popular approaches for applying machine
learning methods to causal inference follow a multi-stage estimation scheme as Algorithm 1. Our
Algorithm can be used to construct sample-split versions of these estimators. Notable examples
include augmented inverse-propensity weighting (AIPW) estimators for average treatment effect
(Robins et al., 1994), debiased machine learning for treatment and structural parameters (Cher-
nozhukov et al., 2018; Foster and Syrgkanis, 2019), and estimating nonparametric instrumental
variable models (Newey and Powell, 2003; Hartford et al., 2017) among others. Though the focus
of this paper is specifically on conditional treatment effect estimation, our privacy guarantee applies
to sample-split versions of all of these estimation algorithms.

3.2. Privacy Guarantees

In this subsection, we formally prove Algorithm 1 is private under the conditions that each of the
sub algorithm modules is private. To give a tight analysis of the privacy guarantee, we adopt the
f -DP framework proposed by Dong et al. (2019).

Theorem 6 Suppose

1. algorithm module Ai : Zn1,i → H1,i is f1,i-DP for i = 1, . . . , k, where H1,i is the image
space of Ai,

2. algorithm module B : (X × Ψ)n2 → H2 is f2-DP, where Ψ is the image space of the data
transformation φ : Z×H1 × . . .×Hk → Ψ,

then the composed meta-algorithm M in Algorithm 1 is f -DP with

f = min{f1,1, . . . , f1,k, f2}∗∗,

where g∗(y) := supx∈R yx− g(x) denotes the convex conjugate of a generic function g and g∗∗ =
(g∗)∗ denotes the double conjugate.
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A proof of Theorem 6 can be found in the appendix.

Remark 7 When all algorithm modules are (ε, δ)-DP with the same (ε, δ), Theorem 6 suggests
the whole algorithm is also (ε, δ)-DP.

Remark 8 Multiple sample splitting is essential for this simple yet tight analysis of differential pri-
vacy. More precisely, it enables the usage of the parallel composition property of differential privacy
and saves the privacy budget. Without sample splitting, we will need to pay additional sequential
composition cost in the differential privacy analysis. For example, if composed naively without sam-
ple splitting, the privacy loss of the corresponding DR-learner with all modules satisfying (ε, δ)-DP
would be 3 · ε instead of ε.

Remark 9 The privacy guarantee of Algorithm 1 provided by Theorem 6 is agnostic about what DP
algorithm modules one uses. For example, one could use DP deep neural networks (trained using
DP stochastic gradient descent) as the base learner to construct DP CATE learners. In the following
sections, we focus on DP CATE learners with a specific interpretable DP prediction algorithm as
the base learner and conduct experiments to study their empirical performance.

4. DP-EBM CATE Learners

In this section, we introduce DP-EBMs as the base learner in the meta-algorithm and present the
full algorithm of a specific differentially private CATE leaner we call DP-EBM-DR-learner.

4.1. DP-EBM

DP-EBM is a differentially private and interpretable machine learning algorithm recently introduced
by Nori et al. (2021), which adds differential privacy guarantees to Explainable Boosting Machines
(EBM) (Nori et al., 2019; Lou et al., 2012, 2013). EBMs and DP-EBMs belong to the family of
Generalized Additive Models (GAMs), which are restricted models of the form:

g(η(x)) = α+ f1(x1) + ...+ fd(xd),

where η(x) = E[Y |X = x] is the regression function, fi is a univariate function that operates on
each input feature xi, α is an intercept, and g is a link function that provides the relationship between
the additively separable function to the regression function and in doing so adapts the model to
different settings like classification and regression. GAMs are a relaxation of generalized linear
models in which each function fi is restricted to linear. In the GAM setting, the models are allowed
to flexibly learn complex functions of each feature, which has been shown to yield more expressive
and accurate models (Chang et al., 2021; Caruana et al., 2015; Nori et al., 2019). Moreover, the
additive structure of the models and inability to learn complex interactions between features (e.g.,
f(x1, x2, x3)) allows GAMs to remain interpretable. At prediction time, the contribution of each
feature i is exactly fi(xi). These term contributions can be directly compared, sorted, and reasoned
about. In addition, each function fi can be visualized as a graph to show how the model’s predictions
change with varying inputs.

