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ABSTRACT

We consider the problem of novel view synthesis from unposed images in a sin-
gle feed-forward. Our framework capitalizes on fast speed, scalability, and high-
quality 3D reconstruction and view synthesis capabilities of 3DGS, where we
further extend it to offer a practical solution that relaxes common assumptions
such as dense image views, accurate camera poses, and substantial image over-
laps. We achieve this through identifying and addressing unique challenges aris-
ing from the use of pixel-aligned 3DGS: misaligned 3D Gaussians across dif-
ferent views induce noisy or sparse gradients that destabilize training and hin-
der convergence, especially when above assumptions are not met. To mitigate
this, we employ pre-trained monocular depth estimation and visual correspon-
dence models to achieve coarse alignments of 3D Gaussians. We then introduce
lightweight, learnable modules to refine depth and pose estimates from the coarse
alignments, improving the quality of 3D reconstruction and novel view synthesis.
Furthermore, the refined estimates are leveraged to estimate geometry confidence
scores, which assess the reliability of 3D Gaussian centers and condition the pre-
diction of Gaussian parameters accordingly. Extensive evaluations on large-scale
real-world datasets demonstrate that PF3plat sets a new state-of-the-art across all
benchmarks, supported by comprehensive ablation studies validating our design
choices.

1 INTRODUCTION

In recent years, 3D reconstruction and novel view synthesis have garnered significant attention, par-
ticularly with the emergence of Neural Radiance Fields (NeRF) (Mildenhall et al., 2021) and 3D
Gaussian Splatting (3DGS) (Kerbl et al., 2023). These advancements have enabled the high-quality
3D reconstruction and novel view synthesis. However, many existing methods rely on stringent as-
sumptions, such as dense image views (Yu et al., 2024; Barron et al., 2021; 2022), accurate camera
poses (Kim et al., 2022; Kwak et al., 2023; Zhu et al., 2023; Charatan et al., 2023; Chen et al., 2024),
and substantial image overlaps (Yu et al., 2021; Johari et al., 2022), which limit their practical ap-
plicability. In real-world scenarios, casually captured images contain sparse and distant viewpoints,
and lack precise camera poses, making it impractical to assume densely captured views with ac-
curate camera poses. Ideally, a practical novel view synthesis solution should operate quickly and
effectively with as few as two images, even under significant viewpoint changes.

To address some of these limitations, recent efforts (Yu et al., 2021; Johari et al., 2022; Chen et al.,
2021; Yang et al., 2023) have introduced generalized view synthesis frameworks capable of perform-
ing single feed-forward novel view synthesis from sparse images with minimal overlaps (Du et al.,
2023; Xu et al., 2023a). Among these methods, particularly those utilizing 3DGS (Charatan et al.,
2023; Chen et al., 2024), have demonstrated remarkable rendering speed and efficiency, alongside
impressive reconstruction and view synthesis quality, highlighting the potential of 3D Gaussian-
based representations. However, they still depend on accurate camera poses, which are challenging
to acquire in sparse settings, thereby restricting their practical use.

More recently, pose-free generalized view synthesis frameworks (Chen & Lee, 2023; Fan et al.,
2023; Jiang et al., 2023; Smith et al., 2023; Hong et al., 2024) have been introduced to decouple
3D reconstruction and novel view synthesis from camera poses. Given a set of unposed images,
these frameworks aim to jointly learn radiance fields and 3D geometry without relying on addi-
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tional data, such as ground-truth camera pose. The learned radiance fields and geometry can then
be inferred through trained neural networks, enabling single feed-forward inference. While these
pioneering efforts enhance practicality, their performance remains unsatisfactory and their slow
rendering speeds (Chen & Lee, 2023; Fan et al., 2023; Jiang et al., 2023; Smith et al., 2023) re-
main unresolved. In an attempt to boost performance and robustness under extreme scenarios when
wide-baseline images are given, Hong et al. (2024) developed a unified framework that jointly esti-
mates camera poses, correspondences, and radiance fields using additional data, such as ground truth
poses, for supervision. However, this approach still inherits the inherent limitations of NeRF, includ-
ing intensive memory consumption and slow rendering speeds, making it impractical for real-world
applications.

In this work, we propose PF3plat (Pose-Free Feed-Forward 3D Gaussian Splatting), a novel frame-
work for fast and photorealistic novel view synthesis from unposed images in a single feed-forward
pass. Our approach leverages the efficiency and high-quality reconstruction capabilities of pixel-
aligned 3DGS (Charatan et al., 2023; Szymanowicz et al., 2024), while relaxing common assump-
tions such as dense image views, accurate camera poses, scene-specific optimization and substan-
tial image overlaps. However, a primary challenge in using pixel-aligned 3DGS is its dependency
on precise depth and camera pose estimates for accurate localization of 3D Gaussian centers. In-
accuracies in these estimates can cause misalignments, leading to noisy or sparse gradients that
destabilize training and hinder convergence, especially when the above assumptions are relaxed or
scene-specific optimizations to rectify errors cannot be applied during multi-scene training.

To mitigate these issues, we find that leveraging pre-trained monocular depth estimation (Piccinelli
et al., 2024) and visual correspondence (Lindenberger et al., 2023) models to achieve a coarse align-
ment of 3D Gaussians is highly effective, thereby promoting a stable learning process. Subse-
quently, we introduce learnable modules designed to refine the depth and pose estimates from the
coarse alignment to enhance the quality of 3D reconstruction and view synthesis. These modules
are geometry-aware and lightweight, since we leverage features from the depth network and avoid
direct fine-tuning. These refined depth and pose estimates are then used to implement geometry-
aware confidence scores to assess the reliability of 3D Gaussian centers, conditioning the prediction
of Gaussian parameters such as opacity, covariance, and color.

Our extensive evaluations on large-scale real-world indoor and outdoor datasets (Liu et al., 2021;
Zhou et al., 2018; Ling et al., 2024) demonstrate that PF3plat sets a new state-of-the-art across
all benchmarks. Comprehensive ablation studies validate our design choices, confirming that our
framework provides a fast and high-performance solution for pose-free generalizable novel view
synthesis. We summarize our contributions below:

• We address the challenging task of pose-free, feed-forward novel view synthesis using
3DGS, relaxing many common assumptions of existing methods to improve practicality.

