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Abstract001

Many recent approaches to structured NLP002
tasks use an autoregressive language model M003
to map unstructured input text x to output text y004
representing structured objects (such as tuples,005
lists, trees, code, etc.), where the desired output006
structure is enforced via constrained decoding.007
During training, these approaches do not re-008
quire the model to be aware of the constraints,009
which are merely implicit in the training out-010
puts y. This is advantageous as it allows for dy-011
namic constraints without requiring retraining,012
but can lead to low-quality output during con-013
strained decoding at test time. We overcome014
this problem with Boosted Constrained Decod-015
ing (BoostCD), which combines constrained016
and unconstrained decoding in two phases:017
Phase 1 decodes from the base model M twice,018
in constrained and unconstrained mode, obtain-019
ing two weak predictions. In phase 2, a learned020
autoregressive boosted model combines the021
two weak predictions into one final prediction.022
The mistakes made by the base model with vs.023
without constraints tend to be complementary,024
which the boosted model learns to exploit for025
improved performance. We demonstrate the026
power of BoostCD by applying it to closed in-027
formation extraction. Our model, BoostIE, out-028
performs prior approaches both in and out of029
distribution, addressing several common errors030
identified in those approaches.031

1 Introduction032

Extracting structured semantic information from033

unstructured text is essential for many AI tasks,034

including knowledge discovery (Ji and Grishman,035

2011), knowledge base maintenance (Tang et al.,036

2019), symbolic representation, reasoning (Ji et al.,037

2022), and planning. Beyond these applications,038

a growing number of NLP tasks now explicitly039

require structured outputs as part of their formula-040

tion. Some examples are code generation (Poesia041

et al., 2022), SQL generation (Scholak et al., 2021),042
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Figure 1: Overview of BoostCD, exemplified on the
task of closed information extraction (BoostIE). Phase 1
applies the base model twice on input x: unconstrained
and constrained. Phase 2 combines the two resulting
weak predictions yu and yc into final prediction y using
a boosted model, which during training learns to undo
mistakes made by the base model.

constituency parsing (Deutsch et al., 2019), and 043

various information extraction (Cao et al., 2021; 044

Josifoski et al., 2023; Orlando et al., 2024). 045

Many recent approaches for these tasks use au- 046

toregressive models trained on pairs of unstructured 047

input text and structured output targets, coupled 048

with constrained decoding (Josifoski et al., 2023, 049

2022; Whitehouse et al., 2023; Cao et al., 2021). In 050

real-world tasks, the constraints can often change, 051

so constrained decoding offers an easy way to adapt 052

the schema without the need to retrain the model. 053

Constrained decoding also helps steer the model 054

the right way when it is already close to generating 055

the correct output (e.g., when the only problems 056

are minor surface form discrepancies). However, 057

on the downside, as the model remains unaware of 058

1



the explicit constraints until decoding at inference059

time, it may generate less plausible outputs when060

the input data or the constraints at inference time061

deviate from those seen during training.062

We illustrate in Fig. 1, which shows an exam-063

ple of outputs of the autoregressive model with064

constrained decoding on the closed information ex-065

traction (cIE) task, where the goal is to extract com-066

plete sets of fact triplets (subject, relation, object)067

from text, where all entities and relations must be068

present in a predefined knowledge base (KB). In the069

provided example, the base model is a cIE model070

trained on exhaustive data (i.e., facts in the text071

are fully expressible under KB constraints). The072

shown input text differs from the training data by073

containing facts that are not expressible under KB074

constraints. The base model generates two triplets075

when run in unconstrained mode. For the first one,076

the entity present in the text, “Carol Dollard”, is077

not present in the KB. Because the base model was078

trained on exhaustive data, when prompted in an079

unconstrained manner, it generates a correct triplet080

that captures this entity. When constrained, how-081

ever, instead of removing this triplet entirely (as it082

does not comply with the KB), the model resorts to083

generating a triplet with a wrong entity with a simi-084

lar name (“Carol Douglas”). For the second triplet,085

the unconstrained model generates correct entities086

but makes a formatting error in the relation (“pro-087

duces” instead of “product or material produced”).088

In this case, constrained decoding helps by correct-089

ing the relation name. Ideally, we seek a method090

able to recognize patterns in the constrained and091

unconstrained outputs to combine their strengths092

and recover from their errors, without having to093

know the explicit constraints already at training094

time (which would reduce flexibility as constraints095

change, e.g., as the KB evolves).096

To overcome these problems, we introduce097

Boosted Constrained Decoding (BoostCD), a098

method with the ability to correct systematic errors099

that an autoregressive model trained for a structured100

NLP task might make during constrained as well101

as unconstrained generation. BoostCD works in102

two phases: Phase 1 decodes from the base model103

M twice for the input text x, in constrained and104

unconstrained mode, obtaining two weak predic-105

tions yc and yu. In phase 2, a learned autoregressive106

boosted model combines the two weak predictions107

into one final prediction y. Empirically, the mis-108

takes made by the base model with vs. without109

constraints tend to be complementary, which the110

boosted model learns to exploit during training for 111

improved performance. 112

To demonstrate the power of the BoostCD 113

paradigm, we apply it to closed information ex- 114

traction (cIE; cf. Fig. 1) as an example of a struc- 115

tured task with constraints (defined by the content 116

of the knowledge base) that tend to change dynam- 117

ically in real-life settings. We further enhance the 118

resulting cIE model, BoostIE, with Direct Prefer- 119

ence Optimization (DPO) (Rafailov et al., 2023) 120

for improving performance on out-of-distribution 121

data. We show that BoostIE outperforms previous 122

methods both in-distribution (on synthetic data it 123

was trained on) and out-of-distribution (on random 124

Wikipedia paragraphs). We also demonstrate that 125

BoostIE lowers the rate of common errors made by 126

earlier techniques. 127

Contributions. Our contributions are as follows: 128

(i) We propose BoostCD, a new method for train- 129

ing autoregressive language models for structured 130

NLP tasks. 131

(ii) We instantiate BoostCD for the closed in- 132

formation extraction (cIE) task, obtaining a model 133

termed BoostIE, and conduct a detailed evaluation, 134

showing that BoostIE outperforms existing meth- 135

ods both in-distribution (by 17.05 and 12.56 abso- 136

lute points in micro and macro F1, respectively) 137

and out-of-distribution (by 10.94 and 12.54 abso- 138

lute points in micro and macro F1, respectively). 139

(iii) A detailed error analysis confirms that 140

BoostIE lowers the rate of common errors made by 141

previous cIE models, as well as disadvantages of 142

vanilla constrained decoding for this task. 143

(iv) We share our code, models, and data for 144

researchers to reuse and extend: [anonymous] 145

2 Method: BoostCD 146

Language models trained for structured NLP tasks 147

in a supervised manner can often perform reason- 148

ably well even without the constraints imposed, but 149

the constraints are still required to guarantee 100% 150

valid generations, and they can steer the model 151

to pick the one correct output when multiple out- 152

puts might seem plausible a priori (e.g., when an 153

entity has multiple aliases). However, when the 154

constraints require altering the unconstrained out- 155

put significantly (e.g., when an entity generated in 156

unconstrained mode is not present in the KB), per- 157

formance can suffer from imposing the constraints. 158

We hence seek a method that enjoys the benefits 159

of constraints without suffering from their nega- 160

2

[anonymous]


