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ABSTRACT

In the last decades, the capacity to generate large amounts of data in science and
engineering applications has been growing steadily. Meanwhile, the progress in
machine learning has turned it into a suitable tool to process and utilise the avail-
able data. Nonetheless, many relevant scientific and engineering problems present
challenges where current machine learning methods cannot yet efficiently leverage
the available data and resources. For example, in scientific discovery, we are often
faced with the problem of exploring very large, structured and high-dimensional
spaces, and where querying a high fidelity, black-box objective function is very
expensive. Progress in machine learning methods that can efficiently tackle such
problems would help accelerate currently crucial areas such as drug and materials
discovery. In this paper, we propose a multi-fidelity active learning algorithm with
GFlowNets as a sampler, to efficiently discover diverse, high-scoring candidates
where multiple approximations of the black-box function are available at lower
fidelity and cost. Our evaluation on molecular discovery tasks show that multi-
fidelity active learning with GFlowNets can discover high-scoring candidates at a
fraction of the budget of its single-fidelity counterpart while maintaining diversity,
unlike RL-based alternatives. These results open new avenues for multi-fidelity
active learning to accelerate scientific discovery and engineering design.

1 INTRODUCTION

To tackle the most pressing challenges for humanity, such as the climate crisis and the threat of
pandemics or antibiotic resistance, there is a growing need for new scientific discoveries. By way
of illustration, materials discovery can play an important role in improving the efficiency of energy
production and storage; and reducing the costs and duration of drug discovery cycles has the poten-
tial to effectively and rapidly mitigate the consequences of new diseases. In recent years, researchers
in materials science, biochemistry and other fields have increasingly adopted machine learning as
a tool since it holds the promise to drastically accelerate scientific discovery (Butler et al., 2018;
Zitnick et al., 2020; Bashir et al., 2021; Das et al., 2021).

Although machine learning has already made a positive impact in scientific discovery applications
(Stokes et al., 2020; Jumper et al., 2021), unleashing its full potential will require improving the
current algorithms Agrawal & Choudhary (2016). For example, typical tasks in potentially impactful
applications in materials and drug discovery require exploring combinatorially large, structured and
high-dimensional spaces (Bohacek et al., 1996; Polishchuk et al., 2013), where only small, noisy
data sets are available. Furthermore, obtaining new annotations computationally or experimentally
is often very expensive. Such scenarios present serious challenges even for the most advanced
current machine learning methods.

In the search for a useful discovery, we typically define a quantitative proxy for usefulness, which we
can view as a black-box function. One promising avenue for improvement is developing methods
that more efficiently leverage the availability of multiple approximations of the target black-box
function at lower fidelity but much lower cost than the highest fidelity oracle (Chen et al., 2021; Fare
et al., 2022). For example, a standard tool to characterise the properties of materials and molecules
is quantum mechanics simulations such as Density Functional Theory (DFT) (Parr, 1980; Sholl &
Steckel, 2022). However, DFT is computationally too expensive for high-throughput exploration of
large search spaces. Thus, large-scale exploration can only be achieved through cheaper but less
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Figure 1: Illustration of multi-fidelity active learning with GFlowNets (Algorithm 1). Given a set
of M oracles f1, . . . , fM (center left) with varying fidelities and costs λ < . . . < λM , respectively,
we can construct a data set D (top left) with annotations from the oracles. With this data, we fit
a multi-fidelity surrogate (center), modelling the posterior p(fm(x)|x,m,D). Using the surrogate,
we compute a multi-fidelity acquisition function—max-value entropy search in our experiments—
which is used as the reward to train a GFlowNet (right). GFlowNet samples both an object x and
the fidelity m proportionally to this reward. Once GFlowNet is trained, we sample N tuples (x,m)
and select the top B according to the acquisition function (bottom left). Finally, we annotate each
new candidate with the selected oracle, add them to the data set and repeat the process.

accurate oracles. Nonetheless, solely relying on low-fidelity approximations is clearly suboptimal.
Ideally, such “needle-in-a-haystack” problems would be best tackled by methods that can efficiently
and adaptively distribute the available computational budget between the multiple oracles depending
on the already acquired information.

Another challenge is that even the highest fidelity oracles are often underspecified with respect to
the actual, relevant, downstream applications. This underspecification problem can be mitigated by
finding multiple candidate solutions (Jain et al., 2023a). However, most current machine learning
methods used in scientific discovery problems, such as Bayesian optimisation (BO, Song et al.,
2018; Garnett, 2023) and reinforcement learning (RL, Angermueller et al., 2020), are designed to
find the optimum of the target function. Therefore, it is imperative to develop methods that go
beyond “simply” finding the optimum, to discover sets of diverse, high-scoring candidates.

Recently, generative flow networks (GFlowNets, Bengio et al., 2021a) have demonstrated their abil-
ity to find diverse candidates through discrete probabilistic modelling, with particularly promising
results when used in an active learning loop (Jain et al., 2022). In this paper, we propose a multi-
fidelity active learning algorithm enhanced with these capabilities of GFlowNets. Our contributions
can be summarized as follows:

• We introduce a multi-fidelity active learning algorithm designed for combinatorially large,
structured and high-dimensional spaces.

• We propose an extension of GFlowNets for this multi-fidelity setting, to sample both can-
didates and oracle indices, proportionally to a given acquisition function.

• We conduct a comprehensive empirical evaluation across four scientific discovery tasks and
demonstrate that multi-fidelity active learning with GFlowNets:

– Discovers high-scoring samples with reduced computational costs compared to its
single-fidelity counterpart.

– Identifies multiple modes of the target function, unlike methods relying on reinforce-
ment learning or Bayesian optimization, thereby facilitating diverse sampling.

2



Under review as a conference paper at ICLR 2024

2 RELATED WORK

Our work can be framed within the broad field of active learning (AL), a class of machine learning
methods whose goal is to learn an efficient data sampling scheme to accelerate training (Settles,
2009). For the bulk of the literature in AL, the goal is to train an accurate model h(x) of an unknown
target function f(x), as in classical supervised learning. However, in certain scientific discovery
problems, which motivate our work, a desirable goal is often instead to discover multiple, diverse
candidates x with high values of f(x), as discussed in Section 1.

Our work is also closely connected to Bayesian optimisation (BO, Garnett, 2023), which aims at
optimising a black-box objective function f(x) that is expensive to evaluate. In contrast to the
problems we address in this paper, standard BO typically considers continuous domains and works
best in relatively low-dimensional spaces (Frazier, 2018). Nonetheless, in recent years, approaches
for BO with structured data (Deshwal & Doppa, 2021) and high-dimensional domains (Grosnit et al.,
2021) have been proposed in the literature. The main difference between BO and the problem we
tackle in this paper is that we are interested in finding multiple, diverse samples with high value of f
and not only the optimum. Recent work by Maus et al. (2022) has proposed a variant of traditional
BO to find diverse solutions.

This goal, as well as the discrete nature of the search space, is shared with active search (Garnett
et al., 2012), a variant of active learning in which the task is to efficiently find multiple samples of a
valuable (binary) class from a discrete domain X . This objective was already considered in the early
2000s by Warmuth et al. (2001) for drug discovery , and more formally analysed in later work (Jiang
et al., 2017; 2019). Another recent research area in stochastic optimisation that considers diversity is
so-called Quality-Diversity (Chatzilygeroudis et al., 2021), which typically uses evolutionary algo-
rithms that perform search in a latent space. These and other problems such as multi-armed bandits
(Robbins, 1952) and the general framework of experimental design (Chaloner & Verdinelli, 1995)
all share the objective of optimising or exploring an expensive black-box function. Formal con-
nections between some of these areas have been established in the literature (Srinivas et al., 2010;
Foster, 2021; Jain et al., 2023a; Fiore et al., 2023).

