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Abstract
Fine-tuning large-scale pre-trained models is pro-
hibitively expensive in terms of computation and
memory costs. Low-Rank Adaptation (LoRA), a
popular Parameter-Efficient Fine-Tuning (PEFT)
method, offers an efficient solution by optimizing
only low-rank matrices. Despite recent progress
in improving LoRA’s performance, the relation-
ship between the LoRA optimization space and
the full parameter space is often overlooked. A
solution that appears flat in the loss landscape of
the LoRA space may still exhibit sharp directions
in the full parameter space, potentially compro-
mising generalization. We introduce Flat-LoRA,
which aims to identify a low-rank adaptation situ-
ated in a flat region of the full parameter space. In-
stead of adopting the well-established sharpness-
aware minimization approach, which incurs sig-
nificant computation and memory overheads, we
employ a Bayesian expectation loss objective to
preserve training efficiency. Further, we design a
refined strategy for generating random perturba-
tions to enhance performance and carefully man-
age memory overhead using random seeds. Exper-
iments across diverse tasks—including mathemat-
ical reasoning, coding abilities, dialogue genera-
tion, instruction following, and text-to-image gen-
eration—demonstrate that Flat-LoRA improves
both in-domain and out-of-domain generalization.
Code is available at https://github.com/
nblt/Flat-LoRA.

1. Introduction
Pre-training followed by fine-tuning has become the domi-
nant paradigm in modern machine learning, achieving state-

*Equal contribution. This work was conducted when Tao was
an intern at Huawei Noah’s Ark Lab. 1Department of Automa-
tion, Shanghai Jiao Tong University, Shanghai, China 2Huawei
Noah’s Ark Lab. Correspondence to: Xiaolin Huang <xiaolin-
huang@sjtu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

X

4
2

0
2

4

Y

4
2

0
2

4

l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 1: Illustration of LoRA optimization space. LoRA
constrains optimization to a lower-dimensional space (blue).
A flat minimum in LoRA space (blue curve) may exhibit
sharp directions in the full parameter space (red curve).

of-the-art performance by leveraging the versatile capabili-
ties of pre-trained models (Girshick et al., 2014; Kolesnikov
et al., 2020; Radford et al., 2021; Li et al., 2024c). However,
the enormous size of these models makes fine-tuning all
parameters resource-intensive. Recently, Low-Rank Adapta-
tion (LoRA) (Hu et al., 2022) has been proposed to address
this challenge. LoRA fine-tunes only low-rank matrices,
which can be merged with the pre-trained weights after
training, incurring no extra overhead during inference. This
approach significantly reduces trainable parameters, thereby
lowering both training and storage requirements.

Many methods have been proposed to enhance LoRA per-
formance, such as adaptive rank allocation (Zhang et al.,
2023a), decomposition of optimization into direction and
magnitude (Liu et al., 2024), and improved initialization
strategies (Meng et al., 2024; Wang et al., 2024). Despite
the promising potential these methods offer, the connection
between the LoRA optimization space and the original full
parameter space is often overlooked. Essentially, LoRA
constrains optimization to a much lower-dimensional space,
and its performance depends on how solutions in this re-
stricted space relate to the full parameter space since the
merged weights are ultimately used during inference. As
illustrated in Figure 1, a flat minimum in the LoRA space
may contain sharp directions in the view of the full param-
eter space, potentially leading to performance degradation.
Figure 6 further demonstrates this phenomenon, revealing
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Figure 2: Illustration of LoRA (Left) and Flat-LoRA
(Right). By introducing designed random weight perturba-
tions during fine-tuning, Flat-LoRA identifies a low-rank
solution that is flat in the loss landscape of the full parameter
space. Unlike SAM, it eliminates the need for additional
gradient steps and remains memory-efficient by storing only
the random seed and a small number of filter norms (less
than 1/r of the LoRA parameters for rank r).

the sharpness of loss landscape for the minima found by
LoRA when examined in the full parameter space.

Flat minima in the loss landscape are widely believed to
improve generalization and increase robustness to distri-
bution shifts between training and test data (Hochreiter &
Schmidhuber, 1994; 1997). This understanding has inspired
Sharpness-Aware Minimization (SAM) (Foret et al., 2020),
which is formulated as a min-max problem and has achieved
state-of-the-art generalization. While integrating SAM with
LoRA (referred to as LoRA-SAM (Li et al., 2024a)) for
large model fine-tuning is promising, there are several is-
sues that should be discussed. First, LoRA-SAM can only
optimize the sharpness of the loss landscape in a restricted
space (Section 3.2), which may not effectively improve gen-
eralization. Second, SAM requires an additional gradient
step, doubling the training cost and rendering it impracti-
cal for large models. Lastly, computing sharpness in the
full parameter space necessitates calculating gradients and
storing perturbations for all weights, which contradicts the
principles of parameter-efficient fine-tuning.

To address these challenges, we propose employing the
Bayesian expectation loss objective (Duchi et al., 2012;
Bisla et al., 2022) to smooth the loss landscape, thereby
achieving flat minima in the full parameter space. Our
approach, termed Flat-LoRA, leverages efficient random
weight perturbations that can be stored as random seeds. In
contrast to SAM, which requires additional gradient steps
and maintaining an extra copy of model weights, Flat-LoRA
ensures both time and memory efficiency. Moreover, we
introduce refined perturbation generation strategies that con-
sider weight magnitude and model width scaling, resulting
in improved generalization performance.