tive side effects. In developing such a method, we161

draw inspiration from boosting (Schapire, 1990),162

a classic ensemble learning technique that aims163

to improve performance by iteratively combining164

weaker models into a single stronger one. The165

idea is to train models sequentially, where each166

new model focuses on the mistakes made by the167

previous ones. The final prediction is formed by ag-168

gregating the outputs of all models, often through169

weighted voting or summation. Our method,170

Boosted Constrained Decoding (BoostCD), trains171

a new model, the boosted model, to predict the172

ground-truth output based on both the constrained173

and the unconstrained generation from the autore-174

gressive base model together with the input text.175

This way of training allows the boosted model to176

recover from systematic mistakes made by the base177

model without requiring explicit knowledge of the178

constraints at training time.179

For intuition, consider the cIE task as illustrated180

in Fig. 1: in the example, unconstrained decod-181

ing extracted a triplet (Carol Dollard, employer,182

PepsiCo) that was not extracted by constrained de-183

coding (because Carol Dollard is not in the KB);184

and constrained decoding extracted a triplet (Carol185

Douglas, employer, PepsiCo) that was not extracted186

by unconstrained decoding (because Carol Douglas187

is not mentioned in the input text). By seeing such188

candidate triplets together with the ground-truth189

triplet set (which contains neither of the above can-190

didate triplets), the boosted model learns to recog-191

nize that entities occurring only in the constrained192

but not the unconstrained output (or vice versa) in-193

dicate triplets that were erroneously extracted by194

the base model and should thus be discarded. Note195

that this is but one of the many potential patterns196

that the boosted model might learn.197

Pipeline. The BoostCD pipeline is shown in Fig. 1.198

For illustration, we use the example of cIE, al-199

though our method can be applied to any struc-200

tured extraction task. Under the assumption that201

we have a dataset which consists of pairs (x,y),202

where x is the input text, and y = {(s,r,o)|(s,r,o)∈203

E ×R×E} (a set of triplets constrained to the KB204

that contains all entities E and relations R), our205

training pipeline consists of two phases:206

(i) Phase 1: We use a base model M, trained in207

an autoregressive manner on (x,y) pairs, to make208

two parallel passes. In one, we let the model gener-209

ate in an unconstrained manner: by sending input210

text x to the model M without imposing any con-211

straints, we obtain the output yu. In the second, we 212

generate by imposing constraints: by providing the 213

input text x and using M with constrained decoding, 214

we obtain the output yc. 215

(ii) Phase 2: In this phase, we train the boosted 216

model Mb to correct the errors that the base model 217

M made in phase 1. Mb is trained in an autore- 218

gressive way to map (x,yu,yc) (i.e., the original 219

input together with both phase-1 predictions) to the 220

ground-truth output y. 221

During the inference, we repeat the steps from 222

both phases: (1) we make two parallel passes with 223

the base model M to generate constrained and un- 224

constrained predictions (ŷc and ŷu) and (2) we send 225

(x, ŷu, ŷc) to the input of the boosted model Mb to 226

make a final prediction ŷ. This prediction can be 227

made with our without constrained decoding. 228

In the following sections, we apply BoostCD to 229

the cIE task by curating the data and modeling to 230

fit its needs. We emphasize that this paradigm can 231

be used for other structured tasks, with adaptations 232

of the data and modeling. Note that we use only 233

one step of boosting in our pipeline, although in 234

principle there is nothing that restricts this pipeline 235

to one iteration only. For our setting, we found one 236

step to be sufficient, but for other applications, it is 237

possible to explore multiple iterations of the same 238

algorithm. 239

3 Application to information extraction 240

To assess BoostCD, we apply it to the cIE task and 241

refer to the resulting boosted model as BoostIE. 242

3.1 Data 243

To train the base model, we need data that is ex- 244

haustive, i.e. the input is fully expressible under 245

constraints. For cIE, the base model should ex- 246

tract all the facts present in the text, regardless of 247

constraints (i.e. perform open information extrac- 248

tion).For the boosted model, we can simulate the 249

setting in which some samples express entities in 250

the text that do not exist in the KB. For a fraction 251

of the data we randomly remove some entities from 252

the KB making it impossible for a base model to 253

generate them in the constrained setting. We also 254

remove these entities from the target triplet set by 255

removing each triplet that contains the entity in 256

question. By providing these samples during train- 257

ing, we let the model learn what happens when the 258

entity in text is not present in the KB and hopefully 259

bring it closer to generating the correct output. 260
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By curating the data for the boosted model this261

