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ABSTRACT

Transformers have attained superior performance in natural language processing
and computer vision. Their self-attention and feedforward layers are overparame-
terized, limiting inference speed and energy efficiency. Tensor decomposition is a
promising technique to reduce parameter redundancy by leveraging tensor algebraic
properties to express the parameters in a factorized form. Prior efforts used manual
or heuristic factorization settings without hardware-aware customization, resulting
in poor hardware efficiencies and large performance degradations.
In this work, we propose a hardware-aware tensor decomposition framework,
dubbed HEAT, that enables efficient exploration of the exponential space of possi-
ble decompositions and automates the choice of tensorization shape and decom-
position rank with hardware-aware co-optimization. We jointly investigate tensor
contraction path optimizations and a fused Einsum mapping strategy to bridge the
gap between theoretical benefits and real hardware efficiency improvement. Our
two-stage knowledge distillation flow resolves the trainability bottleneck and thus
significantly boosts the final accuracy of factorized Transformers. Overall, we
experimentally show that our hardware-aware factorized BERT variants reduce
the energy-delay product by 5.7× with less than 1.1% accuracy loss and achieve a
better efficiency-accuracy Pareto frontier than hand-tuned and heuristic baselines.

1 INTRODUCTION

Transformer models have demonstrated record-breaking performance on natural language processing
(NLP) tasks (Peters et al., 2018; Devlin et al., 2019; Brown et al., 2020). However, the linear projection
layers in multi-head self-attention (MHSA) and feedforward networks (FFNs) contain a large number
of parameters that limit the efficient deployment of Transformers. Therefore, compressing large-scale
Transformers is an essential problem in practical NLP tasks.

Tensor decomposition (Kolda & Bader, 2009) leverages the higher-order structure in tensors to
efficiently express it in a factorized form, e.g., CP (Phan, 2011), tucker (Tucker, 1966), tensor-train
(TT) (Oseledets, 2011) decomposition. Tensor factorization can be applied to matrices by first
tensorizing (Anandkumar et al., 2014; Novikov et al., 2015b) them (reshaping them into a higher-
order tensor) and then factorizing that tensor. Among the many model compression methods (Zhen
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Figure 1: Hardware-efficient tensor decomposition framework HEAT achieves better accuracy-
efficiency trade-off than manual settings.
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Figure 2: (a)(b) Plot different tensorization shapes and ranks in the space. Computations (MACs)
and parameter counts are not accurate indicators of real hardware cost (lower energy-delay product
means the application consumes less energy and runs faster (Laros III et al., 2013)). (c) Different
tensors in BERT-base show different low-rankness, thus requiring per-tensor customization.

et al., 2022; Hrinchuk et al., 2020; Chen et al., 2018; Zhang et al., 2022), it is a particularly promising
approach to exploring the intrinsic redundancy of NN weight matrices. Prior work has successfully
applied this method to reduce the number of parameters and computations in NNs by manually
selecting the tensorization shapes and ranks (Novikov et al., 2015a; Hrinchuk et al., 2020; Chen et al.,
2018; Kossaifi et al., 2020; Deng et al., 2019; Yin et al., 2021b; Tjandra et al., 2018).

However, three critical issues remain unresolved. First, there is a huge gap between compression
metrics and hardware efficiency, which is neglected by most prior work. As shown in Fig. 2(a)
and 2(b), the number of multiply-accumulate operations (MACs) and parameters are poor indicators
of energy efficiency and execution speed on hardware. This implies that the claimed theoretical
compression ratio does not directly translate to real hardware efficiency benefits. Moreover, we
observe heterogeneous low-rankness in different weight matrices in Fig. 2(c), but prior work ignores
this heterogeneity and manually assigns a global setting to all matrices based on heuristics (Deng
et al., 2019; Hrinchuk et al., 2020; Chen et al., 2018; Kossaifi et al., 2019), which fail to explore
the huge design space and thus are sub-optimal for model compression. An additional challenge
of factorized Transformers is the non-trivial performance drop after tensor decomposition. Direct
re-training cannot recover the accuracy of factorized Transformers due to the optimization difficulty
of cascaded tensor contractions, which hinders their practical deployment.

