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ABSTRACT

Time-to-event analysis, also known as survival analysis, aims to predict the first
occurred event time, conditional on a set of features. However, the presence of
censorship brings much complexity in learning algorithms due to data incom-
pleteness. Hazard-based models (e.g. Cox’s proportional hazards) and acceler-
ated failure time (AFT) models are two popular tools in time-to-event modeling,
requiring the proportional hazards and linearity assumptions, respectively. In ad-
dition, AFT models require pre-specified parametric distributional assumptions in
most cases. To alleviate such strict assumptions and improve predictive perfor-
mance, there have been many deep learning approaches for hazard-based models
in recent years. However, compared to hazard-based methods, AFT-based rep-
resentation learning has received limited attention in neural network literature,
despite its model simplicity and interpretability. In this work, we introduce a
Deep AFT Rank-regression for Time-to-event prediction model (DART), which is
a deep learning-based semiparametric AFT model, and propose a l1-type rank loss
function that is more suitable for optimizing neural networks. Unlike existing neu-
ral network-based AFT models, the proposed model is semiparametric in that any
distributional assumption is not imposed for the survival time distribution with-
out requiring further hyperparameters or complicated model architectures. We
verify the usefulness of DART via quantitative analysis upon various benchmark
datasets. The results show that our method has considerable potential to model
high-throughput censored time-to-event data.

1 INTRODUCTION

Time-to-event analysis, also known as survival or failure time analysis, is a major statistical approach
in various fields such as biostatistics, medicine, and economics to estimate either risk scores or the
distribution of event time, given a set of features of subjects (Viganò et al., 2000; Cheng et al., 2016;
Dirick et al., 2017; Li et al., 2021). There are benefits of assessing risk or quantifying survival
probabilities but, for all that, time-to-event analysis itself is challenging because of the existence of
censoring. In real-world studies, a subject (e.g. a patient in medical research) can drop out before
events of interest (e.g. death) happen, so that one can not follow them up (Leung et al., 1997). The
presence of censoring in survival data can create a serious challenge in applying standard statistical
modeling strategies. Usually, the censoring process is assumed to be non-informative in that it is
irrelevant of the underlying failure process given features, but should be properly accounted for,
otherwise leading to biased results.

The most popular and standard approach for modeling time-to-event data is to use Cox’s propor-
tional hazards (CoxPH) model. CoxPH relates a conditional hazard to given features in a multi-
plicative form between the baseline hazard function and exponentiated regression component, and
consequently learns relative risks. It often works on the assumptions of proportional hazards and
time-invariant covariate-effects, which are difficult to follow in the real world (Aalen, 1994). Statis-
tical testing procedures, such as Schoenfeld’s test, are usually conducted to examine these underly-
ing assumptions since many Cox-based analyses are vulnerable to violation of model assumptions.
(Aalen & Gjessing, 2001; Kleinbaum & Klein, 2010).

The accelerated failure time model (AFT) or accelerated life model relates the logarithm of the fail-
ure time linearly to the features. As a result of its direct physical interpretation and the connection
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with linear models, this model provides an attractive alternative to the CoxPH for the regression
analysis of censored failure time data. Unlike CoxPH, standard AFT model parametrizes the un-
derlying time-to-event distribution up to a set of finite-dimensional parameters such as Weibull and
log-normal (Lee & Wang, 2003). However, imposing distributional assumption is too strict in real
data analysis and can reduce the attractiveness inherent in the AFT model, mostly underperforming
Cox-based analysis (Cox, 2008; Kleinbaum & Klein, 2010). Recently, based on statistical theories
and the advent of deep learning techniques, various time-to-event models have been explored to
circumvent the necessity of assumptions such as linearity, single risk, discrete time, and fixed-time
effect (Katzman et al., 2018; Lee et al., 2018; Ren et al., 2019; Kvamme & Borgan, 2019; Avati
et al., 2020; Tarkhan et al., 2021; Rahman et al., 2021).

For example, Cox-Time (Kvamme et al., 2019) and DATE (Chapfuwa et al., 2018) alleviate the most
fundamental but strict assumptions of the CoxPH and parametric AFT models by achieving non-
proportional hazards and non-parametric event-time distribution, respectively. Cox-Time exploits
the neural network as a relative risk function to model interactions between time and covariates. The
authors also show that the proposed loss function is a good approximation for the Cox partial log-
likelihood. DATE is a conditional generative adversarial network for implicitly specifying a time-
to-event distribution of ATF model. It does not require the pre-specified distribution in parametric
form, instead, the generator can learn it from the data with the adversarial loss function. Incidentally,
various deep learning-based approaches have been spotlighted to improve performance by resolving
issues such as temporal dynamics and calibration (Lee et al., 2019; Nagpal et al., 2021; Gao & Cui,
2021; Kamran & Wiens, 2021; Hu et al., 2021). Therefore, it became important to utilize well-
designed objective functions that fit not only statistical backgrounds but also optimization of neural
networks.

