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Abstract

While large language models (LLMs) demonstrate remarkable success in multilin-
gual translation, their internal core translation mechanisms, even at the fundamental
word level, remain insufficiently understood. To address this critical gap, this work
introduces a systematic framework for interpreting the mechanism behind LLM
translation from the perspective of computational components. This paper first pro-
poses subspace-intervened path patching for precise, fine-grained causal analysis,
enabling the detection of components crucial to translation tasks and subsequently
characterizing their behavioral patterns in human-interpretable terms. Compre-
hensive experiments reveal that translation is predominantly driven by a sparse
subset of components: specialized attention heads serve critical roles in extracting
source language, translation indicators, and positional features, which are then inte-
grated and processed by specific multi-layer perceptrons (MLPs) into intermediary
English-centric latent representations before ultimately yielding the final translation.
The significance of these findings is underscored by the empirical demonstration
that targeted fine-tuning a minimal parameter subset (< 5%) enhances translation
performance while preserving general capabilities. This result further indicates that
these crucial components generalize effectively to sentence-level translation and
are instrumental in elucidating more intricate translation tasks. Code is available at
this URL.

1 Introduction

Large language models (LLMs) have demonstrated strong capability to handle multilingual translation
tasks (Zhu et al., 2024; Zhang et al., 2024; Gain et al., 2025), paving the way for a new paradigm in
machine translation (Xu et al., 2024a; Alves et al., 2024) and progressively approaching human-level
translation (Xu et al., 2024c; Lu et al., 2024; Xu et al., 2024b). Despite these successes, a compre-
hensive understanding of the internal core mechanisms underlying LLM translation is still lacking,
even for the fundamental word-level translation. This significant gap in interpretability presents
considerable challenges in ensuring reliability and further advancement in translation capability.
Prior analyses concentrated on surface-level emergent linguistic phenomena (e.g., neuron activation
patterns (Mu et al., 2024; Tang et al., 2024) or intermediate representations (Wendler et al., 2024;
Zhu et al., 2024)), remaining observational rather than elucidating the computational mechanistic
basis underlying translation. A comprehensive understanding of these functional mechanisms is
critical for achieving robust improvements in translation capability and advancing the development
of controllable and interpretable LLMs (Wang et al., 2023; Zhang et al., 2025).
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In this paper, we study the internal mechanism of LLM translation by progressively investigating the
following research questions:

• Which components of LLMs crucially contribute to performing translation?

• What behavioral patterns do these translation-crucial components exhibit?

• Can fine-tuning these translation-crucial components enhance LLM translation capability?

To this end, this paper introduces a systematic framework that, by initially utilizing the proposed
subspace-intervened path patching for precise, fine-grained causal analysis, examines the causal con-
tributions of computational components to translation, thereby facilitating the detection of components
crucial for translation tasks. Subsequently, for components judged as essential, we systematically
analyze their behavioral patterns by (1) characterizing attention heads’ specialized functional roles
according to the attention contribution to lexical alignment and (2) measuring correlations between
MLP representations and translation-relevant token embeddings.

Comprehensive analysis indicates that translation is predominantly driven by a sparse subset of
attention heads, which can be characterized into three distinct functional roles: (i) source heads
that focus on source-language tokens, (ii) indicator heads that track signals steering the translation
task, and (iii) positional heads that maintain sequential coherence. Furthermore, we demonstrate
that MLPs iteratively integrate translation-related features from these specialized attention heads,
processing them into intermediate, English-centric latent representations.

Building on these insights, we design a targeted optimization strategy to selectively fine-tune
translation-crucial components, thereby assessing whether this focused approach improves trans-
lation performance. We empirically find that such targeted fine-tuning of a minimal parameter
subset enhances translation performance while preserving general capabilities, a finding that further
underscores the effective generalization of these essential components to sentence-level translation.

In summary, our main findings are as follows:

• Only a sparse subset of heads (less than 5%) are crucial for LLMs’ translation.

• Crucial heads exhibit specialized functions by processing translation-relevant features,
which MLPs then integrate and transform into English-centric latent representations.

• Fine-tuning merely 64 heads achieves performance parity with full-parameter fine-tuning.