To solve these challenges, we propose HEAT, a hardware-efficient tensor decomposition framework
that features automated tensor decomposition with hardware-aware optimization, shown in Fig. 1.
HEAT can efficiently explore the huge design space of tensorization while significantly improving
the hardware efficiency based on the following approaches: (1) Distinguished from prior hardware-
unaware tensor decomposition work, HEAT incorporates hardware cost feedback in the tensorization
optimization flow to find expressive and hardware-efficient tensorization settings. (2) Instead of
manually selecting a global rank setting via trial-and-error, HEAT leverages the heterogeneous low-
rankness of different tensors and adopts a novel Rank SuperNet-based method to automatically search
for efficient per-tensor rank settings in the exponentially large space with one-shot re-training cost.
(3) HEAT resolves the trainability challenge of factorized Transformers by introducing a two-stage
knowledge distillation flow to significantly boost the task performance.

Based on the approaches in HEAT, we make the following contributions:

• We deeply investigate the hardware efficiency of tensor decomposition-based model compression
methods and propose an automatic framework for hardware-efficient Transformer factorization.

• We move beyond conventional compression metrics and incorporate hardware cost into optimiza-
tion to find hardware-efficient tensorization settings.

• We propose a novel Rank SuperNet to explore the exponential space of heterogeneous per-tensor
rank settings to push forward the accuracy-efficiency Pareto front with one-shot re-training cost.

• We discuss the trainability bottleneck of factorized Transformer and resolve it via a two-stage
distillation recipe to remedy the task performance degradation from factorization.
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Our searched factorized BERT models outperform the original BERT with an estimated 5.7× lower
energy-delay product (EDP) and surpass hand-tuned and heuristic baselines with 25%-30% lower
EDP and 1-3% accuracy improvement on SQuAD-v1.1 and SST-2 datasets.

2 HEAT AUTOMATIC TENSOR DECOMPOSITION FRAMEWORK

2.1 UNDERSTANDING HARDWARE-EFFICIENT TENSOR DECOMPOSITION

Tensor Decomposition. We first briefly introduce the basics of tensor decomposition. As
shown in Fig. 3, a matrix W ∈ RM×N is tensorized into a high-order tensor X and fur-
ther approximated by the product or summation of a series of smaller core tensors. Repre-
sentative decompositions include CP (Phan, 2011), Tucker (Tucker, 1966), and tensor-train ma-
trix (TTM) (Oseledets, 2011). For example, the order-d TTM decomposition is formulated by
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Figure 3: Illustration of tensor de-
composition.

X ((i1,j1), · · ·, (id,jd))=G(1)((i1, j1), :) · · · G(d)(:, (id, jd)), (1)

where each G(i) ∈ Rri−1×mi×ni×ri is called a core tensor,
the size of tensorized X is called tensorization shape, i.e.,
s = (m1, · · · , n1, · · · ), where M =

∏
i mi and N =

∏
i ni.

The variable dimensions of cores are called decomposition
ranks, i.e, r = (r0, r1, · · · , rd−1, rd). The compression ratio
is c =

∑
i ri−1miniri/MN .

The goal is to determine the tensorization shape s and decompo-
sition rank r for each matrix W that minimizes energy consump-
tion and runtime cost while maintaining high accuracy.

Design Space. The design space of possible (s, r) pairs is
exponentially large. We use Tucker decomposition as an ex-
ample. Given an M × N matrix W, we assume its candidate
factorization orders are D = (d1, · · · , di, · · · , dk). For any or-
der di ∈ D, we define Si as all possible tensorization shapes,
and we have |Si| = O((di!)

2). For each tensorization shape
sj = (m1, · · · ,mdi/2, n1, · · · , ndi/2) ∈ Si, we denote the set
of total possible ranks as Rij , and one example rank setting is r = (r1, · · · , rdi

) ∈ Rij . There are
O(

∑
i,j |Rij |) ≈ O(

∑
i MN(di!)

2) different factorization settings for this matrix. If we wish to
explore per-tensor factorization settings for a DNN with L weight matrices, then the complexity
explodes to O(

∏L
l (
∑

i M
lN l(di!)

2)). For example, the total possible decompositions for BERT-
base are roughly 10632. Exploring this huge combinatorial design space via brute-force search
is intractable, especially considering that it requires costly model re-training and hardware cost
simulation to evaluate each factorization shape-rank pair (s, r).