Our main contributions can be summarized as follows:

• We find that low-rank adaptation may exhibit sharper
loss landscapes in the full parameter space, prompting
us to propose Flat-LoRA to mitigate this sharpness.

• We employ Bayesian expected loss with designed ran-
dom weight perturbations to pursue flat minima, seam-
lessly integrating with existing methods while main-
taining computational and memory efficiency.

• Extensive experiments across various natural language
processing and computer vision tasks demonstrate that
Flat-LoRA significantly improves both in-domain and
out-of-domain generalization.

2. Related Work
2.1. Flat Minima and Generalization

The connection between the flatness of local minima and
generalization has received much attention (Hochreiter &
Schmidhuber, 1997; Chaudhari et al., 2017; Keskar et al.,
2017; Dinh et al., 2017; Izmailov et al., 2018; Li et al.,
2018b; Wu et al., 2020; Kwon et al., 2021; Zhuang et al.,
2022; Li et al., 2024e). Recently, many works have tried
to improve generalization by seeking flat minima (Tsuzuku
et al., 2020; Zheng et al., 2021; Bisla et al., 2022). For
example, Chaudhari et al. (2017) propose Entropy-SGD to
search for flat regions by minimizing local entropy. Wen
et al. (2018) design SmoothOut framework to smooth out
the sharp minima. Notably, Sharpness-Aware Minimization
(SAM) (Foret et al., 2020) establishes a generic training
scheme for seeking flat minima by formulating a min-max
problem and encouraging parameters sitting in neighbor-
hoods with uniformly low loss, achieving state-of-the-art
generalization improvements across various tasks. However,
SAM doubles the training time compared to regular training,
limiting its applicability to large-scale training.

Another branch of methods for recovering flat minima in-
volves minimizing the expected Bayesian training loss under
random weight perturbation (RWP), which is efficient and
doesn’t require additional gradient step (Bisla et al., 2022).
Wang & Mao (2021) propose Gaussian model perturbation
as a regularization scheme for improving SGD training, but
it remains inefficient for multiple noise sampling. Bisla
et al. (2022) connect the smoothness of loss objective to
generalization and adopt filter-wise random Gaussian per-
turbation generation to recover flat minima and improve
generalization. Li et al. (2022c; 2024d) further enhance the
generalization performance of RWP by introducing an adap-
tive perturbation generation strategy and a mixed loss ob-
jective. Wu et al. (2022); Li et al. (2024b) demonstrate that
injecting small random noise before or during fine-tuning
can improve generalization. However, when applying to
parameter-efficient fine-tuning, we must be mindful of the
additional memory costs they may introduce.
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2.2. Low-rank Adaptation and Variants

Recent studies have shown that the intrinsic dimension re-
quired for optimizing deep neural networks (DNNs) can
be significantly lower than the total number of parame-
ters (Li et al., 2018a; Gur-Ari et al., 2018). Notably, Li
et al. (2022a) demonstrate the low-dimensional properties
of DNNs’ training dynamics, which have been leveraged to
mitigate overfitting issues in adversarial training (Li et al.,
2022b). Low-Rank Adaptation (LoRA) (Hu et al., 2022) is
proposed to model the weight changes for each layer during
fine-tuning. It effectively decreases the number of trainable
parameters, thereby lowering the memory burden for train-
ing and storage. This approach is currently the mainstream
because it avoids adding overhead during inference while
demonstrating strong performance (Wang et al., 2023).

Many works have been proposed to enhance the perfor-
mance of LoRA. AdaLoRA (Zhang et al., 2023a) dynami-
cally prunes insignificant weights during fine-tuning through
singular value decomposition (SVD), enabling allocating
more rank to important areas under a fixed parameter budget.
DoRA (Liu et al., 2024) improves optimization performance
by decomposing weight updates into their direction and mag-
nitude components. LoRA+ (Hayou et al., 2024) proposes
to use different learning rates for the two matrices in LoRA
to improve convergence. PiSSA (Meng et al., 2024) pro-
poses to use the SVD decomposition of the original matrix
W to initialize the LoRA matrices, which provides a better
initialization for LoRA parameters. LoRA-GA (Wang et al.,
2024) proposes to align the gradient of LoRA to that of
full fine-tuning at initialization. LoRA-Pro (Wang & Liang,
2025) further proposes to align each gradient step to the full
fine-tuning. Li et al. (2024a) develop a resource-efficient
SAM variant, called Balancedness-Aware Regularization
(BAR), tailored for scale-invariant problems, such as LoRA
optimization. In this paper, we improve LoRA by optimiz-
ing the sharpness of the loss landscape in the full parameter
space, and our approach is orthogonal to previous works.

3. Method
In this section, we first briefly review Low-Rank Adapta-
tion (LoRA). Then, we introduce our LoRA optimization
objective that considers the landscape flatness of the full pa-
rameter space. Finally, we describe our random perturbation
generation strategy for effectively improving generalization.