way, we also prevent the boosted model from learn-262

ing what is present in the KB, as this changes for263

every data point. Instead, the boosted model is264

forced to learn patterns in the constrained and un-265

constrained outputs from the base model and rely266

on input information. This makes the model more267

flexible if KB is changing over time. Data gener-268

ated in this way also has some samples for which269

no triplets are extractable (i.e. they are not present270

in the KB). As a result, the boosted model is trained271

to produce an empty set for some samples, which272

might not be the case for the base model. This does273

not guarantee that the boosted model would be able274

to do it for the text that has no triplets at all, but275

from our results, this seems to be the case.276

3.2 Model and inference for cIE277

Modeling. We follow the same setting for mod-278

eling as Josifoski et al. (2023). Both base and279

boosted models are based on FlanT5 (Chung et al.,280

2022), and are trained to autoregressively gener-281

ate a linearized sequence of the corresponding282

triplet set y when prompted with the input text283

x. Training is done by maximizing the target se-284

quence’s conditional log-likelihood with teacher285

forcing (Sutskever et al., 2011) and cross-entropy286

loss. We also use dropout (Srivastava et al., 2014)287

and label smoothing (Szegedy et al., 2016).288

Output linearization. We represent triplets as289

model-compatible sequences using delimiters: [s],290

[r], [o], and [e] mark the subject, relation, and291

object, and the end of each triplet. We concatenate292

the triplets in the order they appear in the text to293

form the final sequence.294

Inference. Similarly to Josifoski et al. (2023), we295

use constrained beam decoding during inference296

time. Valid prefixes that follow both linearization297

and KB constraints are dynamically generated.298

3.3 DPO finetuning299

As we currently do not have access to a well-300

aligned dataset for cIE that is made on real-world301

data, the process of training base and boosted mod-302

els is done with synthetic data that might not highly303

resemble natural text. As a consequence, this might304

hinder the performance of our model in the wild. In305

an attempt to overcome this, we propose to tune the306

model with Direct Preference Optimization (DPO)307

(Rafailov et al., 2023), using data more similar to308

the real-world one.309

DPO is a reward-free method for aligning lan- 310

guage models with human preferences by directly 311

optimizing for preferred outputs over less preferred 312

alternatives. In our case, we use DPO to adapt 313

the model toward generating more accurate and 314

faithful structured outputs on real-world text. 315

For DPO finetuning, we use around 600 sam- 316

ples from the REBEL dataset (Huguet Cabot and 317

Navigli, 2021), and an additional 100 samples for 318

validation. We chose this dataset because it was 319

crafted from the real Wikipedia text, although only 320

by collecting text from the first paragraphs of Wi- 321

kipedia articles. That means that it still differs 322

from randomly crawled Wikipedia text. To identify 323

samples the most similar to the real text, we train 324

a RoBERTa classifier (Liu et al., 2019) that can 325

distinguish real text (random text from Wikipedia 326

articles, not limited to the abstracts) from Wiki- 327

cIE Code text (for more details about the classifier, 328

see Appendix F). We use this classifier to pick the 329

samples with the highest probability of being real 330

Wikipedia text. Since cIE model trained on this 331

data, GenIE (Josifoski et al., 2022), is not exhaus- 332

tive, and SynthIE does not perform well outside of 333

the training distribution, we decide to use a large 334

language model to choose samples with a fitting 335

target from one of these two models (if any of the 336

two can produce it). For each text sample, to col- 337

lect ranked candidate triplet sets, we run GenIE 338

and SynthIE in constrained manner. We then let 339

GPT-41 decide which one of the two options is bet- 340

ter and use this information for ranking. If none 341

of the options are good, we discard the sample. 342

This way, we collect the data that (1) resembles 343

real text more and (2) for which we have a qual- 344

ity solution from one of the existing models. This 345

procedure allows the model to learn a preference 346

signal aligned with real-world patterns, without re- 347

quiring gold-standard annotations. We note that 348

this might systematically discard harder samples, 349

but is a good starting point to attempt to generalize 350

to a different data distribution. 351

4 Evaluation setup 352

Knowledge base. We use the subset of Wikidata 353

(Vrandečić, 2012), using entities that are connected 354

to English Wikipedia pages and relations that ap- 355

pear at least once in the REBEL training dataset. 356

Our catalogue consists of 2.6M entities and 888 re- 357

lations. For the unique representation of each entity, 358

1We use gpt-4-0613 version of GPT-4.
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Overall Removed Same
Precision Recall F1 Precision Recall F1 Precision Recall F1

Micro

BoostIE (constrained) 57.23 ± 0.79 48.24 ± 0.63 52.35 ± 0.63 38.69 ± 1.84 45.99 ± 1.79 42.02 ± 1.64 63.91 ± 0.94 48.79 ± 1.03 55.33 ± 0.96

BoostIE (unconstrained) 54.72 ± 0.89 46.31 ± 0.73 50.16 ± 0.73 31.62 ± 1.62 43.76 ± 1.82 36.71 ± 1.57 64.86 ± 0.91 46.93 ± 1.01 54.45 ± 0.95

BoostIE + DPO (constrained) 59.45 ± 0.65 46.65 ± 0.65 52.28 ± 0.59 43.03 ± 1.82 43.90 ± 1.68 43.46 ± 1.55 64.82 ± 0.94 47.31 ± 0.96 54.70 ± 0.91

BoostIE + DPO (unconstrained) 56.39 ± 0.82 44.81 ± 0.73 49.94 ± 0.72 35.41 ± 1.80 41.94 ± 1.80 38.39 ± 1.65 64.58 ± 1.02 45.50 ± 0.95 53.38 ± 0.93

ReLiK (filtered) 22.89 ± 0.57 20.80 ± 0.58 21.79 ± 0.53 17.21 ± 1.01 18.37 ± 1.12 17.77 ± 0.96 24.58 ± 0.66 21.43 ± 0.56 22.89 ± 0.57

SynthIE 400k (constrained) 31.71 ± 0.77 39.81 ± 0.68 35.30 ± 0.68 13.57 ± 0.92 40.41 ± 1.85 20.31 ± 1.20 45.90 ± 1.03 39.67 ± 0.83 42.56 ± 0.88

SynthIE 400k (unconstrained) 33.40 ± 0.81 34.83 ± 0.77 34.10 ± 0.73 15.18 ± 0.98 34.54 ± 1.73 21.09 ± 1.19 45.98 ± 1.17 35.00 ± 0.88 39.75 ± 0.96

Macro

BoostIE (constrained) 58.35 ± 2.46 46.11 ± 1.02 48.81 ± 1.39 37.51 ± 2.55 39.47 ± 3.11 36.01 ± 2.20 61.96 ± 3.30 46.26 ± 1.62 50.28 ± 1.95

BoostIE (unconstrained) 43.81 ± 1.78 35.78 ± 0.97 37.34 ± 1.20 26.69 ± 2.14 32.59 ± 3.04 27.24 ± 2.01 53.21 ± 3.11 38.12 ± 1.23 42.31 ± 1.63

BoostIE + DPO (constrained) 59.09 ± 2.50 44.74 ± 1.10 48.29 ± 1.50 39.32 ± 2.93 38.34 ± 2.70 36.55 ± 2.12 61.58 ± 3.21 45.00 ± 1.58 49.27 ± 1.87

BoostIE + DPO (unconstrained) 42.89 ± 1.75 32.91 ± 0.97 35.23 ± 1.07 28.33 ± 2.18 31.59 ± 2.51 27.85 ± 1.71 50.84 ± 3.18 35.54 ± 1.29 39.73 ± 1.66

ReLiK (filtered) 17.22 ± 0.99 12.81 ± 0.54 12.92 ± 0.56 11.63 ± 1.38 11.96 ± 0.80 10.59 ± 0.75 17.20 ± 1.36 13.14 ± 0.53 13.18 ± 0.66

SynthIE 400k (constrained) 40.29 ± 1.60 38.77 ± 0.95 36.25 ± 1.12 21.22 ± 1.87 31.72 ± 3.54 22.67 ± 2.11 47.97 ± 2.15 38.26 ± 0.73 39.68 ± 1.21

SynthIE 400k (unconstrained) 35.58 ± 1.28 33.76 ± 1.16 32.28 ± 1.05 16.94 ± 1.39 27.10 ± 3.41 18.88 ± 1.71 46.26 ± 2.53 34.04 ± 0.86 37.04 ± 1.34

Table 1: Results on Wiki-cIE Code dataset: Overall - whole test set, Removed - test samples with removed random
entities (and triplets) from the target and KB, Same - test samples without entity removal. For BoostIE, constrained
and unconstrained refers to the final boosted model mode of operation. We report both micro and macro results,
with 95% CI. Best results are in bold.

we use its English Wikipedia title. For relations,359

we use their label in Wikidata.360

Data. For training the base model M, we use a361

subset of 300K samples from the train split of Wiki-362

cIE Code used for training SynthIE models (see363

Appendix B for details). The boosted model Mb364

was trained on an additional 100K samples from365

the same dataset. We also train a SynthIE model366

on all 400k samples for a fair comparison. 100K367

samples used for training the boosted model have368

been altered as explained in Sec. 3.1, and 40% of369

the randomly chosen samples have been altered.370

For each altered sample, up to three entities were371

removed, uniformly. The validation and test data372

were crafted in the same way, each being a subset of373

the corresponding Wiki-cIE Code of 10K samples.374

Wiki-cIE Code is imperfect as it does not have375

the same properties as the real-world text, but can376

demonstrate the abilities of this training technique377

effectively.378

Baselines. To isolate the effects of this training379

technique, we compare BoostIE with the SynthIE380

model of the same size, trained on the same 400K381

samples used in the BoostIE pipeline (without alter-382

ations). We also compare our method with ReLiK383

cIE model of similar size,2 as this is the state-of-384

the-art model right now. We provide results with385

and without using DPO after initial training. For386

more details about the baselines, see Appendix C.387

2We use “relik-ie/relik-cie-large”, see https:
//huggingface.co/relik-ie/relik-cie-large