Formulation. To make this intractable problem efficiently solvable, we formulate it as a three-level
hierarchical optimization as follows,

Level 3 : Train factorized model: Θ∗(s∗, r∗) = argmin
Θ

L(Θ(s∗, r∗),Dtrn),

Level 2 : Search rank: r∗ = argmin
r

(
1− Acc(Θ∗(s∗, r))

)
Cost∗(s∗, r|α)γ ,

Θ∗(s∗, r) = argmin
Θ

L(Θ(s∗, r),Dtrn),

Level 1 : Search shape: s∗ = Paretos

(
Cost∗(s, r|α), ϵ, c)

ϵ = ∥W −W′(s, r)∥F/∥W∥F , Cost∗(s, r|α) = min
m

min
p

Cost(s, r,m, p|α).

(2)

In Level 1, given an accelerator architecture α, we find a Pareto optimal tensorization shape s∗

that minimizes decomposition error ϵ, compression ratio c, and the minimum hardware cost Cost∗

obtained by optimizing tensor contraction path (p) and hardware mapping (m). We use a standard
energy-delay product (EDP) as the hardware cost to reflect both energy consumption and runtime cost.
Then in Level 2, we search for optimal per-tensor rank settings r∗ while minimizing hardware cost
and maximizing the task-specific performance. In Level 3, we train the factorized Transformer
model with the optimal (s∗, r∗) settings to find its optimal parameters Θ∗(s∗, r∗).
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2.2 THE PROPOSED HEAT FRAMEWORK
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Figure 4: Overview of our hardware-efficient automatic tensor decomposition framework HEAT.

To solve this three-level optimization problem efficiently, we propose a three-stage framework HEAT,
summarized in Fig. 4. In the first stage, we evaluate each shape candidate on a given accelerator α and
build a hardware cost table T : S ×R → Cost, based on which we select one Pareto optimal shape
s∗ with low decomposition error ϵ, low compression ratio c, and low hardware cost. All matrices
with the same size share this tensorization shape. We import the optimal shape s∗ to the second
stage, a one-shot rank search flow that efficiently explores per-tensor rank settings with minimum
model re-training cost. With the searched optimal shape and rank (s∗, r∗), we enter the last step, a
knowledge distillation-based re-training flow to recover the accuracy of factorized Transformer.

2.2.1 LEVEL 1: PARETO OPTIMAL TENSORIZATION SHAPE SEARCH
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Figure 5: Efficiently map fused Einsum to Simba-L architecture
aware of four memory access types.

The shape of the high-order
tensor X is critical to the ap-
proximation error and hard-
ware efficiency. Unlike prior
work that empirically selects
the tensorization shape based
on heuristics, we wish to find
one that can achieve low ap-
proximation error with mini-
mal hardware cost, which cor-
responds to multi-objective
optimization. To determine
the real hardware cost of a
given shape, as shown in
Fig. 5, we must find a near-
optimal contraction path p and map it to the hardware α with an optimal mapping m.

Tensor Contraction Path Optimization. A factorized linear layer requires a series of tensor
contractions, which can be described by a symbolic Einsum equation. The order in which these
tensors are contracted, or the contraction path, is critical to hardware efficiency, which is rarely
discussed by prior work. For example, we show a CP factorized layer in Fig. 6. The (768×768)
matrix is first reshaped to an order-3 (768×12×64) tensor. Given a rank of 280, this tensor is
decomposed into a length-280 weight vector and three CP cores. Multiplying the input x with CP
cores corresponds to this Einsum equation: bc,a,da,ea,ca→bde. A naive tensor contraction
path of this equation is shown on the left tree of Fig. 6. Each node represents a 2-operand tensor
operation. Simply following the left-to-right association order leads to considerable computation and
intermediate storage overhead due to the many outer product operations. In contrast, a MAC-optimal
path with a more efficient association order reduces hardware cost by orders of magnitude (Smith &
Gray, 2018). Note that not all nodes in the tree need to be calculated on the fly. We can pre-compute
static and contracting nodes to eliminate redundant memory and computation cost, e.g., element-
wise multiplication and batched inner products. Static nodes mean their inputs are known before
inference, and contracting nodes mean those operations reduce the tensor size. Hence, we only need
to implement the pre-computed MAC-optimal path on the hardware accelerator.
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Figure 6: Our pre-computed MAC-optimal contraction path can significantly save hardware cost.