• To address the unique challenges arising from the misalignment of 3D Gaussians that desta-
bilizes the learning process, we devise an approach to provide coarse alignment. We then
introduce lightweight refinement modules and geometry-aware scoring functions, which
not only enhance the reconstruction and view synthesis quality, but also prevent catas-
trophic forgetting issues typically associated with direct fine-tuning.

• Our framework presents an effective approach to enable fast and high-performance 3D
reconstruction and novel view synthesis from sparse and unposed images. We have shown
that our method sets a new state-of-the-art across all benchmarks.

2 RELATED WORK

Generalizable Scene Reconstruction and View Synthesis from Unposed Imagery. Several in-
novative efforts have addressed the joint learning of camera pose and radiance fields within NeRF-
based frameworks. Starting with BARF (Lin et al., 2021), subsequent research (Jeong et al., 2021;
Wang et al., 2021; Bian et al., 2023; Truong et al., 2023b) has expanded upon this foundation.
Notably, the use of 3D Gaussians as dynamic scene representations has led to significant advance-
ments: Fu et al. (2023) progressively enlarges 3D Gaussians by learning transformations between
consecutive frames, SplaTAM(Keetha et al., 2024) utilizes RGB-D sequences and silhouette masks
to jointly update Gaussian parameters and camera poses, and InstantSplat (Fan et al., 2024) opti-
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Figure 1: Overall architecture and loss of the proposed method. (a) Given a set of unposed
images, our method aligns the 3D Gaussians using a coarse-to-fine strategy. (b) In addition to
photometric loss, we enforce 3D Gaussian consistency by ensuring they are placed on the same
object surface through 2D-3D and 3D-3D consistency losses.

mizes 3D Gaussians rapidly for scene reconstruction and view synthesis. Among these, methods
like DBARF (Chen & Lee, 2023), FlowCAM (Smith et al., 2023), CoPoNeRF (Hong et al., 2023),
and GGRt (Li et al., 2024) aim to determine camera pose and radiance fields in a single feed-forward
pass. Concurrently, Splatt3R (Smart et al., 2024) builds on pre-trained 3D reconstruction mod-
els (Leroy et al., 2024) to relax some assumptions; however, it still relies on additional data such as
ground truth depth and pose. In contrast, our method reconstructs 3D scenes and synthesizes novel
views from unposed images with minimal overlaps in a single feed-forward pass, eliminating the
need for scene-specific optimization and extensive pose data.

Monocular Depth Estimation and Correspondence Estimation. Monocular depth estimation
and visual correspondence estimation are fundamental computer vision tasks with extensive research
spanning decades. Recent advancements (Yin et al., 2023; Piccinelli et al., 2024; Ke et al., 2024;
Yang et al., 2024) in monocular depth estimation have matured these models, significantly enhancing
various 3D vision applications. Similarly, visual correspondence estimation has advanced signifi-
cantly since the emergence of deep neural networks. Conventionally, the task is evaluated primarily
in camera pose estimation, where classical methods follow a pipeline that includes keypoint detec-
tion and descriptor extraction (Lowe, 2004; Bay et al., 2006; Tola et al., 2008; Salti et al., 2014;
Rusu et al., 2009), tentative matching and outlier filtering (Fischler & Bolles, 1981), and camera
pose estimation using solvers (Gower, 1975; Nistér, 2004; Hartley, 1997; Hesch & Roumeliotis,
2011). More recently, deep learning-based approaches have optimized each stage, outperforming
traditional methods in tasks such as 2D descriptor extraction (Yi et al., 2016; DeTone et al., 2018),
3D descriptor extraction (Yew & Lee, 2018; Choy et al., 2019), sparse and dense matching (Hong &
Kim, 2021; Cho et al., 2021; 2022; Hong et al., 2022a;b; 2023; Sun et al., 2021; Edstedt et al., 2024),
and outlier filtering (Barath et al., 2019; Wei et al., 2023). In this work, we propose a lightweight
plug-and-play depth and pose refinement modules to enhance the quality of view synthesis.

3 METHOD

3.1 PROBLEM FORMULATION

Our objective is to reconstruct a 3D scene from a set of N unposed images {Ii}Ni=1 with Ii ∈
RH×W×3 and synthesize photo-realistic images Ît from novel viewpoints in a single feed-forward
pass. To achieve this, we output the depth maps Di ∈ RH×W for each image Ii, along with their
corresponding camera poses Pi ∈ R3×4, consisting of a rotation matrix Ri ∈ R3×3 and a transla-
tion vector ti ∈ R3×1. Additionally, we compute a set of pixel-aligned 3D Gaussians denoted as
G = {µi, σi,Σi, ci}Ni=1. Here, µi(p) ∈ R3 indicates the 3D Gaussian center derived from the depth
Di(p), camera pose Pi, and camera intrinsic Ki, where p ∈ RH×W represents each pixel. The
opacity is represented by σi(p) ∈ [0, 1), Σi(p) ∈ R3×3 is the covariance matrix, and the color is en-
coded using spherical harmonics ci(p) ∈ R3(L+1), where L is the order of the spherical harmonics.
Note that, for both training and inference, we do not use any ground truth camera poses. Instead, we
let the network predict the camera poses for all input images while also learning the varying scale
factors across different scenes.
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Figure 2: Proposed refinement and confidence estimation modules. In our Fine Alignment mod-
ule, we refine depth and pose to improve 3D reconstruction and view synthesis quality, alongside
estimating confidence to assess the reliability of predicted 3D Gaussian centers.