2 Related Works

Neural machine translation interpretation. Prior interpretability research in Neural Machine
Translation (NMT) (Bau et al., 2019; Voita et al., 2019) has predominantly focused on sequence-to-
sequence (seq2seq) models with encoder-decoder architectures, often analyzing individual attention
head contributions via techniques like head pruning. To the best of our knowledge, this study is
the first to investigate the translation mechanisms underlying decoder-only LLMs. Notably, our
findings that translation is driven by a sparse subset of attention heads and attention heads play
specialized functional roles align with previous research (Voita et al., 2019; Behnke and Heafield,
2020), suggesting the generalizability of these phenomena across different architectural designs.

Mechanistic interpretability. Mechanistic interpretability (MI) elucidates neural network mecha-
nisms by seeking to reverse-engineer and decode their functioning (Meng et al., 2022; Lan et al.,
2024; Zhao et al., 2024a; Rai et al., 2024). Path patching (Goldowsky-Dill et al., 2023; Wang et al.,
2023), derived from activation patching (Heimersheim and Nanda, 2024; Zhang and Nanda, 2024),
probes causal relationships and analyzes interactions between components in neural networks by
tracing effect propagation along network pathways via targeted activation interventions. Recent
studies highlight the utility of path patching to gain insights into functioning behavior, such as
identifying circuits for tasks like indirect object identification (Wang et al., 2023) and arithmetic
calculations (Zhang et al., 2025). To achieve a more precise and fine-grained causal analysis, this
paper proposes subspace-intervened path patching to refine analytical precision and granularity.

Interpretability in multilingual LLMs. Recent studies have delved deeper into how LLMs achieve
multilingualism by investigating linguistic phenomena emergent in multilingual context (Bhattacharya
and Bojar, 2024; Peng and Søgaard, 2024; Ferrando and Costa-jussà, 2024; Dumas et al., 2024;
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Zaranis et al., 2024). Key findings indicate that (i) increased linguistic diversity in inputs leads
to reduced neuron activations (Mu et al., 2024); (ii) LLMs exhibit language-specific functional
regions (Tang et al., 2024); and (iii) English frequently functions as an implicit computational
pivot (Wendler et al., 2024; Zhao et al., 2024b). Unlike prior research centered on surface-level
linguistic phenomena, this work comprehensively analyzes the underlying computational translation
mechanisms in LLMs.

3 Constructing Analysis Dataset

To explore LLM translation mechanisms, we begin with word-level translation, which offers a
more tractable, interpretable approach and provides a foundational first step to understanding core
translation processes. Taking inspiration from the prompt design and word selection in Wendler et al.
(2024), we construct a word translation dataset across five widely used languages (e.g., English (En),
Chinese (Zh), Russian (Ru), German (De), and French (Fr)). Taking word translation from English to
Chinese (En⇒ Zh) as an example, a word translation prompt containing the translation logic, such as
“English: book -中文: ” (“中文” means “Chinese”) might appear in the dataset. To eliminate task
ambiguity and ensure a focused exploration of the translation mechanism, we select the samples that
successfully prompting LLMs to translate, as positive data using the notation of X+. More details of
the construction of word translation datasets can be found in Appendix B.1.

For activation perturbation, we construct a negative dataset comprising counterfactual sentences that
exclude translation logic, using the notation of X−. The negative samples are generated adhering to
two core principles: (1) preserving grammatical structures from the original X+ sentences and (2)
replacing several crucial words responsible for the translation logic with contextually irrelevant terms.
For instance, a sentence from X+ like “English: cloud -中文: _” is replaced with the corresponding
counterfactual one “English: cloud - Nothing: _”. This isolates the model’s impact on translation
tasks from sentence structural or syntactic variables, enabling precise analysis of how LLMs perform
translation tasks. The details of multiple counterfactual templates are provided in Appendix B.2.

4 Crucial Translation Components Detection

We begin by addressing the first research question: “Which components crucially influence LLMs’
translation capabilities?” By leveraging the proposed subspace intervened path patching (§4.1), we
detect components crucial for performing translation tasks (§4.2), subsequently validate their impor-
tance through knockout (§4.3), and further examine whether these components exhibit consistency
across pre-training and post-training phases (§4.4).