Map Fused Einsum to Hardware. Even with the optimized Einsum contraction path, we still need
to find an efficient scheduling strategy and map it onto the accelerator to get the minimum cost Cost∗.
Note that the mapping strategy has a huge impact on the energy and runtime cost. We first customize an
accelerator Simba-L based on a reference deep learning accelerator design, Simba (Shao et al., 2019).
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with ∼3000 candidate shape-rank pairs.

Then, as shown in Fig. 5, given the optimal con-
traction path p, architecture α, and map space
constraints, we search for an efficient mapping
m while minimizing energy-delay product.

However, individually implementing each 2-
operand node in p would realize minimal ef-
ficiency benefit since the intermediate tensors
are always stored in DRAM, introducing non-
trivial data movement cost. Instead, we im-
plement a fused Einsum, minimizing redun-
dant DRAM accesses by storing intermediate
results in the global buffer (GB) whenever pos-
sible to obtain the minimum hardware cost
Cost∗(s, r|α) (Details see Appendix A1).

Search for the Pareto Optimal Shape:
s∗. We construct a search space for shape
candidates. In Fig. 7, we perform integer fac-
torization on the matrix height/width, select
top-k shapes with maximum entropy since we
prefer uniform shapes across axes, and permute
the axes to form the shape candidates S. Then
we decompose the matrix with all shape candi-
dates to get the approximation error and evalu-
ate their hardware costs to form a cost table T
(See details in Appendix A2). We visualize the
cost table in Fig. 7. We automatically detect
the points on the Pareto-optimal surface and
select the best shape s∗ with the lowest decom-
position error. We repeat this process for all
different sizes of matrices in the model, completing the Level 1 optimization.

2.2.2 LEVEL 2: HETEROGENEOUS PER-TENSOR RANK OPTIMIZATION

One-Shot Rank Search via Weight-Sharing SuperNet. The challenges in the Level 2 optimiza-
tion are twofold: (1) the exponentially large per-tensor rank search space and (2) the prohibitive
cost of accuracy evaluation on a shape-rank pair. These barriers make it impossible to select the
best rank by enumeration. We do not want to evaluate the performance of factorization solely by
decomposition error like prior work, which is a very rough proxy of test accuracy. Instead, we
need a fast and much more accurate task performance estimator. Inspired by the high efficiency in
weight-sharing neural architecture search (NAS) (Wu et al., 2019; Cai et al., 2020), we propose a
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Figure 8: Left: Rank SuperNet training flow. Right: Illustration of training stabilization techniques.

Rank SuperNet where each SubNet corresponds to a per-tensor rank setting. As shown in Fig. 8, at
each iteration, we randomly sample valid ranks for each tensor, and different SubNets share the same
set of parameters. Hence, we can efficiently explore a large space of different rank settings. Training
this SuperNet can easily suffer from instability issues due to a large rank sampling variance, so we
adopt four techniques to stabilize the SuperNet convergence. (1) We only sample the first r vectors
along each axis to reduce the search space. (2) We limit the rank difference across iterations to reduce
variance. (3) We adopt sandwich rules (Yu & Huang, 2019) to train the largest, smallest, and randomly
sampled SubNets together. (4) We normalize the reconstructed matrix W′(s, r) with a scaling factor√
V ar(W)/V ar(W′) to match the target variance of W and avoid statistical instability.

Per-Tensor Rank Selection via Evolutionary Search: r∗. We randomly sample 2,560 SubNets
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Figure 9: Left, Middle: Our accuracy predictor shows high prediction
fidelity and generalization on BERT-base SQuADv-1.1. Right: Pre-
dicted F1 is an accurate proxy of the ground-truth re-trained F1.

from the Rank SuperNet
and train a random forest
P : (s, r) → Acc as a fast
proxy to predict their val-
idation accuracy based on
the factorization settings. In
Fig. 9, we observe a high fi-
delity (high Spearman cor-
relation) between the pre-
dicted and the re-trained F1.
Besides accuracy, network
hardware cost must also be
considered. The total en-
ergy Etot and runtime Ttot

of the model is simply the sum of all layer costs. We use evolutionary search to find the optimized
factorization settings: minr (1− Acc)(Etot · Ttot)

γ , where γ is empirically set to 0.25.

2.2.3 LEVEL 3: RE-TRAINING WITH TWO-STAGE DISTILLATION
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FFN FFN
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T
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Figure 10: Layer-wise and logit distillation
for factorized Transformers.