Multi-fidelity methods have been proposed in most of these areas of research. An early survey
on multi-fidelity methods for Bayesian optimisation was compiled by Peherstorfer et al. (2018),
and research on the subject has continued since with the proposal of specific acquisition functions
(Takeno et al., 2020) and the use of deep neural networks to improve the modelling (Li et al., 2020).
Recently, works on multi-fidelity active search have also appeared in the literature (Nguyen et al.,
2021), but interestingly, the literature on multi-fidelity active learning (Li et al., 2022a) is scarcer.
Finally, while multi-fidelity methods have started to be applied in scientific discovery problems
(Chen et al., 2021; Fare et al., 2022) the literature is still scarce probably because most approaches
cannot tackle the specifics of scientific discovery, such as the need for diverse samples. Here, we
aim at addressing this need with the use of GFlowNets (Bengio et al., 2021a; Jain et al., 2023b) for
multi-fidelity active learning.

3 METHOD

In this section, we first briefly introduce the necessary background on GFlowNets and active learn-
ing. Then, we describe the proposed algorithm for multi-fidelity active learning with GFlowNets.

3.1 BACKGROUND

GFlowNets Generative Flow Networks (GFlowNets; Bengio et al., 2021a;b) are amortised sam-
plers designed for sampling from discrete high-dimensional distributions. Given a space of com-
positional objects X and a non-negative reward function R(x), GFlowNets are designed to learn
a stochastic policy π that generates x ∈ X with a probability proportional to the reward, that is
π(x) ∝ R(x). This distinctive property induces sampling of diverse, high-reward objects, which is
a desirable property for scientific discovery, among other applications (Jain et al., 2023a).

The objects x ∈ X are constructed sequentially by sampling transitions st→st+1 ∈ A between
partially constructed objects (states) s ∈ S, which includes a unique empty state s0. The stochas-
tic forward policy is typically parameterised by a neural network PF (st+1|st; θ), where θ denotes
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the learnable parameters, which models the distribution over transitions st→st+1 from the cur-
rent state st to the next state st+1. The backward transitions are parameterised too and denoted
PB(st|st+1; θ). Objects x are generated by the sequential application of PF , forming trajectories
τ = (s0 → s1 . . . → x). To learn the parameters θ such that π(x) ∝ R(x) we use the trajectory
balance learning objective (Malkin et al., 2022)

LTB(τ ; θ) =

(
log

Zθ

∏n
t=0 PF (st+1|st; θ)

R(x)
∏n

t=1 PB(st|st+1; θ)

)2

, (1)

where Zθ is an approximation of the partition function
∑

x∈X R(x) that is learnt. The GFlowNet
learning objective supports training from off-policy trajectories, so during training the trajectories
are typically sampled from a mixture of the current policy with a uniform random policy. The reward
is also tempered to make the policy focus on the modes.

Active Learning In its simplest formulation, the active learning problem that we consider is as
follows: we start with an initial data set D = {(xi, f(xi))} of samples x ∈ X and their evaluations
by an expensive, black-box objective function (oracle) f : X → R, which we use to train a surrogate
model h(x). A GFlowNet can then be trained to learn a generative policy πθ(x) using h(x) as
reward function, that is R(x) = h(x). Optionally, we can instead train a probabilistic surrogate
p(f |D) and use as reward the output of an acquisition function α(x, p(f |D)) that considers the
epistemic uncertainty of the surrogate model, as typically done in Bayesian optimisation. This is the
approach by Jain et al. (2022) with GFlowNet-AL. An important difference between traditional BO
and active learning with GFlowNets is that the latter samples from the acquisition function instead
of optimising it (Jain et al., 2023a). Finally, we use the policy π(x) to generate a batch of samples to
be evaluated by the oracle f , we add them to our data set and repeat the process a number of active
learning rounds.

While much of the active learning literature (Settles, 2009) has focused on so-called pool-based
active learning, where the learner selects samples from a pool of unlabelled data, we here consider
the scenario of de novo query synthesis, where samples are selected from the entire object space
X . This scenario is particularly suited for scientific discovery (King et al., 2004; Xue et al., 2016;
Yuan et al., 2018; Kusne et al., 2020). The ultimate goal pursued in active learning applications
is also heterogeneous. Often, the goal is the same as in classical supervised machine learning: to
train an accurate (surrogate) model h(x) of the unknown target function f(x). For some problems
in scientific discovery, we are usually not interested in the accuracy across the entire input space X ,
but rather in discovering new, diverse objects with high values of f . We have reviewed the literature
that is connected to our work in Section 2.

3.2 MULTI-FIDELITY ACTIVE LEARNING

We now consider the following active learning problem with multiple oracles of different fidelities.
Our ultimate goal is to generate a batch of K samples x ∈ X according to the following desiderata:

• The samples obtain a high value when evaluated by the objective function f : X → R+.

• The samples should be diverse, covering distinct high-valued regions of f .

Furthermore, we are constrained by a computational budget Λ that limits our capacity to evaluate f .
While f is extremely expensive to evaluate, we have access to a discrete set of approximate functions
(oracles) {fm}1≤m≤M : X → R+, where m represents the fidelity index and each oracle has an
associated cost λm—we assume, without loss of generality, that the larger m, the higher the fidelity
and that λ1 < λ2 < . . . < λM . We also assume fM = f because, even though there may exist more
accurate oracles, we do not have access to them. This scenario resembles many practically relevant
problems in scientific discovery and motivates our approach: because the objective function fM is
not a perfect proxy of the true usefulness of objects x, we seek diversity; and because fM may be
expensive to evaluate, we make use of approximate models.

In multi-fidelity active learning—as well as in multi-fidelity Bayesian optimisation—the iterative
sampling scheme consists of not only selecting the next object x (or batch of objects) to evaluate,
but also the level of fidelity m, such that the procedure is cost-effective.

4



Under review as a conference paper at ICLR 2024

Algorithm 1: MF-GFN: Multi-fidelity active learning with GFlowNets. A graphical summary
of this algorithm is shown in Fig. 1.
Input: {(fm, λm)}: M oracles and their corresponding costs;
D0 = {(xi, fm(xi),mi)}: Initial data set;
h(x,m): Multi-fidelity Gaussian Process surrogate model;
α(x,m): Multi-fidelity acquisition function;
R(α(x,m), β): reward function to train the GFlowNet;
B: Batch size of oracles queries;
Λ: Maximum available budget;
K: Number of top-scoring candidates to be evaluated at termination;
Result: Top-K(D), Diversity
Initialization: Λj = 0, D = D0

while Λj < Λ do
• Fit h on data set D;
• Train GFlowNet with reward R(α(x,m), β) to obtain policy πθ(x);
• Sample N ≫ B tuples (xi,mi) ∼ πθ;
• Score each tuple using α(x,m) and select the top B tuples with the highest scores;
• Evaluate each tuple with the corresponding oracle to form batch
B = {(x1, fm(x1),m1), . . . , (xB , fm(xB),mB)};

• Update data set D = D ∪ B and budget Λj = Λj +
∑i=B

i=1 λmi
;

end

Briefly, our algorithm, MF-GFN follows these iterative steps: we use the currently available data to
train a probabilistic multi-fidelity surrogate model h(x,m). We can use the surrogate to compute
the value of annotating a candidate x with the oracle fm via an acquisition function α(x,m). Next,
we train a GFlowNet with the acquisition function as a reward. Once trained we sample N tuples
(x,m) and select the top B. Finally, we annotate each candidate x with the selected oracle m and
start over. Figure 1 contains a visual illustration of MF-GFN and more detailed descriptions are
provided in Algorithm 1 and in Appendices A and B. Below, we discuss further the surrogate model
and the acquisition function, and in Section 3.3 we introduce the multi-fidelity GFlowNet.