3.2 PF3PLAT: POSE-FREE FEED-FORWARD 3D GAUSSIAN SPLATTING

3.2.1 COARSE ALIGNMENT OF 3D GAUSSIANS

Inspired by recent advancements (Charatan et al., 2023; Chen et al., 2024) that highlight the ad-
vantages of pixel-aligned 3D Gaussians, such as speed, efficiency, and high-quality reconstruction
and view synthesis, we extend these benefits to more challenging scenarios, specifically in the con-
text of pose-free feed-forward view synthesis. To this end, we adopt pixel-aligned 3D Gaussians as
our scene representation. However, this representation also poses certain challenges. Unlike previ-
ous methods for generalized novel view synthesis that utilize implicit representations (Chen & Lee,
2023; Smith et al., 2023; Hong et al., 2024) and benefit from the interpolation capabilities of neural
networks, our approach is challenged by the explicit nature of this representation. Specifically, our
method directly localizes 3D Gaussian centers using depth and camera pose estimates (Charatan
et al., 2023), making it highly sensitive to inaccuracies in these estimates, which cannot be easily
compensated.

Such misalignments can cause severe performance degradation and disrupt the learning process by
producing sparse and noisy gradients. This issue is particularly exacerbated when wide-baseline
images are given as input or the absence of ground-truth pose prevents alignments of 3D Gaussians.
Without effectively addressing these challenges, we find the problem becomes nearly intractable.
These issues can be mitigated by employing iterative scene-specific optimization steps or by as-
suming ground-truth camera poses to guide 3D Gaussians toward object surfaces. However, these
solutions are incompatible with our goal of achieving a single feed-forward process from unposed
images. Therefore, overcoming these limitations requires a novel strategy that can handle depth and
pose ambiguities while maintaining efficiency in a feed-forward manner.

To mitigate the challenges mentioned above, we find it necessary to provide coarse alignment of 3D
Gaussians, where quantitative results can be found in Tab. 4. To this end, we employ off-the-shelf
models (Piccinelli et al., 2024; Lindenberger et al., 2023) to estimate initial depths Di and camera
poses Pi for our images Ii. Specifically, given depth maps Di and sets of correspondences Mij

and their confidence values Cij acquired from each pairwise combinations of images, e.g., (Ii, Ij),
where i, j refer to image indices, we use a robust solver (Fischler & Bolles, 1981; Li et al., 2012)
to estimate the relative poses Pij between image pair. Integrating these components, we provide
the necessary coarse alignment to promote stabilizing the learning process and serve as a strong
foundation for further enhancements.

3.2.2 MULTI-VIEW CONSISTENT DEPTH ESTIMATION

While pre-trained monocular depth models (Wang et al., 2023; Leroy et al., 2024; Piccinelli et al.,
2024; Yin et al., 2023) can offer powerful 3D geometry priors, inherent limitations of these models,
namely, inconsistent scales among predictions, still remain unaddressed. This requires further ad-
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justments to ensure multiview consistency across predictions. To overcome this challenge, we aim
to refine the predicted depths and camera poses obtained from coarse alignment in a fully learnable
and differentiable manner.

Our refinement module includes a pixel-wise depth offset estimation that uses the feature maps Fi

from the depth network (Piccinelli et al., 2024) as the sole input and processes them through a series
of self-attention operations, making it lightweight and geometry-aware (Xu et al., 2023b). The
process is defined as:

∆δi = ϕmlp(Tdepth(Fi)),

D̂i = Di +∆δi,
(1)

where ϕmlp(·) is a linear projection, Tdepth is a deep Transformer architecture and ∆δ is the pixel-
wise depth offset. This extension promotes consistency across views and enhances performance
without relying on explicit cross-attention. Instead, it leverages supervision signals derived from
pixel-aligned 3D Gaussians that connect the information across views, and leverage them for the
novel view synthesis task (Zhou et al., 2017) and our loss functions, which are detailed in Sec-
tion 3.3. Additionally, we avoid fine-tuning the entire depth network, thereby reducing computa-
tional costs and mitigating the risk of catastrophic forgetting.

3.2.3 CAMERA POSE REFINEMENT

In this module, we further refine camera poses to enhance reconstruction and view synthesis quality.
Initially, we replace the estimated relative poses Pij with newly computed camera poses P̂ij derived
from following the similar process in coarse alignment and using the previously obtained refined
depths D̂i. We then introduce a learnable camera pose refinement module that estimates rotation and
translation offsets. To streamline this process, we first utilize a fully differentiable transformation
synchronization operation that takes P̂ij and Cij as inputs. Using power iterations (El Banani et al.,
2023), this operation efficiently recovers the absolute poses P̂i prior to the refinement module.

Next, we convert the absolute poses P̂i into Plücker coordinates (Sitzmann et al., 2021), defined as
r = (d, o×d) ∈ R6, where d represents the camera direction and o denotes the camera origin. These
coordinates, along with the feature maps Fi ∈ Rh×w×d and a pose token PCLS ∈ Rd, are input into
a series of self- and cross-attention layers. In our approach, we designate P̂1 as the reference world
space and update only the other pose estimates. The resulting pose token is then transformed into 6D
rotations (Zhou et al., 2019) and translations, which are added to the initial camera poses to estimate
the rotation and translation offsets. Formally, these are defined as:

P̂CLS = Tpose([Fi,PCLS, r] + Epos),

∆Ri,∆ti = ϕrot(P̂CLS), ϕtrans(P̂CLS),

R̂i, t̂i ⇐ R̂i +∆Ri, t̂+∆t,

(2)

where ∆R,∆t are the pose offsets, and Epos) is positional embedding.

3.2.4 3D GAUSSIAN PARAMTER PREDICTIONS

Cost Volume Construction and Aggregation. Using the refined pose and the monocular depth
estimates, P̂i and D̂i, we assess the quality of the predictions to obtain confidence scores, to assist
predicting 3D Gaussian parameters. To achieve this, we construct both a conventional multi-view
stereo cost volume and a guidance cost volume derived from Di.

Specifically, given the current pose estimates P̂i, we build a multi-view stereo cost volume Cmulti
i ∈

Rh×w×K following the plane-sweeping approach (Yao et al., 2018; Chen et al., 2021). For each of
the K depth candidates within specified near and far ranges along the epipolar lines, we compute
matching scores using cosine similarity (Cho et al., 2022; 2021; Hong et al., 2024). Subsequently, to
guide the depth localization along the epipolar lines, we construct a guidance cost volume Cguide

i (Li
et al., 2023), where each spatial location is represented by a one-hot vector indicating the depth
candidate closest to the monocular depth estimate. The constructed Cmulti

i and Cguide
i undergo cross-

attention to update the multi-view cost volume Ĉmulti
i .