In this paper, we introduce a Deep AFT Rank-regression for Time-to-event prediction model
(DART), a deep learning-based semiparametric AFT model trained with an objective function orig-
inated from Gehan’s rank statistic. The model does not require specifying event time distribution
while keeping the advantage of the standard AFT model that directly predicts event time. With a
simple form of the loss function, by constructing comparable rank pairs, the optimization of DART
is efficient compared to other deep learning-based time-to-event models. Experimental results show
that DART is not only well-calibrated but also competitive in event order prediction performance
even compared to hazard-based models. Furthermore, we believe that this work can be widely ap-
plied in the community while giving prominence to advantages of the AFT model that is relatively
unexplored.

2 RELATED WORKS

We first overview time-to-event modeling focusing on the loss functions of Cox-Time and DATE
models to highlight the difference in concepts before introducing our method. The primary interest
of time-to-event analysis is to estimate survival quantities like survival function S(t) = P (T ≥ t) or
hazard function h(t) = limδ→0 P (t ≤ T ≤ t + δ|T ≥ t)/δ, where T ∈ R+ denotes time-to-event
random variable. In most cases, due to censored observations, those quantities cannot be directly
estimated with standard statistical inference procedure. In the presence of right censoring, Kaplan
& Meier (1958) and Aalen (1978) provided consistent nonparametric survival function estimators,
exploiting right-censoring time random variable C ∈ R+. Researchers then can get stable estimates
for survival quantities with data tuples {yi, δi, Xi}Ni=1, where yi = min(Ti, Ci) is the observed event
time with censoring, δi = I(Ti ≤ Ci) is the censoring indicator, and a vector of features Xi ∈ RP .
Here, N and P denote the number of instances and the number of features, respectively. While
those nonparametric methods are useful, one can improve predictive power by incorporating feature
information in a way of regression modeling. Cox proportional-hazards (CoxPH) and accelerated-
failure-time (AFT) frameworks are the most common approaches in modeling survival quantities
utilizing both censoring and features.

2.1 HAZARD-BASED MODELS

A standard CoxPH regression model (Cox, 1972) formulates the conditional hazard function as:

h(t|Xi) = h0(t) exp(β
TXi), (i = 1, . . . , N), (1)
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where h0(·) is an unknown baseline hazard function which has to be estimated nonparametrically,
and β ∈ RP is the regression coefficient vector. It is one of the most celebrated models in statistics
in that β can be estimated at full statistical efficiency while achieving nonparametric flexibility on
h0 under the proportionality assumption. Note the model is semiparametric due to the unspecified
underlying baseline hazard function h0. Letting Ri be the set of all individuals “at risk”, meaning
that are not censored and have not experienced the event before Ti, statistically efficient estimator
for regression coefficients can be obtained minimizing the loss function with respect to β:

LCoxPH(β) =
∑
i

δi log

∑
j∈Ri

exp
[
βTXj − βTXi

] , (2)

which is equivalent to the negative partial log-likelihood function of CoxPH model.

Based on this loss function, Kvamme et al. (2019) proposed a deep-learning algorithm for the
hazard-based predictive model, namely Cox-Time, replacing βTXj and βTXi with g(yj , Xj ; θ)
and g(yi, Xi; θ), respectively. Here, g(·) denotes the neural networks parameterized by θ, and Ri
would be replaced by R̃i, representing the sampled subset ofRi. With a simple modification of the
standard loss function in Eq. (2), Cox-Time can alleviate the proportionality for relative risk, show-
ing empirically remarkable performance against other hazard-based models in both event ordering
and survival calibration.

2.2 ACCELERATED-FAILURE-TIME MODELS

The conventional AFT model relates the log-transformed survival time to a set of features in a linear
form:

log Ti = βTXi + εi, (i = 1, . . . , N), (3)

where εi is an independent and identically distributed error term with a common distribution function
F0(·) that is often assumed to be Weibull, exponential, log-normal, etc. As implied in Eq. (3), AFT
model takes a form of linear modeling and provides an intuitive and physical interpretation on event
time without detouring via the vague concept of hazard function, making it a powerful alternative to
hazard-based analysis. However, imposing a parametric distributional assumption for εi is a critical
drawback of the model, for which model in Eq. (3) could be a subclass of the hazard-based models.

To alleviate linearity and parametric distributional assumptions, several works brought the concept
of generative process and approximated the error distribution via neural networks like generative
adversarial network (GAN) (Miscouridou et al., 2018; Chapfuwa et al., 2018). Especially, Chapfuwa
et al. (2018) proposed a deep adversarial time-to-event (DATE) model, which specifies the loss
function as:

LDATE(θ, φ) = E(X,y)∼Fnc [Dφ(X, y)] + EX∼Fnc,ξ∼Fξ [1−Dφ(X,Gθ(X, ξ; δ = 1))]

+ λ2E(X,y)∼Fc,ξ∼Fξ [max(0, y −Gθ(X, ξ; δ = 0))] (4)

+ λ3E(X,y)∼Fnc [‖t−Gθ(X, ξ; δ = 1)‖1]

where θ, φ denotes the parameter set associated with a generator Gθ and a discriminator Dφ, re-
spectively, (λ2, λ3) are hyperparameters to tune censoring trade-off, Fnc(X, y) and Fc(X, y) are
empirical joint distributions for non-censored cases and censored cases, respectively, and Fξ is the
simple distribution, such as uniform distribution. The generatorGθ implicitly defines event time dis-
tribution. Despite DATE achieves prominent survival calibration via the sample-generating process,
the objective function is quite complicated and the GAN framework is inherently prone to mode col-
lapse, i.e., the generator learns only a few modes of the true distribution while missing other modes
(Srivastava et al., 2017). Also, when optimizing neural networks with multiple loss functions, it
is difficult to balance and there might be conflicts (i.e. trade-off) with each term (Dosovitskiy &
Djolonga, 2020). Therefore, their loss function might be difficult to be optimized as intended and
requires a burdening training time, and consequently not be suitable for large-scale time-to-event
analysis.