Since decomposition errors will accumulate through lay-
ers, re-training is necessary to recover accuracy. How-
ever, optimization of factorized tensors is difficult, mak-
ing trainability a bottleneck for factorized Transformers.
To solve this issue, we propose a two-stage distillation
flow. First, we perform optimal layer-wise projection
to find the tensor decomposition that minimizes matrix
approximation error, minW′

i

∑
i ∥Wi −W′

i∥F . Then
we distill the layer-wise knowledge from the teacher T
to the factorized student S both on the attention maps A
and hidden states h on each Transformer block.

Lattn + Lhidden =
∑
i

Li
attn + Li

hidden

=
∑
i

CosEmbed(AS
i , A

T
i ) + CosEmbed(hS

i , h
T
i )

(3)
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TTM Tucker CP
Model #Params

(M)↓ F1 (%)↑ EDP
(µJ · s)↓

#Params
(M)↓ F1 (%)↑ EDP

(µJ · s)↓
#Params

(M)↓ F1 (%)↑ EDP
(µJ · s)↓

BERT-base 109.50 88.16 34.31 109.50 88.16 34.31 109.50 88.16 34.31

SR-Manual-1 35.04 83.60 24.27 38.10 81.90 5.63 43.13 68.95 4.48
SR-Manual-2 38.71 84.74 25.86 39.71 82.31 6.85 54.27 79.22 7.57

S(Ours)-R(TensorLy)-1 36.15 83.89 24.42 35.81 80.43 4.06 46.38 85.81 5.45
S(Ours)-R(TensorLy)-2 39.78 85.49 27.18 39.48 82.00 4.93 55.52 87.21 9.37

HEAT-a1 41.60 86.01 25.06 42.14 83.41 4.91 48.88 87.11 5.99
SR-Manual-3 42.37 86.05 28.87 42.64 83.45 7.87 60.88 81.96 10.70

S(Ours)-R(TensorLy)-3 43.33 85.84 29.05 42.63 82.96 5.66 60.31 87.74 9.62
HEAT-a2 46.42 86.71 28.93 50.96 85.51 7.45 59.08 87.79 9.01

SR-Manual-4 50.90 86.99 32.57 52.94 85.05 12.21 69.12 84.31 12.40
SR-Manual-5 60.68 87.29 39.25 59.17 86.50 17.00 83.98 86.59 18.50

S(Ours)-R(TensorLy)-4 51.76 86.64 33.55 51.87 85.19 9.27 68.79 87.62 14.40
S(Ours)-R(TensorLy)-5 61.45 87.74 49.27 62.26 86.76 11.90 82.43 88.14 18.00

HEAT-a3 54.68 87.36 32.72 63.62 86.35 10.40 74.15 87.91 14.50
Avg. Improv. -8.15% +0.65 -8.80% +0.09% +1.03 -30.28% -9.07% +3.45 -25.30%

Table 1: Compare our HEAT-series with baseline decomposition methods on BERT-base SQuAD-v1.1
in terms of #Params, F1 score, and energy-delay product (EDP) across three decomposition methods.

After the layer-wise alignment, we only apply last-layer logit distillation to provide more optimization
freedom for the student,

Llogit =
1

2
LKL(y

S/τ, yT /τ) +
1

2
LCE(y

S , yT ). (4)

3 RESULTS

3.1 EXPERIMENT SETUP

Datasets, Models, and Training Settings. We search the decomposition settings on BERT-
base/DistilBERT with the question-and-answer dataset SQuAD-v1.1 and evaluate on SQuAD and
SST-2 datasets. We use the original model fine-tuned on SQuAD as the teacher model. We searched
3 variants, from HEAT-a1 to HEAT-a3, with different energy-delay product (EDP) to cover different
design points. Breakdown on the compression ratio, runtime, and energy cost of HEAT variants are
in Appendix A13 and A14. We evaluate three representative tensor decomposition methods: TTM,
Tucker, and CP. We follow the standard BERT fine-tuning settings. Please see Appendix A3, A4, and
A5 for detailed settings of the SuperNet training, evolutionary search, and knowledge distillation.

Hardware Settings. We use Timeloop (Parashar et al., 2019) as the mapper and hardware cost
simulator, with energy models based on 5nm technology. Detailed architecture configurations of our
customized Simba-L accelerator and simulation settings can be found in Appendix A2.