5
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Geometry-aware Confidence Estimation. From the updated multi-view cost volume Ĉmulti
i , we

apply a softmax function (Xu et al., 2022; Hong et al., 2023) along the K dimension to obtain
a matching distribution. We then extract the maximum value from this distribution to derive a
confidence score, Sgeo, which assesses the quality of the estimated camera pose and depth. Formally,
this is defined as:

Sgeo
i = max

k∈{1,2,...,K}
softmax(Ĉmulti

i )(k). (3)

These confidence scores assess the reliability of the predicted 3D Gaussian centers, where high
confidence indicates accurate localization and low confidence suggests potential inaccuracies due to
noise or misalignment. To condition the prediction of Gaussian parameters, opacity, covariance, and
color, we incorporate Sgeo as additional input.

3D Gaussian Parameters. Finally, using the inputs [Ii, D̂i, Fi, S
geo
i ], we compute the opacity σi

through small convolutional layers, derive the covariances from the estimated rotations and scales,
and obtain the color from the estimated spherical harmonic (SH) coefficients. A key idea of our
approach is that Sgeo enables supervision signals to flow from the Gaussian parameters back to
the depth and pose estimates. This feedback loop enhances the accuracy of both depth and pose
estimations, resulting in more consistent and reliable 3D reconstructions.

3.3 LOSS FUNCTION

Reconstruction Loss. By making both depth and camera pose refinement modules learnable and
differentiable, our network leverages supervision signals from the pixel-aligned 3D Gaussians and
the novel view synthesis task (Zhou et al., 2017) to refine these estimates during training. Specifi-
cally, we combine photometric loss, defined as the L2 loss between the rendered and target images,
as well as SSIM (Wang et al., 2004) loss LSSIM and LPIPS (Zhang et al., 2018) loss LLPIPS to form
our reconstruction loss Limg.

2D-3D Consistency Loss. We identify that provided good coarse alignments, RGB loss is suffi-
cient, but with larger baselines, the training process starts to destabilize. Moreover, one remaining
issue with learning solely from the photometric loss is that the gradients are mainly derived from
pixel intensity differences, which suffer in textureless regions. To remedy these, we enforce that cor-
responding points in the set of images {I}Ni=1 lie on the same object surface, drawing from principles
of multi-view geometry Hartley & Zisserman (2003).

Formally, using the estimated depths D̂, the camera poses P̂ , and the correspondence sets M, we
can define a geometric consistency loss that penalizes deviations from the multi-view geometric
constraints. For each correspondence (p, q) ∈ Mij between images Ii and Ij , we compute the 3D
point from the pixel p and its estimated depth D̂i(p) using the camera intrinsics. We then transform
this to the coordinate frame of Ij using the relative pose P̂ij and project it back onto the image
plane to obtain the predicted correspondence p̃. This is defined as L2D−3D =

∑
(p,q)∈M φ(p̃, q),

where φ(·) denotes huber loss. By integrating this loss into the learning pipeline, we improve the
robustness of the model in regions with low texture or significant viewpoint changes, ensuring that
the estimated pose and depth are consistent with the underlying 3D structure of the scene.

3D-3D Consistency Loss. While the multi-view consistent surface loss directly connects each pair
of corresponding Gaussians and their centers, guiding the model towards the object’s surface, we
find that relying solely on this loss can lead to suboptimal convergence, especially in regions with
sparse correspondences. To further stabilize and enhance the learning process, we introduce an addi-
tional regularization term that minimizes the discrepancies among the centers of the corresponding
Gaussians.

Intuitively, this differs from L2D−3D in that, unlike the previous function, which considers the
alignment of Gaussian centers from only one side when dealing with pairwise correspondences,
the regularization term symmetrically enforces consistency from both sides. Specifically, while
the multi-view consistent surface loss projects the Gaussian center from one view to another us-
ing the estimated depth and camera pose, e.g., from source to target, the regularization term
jointly minimizes the distances between all corresponding Gaussian centers across multiple views.
By considering both directions in pairwise correspondences, this approach promotes a more co-
herent and robust estimation of the object’s surface, reducing the influence of outliers and im-
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RealEstate-10K

Pose-Free Method
Avg Small Medium Large

PSNR LPIPS SSIM MSE PSNR LPIPS SSIM MSE PSNR LPIPS SSIM MSE PSNR LPIPS SSIM MSE

✗
PixelNeRF 14.438 0.577 0.467 0.047 13.126 0.639 0.466 0.058 13.999 0.582 0.462 0.042 15.448 0.479 0.470 0.031
Du et al. 21.833 0.294 0.736 0.011 18.733 0.378 0.661 0.018 22.552 0.263 0.764 0.008 26.199 0.182 0.836 0.004
MVSplat 25.054 0.157 0.827 0.008 21.029 0.226 0.747 0.013 26.369 0.116 0.874 0.004 30.516 0.074 0.926 0.002

✓

DBARF 14.789 0.490 0.570 0.033 13.453 0.563 0.522 0.045 15.201 0.487 0.560 0.030 16.615 0.380 0.648 0.022
FlowCAM 18.242 0.597 0.455 0.023 15.435 0.528 0.570 0.034 18.481 0.592 0.441 0.18 22.418 0.707 0.287 0.009
CoPoNeRF 19.536 0.398 0.638 0.016 17.153 0.459 0.577 0.025 19.965 0.343 0.645 0.013 22.542 0.250 0.724 0.008
Ours 22.347 0.205 0.763 0.010 18.904 0.276 0.683 0.017 23.366 0.173 0.793 0.007 27.064 0.115 0.870 0.003

ACID

Pose-Free Method
Avg Small Medium Large

PSNR LPIPS SSIM MSE PSNR LPIPS SSIM MSE PSNR LPIPS SSIM MSE PSNR LPIPS SSIM MSE

✗
PixelNeRF 17.160 0.527 0.496 0.029 16.996 0.528 0.487 0.030 17.228 0.534 0.501 0.029 17.229 0.522 0.500 0.028
Du et al. 25.482 0.304 0.769 0.005 25.553 0.301 0.773 0.005 25.694 0.303 0.769 0.005 25.338 0.307 0.763 0.005
MVSplat 28.252 0.157 0.829 0.004 28.085 0.164 0.820 0.004 28.571 0.148 0.843 0.003 28.203 0.156 0.828 0.004