In the statistical literature, there have been many attempts to directly estimate regression coefficients
in the semiparametric AFT model, where the error distribution F0 is left unknown, rather than
imposing specific parametric distribution or exploiting generative models. In this work, we bridge

3



Under review as a conference paper at ICLR 2022

Figure 1: Illustration of conceptual differences between deep learning-based AFT models in terms of
their respective contributions and required assumptions with a format of the standard AFT. To allevi-
ate the parametric distribution assumption, which DRAFT has, DATE exploits the GAN framework
and learns the implicit underlying distribution qθ through the generator parameterized by θ. For
DRAFT, LNLL and LPR denote negative log-likelihood and partial ranking likelihood, respectively.
DATE basically requires four loss functions: LGθ , LDφ for the generator and the discriminator,
LCens for adjusting censoring distribution, and LDist for the distortion penalty. Compared to the
others, DART does not require pre-specification or modeling for error distribution and it is trained
with a simple loss function supported by statistical theory.

non-linear representation learning and an objective function for estimation of semiparametric AFT
model, which is originated from Gehan’s rank statistic. By extensive quantitative analysis, we have
shown the beauty of simplicity and compatibility of rank-based estimation, along with outstanding
experimental performance.

3 METHOD

In this section, we introduce the concept of DART, followed by predictive analysis for survival quan-
tities. The conceptual differences with the other neural network-based AFT models are illustrated in
Figure 1. The semiparametric AFT is distinct from a parametric version in that the error distribution
function F0 is left completely unknown like the baseline hazard function in the CoxPH. By further
exploiting neural networks, we propose DART model that can be formulated as a generalization of
model in Eq. (3):

log Ti = g(Xi; θ) + εi, (i = 1, . . . , N), (5)

where g(Xi; θ) denotes arbitrary neural networks with input feature vector Xi and a parameter set
θ, outputting single scalar value as predicted log-scaled time-to-event variable. With this simple and
straightforward modeling, DART entails several attractive characteristics over existing AFT-based
models. First, the semiparametric nature of DART enables flexible estimation of error distribution,
allowing improved survival prediction via neural network algorithms for F0. Second, the restrictive
log-linearity assumption of AFT model can be further alleviated by exploiting deep neural networks.
Specifically, while standard AFT model relates time-to-event variable to feature variable in linear
manner, deep learning is able to approximate any underlying functional relationship, lessening lin-
earity restriction. Although DART still requires log-transformed time as a target variable, its deep
neural network redeems the point with powerful representative performance supported by universal
approximation theorems, enabling automated non-linear feature transformation (Leshno et al., 1993;
Schäfer & Zimmermann, 2006; Zhou, 2020).

3.1 PARAMETER ESTIMATION VIA RANK-BASED LOSS FUNCTION

In statistical literature, many different estimating techniques have been proposed for fitting semi-
parametric AFT model (Tsiatis, 1990; Jin et al., 2003; 2006; Zeng & Lin, 2007). Among them,
we shall adopt the l1-type rank-based loss function by taking into account the censoring infor-
mation, which is efficient and suitable for stably fitting neural networks. We also describe two
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alternative optimization methods in the appendix as extensions of DART. Letting a residual term
ei ≡ ei(θ) = log yi − g(Xi; θ), the objective loss function for DART can be formulated as:

LRank(θ) =
1

N

N∑
i=1

N∑
j=1

δi(ei − ej)I{ei ≥ ej}, (6)

where I(·) is the indicator function that has value 1 when the condition is satisfied, otherwise 0. The
estimator θ̂ can be obtained by minimizing the loss function with respect to model parameter set θ.
Optimization of model parameters can be conveniently conducted via batched stochastic gradient
descent (SGD). Notice that the loss function in Eq. (6) involves model parameter θ only, with-
out concerning estimation of the functional parameter F0, enabling simple time-to-event regression
modeling.