Surrogate Model Given a dataset D, a candidate x and an oracle index m, we want to model the
posterior distribution over the output of the oracle, p(fm(x)|x,m,D). A natural modelling choice is
Gaussian Processes (GP) (Rasmussen & Williams, 2005), commonly used in Bayesian optimisation.
However, in order to better model structured, high-dimensional data, we use deep kernel learning
(Wilson et al., 2016): First, a non-linear embedding of the inputs x is learnt with a deep neural
network. Then, a multi-fidelity GP kernel is applied by combining a Matern kernel applied to the
latent representations from the network along with a linear downsampling kernel over the fidelity
index m (Wu et al., 2019).

Acqusition Function Multi-fidelity methods proposed in the Bayesian optimization literature
have adapted information theory-based acquisition functions (Li et al., 2022a; Wu et al., 2023; Li
et al., 2022b). In our work, we use the multi-fidelity version (Takeno et al., 2020) of max-value
entropy search (MES) Wang & Jegelka (2017). MES captures the mutual information between the
value of candidate x and the maximum value attained by the objective function, f⋆. The multi-
fidelity variant is designed to select the candidate x and the fidelity m that maximise the mutual
information between f⋆

M and the oracle at fidelity m, fm, weighted by the cost of the oracle (see
Appendix B for the details). MES has been shown to be more efficient than plain entropy search
(ES) (Wang & Jegelka, 2017) and it even makes random sampling a strong baseline. Additionally,
for efficiency, we adopt the GIBBON approximation of MF-MES, which has demonstrated good
performance in the context of multi-fidelity optimization (Moss et al., 2021).

3.3 MULTI-FIDELITY GFLOWNETS

A multi-fidelity acquisition function can be regarded as a cost-adjusted utility function. Therefore,
in order to carry out a cost-aware search, we seek to sample diverse objects with high value of the
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acquisition function. To this purpose, we propose to use a GFlowNet as a generative model by
training it to sample the fidelity m in addition to the candidate x itself. Formally, given a GFlowNet
with state and transition spaces S and A, we augment the state space with a new dimension for
the fidelity M′ = {0, 1, 2, . . . ,M} (including m = 0, which corresponds to unset fidelity), such
that the augmented, multi-fidelity space is SM′ = S ∪ M′. The set of allowed transitions AM is
augmented such that a fidelity m > 0 of a trajectory must be selected once, and only once, from any
intermediate state.

Intuitively, allowing the selection of the fidelity at any step in the trajectory should give flexibility
for better generalisation. At the end, complete trajectories are the concatenation of an object x and
the fidelity m, that is (x,m) ∈ XM = X ∪M. In summary, the proposed approach learns a policy
that samples jointly objects in a possibly very large, structured and high-dimensional space, together
with the level of fidelity, that maximise a given multi-fidelity acquisition function as reward.

4 EMPIRICAL EVALUATION

In this section, we present empirical evaluations of multi-fidelity active learning with GFlowNets.
Through our experiments, we aim to answer the following questions:

• Can our multi-fidelity active learning approach find high-scoring, diverse samples at lower
cost than with a single-fidelity oracle?

• Does MF-GFN, which samples objects and fidelities (x,m), provide any advantage over
sampling only x and selecting m randomly?

4.1 METRICS

As discussed in Section 3.2, our goal is to sample diverse objects with high scores according to a
reward function. Following Gao et al. (2022) and Jain et al. (2022), we here consider a pair of
metrics that capture both the score and the diversity of the final batch of candidates:

• Mean top-K score: mean score, per the highest fidelity oracle fM , of the top-K samples.

• Top-K diversity: mean pairwise distance within the top-K samples.

For additional details, see Appendix D. Since here we are interested in the cost effectiveness of
the active learning process, we evaluate the above metrics as a function of the cost accumulated in
querying the oracles. It is important to note that multi-fidelity approaches are not aimed at achieving
better mean top-K scores than a single-fidelity active learning counterpart, but rather the same mean
top-K scores but with a smaller budget.

4.2 BASELINES

In order to evaluate our approach, and to shed light on the questions stated above, we consider the
following baselines:

GFlowNet with highest fidelity (SF-GFN) GFlowNet-based active learning (GFlowNet-AL) as
in Jain et al. (2022) with the highest fidelity oracle, to establish a benchmark for performance without
considering the cost-accuracy trade-offs.

GFlowNet with random fidelities (Random fid. GFN ) Variant of SF-GFN where the candidates
are generated with the GFlowNet but the multi-fidelity acquisition function is evaluated with random
fidelities, to investigate the benefit of deciding the fidelity with GFlowNets.

Random candidates and fidelities (Random) Quasi-random approach where both candidates and
fidelities are randomly sampled. We query the top (x,m) pairs according to the acquisition function.

Multi-fidelity PPO (MF-PPO) Instantiation of multi-fidelity Bayesian optimisation where the
acquisition function is optimised using proximal policy optimisation (PPO, Schulman et al., 2017).
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Figure 2: Results on the DNA aptamers and AMP tasks. The curves indicate the mean energy
fM within the top-100 samples computed at the end of each active learning round and plotted as a
function of the budget used. The colour of the round markers indicates the diversity within the batch
(darker colour indicating more diversity), computed as the average sequence identity distance (see
Appendix D). In both the DNA and AMP tasks, MF-GFN outperforms all baselines in terms of cost
efficiency, while obtaining great diversity in the final batch of top-K candidates.

Unlike with the other baselines, we include an initialisation of n/3 steps where n is the maximum
number of steps allowed. We do this to help exploration and diversity, since without this PPO tends
to collapse to generation of very similar candidates.

4.3 BENCHMARK TASKS

As a proof of concept, we perform experiments on two low-dimensional synthetic functions: Branin
and Hartmann, widely used in the multi-fidelity Bayesian optimisation literature (Perdikaris et al.,
2017; Song et al., 2018; Kandasamy et al., 2019; Li et al., 2020; Folch et al., 2023). These tasks
show that MF-GFN is able to obtain results comparable to other multi-fidelity BO methods. We
provide these results in Appendix C.4. To obtain a solid assessment of the performance of MF-
GFN on large, structured and high-dimensional problems, we evaluate it on more complex tasks of
practical scientific relevance. We present results on a variety of discovery domains: DNA aptamers
(Section 4.3.1), anti-microbial peptides (Section 4.3.2) and small molecules (Section 4.3.3).

4.3.1 DNA APTAMERS

DNA aptamers are single-stranded nucleotide sequences of nucleobases A, C, T and G, with multiple
applications in polymer design due to their specificity and affinity as sensors in crowded biochem-
ical environments (Zhou et al., 2017; Corey et al., 2022; Yesselman et al., 2019; Kilgour et al.,
2021). The objective is to maximize the (negative) free energy of the secondary structure of DNA
sequences. This free energy can be seen as a proxy of the stability of the sequences. Diversity is
computed as one minus the mean pairwise sequence identity among a set of DNA sequences.