Metrics and implementation detail. We evalu- 388

ate the performance in terms of micro and macro 389

precision, recall, and F1 score. All results are re- 390

ported with 95% confidence intervals constructed 391

from 50 bootstrap samples. For more details on 392

evaluation metrics, see Appendix D. For details on 393

implementation, see Appendix E. 394

5 Results 395

5.1 Evaluation on Wiki-cIE Code 396

Performance evaluation. We first evaluate our 397

method on in-distribution data. We use the metrics 398

mentioned in Sec. 4 on the random subset of 10K 399

samples from the test split of Wiki-cIE Code. We 400

evaluate it on non-edited, as well as Wiki-cIE Code 401

with entities randomly removed from the KB, as 402

described in Sec. 3.1. We report results in Table 1. 403

ReLiK does not perform on Wiki-cIE Code 404

nearly as well as SynthIE and BoostIE. This is 405

expected, as it was not trained on this data, and 406

Wiki-cIE Code has a different distribution from 407

REBEL on which ReLiK was trained. 408

Second, we notice that all the models perform 409

worse for the samples where some entities are ran- 410

domly removed from the KB. This is in line with 411

our expectations, especially for SynthIE, as it was 412

trained to extract exhaustively, and cannot han- 413

dle instances where this is not possible. Precision 414

is more affected by this modification of the data. 415

Micro-recall stays almost the same, while macro- 416

recall drops much less than precision. This happens 417

because the models tend to output wrong triplets ei- 418

ther related to the removed entity (in unconstrained 419
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mode) or related to a similarly named entity (in420

constrained mode). Triplets related to the correct421

entities present in the graph mostly stay in the out-422

put, maintaining the recall relatively high.423

For BoostIE models, there is a noticeable im-424

provement both for edited samples with removed425

entities and for the non-edited ones. The improve-426

ment is visible for both micro and macro scores.427

We suspect that this happens because by using428

BoostCD (1) we are implicitly including the in-429

formation about the presence or lack of an entity in430

the KB and (2) we include the information about er-431

rors SynthIE, which is used as a base model, makes432

regardless of the KB. Examples of the latter can be433

wrong disambiguation of certain entities in the KB,434

or the less adequate relations for the scenario (for435

instance, using “location” instead of “located in or436

next to body of water” for text expressing an entity437

“Niagara” being located in the “Lake Ontario”).438

The difference in scores for constrained and un-439

constrained settings is higher for BoostIE mod-440

els than for SynthIE. This happens because, un-441

like SynthIE which tends to generate triplets with442

wrong entities when something is not present in the443

KB, BoostIE is able to recognize this setting. This444

is expected, as BoostCD used for training BoostIE445

models specifically addresses this issue. We spec-446

ulate that, in the case of BoostIE, constrained de-447

coding helps filter out triplets with missing entities448

rather than causing the model to generate triplets449

with incorrect ones. In other words, BoostIE as-450

signs a higher probability to the output that does not451

include entities missing from the KB. For macro452

scores, the difference is present for both original453

and edited samples. This likely means that BoostIE454

detects some systematic errors that happen for rare455

relations when using SynthIE.456

Finally, the usage of DPO does not result in sig-457

nificant improvements over the standard BoostIE458

model on this data. This is expected given its use459

was aimed at improving real-data performance (see460

Sec. 5.2 for evaluation on natural text). Still, the ab-461

sence of performance degradation, for both micro462

and macro socres, is a positive sign.463

Performance by relation frequency. As men-464

tioned earlier, relations expressed in the natural465

text are imbalanced: there is a small number of466

relations that are present very often and a large467

number that are rare. Training on real data can lead468

to bad performance on those rare relations, which469

would be masked by the overwhelming presence of470
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Figure 2: Impact of the relation frequency. Relations
are bucketed based on their frequency; bucket 2i con-
tains relations occurring between 2i and 2i+1 times. The
histogram shows the number of relations per-bucket.
The line plots depict the per bucket F1 scores evaluated
on Wiki-cIE Code test dataset with confidence intervals
constructed by bootstrapping.

common relations. Wiki-cIE Code was constructed 471

with this in mind. To verify that our method does 472

not compromise the performance on rare relations, 473

as well as to evaluate the performance of ReLiK 474

in this light, we mimic the experiment by Josifoski 475

et al. (2023) and bucket relations by their frequency 476

in REBEL training set which follows the natural 477

distribution of relations. We report results in Fig. 2. 478

ReLiK performs worse for rare relations. This is 479

expected, as parts of their pipeline were trained 480

with real-world data. When it comes to BoostIE 481

models, they perform consistently better than Syn- 482

thIE for all relation buckets and maintain stable 483

performance over rare and common relations. 484

5.2 Evaluation on natural text 485

Micro Precision Recall F1

BoostIE + DPO 48.89 ± 18.16 27.76 ± 11.78 34.93 ± 11.97

BoostIE 22.68 ± 11.85 17.38 ± 11.02 19.33 ± 10.12

ReLiK 25.88 ± 18.38 22.58 ± 15.33 23.99 ± 16.38

SynthIE 400k 6.74 ± 3.91 13.34 ± 10.19 8.76 ± 4.96

Macro
BoostIE + DPO 23.87 ± 4.92 20.85 ± 3.91 20.87 ± 4.13

BoostIE 15.50 ± 3.20 13.62 ± 2.88 13.49 ± 2.77

ReLiK 9.52 ± 0.95 9.55 ± 2.84 8.33 ± 1.35

SynthIE 400k 5.38 ± 1.95 6.05 ± 2.66 5.35 ± 2.11

Table 2: Human evaluation on Wikipedia text. The best
results are bolded. Results are reported with 95% CI.

To better understand the performance of both our 486

BoostIE models, as well as ReLiK and SynthIE out 487

of distribution, we manually annotate 50 random 488

samples from Wikipedia text (see Appendix A for 489

data collection process). During this process, each 490
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Wikipedia text sample is assigned a ground truth491