Strength of the loss function is theoretical consistency of optimization without requiring any addi-
tional settings. Let the neural network be expressed: g(Xi;φ, β) = βTWi, where Wi ∈ RK is
transformed feature vector through hidden layers with parameter set φ, and β ∈ RK is a parameter
set of linear output layer. Then, it is easy to see that the following estimating function is the negative
gradient of the loss function with respect to β:

URank(β) =
1

N

N∑
i=1

N∑
j=1

δi(Wi −Wj)I(log yi − βTWi ≤ log yj − βTWj)
set
= 0. (7)

Eq. (7) is often called the form of Gehan’s rank statistic (Jin et al., 2003), testing whether β is
equal to true regression coefficients for linear model log Ti = βTWi + εi, and the solution to the
estimating equation β̂ is equivalent to the minimizer of Eq. (6) with respect to β. This procedure
entails nice asymptotic results such as

√
n-consistency and asymptotic normality of β̂ under the

counting processes logic, assuring convergence of β̂ towards true parameter β as the number of
instances gets larger (Tsiatis, 1990; Jin et al., 2003). Although these asymptotic results might not
be directly generalized to the non-linear predictor function, we expect that hidden layers would be
able to assess effective representations Wi with non-linear feature transformation, as evidenced by
extensive quantitative studies. Note that, to keep theoretical alignment, it is encouraged to set the last
layer as a linear transformation with an output dimension of 1 to mimic the standard linear model
following non-linear representation. In addition, a robust estimation against outlying instances can
be attained, depending rank of residual terms along with their difference.

3.2 PREDICTION OF SURVIVAL QUANTITIES

Predicted output g(Xi; θ̂) from trained DART model represents estimated expectation of log Ti con-
ditional on Xi, i.e. mean log-transformed survival time with given feature information of ith in-
stance. However, estimating survival quantities (e.g. conditional hazard function) cannot be directly
done for AFT-based models. Instead, we utilize the Nelson-Aalen estimator (Aalen, 1978), veri-
fied to be consistent under the rank-based semiparametric AFT model (Park & Wei, 2003). De-
fine N(t; θ) =

∑N
i=1Ni(t) and Y (t) =

∑N
i=1 Yi(t), where Ni(t) = I(ei ≤ t, δi = 1) and

Yi(t) = I(ei > t) are the counting and the at-risk processes, respectively. Then the Nelson-Aalen
estimator of H0(t) is defined by

Ĥ0(t) =

∫ t

0

I{Y (u) > 0}
Y (u)

dN(u). (8)

The resulting conditional hazard function given Xi is defined by

ĥ(t|Xi) = ĥ0[t exp{−g(Xi; θ̂)}] exp{−g(Xi; θ̂)}, (9)

where ĥ0(·) = dĤ0(·) is pre-trained baseline hazard function using Nelson-Aalen estima-
tor. Consequently, conditional survival function can be estimated by relationship Ŝ(t|Xi) =

exp{−
∫ t
0
ĥ(t|Xi)dt}, providing comparable predictions to other time-to-event regression models.

In practice, training set is used to get pre-trained Nelson-Aalen estimator.
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4 EVALUATION CRITERIA

In this section, we evaluate models with two metrics for quantitative comparison: concordance index
(CI) and integrated Brier score (IBS).

Concordance Index. Concordance of time-to-event regression model represents the proposition:
if a target variable of instance i is greater than that of instance j, then the predicted outputs of i
should be greater than that of j. By letting target variable y and predicted outcome ŷ, concordance
probability of survival model can be expressed as P (ŷi > ŷj |yi > yj), and concordance index mea-
sures the probability with trained model for all possible pairs of datasets (Harrell et al., 1982). With
non-proportional-hazards survival regression models like Cox-Time or Lee et al. (2018), however,
Harrell et al. (1982) cannot be used to measure discriminative performance properly. For fair com-
parison of survival regression models, time-dependent concordance index (Antolini et al., 2005),
or C td was used for those baseline models proposed by Kvamme et al. (2019) to account for tied
events. C td ∈ [0, 1] can be regarded as AUROC curve for time-to-event regression model, denot-
ing better discriminative performance for a value close to 1. Note that standard concordance index
yields identical results with C td for AFT-based models.

Integrated Brier Score. Graf et al. (1999) introduced generalized version of Brier score (Brier,
1950) for survival regression model along with inverse probability censoring weight (IPCW), which
can be described as:

BS(t) =
1

N

N∑
i=1

Ŝ(t|Xi)
2I(yi ≤ t, δi = 1)

Ĝ(yi)
+

1

N

N∑
i=1

(1− Ŝ(t|Xi))
2I(yi > t)

Ĝ(t)
(10)

where Ĝ(t) = P̂ (C > t) is a Kaplan-Meier estimator for censoring survival function to assign
IPCW. BS(t) measures both how well calibrated and discriminative is predicted conditional survival
function: if a given time point t is greater than yi, then Ŝ(t|Xi) should be close to 0. Integrated
Brier score (IBS) accumulates BS for a certain time grid [t1, t2]:

IBS =
1

t2 − t1

∫ t2

t1

BS(s)ds. (11)

If Ŝ(t|Xi) = 0.5 for all instances, then IBS becomes 0.25, thus well-fitted model yields IBS lower
than. For experiments, time grids can practically be set to minimum and maximum of yi of the test
set, equally split into 100 time intervals.

5 EXPERIMENTS

In this section, we describe our experiment design and results to validate performance of DART
compared to other time-to-event regression models. Experiments are done with four real-world sur-
vival datasets, and baseline models provided by Kvamme et al. (2019) and Chapfuwa et al. (2018),
using two evaluation metrics mentioned in previous section.

Table 1: Summary of survival datasets.