Setting In our experiments, we consider fixed-length sequences of 30 bases and design a
GFlowNet environment where the action space A consists of the choice of base to append to the
sequence, starting from an empty sequence. This yields a design space of size |X | = 430 (ignoring
the selection of fidelity in MF-GFN). Further details about the task are discussed in Appendix C.5.1.

Oracles NUPACK (Zadeh et al., 2011), a nucleic acid structure analysis software, is used as the
highest fidelity oracle, fM . As a low fidelity oracle, we trained a transformer model on 1 million
randomly sampled sequences annotated with fM , and assigned it a cost 100× smaller than the
highest-fidelity oracle. The cost difference is selected to simulate practical scenarios where wet lab
experiments take hours for evaluation, while cheap online simulations take a few minutes.
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Figure 3: Results on the molecular discovery tasks: (a) ionisation potential (IP), (b) electron affinity
(EA). These visualisations are analogous to those in Fig. 2. The diversity of molecules is computed
as the average pairwise Tanimoto distance (see Appendix D). Results generally show MF-GFN’s
faster convergence in discovering diverse molecules with desirable properties.

Results As presented in Fig. 2a, MF-GFN reaches the best mean top-K energy achieved by its
single-fidelity counterpart with just about 25% of the budget. It is also more efficient than GFlowNet
with random fidelities and MF-PPO. Crucially, we also see that MF-GFN maintains a high level of
diversity (0.32), even after converging to the top-K scores. On the contrary, MF-PPO (0.20) is not
able to discover diverse samples, as is expected based on prior work (Jain et al., 2022).

4.3.2 ANTIMICROBIAL PEPTIDES

Antimicrobial peptides are short protein sequences which possess antimicrobial properties. As pro-
teins, these are sequences of amino-acids—a vocabulary of 20 along with a special stop token. The
aim is to identify sequences with a high antimicrobial activity, as measured by a classifier trained on
DBAASP (Pirtskhalava et al., 2021). The diversity calculation mirrors that of DNA.

Setting We consider variable-length protein sequences with up to 50 residues. Analogous to DNA,
if we ignore the fidelity, this yields a design space of size |X | = 2050.

Oracles We construct a three-oracle setup by training deep learning models with different capaci-
ties on exclusive subsets of data points. We simulated a setup wherein the two lower fidelity oracles
are trained on specifc subgroups of the peptides. Details in Appendix C.5.2. Similar to the DNA ex-
periment, the lower-fidelity oracles had (equivalent) costs 100× less than the highest fidelity oracle.

Results Fig. 2b indicates that in this task MF-GFN obtains even greater advantage over all other
baselines in terms of cost-efficiency. It reaches the same maximum mean top-K score as the random
baselines with 10× less budget and almost 100× less budget than SF-GFN. In this task, MF-PPO
did not achieve comparable results. Crucially, the diversity of the final batch found by MF-GFN
stayed high (0.87), satisfying this important criterion in the motivation of this method.

4.3.3 SMALL MOLECULES

Molecules are clouds of interacting electrons (and nuclei) described by a set of quantum mechanical
properties. These properties dictate their chemical behaviours and applications. To demonstrate
the capability of MF-GFN in the setting of quantum chemistry, we consider two proof-of-concept
tasks in molecular electronic potentials: maximisation of the (negative) adiabatic ionisation potential
(IP) and of the adiabatic electron affinity (EA). These electronic potentials dictate the molecular
redox chemistry, and are crucial in organic semiconductors, photoredox catalysis and organometallic
synthesis. In this task, the diversity measure is computed as the average pairwise Tanimoto distance
among the top-K scoring molecules (Bajusz et al., 2015).
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Setting We designed the GFlowNet state space by considering variable length sequences of SELF-
IES tokens (Krenn et al., 2020) to represent molecules, with a vocabulary size of 26. The maximum
length was 64, resulting in a design space of |X | = 2664.

Oracles Numerous approximations of these quantum mechanical properties have been developed
with different methods at different fidelities, with the famous example of Jacob’s ladder in density
functional theory (Perdew & Schmidt, 2001). We employed three oracles that correlate with ex-
perimental results as approximations of the scoring function, by using various levels of geometry
optimisation to obtain approximations to the adiabatic geometries. The calculation of IP or EA was
carried out with semi-empirical quantum chemistry method XTB (Neugebauer et al., 2020). These
three oracles had costs of 1, 3 and 7 (respectively), proportional to their computational running
demands. See Appendix C.5.3 for further details.

Results The realistic configuration and practical relevance of these tasks allow us to draw stronger
conclusions about the usefulness of multi-fidelity active learning with GFlowNets in scientific dis-
covery applications. As in the other tasks evaluated, we here also found MF-GFN to achieve better
cost efficiency at finding high-score top-K molecules (Fig. 3), especially for ionization potentials
(Fig. 3a). By clustering the generated molecules, we find that MF-GFN captures as many modes as
random generation, far exceeding that of MF-PPO. Indeed, while MF-PPO is able to quickly opti-
mise the target function in the task of electron affinity (Fig. 3b), all generated molecules were from
a few clusters (low diversity), which is of much less utility for chemists.

4.4 ABLATION STUDIES AND ADDITIONAL RESULTS

Besides the main experiments presented above, we carried out additional experiments to gain further
insights about MF-GFN and study the influence of its various components. We provide detailed
results in Appendix E and summarise the main conclusions here:

• Analysing the results in terms of the top-K diverse samples confirms that the GFlowNet-
based approaches are able to jointly optimize scores and diversity, while RL approaches
trade diversity for high scores.

• As is expected, the advantage of MF-GFN over its single-fidelity counterpart decreases as
the cost of the lower fidelity oracles increases. Nonetheless, even with a cost ratio of 1 : 2
in the DNA task, MF-GFN still outperforms all other methods.

• The same conclusions hold for various values of the final batch size, K ∈ {50, 100, 200}.

• We expect MF-GFN to query cheap oracles to prune the input space and costly oracles for
high-reward candidates. We validate this through a visualization of a synthetic task.

5 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

In this paper, we have presented MF-GFN, a multi-fidelity active learning algorithm that leverages
GFlowNets to achieve exploration with diversity for scientific discovery applications. MF-GFN
samples candidates as well as the fidelity at which the candidate is to be evaluated, when multiple
oracles are available with varying fidelities and costs. We evaluated MF-GFN on benchmark tasks of
practical relevance, such as DNA aptamer generation, antimicrobial peptide and small molecule de-
sign. Through comparisons with previously proposed methods as well as with variants of our method
designed to understand the contributions of different components, we conclude that multi-fidelity ac-
tive learning with GFlowNets not only outperforms its single-fidelity active learning counterpart in
terms of cost effectiveness and diversity of sampled candidates, but it also offers an advantage over
other multi-fidelity methods due to its ability to learn a stochastic policy to jointly sample objects
and the fidelity of the oracle to be used to evaluate them.

Limitations and Future Work Aside from the molecular modelling tasks, our empirical evalu-
ations in this paper involved simulated oracles with manually selected costs. Future work should
evaluate MF-GFN with more practical oracles and costs that reflect their computational or financial
demands. Furthermore, a promising avenue that we do not study in this paper is the application of

9



Under review as a conference paper at ICLR 2024

MF-GFN in more complex, structured design spaces, such as hybrid (discrete and continuous) do-
mains (Lahlou et al., 2023), as well as multi-fidelity, multi-objective problems (Jain et al., 2023b).