4.1 Subspace Intervened Path Patching

Motivated by the linear representation hypothesis that linear subspaces of vectors will be the most
interpretable model components (Geiger et al., 2024; Makelov et al., 2024; Park et al., 2024), this
paper proposes subspace-intervened path patching. This method first identifies a “translation-steering”
subspace within a component’s activations using contrastive translation data pairs in an unsupervised
manner. Subsequently, interventions are confined to the “translation-steering” subspace, enabling a
precise analysis of the component’s causal effect on the final translation.

Identification of translation-steering subspace. Building on previous work, which indicates that
contrastive pairs are optimal choice for extracting desired behaviors from LLMs (Zou et al., 2025;
Højer et al., 2025), the proposed method identifies a translation-steering subspace. This is achieved
by utilizing translation contrastive activations—specifically, the difference in activations between
input yielding correct translations and those lacking translation logic—to effectively capture the
translation signal while excluding homogeneous noise. Formally, for an input sequence x, an
activation vector ac(x) ∈ Rd is extracted from component c at the final token position, where d
denotes the component’s hidden dimension. A curated analysis dataset, comprising N contrastive
pairs (X

(i)
+ , X

(i)
− ) (details in §3), is utilized. For each pair i, the contrastive activation vector

∆a
(i)
c is computed as the difference between the activations from the reference input X(i)

+ and
the counterfactual input X(i)

− . To analyze dominant directions of activation shifts in the analysis
dataset, these contrastive vectors, {∆a

(i)
c }Ni=1, form the columns of an activation difference matrix
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Mc ∈ Rd×N . Inspired by prior research (Xie et al., 2022; Makelov et al., 2024), we hypothesize that
Mc can be decomposed into two orthogonal subspaces: (i) a universal translation-steering subspace
Sc, representing translation directions shared across word translation datasets, and (ii) a specific
subspace Ec, capturing dataset-specific features. Following the methodology of Xie et al. (2022);
Piratla et al. (2020), this decomposition is achieved by optimizing the objective:

min
Sc,Ec,Γ

||Mc − Sc1
⊤ −EcΓ

⊤||F

s.t. Span(Sc) ⊥ Span(Ec),
(1)

where Sc ∈ Rd×1, Ec ∈ Rd×r, and Γ ∈ RN×r contains the coordinates of the dataset-specific
signals projected onto these r components. Algorithm 1 presents the overall procedure to obtain Sc.2

Algorithm 1 Task Steering Subspace Identification

Require: Set {(X(i)
+ , X

(i)
− )}Ni=1 of N contrastive data

pairs, rank of specific subspace r.
Ensure: Task-steering subspace Sc

Phase 1: Compute contrastive activations
1: for i← 1 to N do
2: ∆a

(i)
c ← ac(X

(i)
+ )− ac(X

(i)
− )

3: end for
4: Mc ← {∆a

(i)
c }Ni=1

Phase 2: Approximation of Mc with rank r

5: S′
c ← 1

d
Mc1

6: E′
c, _,Γ′ ← Top- r-SVD

(
Mc − S′

c1
⊤)

7: M ′
c ← S′

c1
⊤ +E′

c(Γ
′)⊤

Phase 3: Force orthogonal constraint of objective 1
8: Sc ← 1

∥(M ′
c)

+1∥2 (M
′
c)

+
1

9: return Sc

Subspace projection patching. Path patch-
ing (Wang et al., 2023; Zhang et al., 2025) traces
influence from a Sender to a Receiver node. This
involves replacing the activation of component
c from an original input, ac(X+), with its acti-
vation from a counterfactual input, ac(X−). 3

The proposed method refines this by confining
the intervention to a pre-defined, task-steering
subspace Sc within the activation space of com-
ponent c. Formally, let Wc ∈ Rd×k be a matrix
whose columns form an orthonormal basis for
Sc. The orthogonal projection operator onto
this subspace is PSc = WcW

T
c , and the pro-

jection onto its orthogonal complement S⊥
c is

PS⊥
c
= I−PSc

= I−WcW
T
c . The patched ac-

tivation, ãc, is constructed by combining the pro-
jection of the counterfactual activation ac(X

(i)
− )

onto Sc with the projection of the original acti-
vation ac(X

(i)
+ ) onto S⊥

c (Equation 2):

ãc = PScac(X
(i)
− ) + PS⊥

c
ac(X

(i)
+ ) = WcW

T
c ac(X

(i)
− ) + (I −WcW

T
c )ac(X

(i)
+ ). (2)

The causal effect mediated by Sc along the Sender→ Receiver path is measured by the changes in
model output (e.g., the logit of ground-truth tokens), which mitigates confounding effects and yields
more precise and interpretable estimates of causal contributions. Algorithm 2 shows the procedure.