DATASET SIZE # FEATURES % CENSORED

WSDM KKBOX 2,646,746 15 0.28
SUPPORT 8,873 14 0.32
FLCHAIN 6,524 8 0.70
GBSG 2,232 7 0.43

5.1 DATASETS

We choose three common survival datasets and a single large-scale dataset provided by Kvamme
et al. (2019). The descriptive statistics are provided in Table 1. First, three common survival datasets
that used in this work are the Study to Understand Prognoses Preferences Outcomes and Risks
of Treatment (SUPPORT), the Assay of Serum Free Light Chain (FLCHAIN), and the Rotterdam
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Table 2: Mean and standard deviation of C td. The boldface denotes best performance. PMF denotes
a method parameterizing the probability mass function. HAZ and AFT denote hazard-based and
AFT-based methods, repectively.

MODEL WSDM KKBOX SUPPORT FLCHAIN GBSG

PMF DeepHit 0.553 (0.002) 0.645 (0.009) 0.797(0.015) 0.684 (0.013)

HAZ
DeepSurv 0.841 (0.000) 0.619 (0.008) 0.797 (0.013) 0.685 (0.013)
Cox-CC 0.836 (0.046) 0.618 (0.009) 0.797(0.013) 0.684 (0.012)
Cox-Time 0.853 (0.049) 0.637 (0.009) 0.800 (0.012) 0.687 (0.012)

AFT
DRAFT 0.861 (0.005) 0.599 (0.018) 0.725 (0.057) 0.611 (0.016)
DATE 0.852 (0.001) 0.608 (0.008) 0.784 (0.009) 0.598 (0.034)
DART (ours) 0.867 (0.001) 0.624 (0.009) 0.797 (0.014) 0.687 (0.014)

tumor bank and German Breast Cancer Study Group (GBSG). In addition, WSDM KKBox from
preparation for the 11th ACM International Conference on Web Search and Data Mining is the
dataset for customer churn prediction containing millions of instances and 15 covariate variables.
With this large-scale dataset, consistency of training procedure and predictive performance would
clearly be verified.

5.2 BASELINE MODELS

We select six neural network-based time-to-event regression models as our experimental baselines:
DRAFT and DATE (Chapfuwa et al., 2018) as AFT-based models for direct comparison with our
model, and DeepSurv (Katzman et al., 2018), Cox-CC and Cox-Time (Kvamme et al., 2019) as
hazard-based models, DeepHit (Lee et al., 2018) as a PMF-based model for references.

For AFT-based models, DRAFT utilizes neural networks to fit log-normal parametric AFT model
in non-linear manner. That is, it might be misspecified if true error variable does not follow log-
normal distribution. In contrast, DATE exploits generative-adversarial networks (GANs) to learn
conditional time-to-event distribution and censoring distribution using observed dataset.

In case of hazard-based models, DeepSurv fits Cox regression model whose output is estimated from
neural networks. The model outperforms the standard CoxPH model in performance, not clearly
exceeding other neural network-based models. Furthermore, the proportional hazards assumption
still remains unsolved with DeepSurv. Cox-CC is another neural network-based Cox regression
model, using case-control sampling for efficient estimation. While both DeepSurv and Cox-CC are
bounded to proportionality of baseline hazards, Cox-Time relieves this restriction using event-time
variable to estimate conditional hazard function.

In addition, we include DeepHit (Lee et al., 2018) as a reference, which is a survival regression
model parameterizing discrete-time hazard rate with neural networks based on survival probabil-
ity mass function (PMF), considering its contribution to alleviate the fundamental assumption of
hazard-based and AFT-based models. Although its prediction performance has been reported promi-
nent to others, the training procedure is quite unstable which is a critical shortcoming for practical
application.

Except for neural network-based models, we exclude other machine learning-based models from
baselines regarding comparison from previous studies. Some neural network-based models are ex-
cluded as well in this study since we focus on alleviating fundamental assumptions such as pro-
portionality and parametric distribution. Note that comparing hazard-based models and AFT-based
models has rarely been studied due to their difference in concepts: modeling hazard function and
modeling time-to-event variable. Despite models can be evaluated with common metrics, analysis
upon numerical experiments has to be cautious, especially between a hazard-based model and an
AFT-based model.
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Table 3: Mean and standard deviation of Integrated Brier Score (IBS).

MODEL WSDM KKBOX SUPPORT FLCHAIN GBSG

PMF DeepHit 0.124 (0.001) 0.221 (0.034) 0.160 (0.081) 0.183 (0.015)

HAZ
DeepSurv 0.111 (0.000) 0.190 (0.004) 0.101 (0.006) 0.174 (0.004)
Cox-CC 0.115 (0.012) 0.191 (0.003) 0.122 (0.028) 0.177 (0.004)
Cox-Time 0.107 (0.009) 0.194 (0.006) 0.114 (0.016) 0.174 (0.005)

AFT
DRAFT 0.147 (0.002) 0.314 (0.043) 0.144 (0.022) 0.310 (0.010)
DATE 0.131 (0.002) 0.227 (0.004) 0.124 (0.012) 0.204 (0.004)
DART (ours) 0.108 (0.001) 0.176 (0.005) 0.068 (0.007) 0.150 (0.023)