3.1. LoRA: Low-Rank Adaptation

Based on the finding that DNNs’ optimization happens in a
subspace with a much smaller dimension than the number
of parameters (Li et al., 2018a; 2022a), LoRA utilizes low-
rank matrices to model the change for each layer’s weights
W ∈ Rm×n during fine-tuning as ∆W = BA, where

B ∈ Rm×r and A ∈ Rr×n with rank r ≪ min{m,n} for
parameter efficiency. We omit the scaling factor s = α/r
here for simplicity, as it can be merged into A and B. For
the original output h = Wx, the modified forward pass is

h = Wx+∆Wx = (W +BA)x. (1)

At initialization, matrix A is commonly drawn from Kaim-
ing distribution (He et al., 2015) and matrix B is set to zeros.
During the training, only the low-rank matrices A and B are
optimized with the pre-trained weight W being frozen. Dur-
ing the inference, the low-rank matrices ∆W are merged
to the pre-trained weight W , and there are no additional
computation or memory costs.

3.2. LoRA with a Flat Landscape

Despite recent efforts to improve LoRA performance, most
studies focus solely on finding solutions performing well in
the LoRA optimization space, specifically the rank-r matrix
space Mr = {∆W ∈ Rm×n | rank(∆W ) ≤ r} (focusing
on a single LoRA module). Following the well-established
sharpness-aware minimization (SAM) objective (Foret et al.,
2020), a natural approach is to apply SAM to LoRA param-
eters (LoRA-SAM) (Li et al., 2024a) with:

min
A,B

max
∥(εA,εB)∥≤ρ

L (W + (B + εB)(A+ εA)) , (2)

where L(·) denotes the loss objective for a specific task,
εB ∈ Rm×r, εA ∈ Rr×n are the adversarial weight pertur-
bations over low-rank matrices, ∥(εA, εB)∥ denotes the total
norm of weight perturbations (typically using the ℓ2-norm),
and ρ is the neighborhood radius.

However, focusing solely on the properties of the optimiza-
tion space defined by LoRA parameters may have limita-
tions. During inference, the low-rank adaptation ∆W is
merged into the pre-trained weights W . A solution that
performs well within the LoRA space may be situated in a
sharp region of the full parameter space, as illustrated in Fig-
ure 1, which could potentially harm overall generalization.
To be more clear, employing first-order Taylor expansion
for approximation to solve the inner maximum problem in
Eqn. (2) (Foret et al., 2020), the equivalent weight perturba-
tion applied to W by Eqn. (2) is

εW =BεA + εBA+ εBεA

= c
[
BB⊤(∇WL) + (∇WL)A⊤A

]
+ c2 (∇WL)A⊤B⊤(∇WL),

(3)

where ∇WL is the gradient w.r.t. full parameter weights
W and c = ρ/

√
∥B⊤(∇WL)∥2F + ∥(∇WL)A⊤∥2F is a

scaling factor, with ∥ · ∥F denoting the Frobenius norm.

Notably, when B is initialized as zero as defaulted in Hu
et al. (2022), B will remain small during the training (Hao
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et al., 2024) and Eqn. (3) roughly becomes:

εW ≈ c (∇WL)A⊤A. (4)

We also empirically validate this in Appendix B. Eqn. (4)
indicates that LoRA-SAM only optimizes sharpness within
the column space spanned by A, which constitutes a small
subspace of the full parameter space. As demonstrated in
Table 6, applying SAM’s sharpness optimization exclusively
to LoRA parameters compromises generalization improve-
ments compared to applying it to the full parameter space.

Therefore, it is crucial to consider the loss landscape in the
full parameter space and identify a low-rank adaptation that
positions the merged weights in a flat region. To achieve
this goal, we propose the following flat loss objective:

min
A,B

max
∥εW ∥F≤ρ

L(W +BA+ εW ), (5)

where εW ∈ Rm×n is the adversarial perturbation over
the full parameters. However, directly applying SAM to
optimize the sharpness of the full weight space has several
disadvantages: 1) it doubles the training cost, which is less
desirable for large models, and 2) it requires storing an
additional copy of weights for restoring perturbation, which
contradicts the principle of parameter-efficient fine-tuning.

To achieve a flatter loss landscape while maintaining time
and memory efficiency, we propose relaxing the maximiza-
tion problem in Eq. (5) to an expectation, resulting in the
following Bayesian expected loss objective:

min
A,B

E(εW )i,j∼N (0,σ2) L(W +BA+ εW ), (6)

where σ2 denotes the noise variance, which will be further
discussed in Section 3.3. This expected loss smooths the
loss function in the full parameter space, as shown in the
following lemma, promoting convergence to flatter minima.

Lemma 3.1 (Bisla et al.). Assume the loss function L(W )
is α-Lipschitz continuous and β-smooth w.r.t. W under ℓ2-
norm. The smoothed function E(εW )i,j∼N (0,σ2) L(W+εW )

is min
{

α
σ , β

}
-smooth w.r.t. W .

To optimize Eqn. (6), we sample a noise matrix εW for each
optimization step and compute the perturbed gradient to
optimize the low-rank matrices A and B. Note that the noise
perturbation, generated based on merged model weights,
eliminates the need for additional gradient steps required by
SAM. In practice, we recommend gradually increasing the
perturbation strength to progressively recover flatter minima
for better performance.