4.2 Detection of Translation-Crucial Components

We then apply the proposed subspace-intervened path patching to precisely analyze the causal relation-
ship between components and translation capability and detect the translation-critical components.

Detection results of crucial heads. This study examines the causal impact on output logits from
path patching individual heads across layers in LLaMA2-7B (Touvron et al., 2023). Our analysis
focuses on two translation directions: Chinese to other languages (Zh⇒ X) and vice-versa (X⇒
Zh)4. Following the criteria of previous work (Zhang et al., 2025), we define “crucial heads” as
those whose magnitude of logit change exceeds 1.0%, a threshold empirically determined as most
contributions fall within ±1.0% and consistent with prior studies (Wang et al., 2023; Heimersheim
and Nanda, 2024). As depicted in Figure 1, where each square at position (x, y) denotes the x-th
head in the y-th layer, several key findings emerge:

1. Only a sparse subset of heads significantly influences translation performance. For instance, if
patching the head at position (8, 31) results in a substantial decrease in the target token’s logit value,
illustrating its critical role in the translation process.

2The details and theoretical justification is are provided in Appendix C.
3Appendix D.1 provides details on standard path patching, while Appendix D.2 presents a comparation.
4For robustness, we also conduct additional experiments on detecting crucial components in other LLMs and

other directions (e.g., En⇒ X, and X⇒ En). Details are provided in the Appendix G.
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Algorithm 2 Subspace Intervened Path Patching

Require: Set D = {(X(i)
+ , X

(i)
− )}Ni=1 of N contrastive data pairs, model M , set of model compo-

nents C, set of task-steering subspace basis matrices {Wc | c ∈ C}.
Ensure: Node importance scores ∆ = {δc | c ∈ C}.

1: for k ← 1 to N do ▷ Iterate over each data pair (X(i)
+ , X

(i)
− ) in D

2: Compute base activations a(X(i)
+ ) and a(X

(i)
− ).

3: y
(i)
orig ←M(X

(i)
+ ) ▷ Compute original model output (e.g., a specific logit) for X(i)

+

4: for each component c ∈ C do ▷ Iterate over each model component
5: ã(i) ← a(X

(i)
+ ) ▷ Initialize the full hybrid activation set with reference activations

a(X
(i)
+ )

6: ã
(i)
c ←WcW

T
c ac(X

(i)
− ) + (I −WcW

T
c )ac(X

(i)
+ ) ▷ Equation 2 for subspace projection

7: y
(i)
new ←M(X

(i)
+ ; ã(i)) ▷ Compute model output using the hybrid activation set Ã(i)

8: δ
(i)
c ←

y(i)
new−y

(i)
orig

y
(i)
orig+ϵ

▷ Calculate the relative change in output due to patching component c

9: end for
10: end for
11: for each component c ∈ C do ▷ Aggregate the effects for each component across datasets
12: δc ← 1

N

∑N
k=1 δ

(i)
c ▷ Average the individual effects δ(i)c for component c

13: end for
14: return ∆ ▷ Return the set of aggregated node/component importance scores
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(a) Zh⇒ En
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(b) Zh⇒ Fr
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(c) Zh⇒ Ru
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(d) En⇒ Zh
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(e) Fr⇒ Zh
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(f) Ru⇒ Zh

Figure 1: Importance of heads related to translation across different directions. Each square at
position (x, y) refers to the x-th head in the y-th layer. Red (Brown) squares denote heads (MLPs)
that have a positive impact on predicting the target token, while grey (purple) squares indicate heads
(MLPs) with a negative effect. Additional explanations of this figure are available in Apdx. D.3.

2. Impactful heads are concentrated in the middle and final layers. Earlier layers lack heads
directly influencing target token logits; instead, crucial heads cluster predominantly between layers
12 and 20 and in the final two layers. This pattern remains consistent across all translation directions.