DP-EBMs add privacy guarantees to EBMs by adding calibrated Gaussian noise during each
iteration of the training process. This noise has been shown to cause distortion in the learned indi-
vidual feature functions f̂i, especially under strong privacy guarantees.
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We use DP-EBMs to highlight our DP CATE learning algorithm for two main reasons: DP-
EBMs have been shown to yield high accuracy under strong privacy guarantees on tabular datasets,
and the interpretability of DP-EBMs is useful to showcase how varying privacy guarantees affect
CATE estimation (Nori et al., 2021).

4.2. DP-EBM-DR-learner

Previously, Algorithm 1 outlined a general recipe to construct DP CATE learners. Now that we
have introduced DP-EBM, a concrete prediction algorithm with privacy guarantee, we will present
a complete CATE estimator that we call DP-EBM-DR-learner.

Algorithm 2 DP-EBM-DR-learner
input Dataset S = {Zi}i∈[n] = {(Yi, Ti, Xi)}i∈[n], privacy parameters ε ∈ (0,∞), δ ∈ (0, 1),

sample splitting ratio λ1,1, . . . , λ1,k and λ2 with
∑k

i=1 λ1,i + λ2 = 1,
output M(S) = (ê, µ̂, τ̂), where M denotes the full algorithm

1: Sample splitting: let (S1,1, S1,2, S2) = Partition(S;λ1,1, λ1,2, λ2) be a partition of S that
is chosen uniformly at random among all the partitions of S with sizes n1,1 = λ1,1 · n, n1,2 =
λ1,2 · n and n2 = λ2 · n

2: Run first-stage algorithms on disjoint sets of samples:

(a) Use S1,1 and DP-EBM classifier to estimate propensity scores ê = DP-EBM(T ∼
X;S1,1, ε, δ)

(b) Use S1,2 and DP-EBM regression to estimate joint response surface µ̂ = DP-EBM(Y ∼
(T,X);S1,2, ε, δ)

3: Construct data with transformed outcome, S̃2, using S2 and the output of first-stage algo-
rithms: S̃2 = {(Xi, ψ̂i)}i∈S2 , in which ψ̂i = µ̂(1, Xi) − µ̂(0, Xi) + Yi−µ̂(1,Xi)

ê(Xi)
1(Ti =

1)− Yi−µ̂(0,Xi)
1−ê(Xi)

1(Ti = 0)

4: Use the transformed data S̃2 and DP-EBM regression to estimate CATE τ̂ = DP-EBM(ψ̂ ∼
X; S̃2, ε, δ)

DP-EBM-DR-learner is (ε, δ)-DP by theorem 6 and remark 7.
Similarly, we can construct DP-EBM-R-learner and DP-EBM-S-learner following Section 3.1

and use DP-EBM for fitting the regression model (or empirical risk minimization).
Our main focus here is DP-EBM-DR-learner due to the favorable theoretical properties of

DR-learner, including double robustness (Kennedy, 2020), connection to semiparametric efficiency
(Robins et al., 1994), and its interpretability. More precisely, DR-learner will always estimate the
projection of the true CATE function onto the space of functions over which we optimize in the fi-
nal regression, even if the true CATE function does not lie in this function space. This fact partially
mitigates the problem of model misspecification. We pick DP-EBM prediction algorithm due to its
exact model interpretability and high accuracy under privacy constraints.

R-learner shares many of the theoretical properties of DR-learner. DP-EBM-R-learner also has
similar empirical performance as DP-EBM-DR-learner in the following experiments.
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We treat S-learner as the baseline due to its simplicity. Since the approach is relatively simple
and does not use estimated propensity scores, S-learner often has larger bias (integrated squared
bias) and smaller variance (integrated variance) for moderate sample sizes. DP-EBM-S-learner
reduces to a differentially private average treatment effect (ATE) estimator. This happens because
the functional form restriction of DP-EBM enforces the CATE estimate of S-learner to be a constant
τ̂(x) = µ̂(1, x) − µ̂(0, x) = f̂T (1) − f̂T (0), where f̂T is the estimated univariate function of the
treatment. As a result, DP-EBM-S-learner, an ATE estimator, has a large irreducible bias and a
small variance for estimating CATE.

5. Experiments

In this section, we present experimental results for DP CATE learners using data from a real-world
experiment with synthetic treatment effect in addition to five simulated datasets. Imposing privacy
constraints necessarily compromises accuracy in estimating CATE. Understanding this privacy-
accuracy trade-off is the main goal of our experiments.