3.3. Effective Random Perturbation Generation

In this section, we introduce our approach for generating
random weight perturbations aimed at optimizing sharpness

and improving generalization. Let W ′ = W +BA denote
the merged weight matrix W ′ ∈ Rm×n for a linear layer
with input dimension n and output dimension m. Our design
considers the following two key aspects:

• Filter structure: We aim to generate the weight per-
turbation by filter (Bisla et al., 2022). There are m
filters W ′ = (W ′

1,:,W
′
2,:, · · · ,W ′

m,:) that process the
input x ∈ Rn. Elements within a filter of a larger norm
should receive a larger strength of perturbation.

• Input dimension: To ensure that the variance intro-
duced during the forward pass by random weight per-
turbation is independent of the input dimension, we
scale the variance of noise added to each element by a
factor of 1/n, where n is the input dimension.

Our random weight generation scheme is formulated as:

(εW )i,j ∼ N
(
0,

σ2

n
∥W ′

i,:∥22
)
, (7)

where σ is a hyper-parameter that controls the perturbation
strength. Figure 2 illustrates the comparison between LoRA
and Flat-LoRA.

We then analyze the effects of introducing random weight
perturbation on the activation. Given an input x ∈ Rn,
and under the hypothesis that x is a random vector where
each element has the same variance var[xi] and expectation
E[xi], we have:

var[W ′
j,:x] = ∥W ′

j,:∥22 · var[xi]. (8)

After injecting random weight perturbation ε, we have:

var
[
(W ′ + εW )j,: x

]
= ∥W ′

j,:∥22 · var[xi] +

n∑
i=1

var
[
εWj,i

xi

]
= ∥W ′

j,:∥22 · var[xi] + n · σ
2

n
∥W ′

j,:∥22 ·
(
var[xi] + E2[xi]

)
= (1 + σ2)∥W ′

j,:∥22 · var[xi] + σ2∥W ′
j,:∥22 · E2[xi]. (9)

The injection of random weight perturbations εW increases
the forward activation variance by a factor of 1 + σ2, along
with a bias term determined by E[xi]. This amplified vari-
ance facilitates escape from sharp local minima. By in-
corporating a scaling factor 1/n in the noise generation
process, the variance increase becomes independent of input
dimension n, as formalized in the following:

Proposition 3.2. For input x ∈ Rn with identical variance
and mean across elements, injecting random weight pertur-
bations according to Eqn. (7) increases the output variance
independently of the input dimension n.
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Additionally, we note that this variance would not increase
exponentially during the forward propagation of the network
due to the existence of layer normalization.

Storing random seed for memory efficiency. Mem-
ory cost is crucial for parameter-efficient fine-tuning.
Optimizing Eqn. (6) requires generating random pertur-
bation εW and computing gradient ∇WL(W + BA +
εW ). While storing the full weight perturbation for
large models would be prohibitive, it is sufficient to store
only the seed for the random generator and filter norms{
∥W ′

1,:∥22, ∥W ′
2,:∥22, · · · , ∥W ′

m,:∥22
}

. This allows for the re-
construction of εW when needed. This approach requires
minimal memory overhead (i.e., O(m)), in contrast to SAM,
which requires storing a full perturbation copy (O(m× n))
when optimizing sharpness in the full parameter space.

Simple approach for mixed precision training. Mixed-
precision training, common in large-scale applications, en-
ables memory-efficient integration of perturbation injection
during precision casting. Since this training mode main-
tains both FP32 and FP/BF16 weight copies, we can in-
ject perturbations during the half-precision auto-cast step
before forward propagation, eliminating the need to store
perturbations or filter norms. However, our primary ap-
proach—storing perturbations via filter norms and random
seeds—remains more versatile as it functions independently
of mixed-precision training.

4. Experiments
In this section, we evaluate the performance of Flat-LoRA
on diverse tasks: natural language understanding, image
classification, dialogue generation, mathematical reason-
ing, coding abilities, and text-to-image generation. We then
demonstrate its enhanced out-of-domain generalization abil-
ity, followed by ablation studies and discussions. The code
is provided in supplementary materials.

4.1. Natural Language Understanding

Setting. We fine-tune the T5-Base model on several datasets
from the GLUE benchmark, including MNLI, SST, CoLA,
QNLI, and MRPC, following Wang et al. (2024). Perfor-
mance is evaluated on the development set using accuracy
as the primary metric. We use LoRA with rank 8 and LoRA
alpha 16. We fine-tune the models with 10 epochs using a
cosine learning rate schedule; except for MNLI and QNLI,
we use 1 epoch. We use a learning rate of 0.0005 for LoRA
fine-tuning and 0.0001 for full fine-tuning. The random per-
turbation strength σ is set to 0.05 with a cosine-increasing
strategy. Mean and standard deviation are calculated over 3
independent trials.

Results. As shown in Table 1, Flat-LoRA consistently
outperforms LoRA at ranks 8 and 16, achieving average

performance gains of 0.48% and 0.57%, respectively. The
improvements are particularly notable on smaller datasets,
such as CoLA and MRPC, with gains of 1.19% and 0.94%,
respectively, at rank 16. This is because smaller datasets
are more prone to overfitting, and Flat-LoRA effectively
mitigates this issue, leading to greater performance improve-
ments compared to LoRA.