5.3 MODEL SPECIFICATION AND OPTIMIZATION PROCEDURE

For a fair comparison, we apply neural network architecture used in Kvamme et al. (2019): MLP
with dropout and batch-normalization. Every dense blocks are set to have the equal number of
nodes, no output bias is utilized for output layer, and ReLU function is chosen for non-linear ac-
tivation for all layers. Preprocessing procedure has also been set based on Kvamme et al. (2019)
including standardization of numerical features, entity embeddings (Guo & Berkhahn, 2016) for
multi-categorical features. The dimension of entity embeddings is set to half size of the number of
categories. In addition, due to the fact that parameters of AFT-based models tend to be influenced
by scale and location of the target variable, y has been standardized and its mean and variance are
separately stored to rescaled outputs. For SGD algorithm, AdamWR (Loshchilov & Hutter, 2017) is
used as implemented by Kvamme et al. (2019) with one epoch of an initial cycle length. We also set
the cycle length to double after each cycle. The details about data split and hyperparameter search
are described in the appendix.

5.4 PERFORMANCE EVALUATION

To measure discriminative performance of outputs, we exploit standard C-index (Harrell et al., 1982)
for AFT-based models while letting hazard-based models to utilize C td since equivalent evaluation
is possible for AFT-based models including DART since it outputs a single scalar value to evaluate
ranks. In terms of survival calibration, we implement our own function to obtain IBS based on its
definition, due to the fact that evaluation methods of the conditional survival function and IPCW
provided by Kvamme et al. (2019) are not compatible with AFT-based models. Specifically, we first
fit Kaplan-Meier estimator upon standardized training set, and subsequently evaluate conditional
survival estimates and IPCW utilizing estimated residuals, following the definition of baseline haz-
ard function of AFT framework rather than to use time-to-event variable directly. For numerical
integration, we follow settings of time grid from Kvamme et al. (2019), and standardize the grid
with mean and standard deviation stored with standardization procedure of training set. By doing
so, IBS can be compared upon identical timepoints for both hazard-based models and AFT-based
models.

5.5 SUMMARY OF RESULTS

Experiment results are provided in Table 2 and 3. In summary, DART is competitive in both dis-
criminative and calibration performance, especially for large-scale survival datasets. Specifically,
DART yields consistent results for WSDM KKBox dataset compared to other baselines, maintain-
ing competitive performance in terms of C td and IBS. We point out that DART is the most powerful
and AFT-based time-to-event model that can be a prominent alternative when hazard-based models
might be not working.

6 ANALYSIS

We provide analysis on experimental results, pointing out strengths of DART model in terms of
performance metrics.
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Table 4: Comparison of the training time (seconds) per epoch over the KKBox dataset.

DeepHit DeepSurv Cox-CC Cox-Time DRAFT DATE DART (ours)

Time 37.36 27.81 44.86 42.60 759.04 2024.19 29.93

Characteristic of DART for large-scale dataset. As provided in Table 2 and 3, DART generally
yields prominent survival calibration performance with small variance in terms of IBS. Especially
for large-scale dataset (KKBox), DART shows state-of-the-art performance with the smallest vari-
ance in evaluated metrics. This result comes from the characteristic of rank-based estimation strat-
egy. Specifically, on the basis of asymptotic property of Eq. (7), estimated model parameters get
stable and close to true parameter set, when the size of dataset gets larger. Thus, once the trained
model attains effective representation (Wi in Eq. (7)) from hidden layers via stochastic optimization
methods, DART is able to provide stable outputs with strong predictive power, without sophisticated
manipulation upon time-to-event distribution.

Comparison with AFT-based models. In case of DRAFT, model does not generally perform well
for bothC td and IBS for most datasets. This is attributed to the fact that DRAFT is a simple extension
of the parametric AFT model with log-normality assumption. Thus, this approach is quite sensitive
to true underlying distribution of dataset. On the other hand, DATE yields clearly improved perfor-
mance against DRAFT especially for survival calibration in terms of IBS. Unlike DRAFT, DATE
utilizes GAN to learn conditional error distribution without parametric assumption, allowing the
model to yield more precise survival calibration. However, time-to-event distribution is trained with
divided loss functions by optimizing two tuning hyperparameters in Eq. (4). This approach can be
significantly affected by well-tuned hyperparameters and heavy computation is required to this end,
resulting insufficient performance. Meanwhile, as illustrated in Figure 1, DART has advantages of
simplicity in theoretical and practical points compared to the other AFT-based models.

Comparison with hazard-based and PMF models. As previously reported by Kvamme et al.
(2019), Cox-Time shows competitive performance against other hazard-based models, directly uti-
lizing event-time variable to model conditional hazard function. However, we found out that Cox-
Time requires precise tuning of additional hyperparameters (λ and Log-durations) largely affecting
predictive performance. DeepHit, as a PMF-based model, yields relatively poor performance in our
experiments for most datasets especially in terms of IBS, inconsistent with a previous study. Note
that, however, DeepHit was originally designed to handle the competing-risks problem, thus evalu-
ation with predictive power might not be comparable. In contrast, DART shows smaller variance in
evaluation metrics as the size of data increases, ensuring stable output for large-scale dataset with
asymptotic property which is crucial for practical application.