ETHICS STATEMENT

Our work is motivated by pressing challenges to sustainability and public health, and we envision
applications of our approach to drug discovery and materials discovery. However, as with all work
on these topics, there is a potential risk of dual use of the technology by nefarious actors (Urbina
et al., 2022). The authors strongly oppose any uses or derivations of this work intended to cause
harm to humans or the environment.

REPRODUCIBILITY STATEMENT

We have made an effort to include the most relevant details of our proposed algorithm in the main
body of the paper. For example, a detailed procedure of the steps of the algorithm is presented in
Algorithm 1. Besides this, we have included additional details about the algorithm in Appendices A
and B. We have also provided the most relevant information about the experiments in Section 4, for
instance including a description of the data representation and the oracles for each of the benchmark
tasks. The rest of the details about the experiments are provided in Appendix C for the sake of better
clarity, transparency and reproducibility. Finally, our submission includes the original code of our
algorithm and experiments and, since it has been developed as open source, the link to the code will
be included in the manuscript at the end of the review process.
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A MF-GFN ALGORITHM

Our algorithm, MF-GFN, detailed in Algorithm 1, proceeds as follows: An active learning round
j starts with a data set of annotated samples Dj = {(xi, fm(xi),mi)}1≤m≤M . The data set is
used to fit a probabilistic multi-fidelity surrogate model h(x,m) of the posterior p(fm(x)|x,m,D).
The output of the surrogate model is then used to compute the value of a multi-fidelity acquisition
function α(x,m). In our experiments, we use the multi-fidelity version (Takeno et al., 2020) of max-
value entropy search (MES) (Wang & Jegelka, 2017), which is an information-theoretic acquisition
function widely used in Bayesian optimisation.

An active learning round terminates by generating N objects from the sampler (here the GFlowNet
policy π) and forming a batch with the best B objects, according to α. Note that N ≫ B,
since sampling from a GFlowNet is relatively inexpensive. The selected objects are anno-
tated by the corresponding oracles and incorporated into the data set, such that Dj+1 = Dj ∪
{(x1, fm(x1),m1), . . . (xB , fm(xB),mB)}.

B SURROGATE MODELS AND ACQUISITION FUNCTION

In this appendix, we provide additional details about the surrogate models used in our active learning
experiments, as well as about the acquisition function.

B.1 GAUSSIAN PROCESSES

In our multi-fidelity active learning experiments, we model the posterior distribution over the
outputs of the oracles fm, p(fm(x)|x,m,D), assuming that observations are perturbed by noise
from a normal distribution N (0, σ2). The assumption of normally distributed noise with con-
stant variance is widely used in the Bayesian Optimization literature. Consider a set of n points
z(1:n) = (x1,m1), (x2,m2), . . . , (xn,mn) with observed values y(1:n) = y1, y2, . . . , yn. We can
then use Gaussian Processes such that f |z(1:n), y(1:n) ∼ GP (µn,Kn) with mean µn and covari-
ance function or kernel Kn evaluated at point z = (x,m) as

µn(x) = µ(x) +K(x, x1:n)(K(x1:n, x1:n) + σ2I)−1(y1:n − µ(x1:n))

Kn(x1, x2) = K((x1, x2)−K(x1, x1:n)(K(x1:n, x1 : n) + σ2I)−1K(x1:n, x2).

We adapt the multi-fidelity kernel as proposed in (Wu et al., 2019). The authors implement a
Downsampling Kernel for the data fidelity parameter, in cases where it is relevant, along with an
Exponential Decay Kernel for the iteration fidelity parameter, when applicable. As our experimental
approach treats fidelity as akin to a data point, the implementation of the Downsampling Kernel has
been incorporated.

Hence, the kernel function of the GP is
K(z1, z2) = K1(x1, x2)×K2(m1,m2),

where K1(·, ·) is a square-exponential kernel and K2(·, ·), the downsampling kernel is given by

K2(m1,m2) = c+ (1−m1)
1+δ(1−m2)

(1+δ),

where c, δ > 0 are hyper-parameters.

B.2 DEEP KERNEL LEARNING

While for the synthetic (simpler) tasks we use exact GPs, it is well know that GPs are less effective
with high-dimensional data, because of the reliance on the Euclidean distance. Furthermore, stan-
dard GPs are not directly applicable to discrete, structured data. Therefore, for the benchmark tasks
we implement deep kernel learning (DKL; Wilson et al., 2016). In DKL, the inputs are transformed
by

k(xi, xj |θ) → k(g(xi, w), g(xj , w)|θ, w),
where the non-linear mapping g(x,w) is a low-dimensional continuous embedding, learnt via a
deep neural network—a transformer in our tasks. To scale the GP to large datasets, we implement
the stochastic variational GP based on the greedy inducing point method (Chen et al., 2018). We
adopt the deep kernel learning experimental setup from (Stanton et al., 2022).
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B.3 ACQUISITION FUNCTION

Max Value Entropy Search (MES) (Wang & Jegelka, 2017) is an information-theoretic acquisition
function. The standard, single-fidelity MES seeks to query the objective function at locations that
reduce our current uncertainty in the maximum value of f∗. It aims to maximise the mutual infor-
mation between the value of the objective function f when choosing point x and the maximum of
the objective function, f⋆. This contrasts with previously proposed entropy search (ES) criterion,
which instead considers the arg max of the objective function. The MES criterion is defined as
follows:

α = I(f⋆; y|Dj) = H(y|Dj)− Ef⋆ [H(y|Dj , f
⋆)|Dj ],

where y is the outcome of experiment x and Dj is the data set at the jth active learning iteration.
and H(Y ) = EY [− log(p(Y ))] is the differential entropy of random variable Y .

The information gain is defined as the reduction in entropy of y provided by knowing the maximal
value f⋆

IG(y,m|Dn) = H(y|Dn)−H(y|f⋆ < m,Dn)

It follows that the MES acquisition function can be expressed in terms of IG:

α = Em∼f⋆ [IGn(y,m|Dn)],

where y ∼ N (µA, σA), f(x) ∼ N (µB, σB) and the difference between y and f(x) is just indepen-
dent Gaussian noise.

Replacing the maximisation of an intractable quantity with the maximisation of a lower bound is a
well-established strategy. Instead of attempting to evaluate the intractable quantity, IG, we evaluate
its lower bound IGApprox.

Thus, the acquisition function becomes

α =
1

M
∑

m∈M
IGApprox(y,m|Dn)

IGApprox =
1

2
log|R| − 1

2M
∑

m∈M
log(1− ρ2

ϕ(γ(m))

Φ(γ(m))
[γ(m) +

ϕ(γ(m))

Φ(γ(m))
]),

where ϕ and Φ are the standard normal cumulative distribution and probability density functions (as
arising from the expression for the differential entropy of a truncated Gaussian), γ(m) = m−µn(x)

σn(x)

and R is the correlation matrix with elements Ri,j =
Σy

i,j

Σy
i,iΣ

y
j,j

.

This construction is called the General Information-Based Bayesian OptimisatioN (GIBBON) ac-
quisition function (Moss et al., 2021).

Multi-Fidelity Formulation Let the maximum of the highest fidelity function fM (when M dif-
ferent fidelities are available to querying) be f⋆

M . We obtain a pair (x,m) which maximally gains
information of the optimal value f⋆ of the highest fidelity per unit cost. Formally, the multi-fidelity
max value entropy search acquisition function that use in our algorithm is the following:

α(x,m) =
1

λm
I(f⋆

M ; fm|Dj), (2)

where λm is the cost of the oracle at fidelity m.