4.2. Image Classification

Setting. We fine-tune the CLIP ViT-B/32 model
on five image classification tasks, including CIFAR-
10/100 (Krizhevsky & Hinton, 2009), Cars (Krause et al.,
2013), SVHN (Netzer et al., 2011), and DTD (Cimpoi et al.,
2014). We resize all input images to a size of 224×224 and
freeze the classification head. We experiment with LoRA
using ranks of 8 and 16 and fine-tune the models for 10
epochs under a cosine annealing schedule. The learning
rate is set to 0.0005 for LoRA and Flat-LoRA and 0.0001
for full fine-tuning, with a weight decay of 0.1. The per-
turbation strength σ is set to 0.15 for Flat-LoRA with a
cosine-increasing strategy. The mean and standard devia-
tion are calculated over 3 independent trials.

Results. We measure the performance with classification
accuracy and report the results in Table 2. Again, we observe
that Flat-LoRA significantly outperforms LoRA at both
ranks 8 and 16, achieving averaged improvements of 0.56%
and 0.74%, respectively. Notably, Flat-LoRA with rank 8
surpasses both LoRA with rank 16 and full fine-tuning by
0.28%. These results confirm the effectiveness of optimizing
the loss landscape’s sharpness in the full parameter space.

4.3. Large Language Model

Setting. To evaluate the scalability of Flat-LoRA, we further
conduct experiments on large language models. Specifically,
we fine-tune Llama 2-7B (Touvron et al., 2023) on three
tasks: chat, math, and code, following Wang et al. (2024).
We use a learning rate of 5e-4 and employ a cosine learning
rate scheduler with a warmup ratio of 0.03. The LoRA rank
is set to 8 with LoRA alpha 16, and the training epoch is set
to 2. The backbone uses BF16 precision, with the parame-
ters of LoRA modules set to FP32 precision. For chat task,
we fine-tune the model on WizardLM (Xu et al., 2023) and
test on the MT-Bench dataset (Zheng et al., 2023). For math
task, we fine-tune the model on MetaMathQA (Yu et al.,
2024) and evaluate it on GSM8K evaluation set (Cobbe
et al., 2021). For code task, we fine-tune the model on Code-
Feedback (Zheng et al., 2024) and evaluate it on HumanEval
(Chen et al., 2021). Training uses 52K for chat and 100K
samples for math and code tasks. The random perturbation
strength σ is set to 0.05 with a cosine-increasing strategy.

Results. We measure the performance of the chat task by
the first-turn score with GPT-4, the math task by accuracy,
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Table 1: Results (%) on fine-tuning T5-base with a subset of GLUE datasets.

Method MNLI SST2 CoLA QNLI MRPC Avg.

Full FT 86.19±0.04 94.15±0.09 82.84±0.12 93.10±0.04 89.22±0.23 89.10

LoRA (r = 8) 86.24±0.02 94.25±0.07 82.87±0.22 93.06±0.03 88.56±0.37 88.99
Flat-LoRA (r = 8) 86.20±0.04 94.75±0.20 83.61±0.38 93.16±0.09 89.59±0.37 89.47

LoRA (r = 16) 86.49±0.06 94.52±0.21 82.89±0.44 92.97±0.05 88.89±0.44 89.15
Flat-LoRA (r = 16) 86.51±0.01 94.84±0.02 84.08±0.31 93.28±0.03 89.83±0.34 89.72

Table 2: Results (%) on fine-tuning CLIP ViT-B/32 with image classification datasets.

Method CIFAR-10 CIFAR-100 Cars SVHN DTD Avg.

Full FT 97.99±0.01 89.06±0.11 73.30±0.43 97.44±0.03 76.80±0.25 86.92

LoRA (r = 8) 97.90±0.02 87.74±0.13 73.22±0.53 97.49±0.08 76.86±0.34 86.64
Flat-LoRA (r = 8) 98.09±0.04 88.64±0.23 74.17±0.71 97.59±0.04 77.51±0.28 87.20

LoRA (r = 16) 97.99±0.03 88.12±0.23 73.80±0.42 97.56±0.08 77.34±0.32 86.92
Flat-LoRA (r = 16) 98.21±0.04 89.27±0.07 74.89±0.52 97.71±0.10 78.24±0.44 87.66

and the code task by PASS@1 metric. From the results in
Table 3, we observe that Flat-LoRA significantly enhances
LoRA’s performance, achieving an improvement of +0.20
on the MT-Bench dataset, +3.18% on the GSM8K dataset,
and +3.08% on the Human-Eval dataset. Notably, these
gains are substantially larger than those observed on smaller
models, such as T5-base and CLIP ViT-B/32, highlight-
ing the significance of pursuing flat minima for large-scale
models. Moreover, the baselines we adopted are consid-
erably stronger than those reported in previous works; for
instance, we achieve 57.47% (ours) versus 42.08% (Wang
et al. (2024)) for LoRA on the GSM8K dataset. Despite
these stronger baselines, Flat-LoRA continues to deliver
significant accuracy improvements over the standard LoRA,
demonstrating its effectiveness in enhancing generalization.

Table 3: Results on fine-tuning Llama 2-7B.