✓

DBARF 14.189 0.452 0.537 0.038 14.306 0.503 0.541 0.037 14.253 0.457 0.538 0.038 14.086 0.419 0.534 0.039
FlowCAM 20.116 0.477 0.585 0.016 20.153 0.475 0.594 0.016 20.158 0.476 0.585 0.015 20.073 0.478 0.580 0.016
CoPoNeRF 22.440 0.323 0.649 0.010 22.322 0.358 0.649 0.010 22.407 0.352 0.648 0.009 22.529 0.351 0.649 0.009
Ours 23.732 0.251 0.702 0.008 23.719 0.250 0.702 0.009 23.935 0.246 0.708 0.008 23.647 0.253 0.695 0.008

Table 1: Novel View Synthesis Performance on RealEstate-10K and ACID. Gray entries indicate
methods that use ground truth camera poses during evaluation and are not directly comparable.

proving convergence during training. This additional regularization can be formally defined as:
L3D−3D =

∑
(p,q)∈M ||µi(p)− µj(q)||2.

Final Objective Function. Combining the three loss functions, we define our final objective func-
tion: Limg + L2D−3D + λ3D−3DL3D−3D, where we set λ3D−3D = 0.05

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

In this work, we assume intrinsic parameters are given, as they are generally available from modern
devices (Arnold et al., 2022). We compute attentions using Flash Attention (Dao et al., 2022), and
for the Gaussian rasterizer, we follow the method described in (Charatan et al., 2023). Our model is
trained on a single NVIDIA A6000 GPU for 40,000 iterations using the Adam optimizer (Kingma,
2014), with a learning rate set to 2×10−4 and a batch size of 5, which takes approximately two days.
For training on the RealEstate10K and ACID datasets, we gradually increase the number of frames
between I1 and I2 as training progresses, initially setting the frame distance to 45 and gradually
increasing it to 75. For the DL3DV dataset, we start with a frame distance of 5 and increase it to 10.
The target view is randomly sampled within this range. We train under the assumption of N = 2 and
render Ît. Our code is implemented using PyTorch (Paszke et al., 2017). Additional implementation
details can be found in the supplementary material. The code and pretrained weights will be made
publicly available.

4.2 EXPERIMENTAL SETTING

Datasets. We train and evaluate our method on three large-scale datasets: RealEstate10K (Zhou
et al., 2018), a collection of both indoor and outdoor scenes; ACID (Liu et al., 2021), a dataset
focusing on outdoor coastal scenes; and DL3DV (Ling et al., 2024), which includes diverse real-
world indoor and outdoor environments. For RealEstate10K, due to some unavailable videos on
YouTube, we use a subset of the full dataset, comprising a training set of 21,618 scenes and a test
set of 7,200 scenes. For ACID, we train on 10,935 scenes and evaluate on 1,893 scenes. Lastly, for
DL3DV, which features longer video sequences across 10,510 different scenes, we use 2,000 scenes
for training and a standard benchmark set of 140 scenes for testing (Ling et al., 2024).

Baselines. Following Hong et al. (2024), we evaluate our method on two tasks: novel-view syn-
thesis and camera pose estimation. For novel view synthesis, we compare our approach against
established generalized NeRF and 3DGS variants, including PixelNeRF (Yu et al., 2021), Du et al.
(2023), PixelSplat (Charatan et al., 2023), and MVSPlat (Chen et al., 2024). It is important to note
that these methods assume ground-truth (GT) camera poses during inference, so we include them
only for reference. Our primary comparisons focus on existing pose-free generalized novel view

7
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RealEstate-10K

Task Method

Avg Small Medium Large
Rotation Translation Rotation Translation Rotation Translation Rotation Translation

Avg(◦↓) Med(◦↓) Avg(◦↓) Med(◦↓) Avg(◦↓) Med(◦↓) Avg(◦↓) Med(◦↓) Avg(◦↓) Med(◦↓) Avg(◦↓) Med(◦↓) Avg(◦↓) Med(◦↓) Avg(◦↓) Med(◦↓)

SfM

SP+SG 5.605 1.301 14.89 5.058 9.793 2.270 12.55 4.638 1.789 0.969 9.295 3.279 1.416 0.847 21.42 7.190
PDC-Net+ 2.189 0.751 10.10 3.243 3.460 1.128 6.913 2.752 1.038 0.607 6.667 2.262 0.981 0.533 16.57 5.447
DUSt3R 2.527 0.814 17.45 4.131 3.856 1.157 12.23 2.899 1.650 0.733 14.00 3.650 0.957 0.476 27.30 10.27
MASt3R 2.555 0.751 9.775 2.830 4.240 1.283 8.050 2.515 1.037 0.573 6.904 2.418 0.791 0.418 13.963 3.925

Pose Estimation 8ViT 12.59 6.881 90.12 88.65 12.60 6.860 91.46 91.50 12.17 6.552 82.48 82.92 12.77 7.214 91.85 88.92
RelPose 8.285 3.845 - - 12.10 4.803 - - 4.942 3.476 - - 4.217 2.447 - -

Pose-Free
View Synthesis

DBARF 11.14 5.385 93.30 102.5 17.52 13.22 126.3 140.4 7.254 4.379 79.40 75.41 3.455 1.937 50.09 33.96
FlowCAM 7.426 4.051 50.66 46.28 11.88 6.778 87.12 58.25 4.154 3.346 42.29 41.59 2.349 1.524 34.47 27.79
CoPoNeRF 3.610 1.759 12.77 7.534 5.471 2.551 11.86 5.344 2.183 1.485 10.19 5.749 1.529 0.991 15.544 7.907
Ours 1.965 0.751 10.113 4.785 2.561 1.031 7.349 4.122 1.536 1.536 9.332 4.525 1.278 0.550 14.753 6.127

ACID

Task Method

Avg Small Medium Large
Rotation Translation Rotation Translation Rotation Translation Rotation Translation