3. Crucial heads exhibit high transferability across translation directions. A notable finding is the
significant overlap of crucial heads across diverse language pairs. Analysis reveals that language pairs
sharing the same source or target language (e.g., En⇒ Zh and Fr⇒ Zh) exhibit a crucial attention
head overlap exceeding 70%, while bidirectional translation pairs (e.g., Fr⇔ En) surpass 60%. This
overlap suggests these heads serve generalizable functions in translation, independent of translation
directions. Their consistency across language pairs underscores their importance and transferability,
indicating contributions to core translation mechanisms regardless of specific languages.

Detection results of crucial MLPs. Similar to crucial heads, most MLPs in earlier layers (0–14)
exhibit negligible influence on output logits, with changes confined to approximately ±0.0%. Crucial
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MLPs cluster predominantly after layer 15, exceeding 5.0% logit change, whereas the final layer MLP
exhibits a substantial impact—reaching 50.0% on target token logit change. This strong correlation
between later MLP layers and logit changes underscores their critical role in shaping translations.

Extend mechanistic causal analysis to more settings. To validate the generalization of the proposed
subspace-intervened path patching, we extend mechanistic causal analysis to three additional settings:

1.Low-resource and typologically diverse language pairs (Swahili, Bengali, and Arabic) (Ap-
pendix E.1): Results presented in Table 11 and Figure 9 demonstrate that the sparsity and transfer-
ability of crucial attention heads still persist across low-resource and typologically diverse language
pairs, substantiating these characteristics as fundamental translation mechanism of LLMs that are
independent of resource availability or linguistic typology.

2.Sentence-level translation using the WMT23 English-to-Chinese dataset (Kocmi et al., 2023)
(Appendix E.2): Causal analysis results in Table 12 revealed a 46.9% overlap between the top
crucial attention heads for word-level and sentence-level translation tasks. Ablation experiments
demonstrated that knocking out five shared heads resulted in significant performance degradation
for both word-level (-39% in logits) and sentence-level (+36% in PPL) translation tasks, whereas
ablating five heads crucial exclusively for sentence-level translation had minimal impact on word-level
performance (-2%) but caused substantial degradation in sentence-level translation (+43% in PPL),
highlighting the functional specialization of attention heads for sentence-level translation.

3.Multilingual mathematical reasoning using MGSM (Shi et al., 2023) (Appendix E.3): A key
strength of the proposed subspace-intervened path patching is its task-agnostic ability to generalize
across different tasks without requiring task-specific modifications. We then extend the mechanistic
causal analysis to the multilingual mathematical reasoning task. We generated counterfactual exam-
ples by altering mathematical instructions while preserving the core mathematical content, following
the procedure outlined in Section 3. Some examples are listed in Table 13. Our analysis revealed a
sparse set of critical attention heads for mathematical reasoning, comprising only 3.95% of all heads
in the model. This sparsity pattern aligns with our findings regarding the translation mechanism,
demonstrating consistency across different cognitive tasks. Ablating the top-10 critical heads caused
a 60% drop in reasoning accuracy, confirming their mathematical reasoning functional importance.

4.3 Validating Crucial Components Through Knockout
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Figure 2: Translation accuracy changes when com-
ponents are progressively knocked out.

Interpretive analyses of model components risk
misleading or non-rigorous (Bolukbasi et al.,
2021; Wiegreffe and Pinter, 2019). To ensure re-
liability, we validate the significance of detected
crucial components via mean ablation (Wang
et al., 2023). This method replaces a compo-
nent’s activation with average activations across
counterfactual data X−, effectively neutralizing
its task-specific information. Performance de-
cline confirms a component’s importance for
translation tasks, whereas no significant perfor-
mance change suggests it is not critical.

Validation results on the analysis dataset. We
examine how incrementally knocking out En⇒
Zh crucial heads affects LLM translation perfor-
mance on the analysis dataset5. As shown in
Figure 2, disabling “crucial heads” leads to a significant decline in translation accuracy, whereas
knocking out “random heads” causes minor fluctuations, with accuracy remaining stable within 2%.
A similar trend can be observed when knocking out MLPs. These results highlight the essential role
of the detected key attention heads in sustaining the translation capability of LLM.

4.4 Examine Consistency of Crucial Components Across Training

5We have also conducted validation experiments on randomly selected datasets, see Appendix H.
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(a) CPT-LLM
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(b) SFT-LLM

Figure 3: Importance of components related to En⇒ Zh transla-
tion across LLaMA-2-7B after CPT or SFT.