triplet set (see Appendix G for annotation process492

details). We then compare all models on this data.493

We run both BoostIE and SynthIE with constrained494

decoding, as evaluations on Wiki-cIE Code suggest495

this improves performance. Results are presented496

in Table 2. We note that Wikipedia text does not497

fully reflect the real-world text, as it is a highly498

structured and factual text. Nonetheless, it is a499

good starting point for evaluating cIE models.500

From Table 2, SynthIE performs the worst. This501

matches our expectations as SynthIE was trained502

on the data that has little resemblance to the Wiki-503

pedia text. Next, BoostIE performs slightly worse504

than ReLiK in terms of micro metrics, but a little505

better in terms of macro metrics. We see this as a506

good sign. BoostIE manages to be on par with Re-507

LiK without the need for a separate retrieval model.508

We suspect that the reason why BoostIE is better509

in macro metrics is because ReLiK was trained on510

the REBEL dataset, which has heavy-tailed dis-511

tribution of relations. Finally, BoostIE with DPO512

performs by far the best over both micro and macro513

metrics. This highlights the importance of the DPO514

step, and the potential it has to adapt the language515

model to the a differently distributed data.516

5.3 Error analysis517

To further examine what kind of errors previous and518

our method make, we collect 50 random samples of519

text from Wikipedia (see Appendix A for the data520

collection process). We compare SynthIE, ReLiK521

and BoostIE with and without the DPO step. By522

manual inspection, we identify five types of errors:523

(i) Unexhaustive triplets: triplet set does not524

include some correct triplets525

(ii) Incorrect related triplets: triplet set in-526

cludes some incorrect triplets about correct entities527

(iii) Misclassified entity: entities in the triplets528

are wrongly identified as similarly named ones529

(iv) Unrelated triplets: triplet set includes530

triplets unrelated to the text or entities in the text531

(v) Entity-centered triplets: triplets in the532

triplet set are centered around one entity533

Some errors can happen at the same time, e.g.534

there can be a triplet set that is both unexhaustive535

and contains unrelated triplets. We annotate the536

chosen sample and report the results in Table 3.537

From the results, it is clear that SynthIE struggles538

with the Wikipedia data in multiple ways. Most of539

the samples contain at least some unrelated triplets540

(60%). We also notice that it has the highest per-541

centage of samples with misclassified entities (9%). 542

Both of these errors stem from the constrained de- 543

coding issues – when the entity is not present in 544

the KB but is expressed in the text, SynthIE tends 545

to produce triplets with similarly-named entities 546

(misclassified) or even completely unrelated ones. 547

This is confirmed by the BoostIE results, as both of 548

these problems are largely mitigated for BoostIE. 549

SynthIE also produces the highest percentage of 550

samples with triplet sets centered around one entity 551

(16%). We notice that BoostIE without DPO has 552

similar issues (11%). We believe this error comes 553

from a bad distribution of triplet sets in the Wiki- 554

cIE Code used for training both of these models. 555

ReLiK and BoostIE with DPO which were either 556

trained with different data (REBEL), or exposed to 557

it through DPO, suffer from this suffer from this to 558

a much lesser degree (0% and 6% respectively). 559

Among all error types, unexhaustive generations 560

exhibit the least variance across the four models. 561

Despite intentionally training SynthIE and BoostIE 562

models on an exhaustive dataset, on the real text, 563

they fall short similarly to ReLiK trained on an 564

unexhaustive dataset (REBEL). We suspect that 565

the limited performance of BoostIE without DPO 566

might be due to a significant mismatch between 567

the training data distribution and the real-world 568

text. In the case of BoostIE with DPO, although 569

the data used during fine-tuning more closely re- 570

sembles Wikipedia text, it includes some outputs 571

from GenIE, which is trained on REBEL. We ex- 572

pect that some of these outputs are not exhaustive. 573

This likely contributed to the persistence of unex- 574

haustive generations. In Appendix H, we provide a 575

few additional analyses of common cIE approaches, 576

setting the stage for further research in this area. 577

SynthIE ReLiK BoostIE BoostIE + DPO

Unexhaustive 0.33 ± 0.09 0.38 ± 0.11 0.32 ± 0.11 0.38 ± 0.10

Incorrect related 0.36 ± 0.11 0.28 ± 0.10 0.26 ± 0.11 0.12 ± 0.09

Misclassified entity 0.09 ± 0.07 0.04 ± 0.04 0.00 ± 0.00 0.00 ± 0.00

Unrelated 0.60 ± 0.11 0.14 ± 0.09 0.28 ± 0.10 0.08 ± 0.06

Entity-centered 0.16 ± 0.08 0.00 ± 0.00 0.11 ± 0.07 0.06 ± 0.05

Table 3: Error analysis on Wikipedia text samples. Num-
bers represent fraction of samples with the given type
of error. Result are shown with 95% CI.

6 Related work 578

6.1 Closed information extraction 579

Older cIE methods usually rely on the combina- 580

tion of entity recognition (Tjong Kim Sang, 2002) 581

and linking (Milne and Witten, 2008a) with rela- 582
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tion extraction (Milne and Witten, 2008b) to obtain583