C EXPERIMENTAL DETAILS

This appendix presents the details about the experiments presented in the main Section 4. First,
we provide general details about all tasks and then present details specific to each task in separate
sections.
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C.1 INITIAL DATA SET AND BUDGET

We define a budget (Λ0) for the initial data set. Let λm be the cost of evaluation with oracle fm, and
nSF , nMF be the total number of initial training points in the single- and multi-fidelity experiments
respectively. Also let nm be the number of training points evaluated against fm in the multi-fidelity
experiment such that nMF =

∑m=M
m=1 nm, then

Λ0 = nSF × λM =

m=M∑
m=1

nm × λm

The initial data set is split into train-validation in the ratio of 9:1 for all tasks. Task specific informa-
tion is summarized in Table 1.

For each task, we assign a total active learning budget Λ = γ × λM (Table 2). γ was selected
based on the rate of convergence of the algorithms to the modes. Note that during an active learning
round, only the oracle evaluations of the sampled batch contribute to Λ. The cost of sampling from
a trained GFlowNet is nearly negligible compared to the oracle evaluations. This is why we can
afford to sample a large number of samples (N = 5×B) to then select the best B, according to the
acquisition function (Algorithm 1).

C.2 DKL IMPLEMENTATION DETAILS

We are describe our implementation of DKL, which is inspired by (Stanton et al., 2022).

Neural Network Architecture For all experiments, the same base architecture was used, featur-
ing transformer encoder layers with position masking for padding tokens. Standard pre-activation
residual blocks were implemented, comprising two convolutional layers, layer normalization, and
swish activations. The encoder embeds input sequences with standard vocabulary and sinusoidal po-
sition embeddings. The encoder is trained with the Masked Language Modeling (MLM) objective
which is calculated by randomly masking input tokens and subsequently computing the empirical
cross-entropy between the original sequence and the predictive distribution generated by the MLM
head for the masked positions.

Optimizer Hyperparameters The running estimates of the first two moments in the Adam opti-
mizer (Kingma & Ba, 2015) were disabled by setting β1 = 0.0 and β2 = 0.01.

Kernel Hyperparameters In order to force the encoder to learn features appropriate for the initial
lengthscale, we place a tight Gaussian prior σ = 0.01 around the intial lengthscale value. The
reinitialization procedure for inducing point locations and variational parameters outlined in Maddox
et al. (2021) was followed.

C.3 POLICY IMPLEMENTATION DETAILS

Neural Network Architecture For all tasks, the architecture of the forward policy (PF ) model
is a multi-layer perceptron with 2 hidden layers and 2048 units per layer. The backward policy
(PB) model was set to share all but the last layer parameters with PF . We use LeakyReLU as our
activation function as in Bengio et al. (2021a). All models are trained with the Adam optimiser
Kingma & Ba (2015).

Reward Function As detailed in 1, the GFlowNet is trained to generate samples with a higher
value of MES (and its multi-fidelity variant) in single- and multi-fidelity experiments respectively.
In order to increase the relative reward of higher values of the acquisition function, we transform the
MES value α(x,m) with the reward function R(α(x,m), β). On an additional note, MES exhibits
increased sparsity as more samples are discovered. Hence, in order to facilitate optimization, a linear
reduction of the parameter β (with a scaling factor denoted by ρ) is implemented at each successive
active learning round so as to scale up the rewards. Given an active learning round j,

R(α(x,m)) =
α(x,m)× ρj−1

β
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Note that within an active learning round (j), the GFN samples from this fixed reward function and
thus the policy need not be conditioned on j. Details for all tasks are summarized in Table 2.

Our models are implemented in pytorch (Paszke et al., 2019), and rely on botorch (Balandat
et al., 2020) and GPytorch (Gardner et al., 2021).

Table 1: Oracle costs (indexed by increasing level of fidelity) and initial data set details

Task Oracle Costs Initial Data Set
Λ0 nSF nMF

λ1 λ2 λM n1 n2 nM

Branin 0.01 0.1 1 4 4 20 20 2
Hartmann 6D 0.125 0.25 1 25 25 80 40 5

DNA – 0.2 20 1600 80 – 3000 50
AMP 0.5 0.5 50 2500 50 2000 2000 10

Molecules 1 3 7 1050 150 700 68 16

Table 2: Active-learning and policy reward function and hyperparameters of multi-fidelity experi-
ments

Task Surrogate Model Active-learning Policy reward function
γ B β ρ

Branin Exact GP 300 30 1 1
Hartmann 6D Exact GP 100 10 1e-2 1

DNA DKL 256 512 1e-5 2
Antimicrobial Peptides DKL 20 32 1e-5 1

Molecules DKL 180 128 1e-6 1.5

C.4 SYNTHETIC TASKS

C.4.1 BRANIN

We consider an active learning problem in a two-dimensional space where the target function fM is
the Branin function, as modified in (Sobester et al., 2008) and implemented in botorch (Balandat
et al., 2020). In the domain [−5, 10]× [0, 15], the Branin function has three modes and is evaluated
using the following expression:

f(x) = (x2 −
−1.25x2

1

π2
+

5x1

π
− 6)2 + (10− 5

4π
) cos(x1) + 10.

This corresponds to the modification introduced in (Sobester et al., 2008). As lower fidelity func-
tions, we used the expressions from (Perdikaris et al., 2017), which involve non-linear transforma-
tions of the true function as well as shifts and non-uniform scalings. The functions, indexed by
increasing level of fidelity, are the following:

f1(x) = f2(1.2(x+ 2))− 3x2 + 1

f2(x) = 10
√
f(x− 2) + 2(x1 − 0.5)− 3(3x2 − 1)− 1

We simulate three levels of fidelity, including the true function. The lower-fidelity oracles, the costs
of the oracles (0.01, 0.1, 1.0) as well as the number of points queried in the initial training set were
adopted from (Li et al., 2020).

In order to consider a discrete design space, we map the domain to a discrete 100 × 100 grid. We
model this grid with a GFlowNet as in (Bengio et al., 2021a; Malkin et al., 2022): starting from the
origin (0, 0), for any state s = (x1, x2), the action space consists of the choice between the exit
action or the dimension to increment by 1, provided the next state is in the limits of the grid.

We use the botorch implementation of an exact multi-fidelity Gaussian process as described in
B.1 for regression. The active learning batch size B is 30 in the Branin task.
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Fig. 4a illustrates the results for this task. We observe that MF-GFN is able to reach the minimum
of the Branin function with a smaller budget than the single-fidelity counterpart and the baselines.

C.4.2 HARTMANN 6D

We consider the 6-dimensional Hartmann function as objective fM on a hyper-grid domain. It
is typically evaluated on the hyper-cube xi ∈ [0, 1]6 and consists of six local maxima. The true
Hartmann function is given by

f(x) =

4∑
i=1

αiexp(−
3∑

j=1

Aij(xj − Pij)
2),

where α = [1.0, 1.2, 3.0, 3.2] and A,P ∈ R4×6 are the following fixed matrices:

A =

 10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 1
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 1



P = 10−4 ×

 3689 1170 267
4699 4387 7470
1091 8732 5547
381 5743 8828


To simulate the lower fidelities, we modify α to α(m) where α(m) = α + (M − m)δ where
δ = [0.01,−0.01,−0.1, 0.1] and M = 3. The domain is X = [0, 1]6. This implementation was
adopted from Kandasamy et al. (2019). As with Branin, we consider three oracles, adopting the
lower-fidelity oracles and the set of costs (0.125, 0.25, 1.0) from (Song et al., 2018).