Method MT-Bench GSM8K Human-Eval

Full FT 5.30±0.11 59.36±0.85 35.31±2.13

LoRA (r = 8) 5.96±0.03 57.47±0.45 24.85±0.52

Flat-LoRA (r = 8) 6.16±0.05 60.65±0.63 27.93±0.79

4.4. Text-to-Image Generation

Setting. We fine-tune the SDXL model (Podell et al., 2023)
with the pipeline of Dreambooth (Ruiz et al., 2023) and
the scripts implemented by HuggingFace. The finetuning
dataset, 3D Icons1, contains 23 training images, all of which
have a square. We fine-tune the model for 500 steps with

1
https://huggingface.co/datasets/linoyts/3d_icon

a constant learning rate of 0.0001. The batch size is set
to 1. The LoRA rank and alpha are set to 4. The random
perturbation strength σ is set to 0.1 for Flat-LoRA. Other
hyperparameters are set to default values.

Results. As shown in Figure 3, Flat-LoRA exhibits better
personalization than LoRA while maintaining better gen-
eration ability. For instance, in the second column, the
image generated by Flat-LoRA includes a distinctive square
behind the bird, aligning more closely with the “icon” fea-
ture present in the training images (top row). Furthermore,
Flat-LoRA more effectively preserves the concept of eyes,
whereas, in columns 1, 3, and 5, the birds generated by
LoRA are missing eyes.

Flat-LoRA

3D Icon
Training targets

（23 images in total）

LoRA

Flat-LoRA

Prompt: a TOK icon of a flying bird, in the style of TOK 

Figure 3: Images generated by SDXL fine-tuned with LoRA
and Flat-LoRA on 3D icon datasets. Each column uses the
same seeds for fair comparison.
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Figure 4: Performance comparison of LoRA and Flat-LoRA
across different corruption levels of CIFAR-100-C. The
model is fine-tuned on CIFAR-100 with CLIP ViT-B/32.

4.5. Out-of-Domain Generalization

Flat minima have been shown to better accommodate dis-
tributional shifts between training and test data, thereby
improving out-of-domain generalization. This property is
particularly critical for pretrained vision and language mod-
els, which are designed for a wide range of applications.
Below, we explore this property of Flat-LoRA in detail.

Corruption datasets. We focus on image classification
tasks to evaluate the robustness of Flat-LoRA under data
distribution shifts. Specifically, we fine-tune CLIP ViT-
B/32 on CIFAR-100 and evaluate the model on corrupted
CIFAR-100-C (Hendrycks & Dietterich, 2019). The results
across varying levels of corruption severity are presented in
Figure 4. Flat-LoRA consistently outperforms LoRA, with
performance gains increasing as corruption severity rises,
from +1.38% at level 1 to +3.56% at level 5. These results
demonstrate that the flatter minima identified by Flat-LoRA
enhance out-of-domain generalization compared to LoRA.

Instruction following. We fine-tune the Llama 2-13B
model on the Alpaca dataset (Taori et al., 2023), which
simulates real-world variability and prepares the model to
handle unseen or shifted distributions at test time. The
model is evaluated on InstructEval (Chia et al., 2023), an
instruction-following benchmark, using the official code
provided by Chia et al. (2023). The experimental setup
follows Ren et al. (2024). From the results in Table 4, we
observe that Flat-LoRA consistently outperforms LoRA. No-
tably, improvements on DROP and Human-Eval are more
pronounced (+0.71% and +1.83%, respectively).

Table 4: Results on instruct-following tasks. We fine-tune
the Llama 2-13B model on the Alpaca datasets and evaluate
the performance using the InstructEval metrics.

Method MMLU DROP BBH Human-Eval

Full FT 52.36±0.45 38.23±0.47 35.38±0.35 15.44±0.35

LoRA (r = 8) 51.22±0.38 37.26±0.63 34.77±0.22 13.01±0.93

Flat-LoRA (r = 8) 51.88±0.55 38.18±0.71 35.22±0.26 15.24±0.61

Table 5: Comparison with other LoRA variants. The ex-
periments are conducted on the GLUE subsets using the
T5-Base model.

Method Dataset

CoLA MRPC

Baseline Methods
LoRA (Hu et al., 2022) 82.87±0.22 88.56±0.37

PiSSA (Meng et al., 2024) 83.18±0.24 88.96±0.44

LoRA-GA (Wang et al., 2024) 83.13±0.45 88.73±0.48

DoRA (Liu et al., 2024) 83.16±0.15 89.46±0.37

AdaLoRA (Zhang et al., 2023b) 82.58±0.56 88.79±0.33

LoRA+ (Hayou et al., 2024) 82.65±0.23 89.30±0.47

Our Methods
Flat-LoRA 83.61±0.38 89.59±0.37

Flat-PiSSA 83.51±0.48 89.89±0.71

Flat-LoRA-GA 83.41±0.45 89.20±0.49

Flat-DoRA 83.56±0.27 89.99±0.47

Flat-AdaLoRA 83.13±0.28 89.23±0.34

Flat-LoRA+ 83.56±0.46 89.61±0.44

4.6. Integration with Other Methods

In this section, we compare Flat-LoRA with recently pro-
posed LoRA variants, including PiSSA, LoRA-GA, DoRA,
AdaLoRA, and LoRA+. Experiments are conducted on the
CoLA and MRPC datasets using the T5-base model with
LoRA rank 8. The results are presented in Table 5. We
observe that Flat-LoRA consistently outperforms previous
methods on both datasets by 0.53% and 0.13%, respectively.
Furthermore, the flat loss objective can be seamlessly in-
tegrated with the previous approaches to yield consistent
improvements on both datasets by 0.91% and 0.93%, re-
spectively. Note that these improvements are achieved at
minimal additional cost, as shown in Table 7. This high-
lights the scalability of our approach and the effectiveness
of considering the sharpness of the full parameter space.