the set of triplets constrained to the KB. However,584

these methods often have problems with error prop-585

agation due to their architecture (Mesquita et al.,586

2019; Trisedya et al., 2019). A newer approach that587

combines entity linking and relation extraction is588

proposed by Orlando et al. (2024). In recent years,589

however, autoregressive methods have dominated590

the field. For the cIE task, this was first introduced591

by Josifoski et al. (2022). Josifoski et al. (2022)592

also introduced the usage of constrained decoding593

for this task. The same approach was adopted by594

Josifoski et al. (2023) and Whitehouse et al. (2023).595

Another line of research in this field relies596

on building a good training dataset for the cIE597

task. Huguet Cabot and Navigli (2021) intro-598

duced REBEL, a dataset of fact triplets constructed599

using distant supervision. Similarly, Trisedya600

et al. (2019) introduce WikiNER, a dataset that601

is also made using distant supervision, but aug-602

mented with co-reference resolution and dictionary-603

based paraphrase detection. More recently, White-604

house et al. (2023) presented WebIE, a multilingual605

distant-supervision dataset, with the introduction606

of some human-annotated samples as well. Josi-607

foski et al. (2023) synthetically generated their data608

specifically having distributional (i.e. relational fre-609

quency issue) and exhaustiveness issues in mind.610

The emergence of LLMs raises the question of611

their ability to perform this task. As shown by Josi-612

foski et al. (2023), LLMs struggle with tasks that613

require structured output. For cIE, they also have614

no knowledge of the KB. Geng et al. (2024a) at-615

tempt to overcome this issue by combining an LLM616

with constrained decoding, but their evaluation on617

synthetic data limits broader conclusions.618

6.2 Constrained decoding619

Structured NLP tasks require the output to be in620

a certain form. To overcome this, different forms621

of constrained decoding have been proposed. Cao622

et al. (2021) address the entity-disambiguation con-623

straints by generating a prefix trie at the decod-624

ing time, forcing output to be valid entities from625

the KB. Geng et al. (2024b) introduce grammar-626

constrained decoding, focusing on generalizing627

the constrained decoding to a wider variety of628

tasks. Park et al. (2024) introduce grammar-629

aligned decoding, which aims to correct the condi-630

tional probability of the LLM’s distribution condi-631

tioned on the given grammar constraint. Koo et al.632

(2024) propose a method that addresses downsides633

of constrained decoding related to the tokeniza- 634

tion issues by using automata-based constraints. 635

Beurer-Kellner et al. (2024) propose a method that 636

speeds up the constrained decoding that works in a 637

subword-aligned fashion. 638

7 Discussion 639

7.1 Implications for cIE 640

Despite numerous efforts through years to solve 641

cIE, current approaches struggle with performance 642

on the real data, as well as adaptability to differ- 643

ent KBs. Our method could be a step closer to 644

an efficient and high-performing system that over- 645

comes these issues. Our experiments show that 646

BoostIE (BoostCD applied to cIE) improves the 647

performance of constrained decoding, which is of- 648

ten used for cIE systems. Additionally, BoostIE 649

does not directly learn what is present in the KB, 650

which is the case for most current approaches, mak- 651

ing it more adaptable to changes in the KB. Our 652

experiments on Wiki-cIE Code also show that our 653

method maintains a good performance over rare 654

relations, while the evaluation on real Wikipedia 655

data indicates that BoostIE is better at generalizing 656

to out-of-distribution data. This seems to be the 657

case especially when using DPO with data that re- 658

sembles the target distribution. With that in mind, 659

along with the fact that DPO does not degrade 660

performance on the original data distribution, we 661

draw attention that this can be used as an unexpen- 662

sive way to improve the overall performance of the 663

model. In an ideal scenario, our base model would 664

be trained on an exhaustive dataset with more real- 665

istic text. This is not trivial to collect, so finetuning 666

with DPO and a smaller finetuning dataset can be a 667

good way to overcome this limitation. 668

7.2 Implications for other tasks 669

Although our present evaluation has focused on 670

the benefits of BoostCD for closed information ex- 671

traction, nothing about the method is inherently 672

restricted to this task. A similar pipeline can be 673

exploited for a wide range of structured NLP tasks, 674

including tagging, parsing, code generation, JSON 675

generation, and many more. We leave the evalu- 676

ation of BoostCD on such other tasks for future 677

work and hope that researchers and developers will 678

benefit from BoostCD in practice. 679

8



Limitations680

Entity surface form variations. Our current681

pipeline might have issues with entities that are682

presented in the text in a very different way than in683

the knowledge base (e.g. as acronyms or aliases).684

Since our model has no external knowledge, it can-685

not disambiguate between these cases vs. an entity686

that is present in the text but not in the KB. This is687

also something that we cannot expect from a small,688

specialized, model to know on its own, as it does689

not have broad knowledge of the external world.690

This is possibly an area where LLMs would excel.691

Inference speed. Although we are using small692

language models for this task and we consider our693

approach to be scalable, inference requires three694

runs of a model (constrained and unconstrained695

base model run, and the run of the boosted model).696

This is less efficient than SynthIE or similar models,697

but is still faster and cheaper than running an LLM.698

Also note that the constrained and unconstrained699

run of the base model can be parallelized.700

Training dataset. The dataset we used for training701

does not resemble real data, and has other distribu-702

tional issues. One particular case of such issue is703

the distribution of entities in the triplet sets. Due704

to the way Wiki-cIE Code was generated, most of705

the triplets in triplet sets are centered around one706

or two entities. Real data often describes many707

more entities in a few sentences. Because of this,708

both SynthIE and BoostIE have troubles with text709

that expresses triplets about many entities in a sin-710

gle sentence or paragraph. This can be solved by711

different sampling of triplet sets when generating712

synthetic data for training, focusing on introducing713

variety of entities into them.714

Real-world data performance. While BoostIE715

improved the overall performance on the sampled716

Wikipedia text, it is still far from perfect. Addi-717

tionally, Wikipedia does not fully reflect the per-718

formance of our model in the wild, as it is still a719

very factual and structured text. In future work,720

it would make sense to perform a further evalua-721

tion on the real text, as it might help identify other722

failure modes.723
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A Collection of Wikipedia text904

We collect Wikipedia text using Wikipedia API, by905

randomly taking Wikipedia articles and extracting906

1 chunk of text that has at most 4 sentences per907

each article. All the sentences have to be part of908

the same paragraph (i.e. we are not keeping chunks909

that contain “\n” in them).910

B Wiki-cIE Code911

Wiki-cIE Code is a fully synthetic dataset intro-912

duced by Josifoski et al. (2023). It was used for913

training the range of SynthIE models. The data-914

set consists of around 1.8M training data samples,915

10K validation, and 50K test samples generated916

by the now discontinued OpenAI model, code-917

davinci-002. The data was synthetically made,918

starting from sampling triplet sets. Triplet sets919

are generated by a biased random walk on a sub-920

set of the Wikidata knowledge graph (Vrandečić,921

2012). Text that corresponds to these triplets was922

then generated by an LLM. Each text sample was923

generated by providing a triplet set and asking the924

LLM to write the text that only expresses those925

triplets. This way, an exhaustive, high-quality data926

was made. The main disadvantage of this dataset is927

the fact that the text does not resemble real text, as928

it is very clean and does not contain a lot of details.929

C Baselines930

GenIE. Josifoski et al. (2022) introduce GenIE,931

an end-to-end autoregressive langauge model that932

does cIE, based on BART (Lewis et al., 2020). This933

model was trained on REBEL, the dataset made934

with distant supervision on Wikipedia abstracts.935

The method also employs constrained decoding.936

Given all of this, the model has issues that stem937

from constrained decoding, bad alignment between938

triplets and text in the data, as well as bad distri-939

bution of relations in the training set. We do not940

compare against GenIE as it was already shown941

by Josifoski et al. (2023) that it performs worse942

than SynthIE. We use it to generate DPO data (see943

Sec. 3.3).944

SynthIE. As a part of efforts to mitigate some of 945

the issues raised by GenIE, Josifoski et al. (2023) 946

introduce SynthIE. This is a model trained on syn- 947

thetic data, Wiki-cIE Code, that has better align- 948

ment between text and triplets, as well as better 949

distribution of relations in the training set. How- 950

ever, SynthIE still uses constrained decoding, and 951

the synthetic data it was trained on does not resem- 952

ble real data, which causes issues when the model 953

is used in practical settings. 954

ReLiK. Differently from SynthIE and our BoostIE 955

models, ReLiK (Orlando et al., 2024) utilizes a 956

retriever-reader architecture to solve cIE task. The 957

retriever module encodes the input text and re- 958

trieves the most relevant entities and relations from 959

the KB. Then, the reader module takes as input the 960

text and each retrieved entity or relation separately 961

and maps them to a specific span of the text. The 962

modules for cIE were trained on REBEL dataset 963

(Huguet Cabot and Navigli, 2021), raising a con- 964

cern that this model might exhibit the issues with 965

rare-relation performance. 966

D Metrics 967

We evaluate performance using standard precision, 968

recall, and F1 metrics across all settings. A pre- 969

dicted fact is considered correct only if the relation 970

and both associated entities are correct. Formally, 971

let the set of predicted triples for a document d ∈D 972

be denoted as Pd , and the corresponding set of gold 973

triples as Gd . Then, the micro-averaged precision 974

and recall are defined as follows: 975

micro-precision =
∑
d∈D

|Pd ∩Gd |
/∑

d∈D
|Pd |, (1) 976

and 977

micro-recall =
∑
d∈D

|Pd ∩Gd |
/∑

d∈D
|Gd |. (2) 978

Micro scores provide a useful aggregate view 979

of model performance, especially in terms of over- 980

all accuracy. However, they can obscure dispari- 981

ties in datasets with class imbalance—for instance, 982

when certain entities or relations appear far more 983

frequently in both training and test data. This is be- 984

cause micro-averaging gives equal weight to each 985

instance, whereas macro-averaging assigns equal 986

weight to each class. To account for such imbal- 987

ances, we also report macro-averaged scores. 988
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Let P(r)
d and G(r)

d denote the predicted and gold989

triples for relation r ∈ R in document d. Then,990

macro-precision is defined as:991

1
|R|

∑
r∈R

(
;
∑
d∈D

|P(r)
d ∩G(r)

d |
/∑

d∈D
|P(r)

d |

)
, (3)992

and macro-recall as:993

1
|R|

∑
r∈R

(
;
∑
d∈D

|P(r)
d ∩G(r)

d |
/∑

d∈D
|G(r)