Avg(◦↓) Med(◦↓) Avg(◦↓) Med(◦↓) Avg(◦↓) Med(◦↓) Avg(◦↓) Med(◦↓) Avg(◦↓) Med(◦↓) Avg(◦↓) Med(◦↓) Avg(◦↓) Med(◦↓) Avg(◦↓) Med(◦↓)

SfM

SP+SG 4.819 1.203 20.802 6.878 10.920 2.797 22.214 7.526 3.275 1.306 16.455 5.426 1.851 0.745 22.018 7.309
PDC-Net+ 4.830 1.742 48.409 28.258 2.520 0.579 15.664 4.215 2.378 0.688 14.940 4.301 1.953 0.636 18.447 4.357
DUSt3R 5.558 1.438 50.661 36.154 6.515 1.450 51.348 39.334 4.773 1.392 49.647 35.105 5.346 1.444 50.724 35.260
MASt3R 2.320 0.625 25.325 7.334 2.223 0.647 25.382 8.107 1.977 0.613 24.460 6.635 2.544 0.613 25.697 7.099

Pose Estimation 8ViT 4.568 1.312 88.433 88.961 8.466 3.151 88.421 88.958 4.325 1.564 90.555 90.799 2.280 0.699 86.580 87.559
RelPose 6.348 2.567 - - 10.081 4.753 - - 5.801 2.803 - - 4.309 2.011 - -

Pose-Free
View Synthesis

DBARF 4.681 1.421 71.711 68.892 8.721 3.205 95.149 99.490 4.424 1.685 77.324 77.291 2.303 0.859 54.523 38.829
FlowCAM 9.001 6.749 95.405 88.133 8.663 6.675 92.130 85.846 8.778 6.589 95.444 87.308 9.305 6.898 97.392 89.359
CoPoNeRF 3.283 1.134 22.809 14.502 3.548 1.129 23.689 11.289 2.573 1.169 21.401 10.656 3.455 1.129 22.935 10.588
Ours 4.125 1.776 27.727 13.903 4.011 1.604 27.786 13.840 3.667 1.604 26.343 13.622 4.412 1.891 28.330 14.092

Table 2: Pose Estimation Performance on RealEstate-10K and ACID. Gray entries indicate meth-
ods not trained on the same dataset due to the absence of ground truth data (e.g., depth and corre-
spondence), making them incomparable.

DL3DV

Pose-Free Method

Small Large

PSNR LPIPS SSIM Rotation Translation PSNR LPIPS SSIM Rotation Translation
Avg. Med. Avg. Med. Avg. Med. Avg. Med.

✗ MVSPlat 20.849 0.230 0.680 - - - - 24.211 0.147 0.796 - - - -

✓
CoPoNeRF 15.509 0.563 0.396 13.121 6.721 44.645 30.269 17.586 0.467 0.469 5.609 2.905 17.974 12.445
Ours 19.355 0.280 0.611 4.698 2.475 10.692 6.869 22.105 0.211 0.706 3.353 1.604 9.407 6.334

Table 3: Novel View Synthesis and Pose Estimation Performance on DL3DV. We include MVS-
Plat for reference only.

synthesis methods, such as DBARF (Chen & Lee, 2023), FlowCAM (Smith et al., 2023), and Co-
PoNeRF (Hong et al., 2024). For camera pose estimation, we first evaluate against correspondence-
based pose estimation methods (e.g., COLMAP), including SP+SG (DeTone et al., 2018; Sarlin
et al., 2020), PDC-Net+(Truong et al., 2023a), DUSt3R(Wang et al., 2023), and MASt3R (Leroy
et al., 2024). Additionally, we compare with direct pose regression methods such as 8ViT (Rock-
well et al., 2022), RelPose (Zhang et al., 2022), and MicKey (Barroso-Laguna et al., 2024). Our
main comparisons, however, are with existing pose-free approaches, including DBARF (Chen &
Lee, 2023), FlowCAM (Smith et al., 2023), and CoPoNeRF (Hong et al., 2024).

Evaluation Protocol For the evaluation on RealEstate-10K and ACID, we follow the protocol out-
lined by Hong et al. (2024), where evaluation is conducted using unposed triplet images (I1, I2, It).
The test set is divided into three groups, small, middle, and large, based on the extent of overlap
between I1 and I2. This allows the model’s performance to be assessed under varying levels of
difficulty, reflecting different real-world scenarios. For the relatively new DL3DV dataset, we in-
troduce a new evaluation protocol. For each scene, we select two context images, I1 and I2, by
skipping frames at intervals of 5 and 10, creating two groups per scene, each representing small and
large overlap cases. We then randomly select three target images from the sequence between the
context images, similar to the above protocol. For evaluation metrics, we use standard image quality
measures, PSNR, SSIM, LPIPS, and MSE, for novel view synthesis. For camera pose estimation,
we compute the geodesic rotation error and angular difference in translation, as commonly done in
classical methods (Nistér, 2004; Melekhov et al., 2017). These errors are measured by comparing
the ground truth relative pose PGT

12 and our estimated pose P̂12. Our statistical analysis reports both
the average and median errors, with the median providing robustness against outliers.