We present our analysis to illustrate how DP noise affects the estimated CATE function. We
show how different DP CATE learners applied to different sample sizes are affected differently by
varying the level of privacy constraints. Further, we elaborate on the privacy-accuracy trade-off
by decomposing the increase in mean squared error (MSE) into increases in bias and variance.
The code for all experiments in this section is publicly available at https://github.com/
FengshiNiu/DP-CATE.

5.1. Setups

5.1.1. ALGORITHM SPECIFICATION

In our experiments, we evaluate three DP CATE learners: DP-EBM-DR-learner, DP-EBM-
R-learner, and DP-EBM-S-learner. For the first two, the sample splitting ratio is set to
(λ1,1, λ1,2, λ2) = (0.25, 0.25, 0.5), which means estimating propensity score, outcome regression,
and CATE function each uses a quarter, a quarter, and a half of the whole sample, respectively. We
use the DP-EBM classifier and regressor implemented in the python package interpret1 intro-
duced in Nori et al. (2019) with all hyperparameters set to their default values. Except for propensity
scores, which are estimated using a DP-EBM classifier, all other functions in the experiments are
fitted using a DP-EBM regressor.

5.1.2. DATA DESCRIPTION

We describe how we generate different datasets {(Yi, Ti, Xi)}i∈S in all experiments using the fol-
lowing language. We use PX to denote the covariate distribution, e(x) := P (T = 1|X = x) to
denote the propensity score, and b(x) := E[Y (0)|X = x] for the control baseline function.

The main dataset we consider is a real dataset from Arceneaux et al. (2006), which studies the
effect of paid get-out-the-vote calls on voter turnout. We refer to this dataset as the voting data.
This data is originally generated from a stratified experiment with varying treatment probability and
has previously been used for comparing and evaluating the performance of different causal effect
estimators (Arceneaux et al., 2006; Nie and Wager, 2020). Nie and Wager (2020) points out that the

1https://github.com/interpretml/interpret
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true treatment effect in this data is close to non-existent, so we can spike the original dataset with a
synthetic treatment effect τ(·) to make the task of estimating heterogeneous treatment effects non-
trivial. The modified dataset therefore has the covariate distribution and propensity function from
the true data and has a synthetic treatment effect. Because we know the true synthetic treatment
effect τ(·), we can compare the estimated τ̂(·) to it and evaluate its performance.

Following Nie and Wager (2020), we focus on a subset of 148,160 samples containing 59,264
treated units and 88,896 controls. The covariates have 11 variables, which include state, county,
age, gender, past voting record, etc. The synthetic treatment effect is set to τ(Xi) = − VOTE00i

2+100/AGEi
,

where VOTE00i indicates whether the i-th unit voted in the year 2000. The synthetic treatment
effect is added by strategically flipping the binary outcome. Denote the original outcome in the data
by Y ∗. With probability 1 − τ(Xi), we set Yi(0) = Yi(1) = Y ∗. With probability τ(Xi), we set
Yi(0) = 1, Yi(1) = 0. Finally, we set Yi = Yi(Ti). The treatment heterogeneity as measured by
Var(τ(X)) = 0.016 is moderate. This number can also be interpreted as the MSE of using the true
ATE as a CATE estimator.

All five other datasets are generated by simulation based on the same recipe:

Xi ∼ PX , Ti|Xi ∼ Ber(e(Xi)), ϵi ∼ N(0, 1)

Yi = b(Xi) + Ti · τ(Xi) + ϵi.

We specify setups A to E with different (PX , b, e, τ) to cover a variety of settings.

Setup PX b e τ

A U(0, 1)d
sin(πx1x2) + 2(x3 − 0.5)2

+x4 + 0.5x5
trim0.1{sin(πx1x2)} (x1 + x2)/2

B N(0, Id)
max{x1 + x2, x3, 0}
+max{x4 + x5, 0}

0.5 x1 + log(1 + ex2)

C N(0, Id) 2 log(1 + ex1+x2+x3) 1/(1 + ex2+x3) 1

D N(0, Id)
max{x1 + x2 + x3, 0}
+max{x4 + x5, 0}

1/(1 + e−x1 + e−x2)
max{x1 + x2 + x3, 0}
−max{x4 + x5, 0}

E N(0,Σd)

∑6
i=1 ixi + x1x6

+1(−0.5 < x3 < 0.5)
1/(1 + ex1+x6)

1/(1 + ex1)− x2
+
∑6

i=3 xi

Table 1: Experiment Setup

For all setups, d = 6. The trim function is specified as trim0.1(x) = min{max{0.1, x}, 0.9}.
Setup A, B, C, and D are from Section 6 of Nie and Wager (2020). Setup A has a complicated
baseline function. Setup B is a randomized controlled trial with e = 0.5. Setup C has a constant
treatment effect with τ = 1. Setup D has a nondifferentiable treatment effect function. Setup E
has correlated covariates with Σd generated from a random data generator. Its baseline function is
discontinuous and contains an interaction term between variables.