d |

)
. (4)994

E Implementation995

As mentioned in Sec. 3.2, BoostIE uses two FlanT5996

models. For both models, we use ’google/flan-t5-997

base’ version3, which has ∼250M parameters. The998

models were trained using the Adam optimizer with999

a learning rate of 3e-4, 0.1 gradient clipping on the1000

Euclidean norm, and a weight decay of 0.05. They1001

were trained with batch size 80, for a maximum1002

of 10K steps. We used a polynomial learning rate1003

scheduler with 1000 warm-up steps and a final1004

learning rate of 3e-05. All the experiments were1005

run on a single NVIDIA Titan X Maxwell 12GB1006

GPU, taking around 24h for the training of the base1007

model, and around 16h for boosted model. The1008

DPO finetuning was done on the same machine,1009

using learning rate 5e-5, batch size 2, β 0.1 and1010

running it for 5 epochs, taking around 20min to1011

finetune. During inference, we run all our models1012

with 10 beams.1013

F DPO data preprocessing1014

To collect the data for DPO finetuning, we first1015

train a RobERTa classifier that distinguishes Wiki-1016

cIE Code text from real Wikipedia text. We use1017

the ’roberta-base’ model4 as the basis for our clas-1018

sifier. To do that, we take 5K samples from the1019

Wiki-cIE Code training split (labeled as ’0’) and1020

collected 5K samples of Wikipedia text (labeled1021

as ’1’) in the way described in Appendix A. For1022

the validation set, we collect in total of 3K samples1023

in the same way. The classifier achieves an accu-1024

racy of 98.27% on the validation set, highlighting1025

again how different SynthIE data is from the real1026

Wikipedia one.1027

3https://huggingface.co/google/flan-t5-base
4https://huggingface.co/FacebookAI/

roberta-base

G Human annotations 1028

Construction of candidate triplet sets. We start 1029

by randomly choosing 50 samples of Wikipedia 1030

text. Since it is not trivial to annotate the text, as 1031

the knowledge of a whole KB with more than 2.6M 1032

entities and almost 900 relations, we attempt to get 1033

as exhaustive set of candidate triplets as possible 1034

by combining outputs from multiple models. For 1035

that, we use SynthIE, GenIE, ReLiK, BoostIE, and 1036

BoostIE with DPO. 1037

Because these models were trained on different 1038

datasets, and have different strengths and disadvan- 1039

tages, by combining all of them, we are hoping to at 1040

least have a set of triplet candidates that include all 1041

the correct triplets, while also possibly including 1042

many incorrect ones. This procedure ensures that 1043

our precision estimate is correct, up to human error. 1044

For the recall, our estimation will not necessarily be 1045

correct, but the ranking of the models will stay the 1046

same (as they all might be missing some potential 1047

triplets that none of the models generated). 1048

Instructions. The annotators were given instruc- 1049

tions in Fig. 3. 1050

Annotation task. To ensure quality results, our an- 1051

notation was done by 2 Ph.D. students and 4 MSc 1052

students. None of them were familiar with our 1053

work, avoiding any possible biases. For each anno- 1054

tation sample, the annotator was presented with the 1055

text and list of candidate triplets. For each triplet, 1056

they had to decide whether the triplet is expressed 1057

in the text or not, based on the instructions provided 1058

in Fig. 3. The annotation was done in three stages. 1059

First, one Ph.D. student and all MSc students anno- 1060

tated the data, with each contributing to an equal 1061

part. Then, the second Ph.D. student annotated all 1062

the samples. Finally, one of the paper’s authors 1063

resolved the conflicts. 1064

H Additional analysis of cIE methods 1065

H.1 Constrained vs. unconstrained 1066

generation 1067

In Table 4, we show examples of SynthIE out- 1068

puts in both constrained and unconstrained man- 1069

ner, on real Wikipedia text. Overall, SynthIE does 1070

open information extraction well (i.e. without KB 1071

constraints), but constrained decoding only works 1072

when there are not many deviations between facts 1073

in the text and the KB. 1074
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text constrained unconstrained

Slaughter fought for law and order with his six-
shooter, a shotgun, and a repeating Henry ri-
fle. He arrested desperados like the Jack Taylor
Gang and brought them to justice.He also be-
came a prominent poker player, often playing
all night long. He was reportedly good at bluff-
ing. He often played with the cattle baron John
Chisum.

{(’Slaughter_(band)’, ’armament’, ’Shotgun’),
(’Slaughter_(band)’, ’armament’, ’Rifle’),
(’Slaughter_(band)’, ’armament’, ’Henry_ri-
fle’)}

{(’Slaughter_(poker)’, ’armament’, ’Henry_ri-
fle’), (’Slaughter_(poker)’, ’armament’, ’Shot-
gun’), (’Slaughter_(poker)’, ’armament’, ’Six-
shooter’), (’Slaughter_(poker)’, ’unmarried
partner’, ’John_Chisum’)}

Carol Dollard, who once worked in product de-
velopment for PepsiCo, told Gladwell: "I’ve
seen many times where the sip test will give
you one result and the home-use test will give
you the exact opposite.". For example, although
many consumers react positively to the sweeter
taste of Pepsi in small volumes, it may become
unattractively sweet when drunk in quantity.

{(’Carol_Douglas’, ’instance of’, ’Human’),
(’PepsiCo’, ’industry’, ’Food_industry’), (’Pep-
siCo’, ’product or material produced’, ’Pepsi’),
(’Carol_Douglas’, ’employer’, ’PepsiCo’)}

{(’Carol_Dollard’, ’employer’, ’PepsiCo’),
(’Carol_Dollard’, ’described by source’, ’Glad-
well_Encyclopedic_Dictionary’), (’PepsiCo’,
’product or material produced’, ’Pepsi’)}

In June 1998, the founders became unhappy
with the direction in which 3Com was taking
the company, and left to found Handspring.

{(’3Com’, ’followed by’, ’Handspring_(com-
pany)’)}

{(’3Com’, ’replaced by’, ’Handspring_(com-
pany)’), (’3Com’, ’significant event’, ’June_-
1998’)}

The merger also brought the game download
site FilePlanet into the IGN group; as of 2011
both FilePlanet and the GameSpy website still
operate as video game-related web sites.

{(’Mergers_and_acquisitions’, ’facet of’, ’Soft-
ware_as_a_service’), (’Mergers_and_acquisi-
tions’, ’facet of’, ’Software’), (’Video_game_-
industry’, ’product or material produced’,
’Video_game’), (’Video_game_industry’, ’in-
stance of’, ’Industry_(economics)’), (’Merg-
ers_and_acquisitions’, ’facet of’, ’Video_-
game_industry’)}

{(’Merger_of_FilePlanet_and_GameSpy’,
’business division’, ’FilePlanet’), (’Merger_of_-
FilePlanet_and_GameSpy’, ’business division’,
’GameSpy’)}

Keith Taylor and Mike Scarrott called it the
"Boomerang Nebula" in 1980 after observing
it with the Anglo-Australian telescope at the
Siding Spring Observatory. Unable to view it
with great clarity, the astronomers saw merely a
slight asymmetry in the nebula’s lobes suggest-
ing a curved shape like a boomerang.

{(’Boomerang_Nebula’, ’astronomical filter’,
’Visual_perception’), (’Boomerang_Nebula’,
’parent astronomical body’, ’Sun’), (’Visual_-
perception’, ’subclass of’, ’Perception’)}

{(’Boomerang_Nebula’, ’site of astronom-
ical discovery’, ’Siding_Spring_Observa-
tory’), (’Boomerang_Nebula’, ’named after’,
’Boomerang’), (’Boomerang_Nebula’, ’discov-
erer or inventor’, ’Keith_Taylor_(astronomer)’),
(’Boomerang_Nebula’, ’discoverer or inventor’,
’Mike_Scarrott’)}

Table 4: Examples of generation with SynthIE in constrained and unconstrained mode

Text ReLiK SynthIE (unconstrained)

The Verwall Alps are not a mountain range in
Austria’s Vorarlberg region, which borders the
Samnaun Alps.

[[’Verwall_Alps’, ’country’, ’Austria’], [’Vo-
rarlberg’, ’country’, ’Austria’], [’Vorarlberg’,
’location’, ’Austria’], [’Samnaun_Alps’, ’coun-
try’, ’Austria’]]

[[’Verwall_Alps’, ’different from’, ’Vorarl-
berg’], [’Vorarlberg’, ’shares border with’,
’Samnaun_Alps’]]

Windows Nashville was not a codename for a
cancelled release of Microsoft Windows.

[[’Windows_Nashville’, ’edition or translation
of’, ’Microsoft_Windows’]]

None

"The Land of Mist" is not a fantasy short story
published in the Strand Magazine. It is not in
the public domain.