Comparison of the required time for optimizing each model. To verify the compatibility for
large-scale data, we measure the training time of each model. We strictly bound the scope of the
target process, as from data input to parameter update excluding other extra steps. Also, all models
are evaluated with the same number of nodes, layers, and batch size. All experiments were run
on a single NVIDIA Titan XP GPU. Table 4 shows that the simplicity of DART leads to practical
efficiency, while DATE is computationally expensive due to the generator-discriminator architecture.

To summarize, we suggest that DART would be a powerful alternative to other time-to-event regres-
sion models ensuring stable performance with less time consumption.

7 CONCLUSION

In this work, we propose simple time-to-event regression model, namely DART, utilizing semipara-
metric AFT rank-regression method and deep neural networks to alleviate strict assumptions and
to attain practical usefulness in terms of high and stable predictive power. Through experiments,
our model was shown to be prominent in discriminative and calibration performance even with the
large-scale dataset. Although we do not yet cover more complex censoring data, such as competing
risks and interval censoring, our approach might be able to provide a stable baseline to handle those
tasks in near future with a simple modification of our loss function.

9
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REPRODUCIBILITY STATEMENT

We clarify that the reported results are based on multiple repetitions of experiments to remove the
outlier effect and our codes are available in public. To obtain reproducible and reliable results,
we repeated experiments with the best configuration and various random seeds for all models over
KKBox dataset and conducted five-fold cross-validation for small-size datasets. As described in
the paper and appendix, the measurements of the training time are under the strict control of the
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A APPENDIX

A.1 ADDITIONAL PARAMETER ESTIMATION METHODS

As extensions, we introduce two additional parameter estimation methods for DART: error-based
method and likelihood-based methods.

A.1.1 ERROR-BASED ESTIMATION

While rank-based method (Jin et al., 2003) mainly relies on ranks of residual, Buckley & James
(1979) proposed least-squares estimator for right-censored survival dataset, known as Buckley-
James estimator. With generality, we set Buckley-James type, or error-based loss function for DART:

LError(θ) =

(
1

N

N∑
i=1

| log ŷi − g(Xi; θ) |p
)1/p

where p ∈ {1, 2} and

ŷi = δi log yi + (1− δi)

{ ∫∞
ei
udF̂θ(u)

1− F̂θ(ei)
+ g(Xi; θ)

}
is observed time-to-event variable imputed with conditional expectation of residual.

Specifically,
∫∞
ei
uF̂θ(u)/(1 − F̂θ(ei)) denotes E(ei|T > C,Xi), expected value of residual for

censored instance conditional on given featire information Xi, where F̂θ is cumulative hazard func-
tion that estimated via nonparametric methods like Nelson-Aalen estimator. Thus, this method is
equivalent to least-squares estimation where incomplete information of censored instance has been
corrected with conditional probability distribution of residual and predicted values. LError becomes
mean-absolute-error (MAE) objective function for p = 1 and root-mean-squared-error (RMSE) ob-
jective function for p = 2, that are standard form of loss of regression problem.

Error-based estimation provides much realistic predicted values for log of time-to-event variable,
while rank-based method stands a chance of underevaluating scale of target variable since rank
of residuals controls the loss function rather than magnitude of error. One of the shortcomings
of error-based method is, however, conditional expectation of residual is neither continuous nor
componentwise monotone in parameter set θ (Jin et al., 2006), thus optimization through SGD
algorithms tends to fluctuating, which is verified through series of experiments. This has to be
handled via controlling appropriate weight-decay or learning rate in practical applications, while
rank-based methods is relatively robust to those configuration settings.

A.1.2 LIKELIHOOD-BASED ESTIMATION

Maximum-likelihood estimation (MLE) is the core element of statistical inference, providing both
strong theoretical background on estimated parameters and accurate estimator itself. Zeng &
Lin (2007) suggested kernel-smoothed version of MLE for semiparametric AFT model, claiming
that nonparametric negative log-likelihood function can approximately yield minimum via kernel
smoothing. With this work, we designed objective function for MLE of DART:

LMLE(θ) =
1

N

N∑
i=1

δig(Xi; θ) +
1

N

N∑
i=1

δiei

−
1

N

N∑
i=1

i log

 1

nan

N∑
j=1

δjK

(
ej − ei
an

) (12)

+
1

N

N∑
i=1

δi log

{
1

N

∫ (ej−ei)/an

−∞
K(s)ds

}
where K(·) is zero-mean symmetric kernel function and an is a bandwidth parameter. Common
choice of K(·) is probability density function of standard normal distribution, while optimal band-
width parameter an for neural network has not been suggested yet.
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Table 5: Hyperparameter search space for GBSG, FLCHAIN, and SUPPORT datasets.

Hyperparameter Values

# Layers {1, 2, 4}
# Nodes per layer {64, 128, 256, 512}
Dropout {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}
Weight decay {0.4, 0.2, 0.1, 0.05, 0.02, 0.01, 0.001}
Batch size {64, 128, 256, 512, 1024}
α (DeepHit) {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}
σ (DeepHit) {0.1, 0.25, 0.5, 1, 2.5, 5, 10, 100}
Num. durations (DeepHit) {50, 100, 200, 400}
λ (CoxTime and CoxCC) {0.1, 0.01, 0.001, 0.0}

Table 6: Hyperparameter search space for the WSDM KKBox dataset.