5.1.3. EXPERIMENT HYPERPARAMETERS

We run all three DP CATE learners on all six datasets with seven levels of training sample size
growing exponentially {500, 1000, 2000, 4000, 8000, 16000, 32000}. For setups A-E, we generate
a fixed test sample of size 250000 using their data generating process and use it throughout the
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experiments. For the voting data, we construct the training data by random sampling (stratified by
treatment) from the whole data and use all data left as the test set. The privacy parameter δ is fixed
as 10−5 and ε varies between {1, 2, 4, 8, 16}. ε = 16 is seen as approximately non-private since the
privacy guarantee is extremely weak. ε = 1 and ε = 2 are seen as strong guarantees.

For each specification, we train the algorithm twice on two separate training sets with the spec-
ified sample size. We then generate three empirical MSE corresponding to the predicted CATE
using each of the two trained algorithms separately and the average of these two algorithms on
the test set. These three MSE are denoted as M̂SE1, M̂SE2, M̂SEavg. We generate estimated
M̂SE = (M̂SE1 + M̂SE2)/2, B̂ias = 2M̂SEavg − M̂SE, V̂ar = 2M̂SE − B̂ias. Here B̂ias is
meant to estimate the integrated squared bias

∫
(ES [τ̂S(x)] − τ(x))2dF (x), in which ES [τ̂S(x)]

denotes the expected estimate at point x over the distribution of data S. V̂ar is meant to estimate
the integrated variance

∫
Var(τ̂S(x))dF (x). This calculation is motivated by the fact that MSE of

the average prediction is the sum of the integrated squared bias plus half of the integrated variance.
For each of the specification we run this process five times and report the average M̂SE, B̂ias, V̂ar.

5.2. Insights from Experiment Results

Figure 1: Estimate of CATE on voter turnout as a function of Age (one of the 11 features) using
voting data with sample size 16000 and DP-EBM-DR-learner with varying ε.

Figure 1 shows the shape function of the conditioning variable “Age” that the DP-EBM-DR-learner
learned from the voting data with sample size 16000 at five different levels of ε. The main pur-
pose of this figure is to transparently show the effect of adding differential privacy constraints on
the estimated CATE function. Since the true shape function corresponds to the projection of the
synthetic CATE function τ∗(Xi) = − VOTE00i

2+(100/AGEi)
onto the additive separable function space, it is

smooth and monotonically decreasing. DP-EBM-DR-learner learns this well when the algorithm is
nonprivate or the privacy is low with ε = 128, 16, or 8. When privacy gets stronger with ε = 4
or 2 or 1, the estimated shape functions become jumpier and less smooth. Intuitively, this happens
because differential privacy is achieved by adding Gaussian noise in the training process. Higher
levels of noise under strong privacy lead to less well-behaved nonparametric function estimates.
Similar behavior has been observed when DP-EBMs are applied to general prediction tasks (Nori
et al., 2021).

Figure 2 plots the MSE of DP-EBM-DR-learner, DP-EBM-R-learner, and DP-EBM-S-learner
under seven different sample sizes of the voting data at five different levels of privacy. Each curve
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Figure 2: Comparison of DP-EBM-DR-learner, DP-EBM-R-learner, and DP-EBM-S-learner on
voting data with varying DP guarantee ε and sample size n. All MSE values are av-
erages of 25 runs reported on an independent test set.

in the upper row shows how MSE increases as the privacy gets stronger at a given sample size. Each
curve in the bottom row shows how MSE decreases as the sample size increases at a given privacy
level.

The performance of the less flexible DP-EBM-S-learner stays remarkably stable with MSE
equal to about 0.016 for most designs and is larger than this only at only n = 500 and ε = 1 where
the sample size is the smallest and the privacy is the strongest. This happens because DP-EBM-
S-learner outputs a constant scalar estimate of ATE, which is easily estimable with hundreds of
samples despite the privacy constraint. In fact, its MSE approximately equals Var(τ∗(X)) = 0.016,
which is the MSE of the true ATE.