To investigate whether crucial at-
tention heads remain consistent
across distinct training phases,
we analyze (1) continued pre-
training (CPT) (Xu et al., 2024a)
on the LLaMA-2-7B base model
on 1 billion tokens of OSCAR
data (Ortiz Suárez et al., 2020)
and (2) supervised fine-tuning
(SFT) (Jiao et al., 2023) on
LLaMA-2-7B base model on the
WMT17-22 validation dataset.

Table 1: Statistical comparison of logit changes between
base model and trained models

Comparison K-S Test p-value # Changed Heads Max ∆logits

Base vs. SFT 0.355 8 of 32 3.12
Base vs. CPT < 0.00001 17 of 32 12.03

Detection results. As illustrated in Figure
3, compared to the base LLM results in Fig-
ure 1d, LLMs after CPT exhibit significant
distributional shifts in translation-crucial
heads, whereas changes are minimal after
SFT. This finding is statistically supported
by our Two-Sample Kolmogorov-Smirnov
test on overall logit change distributions (Table 1), which revealed that CPT induces a significant
distributional shift (p < 0.00001) within the top 32 attention heads, while SFT does not (p = 0.355).

Discussion of the emergence of translation capability. A comparative causal analysis incorpo-
rating a randomly initialized baseline further elucidates these findings. The randomly initialized
model exhibited no specialized translation heads, whereas the base pre-trained model developed
critical translation heads with a statistically significant distributional shift from the random baseline.
In contrast, the SFT model showed only a minor, non-significant distributional shift relative to
the pre-trained model. These results demonstrate that the pre-training stage fundamentally alters
LLMs’ translation capabilities, while supervised fine-tuning primarily focuses on localized parameter
adjustments without modifying core abilities. Additional details are provided in Appendix F.

5 Behavioral Patterns Analysis

Motivated by the sparse distribution of crucial heads, we now turn to the second research question:
“What behavioral patterns do translation-crucial components exhibit?” by systematically investigating
their computational mechanisms through two interpretable diagnostic methods: (1) visualizing
attention patterns to characterize the roles of crucial heads (Section §5.1), and (2) projecting MLP
representation to measure correlations with translation-related token embeddings (Section §5.2).

5.1 Analysis of Attention Head

Acknowledging that attention weights alone may not fully explain model behavior (Kobayashi
et al., 2020), this study investigates attention outputs to analyze significant token interactions during
translation. Formally, for each analyzed head (i, j), its weighted value output, O(i,j) ∈ RN×N , is
defined as in Equation 3:

O(i,j) = ||A(i,j)(xW
(i,j)
V )||F , (3)

where N represents the sequence length, A(i,j) ∈ RN×N contains the attention weights, x ∈
RN×dmodel is the input sequence representation, W(i,j)

V ∈ Rdmodel×dhead is the value weight matrix, and
dmodel, dhead are the hidden dimension of model and head respectively. The role of each head is then
determined by analyzing the salient features of O(i,j)

END,: ∈ R1×N , which represents the interaction
between the Query token at the END position and all Key tokens.

Characterizing heads. We first gain an intuitive insight into the “behavioral pattern” of the
translation-crucial heads by visualizing attention values6 as shown in the case in Figure 4. Building on
the distinct focus patterns these heads exhibit across different input token types, and following Voita
et al. (2019), we further categorize them into three distinct functional roles (illustrative examples are
provided in Appendix B.3):

6Focus on Zh⇒ En, with more directions results seen Appendix J.
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1) Source Heads demonstrate concentrated attention on source-language tokens, specializing in
cross-lingual alignment. These heads facilitate lexical transfer by identifying source language tokens
among the input sequence.

2) Indicator Heads exhibit spike-shaped attention patterns on translation-specific indicators (e.g.,
language identifiers like "English" or "中文", and structural cues like colons), assisting translation
mode recognition and syntactic boundary detection.

3) Positional Heads predominantly attend to adjacent tokens, managing contextual dependencies and
resolving grammatical agreement.
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(a) Source Head (18, 17)
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(b) Positional Head (4, 31)
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(c) Indicator Head (27, 14)
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(d) Indicator Head (4, 14)

Figure 4: The attention values visualization of the role-classified key heads in Zh⇒ En, which show
different characteristics of different crucial heads.
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Figure 5: Mean and standard deviation of attention
values from key head roles across input tokens.