[[’The_Land_of_Mist’, ’published in’, ’The_-
Strand_Magazine’]]

[[’The_Land_of_Mist’, ’different from’ ’Fan-
tasy_short_story’], [’The_Land_of_Mist’, ’pub-
lished in’, ’Strand_Magazine’], [’The_Land_-
of_Mist’, ’different from’, ’The_Land_of_-
Mist’], [’The_Land_of_Mist’, ’copyright sta-
tus’, ’Public_domain’]]

Münchner Illustrierte is not a German maga-
zine.

[[’Münchner_Illustrierte’, ’instance of’, ’Maga-
zine’]]

None

"Groovin’ Blue" is not an album by Curtis Amy,
released on Pacific Jazz Records.

[[’Groovin\’_Blue’, ’performer’, ’Curtis_-
Amy’], [’Curtis_Amy’, ’record label’, ’Pacific
_Jazz_Records’]]

[[’Groovin\’_Blue, ’different from’, ’Groovin’_-
Blue_(Curtis_Amy_album)’], [’Groovin\’_-
Blue’, ’record label’, ’Pacific_Jazz_Records’]]

Table 5: Examples of outputs from ReLiK and SynthIE on negated Wiki-cIE Code data samples
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Figure 3: Human evaluation instructions. Annotators are provided with the sheet with text and candidate triplets,
and with the detailed instructions.

H.2 Analysis with negation1075

We suspect that, since ReLiK was trained to match1076

retrieved entities and relations with spans of text1077

identified as relevant, it is more likely to find a1078

relation between two entities in the text that are1079

not connected. To confirm this, we edit samples1080

from the test split of Wiki-cIE Code, created by1081

Josifoski et al. (2023) for the SynthIE model, by1082

replacing “is” in text with “is not”. For example:1083

“Groovin’ Blue is not an album by Curtis Amy,1084

released on Pacific Jazz Records” would be used1085

instead of “Groovin’ Blue is an album by Curtis1086

Amy, released on Pacific Jazz Records”. We test1087

both SynthIE (without constrained decoding) and1088

ReLiK on this modified data. Neither of the two1089

models performs well on this task, but there are1090

indicators that SynthIE is able to somewhat model1091

the lack of relation between two entities. In the1092

case of ReLiK, this happens rarely. For examples,1093

see Table 51094

H.3 GPT-4o pipeline1095

In Sec. 5.3, we show some of the disadvantages1096

of the current approaches with the smaller LMs.1097

However, LLMs are more powerful in terms of1098

their external knowledge, which can be a useful 1099

thing when extracting information facts. The pitfall 1100

with LLMs for this task is the KB. As they do not 1101

possess information about what is present in our 1102

KB, they are struggling to output the triplets in the 1103

correct format, or under correct constraints. 1104

Under the assumption that one has unlimited re- 1105

sources for this task, we tried using GPT-4o with 1106

a form of retrieval-augmented generation (RAG). 1107

In this way, the LLM has the information about 1108

our KB. Here we present some of the key improve- 1109

ments to the standard prompt that resulted in better 1110

outputs (manually evaluated): 1111

• Entity retrieval: We noticed that it is impor- 1112

tant for entity retrieval to be high-recall. This 1113

means that we did not care if many entities 1114

were not relevant, as long as all the relevant 1115

ones were included. GPT-4o seems to be able 1116

to filter the non-relevant entities, but cannot 1117

come up with the new ones. In our case, we 1118

used a mix of entities retrieved by ReLiK, 1119

SynthIE, and GenIE (both in an unconstrained 1120

setting). We did not include relation retrieval 1121

as we find this to be a harder task than entity 1122

retrieval, which requires the model to almost 1123
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Text GPT-4o GPT-4o + filter by entities

A film adaptation of Asada’s work, directed
by Yōjirō Takita, is known as When the Last
Sword Is Drawn. A ten-hour 2002 television
jidaigeki based on the same novel starred Ken
Watanabe. A Japanese Manga Series, Rurouni
Kenshin, by Nobuhiro Watsuki, notably sets
place in the war, and the aftermath. Western
interpretations include the 2003 American film
The Last Samurai directed by Edward Zwick,
which combines into a single narrative historical
situations belonging both to the Boshin War,
the 1877 Satsuma Rebellion, and other similar
uprisings of ex-samurai during the early Meiji
period.

(’Rurouni_Kenshin’, ’creator’, ’Nobuhiro_Wat-
suki’), (’The_Last_Samurai’, ’director’, ’Ed-
ward_Zwick’)

(’Rurouni_Kenshin’, ’creator’, ’Nobuhiro_Wat-
suki’), (’The_Last_Samurai’, ’director’, ’Ed-
ward_Zwick’)

Carol Dollard, who once worked in product de-
velopment for PepsiCo, told Gladwell: "I’ve
seen many times where the sip test will give
you one result and the home-use test will give
you the exact opposite.". For example, although
many consumers react positively to the sweeter
taste of Pepsi in small volumes, it may become
unattractively sweet when drunk in quantity.

(’PepsiCo’, ’product or material produced’,
’Pepsi’)

(’PepsiCo’, ’product or material produced’,
’Pepsi’)

At the time he ran a chain of health food shops
in the United States, with which she became
involved. The couple now live in London and
have two daughters.

(’John_Henry_Richardson’, ’residence’, ’Lon-
don’)

None

However, the U.S. Bank Tower does surpass
both the Salesforce Tower and the Wilshire
Grand Center in roof height, making it the only
building in California whose roof height ex-
ceeds 1,000 feet (300 m). Because local build-
ing codes required all high-rise buildings to
have a helipad, it was known as the tallest build-
ing in the world with a rooftop heliport from
its completion in 1989 to 2010 when the China
World Trade Center Tower III opened.

(’Wilshire_Grand_Center’, ’roof height
comparison’, ’Salesforce_Tower’), (’U.S._-
Bank_Tower’, ’located in’, ’California’),
(’U.S._Bank_Tower’, ’has part’, ’Heliport’),
(’U.S._Bank_Tower’, ’heliport timeframe end’,
’China_World_Trade_Center_Tower_III’)

(’Wilshire_Grand_Center’, ’roof height compar-
ison’, ’Salesforce_Tower’)

Thorpe immediately is enchanted by Doña
María and gallantly returns her plundered jew-
els. Her detestation of him softens as she too
begins to fall in love.

None None

Table 6: Examples generated by GPT-4o pipeline. Second column presents raw outputs after being prompted with
our pipeline. Third column presents results where triplets containing entities which are not in the retrieved entities
are removed.
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be able to do cIE on its own. Theoretically,1124

with LLMs that have longer context sizes, in1125

our case, it is possible to send the whole list1126

of relations. We did not test this but expect1127

that this would improve the performance.1128

• Sketch of triplet generation: We noticed that1129

GPT-4o produces better outputs when a sketch1130

of a triplet generation by some other model1131

is provided. Anecdotally, the outputs were1132

better even when the sketches were bad. For1133

the sketch, we used the output of the SynthIE1134

model1135

• Encourage reasoning: LLM was performing1136

vastly better when it was encouraged to ex-1137

plain the reasoning behind the choice of the1138

triplets1139

We did not perform a formal evaluation of this1140

method as it was not the focus of our study. All1141

our findings from this section are based on manual1142

inspection of the results. One thing we draw atten-1143

tion to is that LLMs have likely been exposed to1144

the data we used for our manual inspection during1145

their pretraining. Second thing to be careful about1146

are rare relations. As they do not appear often, it is1147

likely that an LLM would prioritize more common1148

relations when generating the output. Regardless1149

of that, we showcase our attempt as a starting point1150

for the other researchers. For examples of gener-1151

ated outputs with GPT-4o on the real Wikipedia1152

data, see Table 6.1153
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