The more flexible DP-EBM-DR-learner and DP-EBM-R-learner are much more sensitive to the
privacy parameter ε. This is especially true when the sample size n is small. MSE increases by a
factor of 103 going from ε = 16 to ε = 1 at n = 500; while it only increases by a factor less than
10 from ε = 16 to ε = 1 at n = 32000. For the intermediate sample size n = 16000, DR-learner
and R-learner are better until privacy is at its strongest at ε = 1, as also suggested by Figure 1.

A researcher interested in exploiting heterogeneity in treatment effects under privacy constraints
will need to decide whether to use a flexible CATE estimator or a simple ATE estimator. The lower
plot shows that when there is almost no privacy at ε = 16, flexible CATE estimators perform better
with 3000 or more samples on this dataset. As the privacy requirements get stronger, it takes more
samples for the flexible CATE estimator to perform better. At ε = 1 the simple ATE estimator
outperforms the CATE estimators until about 20000 samples on this dataset.

Figure 3 shows the mean squared error, integrated squared bias, and integrated variance values
of the DP-EBM-DR learner on all six datasets. Moving from no privacy to strong privacy, the
variance of this learner often increases by about a factor of 10 while the bias changes by at most a
factor of 2. This bias-variance decomposition reveals that accuracy loss due to privacy constraints
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Figure 3: Performance of DP-EBM-DR-learner on six datasets. Datasets Voting, A, and B use
16000 samples, and C, D, and E use 4000 samples. All mean squared error (MSE), bias,
and variance values are averages of 25 runs from an independent test set.

comes mostly from the increase in variance. In other words, the privacy-variance trade-off captures
most of the privacy-accuracy trade-off. This finding is in favor of CATE estimation under privacy
constraints, because bias is a stronger concern than variance in estimation of causal effects which
often deals with critical policy, economic or healthcare issues.

Our main experimental findings can be summarized as:

1. Stronger privacy constraints lead to noisier and jumpier estimated CATE functions.

2. Most of the additional accuracy loss due to privacy can be attributed to a significant increase
in variance, while bias often increases at a much slower rate.

3. Flexible, multi-stage CATE learners incur larger accuracy loss from differential privacy than
less flexible, single-stage CATE or ATE learners. It takes a significantly larger sample size to
exploit treatment effect heterogeneity under strong privacy constraints.

6. Discussion and Conclusion

In this paper, we presented a meta-algorithm for differentially private estimation of the Conditional
Average Treatment Effect (CATE). We showed that the meta-algorithm worked with a variety of
CATE estimation methods and provided tight privacy guarantees. We pointed out multiple sample
splitting, which enabled the usage of the parallel composition property of differential privacy and
saved privacy budget, as the key feature of the meta-algorithm. We implemented a fully specified
CATE estimator using DP-EBMs as the base learner. DP-EBMs were interpretable, high-accuracy
models with privacy guarantees, which allowed us to directly observe the impact of DP noise on
the learned causal model. We conducted experiments that varied the size of the training data and
the strength of the privacy guarantee to study the trade-off between privacy and CATE estimation
accuracy. Our experiments indicated that most of the accuracy loss from differential privacy in the
high-privacy, low-to-modest sample size regime was due to an increase in variance rather than bias.
The experiments also showed that flexible, multi-stage CATE learners incurred larger accuracy loss
from differential privacy than less flexible, single-stage CATE or ATE learners. It would be inter-
esting to complement these empirical findings by characterizing theoretically the trade-off between
privacy and accuracy for estimating CATE.
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Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized aggregatable
privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC conference on
computer and communications security, pages 1054–1067, 2014.

14



DIFFERENTIALLY PRIVATE ESTIMATION OF HETEROGENEOUS CAUSAL EFFECTS

Dylan J Foster and Vasilis Syrgkanis. Orthogonal statistical learning. arXiv preprint
arXiv:1901.09036, 2019.

Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach
for counterfactual prediction. In Doina Precup and Yee Whye Teh, editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 1414–1423. PMLR, 2017.

Geetha Jagannathan, Krishnan Pillaipakkamnatt, and Rebecca N. Wright. A practical differentially
private random decision tree classifier. In 2009 IEEE International Conference on Data Mining
Workshops, pages 114–121, 2009.

Edward H Kennedy. Optimal doubly robust estimation of heterogeneous causal effects. arXiv
preprint arXiv:2004.14497, 2020.

Tatiana Komarova and Denis Nekipelov. Identification and formal privacy guarantees. arXiv
preprint arXiv:2006.14732, 2020.
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