4.3 EXPERIMENTAL RESULTS

RealEstate-10K & ACID. Tab.1 summarizes the performance for the novel view synthesis task,
while Tab.2 reports the results for pose estimation. From the results in Tab. 1, our method signifi-
cantly outperforms previous pose-free generalizable methods (Chen & Lee, 2023; Smith et al., 2023;
Hong et al., 2024), setting a new state-of-the-art across these benchmarks. Furthermore, compared
to the previous state-of-the-art, CoPoNeRF, our method achieves a 2.8 dB improvement in PSNR,
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demonstrating superior reconstruction quality and robustness. Additionally, our approach demon-
strates superior pose estimation performance on RealEstate-10K; however, we observe that Hong
et al. (2024) achieves lower pose errors on the ACID dataset. This discrepancy may be attributed
to the larger scale of scenes, such as coastal landscapes and sky views, which complicates our re-
finement process and poses challenges for our depth network in estimating the metric depth of the
scene. Nonetheless, this limitation is mitigated by our method’s superior novel view image quality
and the fact that Hong et al. (2024) utilizes ground-truth poses for supervision, providing robust
guidance for large-scale environments. Moreover, the ACID dataset includes numerous dynamic
scenes, which are beyond the scope of our current focus. Consequently, our method may be less
effective in estimating poses for dynamic scenes compared to other approaches.
DL3DV. While RealEstate-10K and ACID encompass a variety of indoor and outdoor scenes,
RealEstate-10K predominantly includes indoor environments, whereas ACID features numerous
dynamic scenes. To comprehensively evaluate our method across a broader spectrum of real-world
scenarios, we further assess it on the recently released DL3DV dataset (Ling et al., 2024). The
results are summarized in Table 3. From these results, we observe that our method outperforms
CoPoNeRF (Hong et al., 2024) by over 4 dB in large-overlap scenarios and by 3.8 dB in small-
overlap scenarios, highlighting the superior accuracy and robustness of our approach in handling
diverse and complex environments. This highlights the effectiveness of our method in managing
varied scene and object types, reinforcing its applicability for practical novel view synthesis tasks.

4.4 ABLATION STUDY

In this ablation study, we aim to investigate the effectiveness of each component of our method. We
first define a baseline model, which combines our depth and pose estimates from coarse alignments
with MVSplat (Chen et al., 2024) for 3D Gaussian parameter prediction. We also explore both
full fine-tuning and partial fine-tuning strategies for the depth network. Additionally, we report the
results of ablation studies on our loss functions. The results are summarized in Tab. 4.

Components

Avg

PSNR SSIM LPIPS Rotation Translation

Avg. Med. Avg. Med.
(0) Baseline 20.140 0.694 0.281 2.776 0.630 10.043 3.264

(I) PFSplat 22.347 0.763 0.205 1.965 0.751 10.113 4.785
(II) - Depth Refinement 21.963 0.759 0.208 2.240 1.134 9.701 3.044
(III) - Pose Refinement 21.519 0.737 0.222 2.349 1.175 12.123 6.347
(IV) - Geometry Confidence 21.239 0.737 0.223 2.303 0.922 9.179 3.533
(V) - Corres. Network N/A N/A N/A N/A N/A N/A N/A
(VI) - Mono. Depth Network 16.132 0.511 0.405 6.990 5.329 21.328 14.432

(I-I) Full F.T. Depth Network N/A N/A N/A N/A N/A N/A N/A
(I-II) Scale/Shift Tuning Depth Network N/A N/A N/A N/A N/A N/A N/A

(I-III) - Tri. Consis. Loss 18.832 0.6247 0.418 5.787 2.105 17.117 9.422
(I-IV) - Regularization Loss 20.981 0.722 0.243 4.698 1.908 11.172 8.384
(I-V) (I-IV) - Tri. Consis. loss N/A N/A N/A N/A N/A N/A N/A

Table 4: Component ablations on RealEstate10K.

From the results, we find that our
method improves by a large mar-
gin when comparing (0) with (I).
This improvement is further sup-
ported by the comparisons from
(I) to (IV) and from (I-III) to
(I-IV), which show performance
degradation as each component is
removed. We also demonstrate
that without pre-trained weights
for the depth and correspondence
networks, the training either fails
or achieves significantly lower
performance. Similar observations are made in (I-I), (I-II), and (I-V), where we identify that directly
tuning the depth network or training only with photometric losses leads to failure in the training pro-
cess. The former issue may arise from overfitting, a common problem when directly manipulating
foundation models. With only the photometric loss, we observe that after certain iterations, as the
baseline becomes wider, the training loss quickly diverges.

4.5 ANALYSIS AND MORE RESULTS

Comparison to DUSt3R extensions. In this study, we compare our results with those of In-
stantSplat (Fan et al., 2024) and Splatt3R (Smart et al., 2024). Although these are preprints, we
include this comparison for completeness, as their tasks and methods are closely related to ours. The
results are summarized in Tab. 5a. We find that InstantSplat achieves superior performance in novel
view synthesis compared to our method; however, when we adopt a similar test-time optimization
(TTO) strategy, our approach requires significantly less optimization time to achieve comparable or
better results. Additionally, our method infers substantially faster without TTO, demonstrating its
high practicality for real-time applications. Splatt3R, a concurrent work built on a similar concept to
ours, requires ground-truth depth and pose for training, which are not available in the RealEstate10K
dataset. Due to scale discrepancies, their performance is significantly lower, and without a mecha-
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Method PSNR SSIM LPIPS Rot. (◦↓) Trans. (◦↓) Time (s)
Avg. Med. Avg. Med.

InstantSplat 23.079 0.777 0.182 2.693 0.882 11.866 3.094 53
Splatt3R 15.636 0.502 0.360 1.312 0.521 8.715 1.891 20
Ours 22.347 0.763 0.205 1.965 0.751 10.113 4.785 0.390
Ours + TTO 23.132 0.779 0.202 1.965 0.814 9.996 4.701 13

(a) Performance and speed comparisons on
RealEstate-10K against DUSt3R variants.

Method 2 views 6 views 12 views

1 view 3 view 5 view 1 view 3 view 5 view 1 view 3 view 5 view

DBARF 1.456 4.562 8.177 2.965 7.288 13.780 4.009 10.493 17.50
FlowCAM 4.010 7.020 10.13 9.564 23.718 34.000 14.34 23.44 48.55
CoPoNeRF 17.29 33.78 54.52 N/A N/A N/A N/A N/A N/A
Ours 0.390 0.392 0.394 2.054 2.056 2.058 5.725 5.727 5.729

(b) Speed comparisons between pose-free generaliz-
able view synthesis models. Times are measured in
seconds.

Method 6 views 12 views

PSNR SSIM LPIPS ATE PSNR SSIM LPIPS ATE

DBARF 23.91662 0.7837 0.2226 0.0101166 24.1798 0.7906 0.2186 0.0048777
FlowCAM 24.6660 0.8259 0.2332 0.0022202 25.2290 0.8406 0.2169 0.0012655
Ours 26.3055 0.8664 0.1230 0.0011624 27.0822 0.8895 0.1055 0.0005684

(c) RealEstate10K 6, 12 input views.