3.2 MAIN RESULTS

Results on BERT-base SQuAD.v1-1. We compare our searched factorization settings with (1)
the original fine-tuned BERT, (2) SR-Manual: manually-selected shape and rank settings, and
(3) S(Ours)-R(TensorLy): searched optimal tensorization shapes and heuristic ranks by Ten-
sorLy (Kossaifi et al., 2019) based on the target compression ratio. In Table 1 and Fig. 12, HEAT
achieves the best performance-efficiency Pareto front, surpassing manual and heuristic tensor decom-
position baselines.

With TTM decomposition, HEAT improves the F1 score by +0.65% with 8% fewer parameters and
8.8% lower hardware cost on average. The compact HEAT-a1 benefits the most from our heteroge-
neous per-tensor rank settings and significantly outperforms manual and heuristic decomposition with
+1.6% higher F1 scores. However, compared to the original BERT, we note that TTM-factorized
BERT is not very hardware-efficient, as the TTM optimal contraction path reconstructs the weight
matrix and performs the standard linear operation.

With Tucker decomposition, HEAT-series boosts the F1 score by +1.03 with +30% higher efficiency.
Handcrafted Tucker decomposition typically reshapes the matrix to a high-order tensor (e.g., order-6
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or 8) (Yin et al., 2021b; Tjandra et al., 2018). However, this widely-used heuristic turns out to be
much less efficient than the lower-order tensorization found by HEAT, because the high-order Einsum
equation includes many 2-operand Einsums with tiny tensor dimensions (≪32), resulting in low
hardware utilization. Though the accuracy per parameter of Tucker is slightly lower than TTM, its
accuracy-to-EDP ratio is 3-5× higher than TTM.

CP decomposition is usually disfavored due to unstable optimization (de Silva & Lim, 2008), which
is also evidenced by manual CP decomposition. In contrast, our search framework finds an efficient
CP tensorization shape and is able to recover accuracy through re-training. HEAT-series overall can
boost the F1 score by +3.45% with 25.3% less hardware cost. Compared to the original BERT, our
searched HEAT-a1 can maintain accuracy (≤1% drop) with 5.7× higher hardware efficiency.

Model TTM Tucker CP
F1 (%)↑ EDP↓ F1(%) EDP↓ F1 (%)↑ EDP↓

BERT-base 91.74 5.21 91.74 5.21 91.74 5.21

HEAT-a1 90.02 4.24 87.27 0.45 91.40 0.50
HEAT-a2 90.90 5.65 88.42 0.69 91.51 0.79
HEAT-a3 91.20 7.34 89.91 1.02 91.17 1.34

Table 2: Evaluation of HEAT on SST-2 with de-
composition settings searched on SQuAD-v1.1.

Generalize the searched decomposition to
SST-2. We further re-train our HEAT-variants
on SST-2 datasets to evaluate the efficiency and
generalization of the tensor decomposition set-
tings searched on SQuAD. In Table 2, we ob-
serve that when adapted to a new downstream
task with a smaller sequence length (128), our
searched Tucker and CP factorization can still
largely maintain the F1 score with 4-10× higher hardware efficiency.

DistilBERT SQuAD-v1.1 and SST-2. Our tensor decomposition method can be applied to compact
Transformers as an orthogonal compression technique. Based on DistilBERT (Sanh et al., 2019),
a 6-layer compact version of BERT-base, we searched three HEAT-variants in Table 3. Our HEAT-
series can achieve comparable F1 scores with 5.7× higher efficiency on SQuAD-v1.1. On SST-2,
HEAT-series can maintain the accuracy while saving 3-10× hardware cost.

SQuADv1.1 SST-2
TTM Tucker CP TTM Tucker CP

F1↑ EDP↓ F1↑ EDP↓ F1↑ EDP↓ Acc↑ EDP↓ Acc↑ EDP↓ Acc↑ EDP↓
DistilBERT 86.90 8.58 86.90 8.58 86.90 8.58 91.97 1.30 91.97 1.30 91.97 1.30

HEAT-a1 85.26 6.71 83.66 1.72 87.09 1.50 91.40 1.23 90.30 0.17 91.28 0.13
HEAT-a2 86.42 7.76 85.21 2.56 87.89 2.26 90.60 1.64 91.30 0.23 91.06 0.20
HEAT-a3 86.92 8.74 86.15 3.21 88.18 3.63 90.60 2.10 90.60 0.29 91.63 0.34

Table 3: Compare three HEAT-variants with DistilBERT-base on SQuAD-v1.1 and SST-2 datasets.