4.7. Ablation Studies and Discussion
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(a) MRPC with T5-Base
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(b) CIFAR-100 with ViT-B/32

Figure 5: Performance comparison across different LoRA
ranks. Keeping the LoRA alpha fixed at 16, we vary the
LoRA ranks among {1, 4, 16, 64}. The results are averaged
over three independent trials.

Results under different LoRA ranks. Following the set-
tings in Section 4.1 and 4.2, we evaluate the performance
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Table 6: Comparison with SAM on the GLUE subsets using the T5-Base model.

Method Flat Space CoLA MRPC Additional Memory Training time

LoRA - 82.87±0.59 88.56±0.37 - 1×
LoRA+SAM A,B 83.31±0.48 88.98±0.22 O((m+ n)× r) 2×
LoRA+SAM W 83.67±0.39 89.26±0.32 O(m× n) 2×
Flat-LoRA A,B 83.19±0.70 88.81±0.51 O(m+ r) 1×
Flat-LoRA W 83.61±0.38 89.59±0.37 O(m) 1×

of Flat-LoRA under different LoRA ranks. The results are
shown in Figure 5. We observe that Flat-LoRA consistently
outperforms LoRA across different LoRA ranks by +1.10%
on MRPC and +1.15% on CIFAR-100. Even at LoRA rank
1, which is typically underfitting, Flat-LoRA still delivers a
significant performance boost over LoRA. This highlights
the importance of considering the sharpness of the full pa-
rameter space. Additionally, as the LoRA rank increases,
we observe that LoRA’s performance can degrade due to
overfitting, particularly on MRPC, which is a small dataset
with 3.7k data points. Flat-LoRA effectively mitigates this
overfitting issue by identifying flatter minima that generalize
better. Thus, we conclude that Flat-LoRA enhances LoRA
fine-tuning performance not only in underfitting scenarios,
where the rank is low and limited information from the full
parameter space is explored, but also in high LoRA rank
situations, where the risk of overfitting is more pronounced.

Comparison with SAM. We compare Flat-LoRA to SAM
integrated with LoRA across different flat spaces: applying
SAM’s sharpness optimization to the full parameter space
(W ) and to the LoRA parameters (A,B). Following the
setup described in Section 4.1, we evaluate perturbation
radii ρ over {0.001, 0.003, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5},
finding that ρ = 0.05 yields optimal performance when
applied to the full parameter space (W ), while ρ = 0.003 is
optimal for the LoRA parameters (A,B). From the results
in Table 6, we observe that applying SAM to the full param-
eter space (W ) consistently outperforms its application to
the LoRA parameters (A,B), achieving improvements of
+0.36% on CoLA and +0.28% on MRPC. However, SAM
over W incurs an additional memory overhead of O(m×n)
to store adversarial weight perturbations, rendering it im-
practical for parameter-efficient training. By contrast, Flat-
LoRA achieves performance comparable to, or better than,
SAM applied to W , while requiring only O(m) additional
memory. Furthermore, Flat-LoRA preserves the training
efficiency of vanilla LoRA (1×), whereas SAM-based ap-
proaches double the training time (2×) due to the need for
additional gradient computations.

Memory and time costs. In Table 7, we report the memory
and time usage for fine-tuning MetaMathQA datasets using
the Llama 2-7B model. The training settings are the same

with Section 4.3, and we use a micro-batch size of 2, running
on an NVIDIA GeForce RTX 4090 GPU. Flat-LoRA is im-
plemented based on our default random seed approach. We
observe that Flat-LoRA adds minimal overhead compared
to LoRA - only 0.12GB of extra memory and 11 minutes of
training time. These results highlight that Flat-LoRA can
be conveniently integrated into LoRA training with little
additional overhead.

Table 7: Comparison of memory and time usage
.

Method Memory Training Time GSM8K (%)

LoRA 23.49GB 7h 22min 57.47±0.45

Flat-LoRA 23.61GB 7h 33min 60.65±0.63

Landscape visualization. In Figure 6, we visualize the
surfaces of the loss landscape for LoRA and Flat-LoRA at
ranks 1 and 16. Following the technique proposed by Li
et al. (2018b), we plot the loss surface along random “filter-
normalized” directions in the full parameter space (W ). For
both LoRA and Flat-LoRA, the merged weights are used
for visualization. The results demonstrate that Flat-LoRA
consistently achieves a significantly flatter loss landscape
compared to LoRA at both ranks. Notably, when the LoRA
rank is lower, the corresponding loss landscape tends to
be sharper, highlighting the importance of optimizing the
sharpness in the full parameter space.