We discretize the domain into a six-dimensional hyper-grid of length 10, yielding 106 possible
candidate points. For the surrogate, we use the same exact multi-fidelity GP implementation as of
Branin. The active learning batch size B is 10.

The results for the task are illustrated in Fig. 4b, which indicate that multi-fidelity active learning
with GFlowNets (MF-GFN) offers an advantage over single-fidelity active learning (SF-GFN) as
well as some of the other baselines in this higher-dimensional synthetic problem as well. The better
performance on MF-PPO can be attributed to the fact that while the GFN initiates its exploration
from the origin point, the PPO commences from a random starting point within a bounded range,
allowing at most three units of displacement (maximum possible displacement is 10 units) along
each of the six axes. We hypothesise that this aids the PPO algorithm in expediting the discovery
of modes within the optimization process. While MF-PPO performs better in this task, as shown in
the benchmark experiments, it tends to collapse to single modes of the function in complex high-
dimensional scenarios.

.

C.5 BENCHMARK TASKS

C.5.1 DNA

We conduct experiments using a two-oracle setup (fM , f1) with costs λM = 20 and λ1 = 0.2 for
the high and low fidelity oracles, respectively. As fM , we used the free energy of the secondary
structure of DNA sequences obtained via the software NUPACK (Zadeh et al., 2011), setting the
temperature at 310 K. f1 is a transformer (with 8 encoder layers, 1024 hidden units per layer and
16 heads) trained on 1 million random sequences annotated by fM . To evaluate the performance of
f1 (with respect to fM ), we construct a test set by sampling sequences from a uniform distribution
of the free energy. On this test set, the explained variance of the f1 is calculated to be 0.8. For the
probabilistic surrogate model, we implement deep kernel learning, the hyper-parameters of which
are provided in Table 4. The active learning batch size B is 512.
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(b) Hartmann task

Figure 4: Results on the synthetic tasks—Branin and Hartmann functions. The curves indicate the
mean score fM within the top-50 and top-10 samples (for Branin and Hartmann, respectively) com-
puted at the end of each active learning round and plotted as a function of the budget used. The
random baseline is omitted from this plot to facilitate the visualisation since the results were sig-
nificantly worse in these tasks. We observe that MF-GFN clearly outperforms the single-fidelity
counterpart (SF-GFN) and slightly improves upon the GFlowNet baseline that samples random fi-
delities. On Hartmann, MF-PPO initially outperforms the other methods.

Table 3: Oracles for the antimicrobial peptides task

Oracle Training points Model Layers Hidden units Training Epochs
f1 3447 MLP 2 512 51
f2 3348 MLP 2 512 51
fM 6795 MLP 2 1024 101

C.5.2 ANTIMICROBIAL PEPTIDES

We use data from DBAASP (Pirtskhalava et al., 2021) containing antimicrobial activity labels, which
is split into three sets - D1 for training the oracle, D2 as the initial data set in the active learning
loop and D3 as the test set (Jain et al., 2022).

This is a three-oracle setup (fM , f2, f1) where each oracle is a different neural network model. The
configurations of the oracle models are presented in Table 3. Biologically, each antimicrobial peptide
can be classified into an antimicrobial group. fM is trained on the entire dataset D1. However, for
f1 and f2, we divide D1 into two equally-sized subpart such the set of antimicrobial groups present
in one subpart is mutually exclusive of the other. This simulated a setup wherein each lower fidelity
oracle specialised in different sub-regions of the entire sample space. We set costs λM = 50 and
λ1 = λ2 = 0.5 as f1 and f2 have similar configurations. Further, as for DNA, the explained variance
of f1 and f2 (with respect to fM ) on a uniform test set, D3 was 0.1435 and 0.099 respectively. For
the surrogate, we implement deep kernel learning with hyperparameters in Table 4. The active
learning batch size B is 32.

C.5.3 SMALL MOLECULES

This is a three oracle setup (fM , f2, f1) with costs representing the actual compute time. We
implement the oracles using RDKit 2023.03 (rdk, 2023) and the semi-empirical quantum chemistry
package xTB. We use GFN2-xTB (Bannwarth et al., 2019) method for the single point calculation
of ionization potential and electron affinity with empirical correction terms.

In f1, we consider one conformer obtained by RDKit with its geometry optimised via force-field
MMFF94(Halgren, 1996). This geometry is used to calculate (vertical) IP/EA. In f2, we consider
two conformers obtained by RDKit, and take the lowest energy conformer after optimisation by
MMFF94, and further optimise it via GFN2-xTB to obtain the ground state geometry; this remains
a vertical IP/EA calculation. In fM , we consider four conformers obtained by RDKit, and take the
lowest energy conformer after optimisation by MMFF94, and further optimise it via GFN2-xTB; the
corresponding ion is then optimised by GFN2-xTB, and the adiabatic energy difference is obtained
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Table 4: Deep Kernel hyperparameters for the DNA and Antimicrobial tasks

Hyperparameter Value
Architecture Num. of Layers 8

Num. of Heads 8
Latent dimension 64

GP likelihood variance init. 0.25
GP length scale prior N (0.7, 0.01)

Num. of inducing points (SVGP head) 64
Optimisation Batch Size 128

Learning Rate 1e-3
Adam EMA parameters (β1, β2) (0., 1e-2)

Max. number of Epochs 512
Early stopping patience (number of epochs) 15

Early stopping holdout ratio 0.1

Table 5: Deep Kernel hyperparameters for the molecular tasks

Hyperparameter Value
Architecture Number of Layers 8

Number of Heads 8
Latent dimension 32

GP likelihood variance init. 0.25
GP length scale prior N (0.7, 0.01)

Number of inducing points (SVGP head) 64
Optimisation Batch Size 128

Learning Rate 1e-3
Adam EMA parameters (β1, β2) (0., 1e-2)

Max. number of Epochs 512
Early stopping patience (number of epochs) 15

Early stopping holdout ratio 0.1

via total electronic energy. The fidelities are based on the fact that vertical IP/EA approximates that
of adiabatic ones (to varying degrees, depending on the molecule). On a uniform test set of 1400
molecules, the explained variance of f1 and f2 (with respect to fM ) is 0.1359, 0.279 and 0.79, 0.86
for the EA and IP tasks respectively.

The surrogate model is a deep kernel. Further details about the hyperparameters are provided in
Table 5. The active learning batch size B is 128. In the environment for GFN, we consider a set of
SELFIES vocabularies containing aliphatic and aromatic carbon, boron, nitrogen, oxygen, fluorine,
sulfur, phosphorous, chlorine, and bromine, subject to standard valency rules.

We note that this is proof-of-concept and hence we do not conduct a full search of conformers, and
nor do we use Density Functional Theory calculations, but we note that the highest fidelity oracle has
a good correlation with experiments (Neugebauer et al., 2020). We do not consider synthesisability
in this study and we note it may negatively impact GFN as unphysical molecules could produce false
results for the semi-empirical oracle.

D METRICS

In this section, we provide additional details about the metrics used for the evaluation of the proposed
MF-GFN as well as the baselines.