3.3 DISCUSSIONS

Ablation on SuperNet Training Techniques. We perform ablation studies on the Rank SuperNet
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Figure 11: Ablation on Su-
perNet training.

training techniques in Fig. 11. We individually remove one technique
at a time and show the F1 score distribution of 1,024 SubNets. With all
training techniques, our HEAT framework achieves the best SuperNet
convergence with the highest SubNet F1 scores.

Evolution vs. Random Rank Settings. In Fig. 12, we fur-
ther fine-tune 40 SubNets on SQuAD-v1.1 with our searched ten-
sorization shape and randomly sampled per-tensor ranks, denoted as
S(Ours)-R(Random). We can observe that (1) even with random
ranks, our searched shape can still outperform manually selected shapes;
(2) and the evolutionary search effectively explores the Pareto front of
the rank distribution.

Ablation on Re-Training Recipes. We compare different re-training methods in Table 4 and
visualize four representative attention maps, which are key indicators of the model representability.
Direct re-training with cross-entropy loss suffers from severe performance loss due to optimization
difficulty, and the attention map can barely be recovered. One-stage distillation is not effective since
the layer-wise loss is not compatible with logit distillation loss, especially in the later optimization
stage. When we decouple layer-wise and logit distillation, especially when attention and hidden state
distillation are combined in the first stage, we observe significant improvement in accuracy. The
abundant patterns in the visualized attention maps are mostly recovered.
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Figure 12: Comparison of our searched factorization with baselines in the accuracy vs. EDP space on
BERT-base SQuAD-v1.1.

BERT-base w/o KD One-Stage KD Two-Stage KD
Finetune (16) L (16) A+L (16) H+L (16) A+H+L (16) A(8) → L(8) H(8) → L(8) A+H(8) → L(8)

Attention
Map

F1 (%) 88.16 79.11 79.22 78.32 75.89 81.15 85.99 73.22 87.36

Table 4: Compare different re-training recipes of TTM-factorized HEAT-a3 on SQuAD-v1.1. All
methods are trained for 16 epochs in total.

4 RELATED WORK

Compression with Tensor Decomposition. In the literature on Transformer compression, tensor
decomposition is applied to compress the embedding layers (Hrinchuk et al., 2020; Chen et al., 2018;
Yin et al., 2021a). However, we do not decompose the embedding matrix due to limited hardware
efficiency benefits (See Appendix A7). Multi-linear attention (Ma et al., 2019) was proposed
based on block-term tensor decomposition to achieve parameter-efficient Transformer. Recently,
hybrid compression approaches have achieved strong results in Transformer compression. Low-rank
decomposition was applied with weight pruning (Liu et al., 2021) or quantization to slim down BERT
by 7.5×. Our work delves deeply into tensor decomposition, and the proposed HEAT framework can
be jointly applied with other orthogonal methods, which is one promising future direction.

Optimization of Factorized NNs. Knowledge distillation was used to transfer the expressivity
from a pre-trained teacher Transformer to the compact student model (Liu et al., 2021; Sanh et al.,
2019). Bayesian tensorized NNs are put forward to automatically determine the rank in low-rank
decomposition without manual settings (Hawkins et al., 2020). Our search framework is more
scalable than the Bayesian method and considers the real accuracy and hardware cost instead of just
matrix decomposition error and compression ratios.

5 CONCLUSION

In this work, we explore the large design space of hardware-efficient tensor decomposition and
present HEAT, an automatic decomposition framework for Transformer model compression. We
move beyond conventional manual factorization focusing only on compression ratio or computations.
Instead, we formulate the tensor decomposition problem as a nested optimization with hardware
efficiency in the loop. Our hardware-aware tensorization flow can efficiently find expressive and
efficient tensor shapes. Our SuperNet-based one-shot rank search flow can minimize the cost of
model re-training and automatically generate optimized per-tensor decomposition rank settings. We
employ a two-stage distillation flow to solve the trainability bottleneck of factorized Transformers
and significantly boost their task performance. Experiments show that HEAT reduces up to 5.7×
energy-delay product on our customized accelerator with less than 1.1% accuracy drop. Compared to
manual and heuristic tensor decomposition methods, our searched HEAT-variants show 1-3% higher
accuracy with ∼30% less hardware cost on average.
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