Method RealEstate10K → DL3DV DL3DV → RealEstate10K

PSNR SSIM LPIPS Rot.(◦↓) Trans.(◦↓) PSNR SSIM LPIPS Rot.(◦↓) Trans.(◦↓)
Avg. Med. Avg. Med. Avg. Med. Avg. Med.

MVSPlat 23.543 0.764 0.179 - - - - 22.198 0.760 0.211 - - --

CoPoNeRF 16.138 0.427 0.483 8.778 2.791 24.036 18.432 17.160 0.547 0.465 7.506 4.108 27.158 19.681
Ours 20.542 0.647 0.267 0.0672 0.0263 9.5373 5.3940 21.086 0.708 0.234 0.052 0.027 13.133 8.095

(d) Cross-dataset Evaluation.

Table 5: More Analysis and Results.

nism to handle the scale differences, an issue not addressed in the original paper, the results are not
directly comparable to ours.
Inference speed comparisons. We conduct a comprehensive inference speed comparison be-
tween our method and competing approaches using varying numbers of input images, specifically
N ∈ 2, 6, 12. For each scenario, we evaluate the time required to render 1, 3, and 5 views. The
results, summarized in Tab. 5b, show that our approach is generally faster than existing methods.
However, for N = 12, our inference speed is slower than that of DBARF, as our method involves
estimating camera poses via a robust solver for every pairwise combination. Despite this overhead,
our approach gains a significant advantage as the number of rendered views increases, due to the
efficient rendering capabilities of 3DGS once the scene has been fully reconstructed. Finally, in
order to provide a detailed breakdown, we measured three values for our method: overall inference
time, UniDepth processing time, and decoder time, isolating the contributions of each component to
the total runtime. Given 2, 6 and 12 views and to render a single target view, it takes 0.251, 0.832
and 1.535 seconds for UniDepth inference, while it takes approximately consistent 0.00247 seconds
for rendering.
Extending to N-views. In practical scenarios, more than two views (N > 2) are commonly used.
Therefore, we demonstrate that our method can process multiple views and render It. We input
N views into our network to obtain P̂i, D̂i, and (µi, σi,Σi, ci). Following a similar approach to
Chen & Lee (2023), we select the top-k nearby views using P̂i and render Ît to compare with the
ground truth target view image. For this evaluation, we compare our method with those of Chen
& Lee (2023) and Smith et al. (2023), since the method by Hong et al. (2024) can only take two
input views. We also report the Absolute Trajectory Error (ATE). The results are summarized in
Tab. 5c. From these results, we find that our method achieves significantly better performance than
the others, highlighting our capability to extend to multiple N views.
Cross-Dataset Evaluation. To demonstrate the generalization capability of our method, we con-
duct a cross-dataset evaluation and compare against Hong et al. (2024). Specifically, we evaluate
performance on RealEstate10K and DL3DV, using each dataset for training in a cross-dataset set-
ting. The results, summarized in Tab. 5d, show that our method achieves a PSNR of over 20 dB for
both datasets, significantly outperforming Hong et al. (2024). This indicates that, even under out-
of-distribution conditions, our method produces high-quality renderings, highlighting its robustness
and effectiveness in zero-shot capability.

5 CONCLUSION

In this paper, we have introduced learning-based framework that tackles pose-free novel view syn-
thesis with 3DGS, enabling efficient, fast and photorealistic view synthesis from unposed images.
The proposed framework, PFSplat, is built on the base model comprising of foundation models to
overcome inherent limitations of 3DGS. While the devised base model already surpasses the existing
methods, we have also devised modules to address the limitations of the base model, enhancing the
overall performance. This method is capable of training and inference solely from unposed images,
even in scenarios where only a handful of images with minimal overlaps are given. We have shown
that our approach surpasses all existing methods on real-world large-scale datasets, establishing new
state-of-the-art performance.
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A APPENDIX

A.1 TRAINING DETAILS

We train MVSplat (Chen et al., 2024) and CoPoNeRF (Hong et al., 2024) using our data loaders,
similarly increasing the distance between context views during training, as explained in Sec 4.1.
Specifically, we train MVSplat for 200,000 iterations using a batch size of 8 on a single A6000
GPU. All the hyperparameters are set to the authors’ default setting. For CoPoNeRF, we train it
for 50,000 iterations using 8 A6000 GPUs with effective batch size of 64, following the authors’
original implementations and hyperparameters. Finally, for InstantSplat (Fan et al., 2024), we train
and evaluate on a single A6000 GPU with a batch size of 1 by following the official code1, and the
hyperparameters were set according to the default settings provided by the authors.

A.2 MORE QUALITATIVE RESULTS

Fig. 3, Fig. 4 and Fig. 6 present more novel view rendering results of different methods. On these
datasets, our method yields outcomes that are sharper and more geometrically accurate.

A.3 LIMITATIONS AND FUTURE WORK

As our model currently lacks a mechanism to handle dynamic scenes, it is unable to accurately
capture scene dynamics or perform view extrapolation. Additionally, our model’s performance is
contingent on the quality of the coarse alignments, which rely on the accuracy of the depth and
correspondence models. In cases where either of these models fails, our approach may not function
optimally. However, because our refinement modules are lightweight, simple, and model-agnostic,
incorporating more advanced methods for coarse alignment could further enhance performance.

For future work, we plan to train our model on diverse large-scale datasets. Since our approach relies
exclusively on supervision signals from RGB images, it is straightforward to scale up the training
data. We also aim to extend our method to handle 4D objects, ultimately enabling the modeling of
4D scenes, which would be beneficial for applications such as egocentric vision and robotics.

1https://github.com/NVlabs/InstantSplat
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147

146

141

138

121

118

112

103

Figure 3: Qualitative results on RealEstate-10K dataset. Given two context views (a) and (b), we
compare novel view rendering results.
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Figure 4: Qualitative results on ACID dataset. Given two context views (a) and (b), we compare
novel view rendering results.
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Figure 5: Qualitative results on DL3DV dataset. Given two context views (a) and (b), we compare
novel view rendering results.
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Figure 6: Pose estimation qualitative results.
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