Hyperparameter Values

# Layers {4,6,8}
# Nodes per layer {128, 256, 512}
Dropout {0.0, 0.1, 0.5}

Minimizing LMLE(θ) with respect to θ yields statistically consistent estimator for θ, meaning that
it is possible to get better survival calibration compared to rank-based and error-based estimation.
This can be a significant merit for the case that needs precise evaluation of patient-dependent sur-
vival probability. In spite of those theoretical strengths of likelihood based method, optimization
via batched SGD does not guarantee stable convergence due to the fact that values of θ close to
negative infinite can get sufficiently small loss. Preventing divergence needs detailed control of
hyperparameters; bandwidth, learning rate, weight decay, etc.

A.2 EXPERIMENTAL SETTINGS

A.2.1 DETAILS IN HYPERPARAMETER SEARCH AND OPTIMIZATION

In this section, we describe details on experimental settings including hyperparameter search space
and optimization strategy. Our codes are available in public1.

DeepSurv, DeepHit, Cox-CC, Cox-Time, DART. The PyCox2 python package provides the train-
ing codes for these models. For WSDM KKBox dataset, we repeated experiments 30 times with
best configurations provided by Kvamme et al. (2019). Because train/valid/test split of KKBox
dataset is fixed, we didn’t perform a redundant search procedure. For the other datasets (SUPPORT,
FLCHAIN, and GBSG), we performed 5-fold cross-validation as performed at Kvamme et al. (2019)
because the size of datasets is relatively small. At each fold, the best configuration was selected
among 300 combinations of randomly selected hyperparameters which are summarized in Table 5.
As described in the paper, we used AdamWR (Loshchilov & Hutter, 2017) starting with one epoch
of an initial cycle and doubling the cycle length after each cycle. The batch size was set to 1024
and the learning rates were found by Smith (2017) as performed at Kvamme et al. (2019). The early
stopping was applied with patience of 10 epochs for all models equally.

DRAFT, DATE. The implementation of DATE3 by the authors includes the code of DRAFT as
well. We utilized their official codes for all datasets. The batch size for KKBox dataset was set
to 8192 because the experiments were not feasible with the batch size 1024 due to their training
time. The best configurations of DRAFT and DATE also were founded by grid search with same
hyperparameter search space. We repeated experiments 30 times with the best configuration as
mentioned above. For the other datasets, as same with other models, we performed 5-fold cross-

1https://github.com/dart-submission/dart-submission
2https://github.com/havakv/pycox
3https://github.com/paidamoyo/adversarial time to event
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Table 7: Best configurations for WSDM KKBox dataset. α and σ are applied to the DeepHit.

MODEL # Layers # Nodes Dropout α σ

DeepHit 6 512 0.1 0.001 0.5
DeepSurv 6 256 0.1 - -
Cox-CC 6 128 0.0 - -
Cox-Time 8 256 0.0 - -
DRAFT 8 128 0.0 - -
DATE 8 512 0.5 - -
DART (ours) 6 256 0.0 - -

validation and chose the best configuration among 300 random hyperparameter sets at each fold.
The early stopping was applied as done in other models equally.

A.2.2 COMPARISON OF THE TRAINING TIME

For a fair comparison, we measured the training time for only the optimizing phase because there
are various extra steps for each model. We strictly set the range of the target process, as from putting
data to updating model parameters. The specifications of all models were set equally: the number
of nodes 256, the number of layers 6, and the batch size 1024. With the consumed time of 1000
iterations, we calculated the training time for a single epoch. We excluded the first iteration that
is an outlier in general. To obtain reliable results, we repeated five times and reported the average
values.

A.2.3 FUTURE WORKS

Even though DART alleviates the fundamental and strict assumptions, there are unresolved assump-
tions yet. We assume the non-informative right-censoring as most time-to-event models did as basic
assumptions. Also, AFT models inherently consider features as accelerating or delaying factors of
the event time. Addressing these basic assumptions is the direction we should go in order to build a
more generalized model.

As mentioned in the paper, some of the researches resolved issues of time-to-event modeling such
as competing risks, discrete time, and time-varying covariate effect (Katzman et al., 2018; Lee et al.,
2018; Ren et al., 2019; Kvamme & Borgan, 2019; Avati et al., 2020; Tarkhan et al., 2021; Rahman
et al., 2021; Su, 2021). Even though we didn’t focus on these issues at this work, but one future
direction can be to integrate these techniques with DART because such assumptions are important
as well and DART is compatible with others.

We are also aware of a series of researches that use various neural networks such as recurrent neural
networks (RNNs), convolutional neural networks (CNNs), variational auto-encoder (VAE), or trans-
formers (Lee et al., 2019; Nagpal et al., 2021; Gao & Cui, 2021; Kim et al., 2020; Kamran & Wiens,
2021; Hu et al., 2021). All of these studies are complementary to our model rather than competing
because we can easily replace our gθ with RNNs, CNNs, VAE, and transformers.
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