5. Conclusion
We present Flat-LoRA, an efficient low-rank adaptation
method that optimizes the sharpness of the loss landscape
in the full parameter space. Unlike conventional sharpness-
aware minimization approaches that impose heavy com-
putation and memory overhead, we employ the Bayesian
expectation loss objective to pursue flat minima and design
refined generation schemes for random weight perturba-
tions while maintaining efficiency. Extensive experiments
across natural language processing and computer vision
demonstrate Flat-LoRA’s effectiveness in improving both
in-domain and out-of-domain generalization.
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Figure 6: Loss landscape visualization in the full parameter
space. The experiments are conducted on CIFAR-100 with
CLIP ViT-B/32.
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A. Training-vs-Test Loss and Generalization Gap Curves
We plot the training-vs-test loss curves and generalization gap on CIFAR-100 and MRPC datasets in Figure A1. The results
show Flat-LoRA exhibits slightly higher training loss than LoRA, with a smaller generalization gap between training and
test accuracies. Thus, we can conclude that the gains of Flat-LoRA are not due to lower training loss but due to better
optimization that confers better generalization.

(a) Training/test loss curves on CIFAR-100. (b) Generalization gap curves on CIFAR-100.

(c) Training/test loss curves on MRPC. (d) Generalization gap curves on MRPC.

Figure A1: Training-vs-test loss and generalization gap curves comparison. Flat-LoRA exhibits slightly higher training loss
than LoRA, with a smaller generalization gap between training and test accuracies.

B. Validation on the Components of εW
In this section, we validate the approximation of Eqn. (4), i.e., εW ≈ εBA = c(∇WL)A⊤A. We conduct an experiment
on the MRPC dataset with T5-base model and record the statistics of ∥εBA∥

∥εW ∥ during the training. The results are shown in

Figure A2. We observe that ∥εBA∥
∥εW ∥ > 0.95 throughout the training. This validates the approximation of Eqn. (4).

C. Extending Perturbation to All Layers
We extend the injection of random weight perturbation to all layers, referred to as “Flat-LoRA (all)”. Specifically, we
additionally add perturbations to layernorm layers, biases, class embeddings, etc. We generate noise based on the absolute
weight |W |. From the results in Table A1, we observe that Flat-LoRA (all) indeed improves performance, though the
improvement is not as large as Flat-LoRA (Linear) over LoRA.
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Figure A2: Statistics of ∥εBA∥2

∥εW ∥2
. We observe that ∥εBA∥2

∥εW ∥2
remains almost above 0.95 throughout training, indicating that

the actual weight perturbation of LoRA-SAM εW is almost determined by εBA. This indicates that LoRA-SAM primarily
optimizes the sharpness within the subspace spanned by A. The experiment is conducted on the MRPC dataset with the
T5-base model.

Table A1: Results on CIFAR-10/100 with CLIP ViT-B/32.

Method CIFAR-10 CIFAR-100

LoRA 97.90±0.02 87.74±0.13

Flat-LoRA (linear) 98.09±0.04 88.64±0.23

Flat-LoRA (all) 98.13±0.03 88.76±0.19
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D. Ablation on the Variance Magnitude
To evaluate the impact of the perturbation variance magnitude σ for Flat-LoRA, we vary σ among
{0, 0.01, 0.05, 0.10, 0.15, 0.20} and fine-tune CIFAR-100 on CLIP ViT-B/32 and ViT-L/14 as well as GSM8k on Llama
2-7B and Llama 2-13B. From the results in Table A2 and Table A3, we observe that the optimal results are achieved when σ
is 0.05 or 0.10 for both datasets and different network sizes. Hence, we suggest σ = 0.05/0.10 for practice usage.

Table A2: Results on CIFAR-100 with different variance magnitude.

σ 0 0.01 0.05 0.10 0.15 0.20

ViT-B/32 87.74±0.13 88.14±0.22 88.37±0.41 88.65±0.35 88.64±0.23 88.06±0.31

ViT-L/14 92.13±0.17 92.33±0.07 92.63±0.11 93.11±0.13 92.98±0.21 92.46±0.03

Table A3: Results on GSM8k with different variance magnitude.

σ 0 0.01 0.05 0.10 0.15 0.20

LLama 2-7B 57.47±0.45 58.35±0.42 60.65±0.63 60.56±0.48 60.08±0.76 58.50±0.85

LLama 2-13B 66.76±0.23 67.02±0.67 67.75±0.70 68.11±0.53 67.66±0.97 67.34±1.17

E. More Comparisons to LoRA’s Varints
In Table A4, we compare Flat-LoRA with more recently proposed LoRA varints, including oBAR/nBAR (Li et al., 2024a),
LoRA-Pro (Wang & Liang, 2025), GaLore (Zhao et al., 2024), and CorDA (Yang et al., 2024). The experiments are
conducted on the T5-base model with MRPC and CoLA datasets. We can observe that Flat-LoRA achieves competitive or
better performance than those state-of-the-art variants.

Table A4: Performance comparison on MRPC and CoLA.

Methods MRPC CoLA

oBAR (Li et al., 2024a) 88.58±0.35 83.07±0.87

nBAR (Li et al., 2024a) 88.63±0.42 82.78±0.68

LoRA-Pro (Wang & Liang, 2025) 89.23±0.33 83.17±0.28

GaLore (Zhao et al., 2024) 88.90±1.12 83.14±0.57

CorDA (Yang et al., 2024) 89.76±0.52 83.38±0.47

Flat-LoRA (Ours) 89.59±0.37 83.61±0.38

15