Mean Top-K Score We adapt this metric from Bengio et al. (2021a). At the end of an active
learning round, we sample N (x,m) candidates and then select the top-K candidates (K ≪ N )
according to the acquisition function value. In the experiments, we score these top-K candidates
with the corresponding oracle. In the figures, we report the mean score according to the highest-
fidelity oracle.
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Mean Diverse Top-K Score This is a version of the previous metric by which we restricts the
selection of the K candidates to examples that are diverse between each other. We use similarity
measures (vide infra) such that we sample the top-K candidates where each candidate is at most sim-
ilar to each other by a certain threshold. For antimicrobial peptides, the sequence identity threshold
is 0.35; for DNA aptamers, the sequence identity threshold is 0.60; for molecules, the Tanimoto
similarity distance threshold is 0.35.

Diversity In order to measure the diversity of a set of candidates, we use use one minus the simi-
larity index with the following details for each of the tasks:

• DNA aptamers: The similarity measure is calculated by the mean of pairwise sequence
identity between a set of DNA sequences. We utilize global alignment with Needleman-
Wunsch algorithm and standard nucleotide substitution matrix, as calculated by biotite
package (Kunzmann & Hamacher, 2018).

• Antimicrobial peptides: The similarity measure is calculated by the mean of pair-
wise sequence identity between a set of peptide sequences. We utilize global alignment
with Needleman-Wunsch algorithm and BLOSUM62 substitution matrix, as calculated by
biotite package (Kunzmann & Hamacher, 2018).

• Molecules: The similarity measure is calculated by the mean of pairwise Tanimoto similar-
ity between a set of molecules. Tanimoto metrics are calculated from Morgan Fingerprints
(radius of two, size of 2048 bits) as implemented in RDKit package (rdk, 2023).

E ADDITIONAL RESULTS

E.1 ENERGY OF DIVERSE TOP-K

In this section we complement the results presented in Section 4 with the mean diverse top-K scores,
as defined in Appendix D. This metric combines that mean top-K score and the measure of diversity.
Figure 5 shows the results on the DNA, AMP and the molecular tasks.

The results with this metric allow us to further confirm that multi-fidelity active learning with
GFlowNets is able to discover sets of diverse candidates with high mean scores, as is sought in
many scientific discovery applications. In contrast, methods that do not encourage diversity such as
RL-based algorithms (MF-PPO) obtain comparatively much lower results with this metric.

E.2 UNDERSTANDING THE IMPACT OF ORACLE COSTS

As discussed in 1, a multi-fidelity acquisition function like the one we use—defined in Eq. (2)—is a
cost-adjusted utility function. Consequently, the cost of each oracle plays a crucial role in the utility
of acquiring each candidate. In our tasks with small molecules (Section 4.3.3), for instance, we
used oracles with costs proportional to their computational demands and observed that multi-fidelity
active learning largely outperforms single-fidelity active learning. However, depending on the costs
of the oracles, the advantage of multi-fidelity methods can diminish significantly.

In order to analyse the impact of the oracle costs on the performance of MF-GFN, we run several
experiments on the DNA task (Section 4.3.1), which consists of two oracles, with a variety of or-
acle costs. In particular, besides the costs used in the experiments presented in Section 4.3.1, with
costs (0.2, 20) for the lowest and highest fidelity oracles, we run experiments with costs (1, 20) and
(10, 20).

The results, presented in Fig. 6a, indeed confirm that the advantage of MF-GFN over SF-GFN de-
creases as the cost of the lowest-fidelity oracle becomes closer to the cost of the highest-fidelity
oracle. However, it is remarkable that even with a ratio of costs as small as 1 : 2, MF-GFN still out-
performs not only SF-GFN but also MF-PPO in terms of cost effectiveness, without diversity being
negatively impacted. It is important to note that in practical scenarios of scientific discovery, the cost
of lower fidelity oracles is typically orders of magnitude smaller than the cost of the most accurate
oracles, since the latter correspond to wet-lab experiments or expensive computer simulations.
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(b) Anti-microbial peptides (AMP) task
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(c) Molecules ionisation potential (IP) task
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(d) Molecules electron affinity (EA) task

Figure 5: Mean scores (energy) of diverse top-K candidates on the DNA (top left), AMP (top right)
and molecular (bottom) tasks. The mean energy is computed across the top-K examples at each
active learning round that also satisfy the criteria of diversity. Consistent with the diversity metrics
observed in Fig. 2, we here see that GFlowNet-based methods, and especially MF-GFN, obtain good
results according to this metric, while MF-PPO achieves comparatively much lower mean energy.
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Figure 6: Analysis of the impact of the oracle costs on the performance of MF-GFN on the DNA
task and the synthetic Hartmann task. On the DNA task, we observe that the advantage over SF-
GFN and MF-PPO (0.2, 20) decreases as the cost of the lower fidelity oracle becomes closer to the
cost of the highest fidelity oracle. Nonetheless, even with a cost ratio of 1 : 2 MF-GFN displays
remarkable performance with respect to other methods. Similar conclusions can be drawn from the
analysis on the Hartmann task.
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E.3 BATCH SIZE ABLATION

We evaluate the impact of the batch size on the performance of MF-GFN and its comparison with
the baselines for the molecule IP task with different batch sizes. We notice that the reward curve
becomes steeper with higher batch sizes.
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Figure 7: Molecules IP: Impact of acquisition size (64/128/256)

E.4 IMPACT OF THE CHOICE OF THE FINAL BATCH SIZE

For the set of results presented in the main paper, we computed the mean top-K energy and diversity
on the final batch of size K = 100. While the choice of K is not arbitrary as it is related to the
acquisition size in the active learning loop and in turn to reasonable numbers in the domains of
application, it is interesting to study whether our conclusions are robust to other choices of K. In
Fig. 8, we provide the equivalent set of results for all the task with K = 50 and in Fig. 9 with
K = 200, half and double the size, respectively.

In view of these results, we can conclude that the results are robust to the choice of this parameter,
since we can derive the same conclusions for all values of K ∈ {50, 100, 200}:

• MF-GFN obtains the best trade-off between mean energies and diversity of all the evaluated
methods.

• All other GFlowNet-based methods are able to discover diverse samples.
• The multi-fidelity method with PPO is able to discover high-scoring samples, but with a

strong lack of diversity.

E.5 VISUALISATION OF SAMPLED CANDIDATES

Given that MF-GFN conducts a cost-aware search with the help of the multi-fidelity acquisition
function, our expectation is that the algorithm will selectively query the less costly oracles for input
space exploration and will query the more expensive oracles on high-reward candidates. To sub-
stantiate this hypothesis, we provide a two-dimensional visualization (Figure 10) of the sampled
candidates after expending the allocated budget in the synthetic Branin task. C.4.1.
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Figure 8: Results as in the original figures, but with K = 50, instead of K = 100.
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Figure 9: Results as in the original figures, but with K = 200, instead of K = 100.
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Figure 10: We present a visualization of the sampled candidates (x,m) in the synthetic Branin
task (Appendix C.4.1). The domain of Branin is defined in [−5, 10] × [0, 15]. Each round marker,
identified by grid-specific coordinates, represents a sampled candidate, x. The markers are color-
coded based on the oracle the candidate is to be evaluated with, m. Our observation reveals that the
lower fidelity oracles (with costs of 0.01 and 0.1) are primarily used for exploration across the input
domain, while evaluations using the high-fidelity oracle (cost=1) are predominantly concentrated
near the modes (denoted by the star marker). Furthermore, it’s important to note that the training
points were intentionally chosen to exclude any modes of the Branin function.
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