Distinct attention distribution across heads.
To quantitatively analyze the distinct patterns of
heads’ roles, we plot the distribution of their at-
tention values on 100 randomly selected samples
for Zh⇔ En translation tasks7. Figure 5 demon-
strates that source heads predominantly focus
on source tokens, positional heads distribute at-
tention uniformly across the input context, and
indicator heads concentrate on translation task
indicator tokens, with all types showing minimal
attention to irrelevant tokens.

5.2 Analysis of MLP

This study analyzes the linguistic content encoded in the inputs (MLPin) and outputs (MLPout)
of MLP layers, focusing on translation-steering tokens: the translation indicator (IND), source
language (SRC), and target language (TGT). To achieve this, we utilize the unembedding matrix
WU ∈ Rdmodel×|V| (i.e., the final linear layer that projects hidden states of dimension dmodal onto
the vocabulary space of size |V|) as a diagnostic probe, where WU [TOK] denotes the unembedding
vector corresponding to a specific token TOK. To quantify linguistic information propagation through
MLP layers, we compute cosine similarities, denoted as ⟨MLP,TOK⟩, between WU [TOK] and
both MLPin and MLPout. Furthermore, to isolate the MLP layer’s specific contribution, we
follow Geva et al. (2022) by evaluating the cosine similarity of the layer’s normalized change vector
(MLPout −MLPin) with the normalized token embedding, as defined in Equation 4:

⟨MLPout −MLPin,TOK⟩ = MLPout −MLPin

∥MLPout −MLPin∥
· WU [TOK]

∥WU [TOK]∥
. (4)

MLPs iteratively process translation-related features to generate target translations. Analysis
of MLP interactions with source and target tokens in 100 En⇒ Zh samples (Figure 6) reveals distinct
operational phases across layers. Initially (layers 1–14), Figure 6a shows ⟨MLPin, SRC⟩ values
remain near-zero, indicating minimal source token encoding, consistent with the inactive region
before layer 14 (Figure 1d). A significant increase in ⟨MLPin, SRC⟩ occurs between layers 15–25,
correlating with the activation of key attention heads, as source information is encoded in MLP
representation. Subsequently, from layers 25–31, ⟨MLPin, SRC⟩ decreases, signaling a transition
towards target translation. Concurrently, (⟨MLPin, IND⟩) begin to rise after layer 12, peaking in

7Statistical significance analysis is available in Appendix I
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the final layers to facilitate coherent target-language generation. Control comparisons using random
English tokens (⟨MLPin,RAND⟩) consistently remain near-zero, confirming the observed pattern’s
specificity. Furthermore, Figure 6b demonstrates that from layer 15, where MLPs begin processing
target token information, ⟨MLPout −MLPin,WU [TARGET]⟩ progressively increases, suggesting
the generation of translation. The phenomenon is generalizable as evidenced by similar trends in
other LLMs (Appendix J).

MLP intermediate features reveal an English-centric latent representation as a translational
intermediary. Further investigation into the correlation between MLP intermediate representations
and the unembedding vector of semantically equivalent tokens across different languages during
non-English translation pairs (e.g., De/Ru ⇒ Zh) yields a significant finding. As illustrated in
Figure 7, the similarity of these intermediate representations to English unembedding vectors is
markedly higher in layers 16-26 compared to other languages, subsequently declining in layers 25-31.
This pattern strongly suggests that LLM employs a “bridge-translation” mechanism. In this process,
source inputs appear to be processed into an English-centric latent space before generating target
language outputs, analogous to humans using their native language as a mental intermediary. This
observation corroborates prior research (Wendler et al., 2024; Zhao et al., 2024b), affirming the
pivotal role of English as a latent intermediary in multilingual LLM operations.
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Figure 6: The correlation between MLP input or
output with translation-related tokens.
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Figure 7: The correlation between the MLP
representation and the language’s unembedding
vector.

More discussions on English as the pivot language. Appendix M.1 presents a correlation analysis
demonstrating the direct and significant impact of English-centricity on translation performance. We
then explore different aspects of English as a pivot language: Appendix M.2 examines why English
emerges as the pivot, while Appendix M.3 analyzes the role of English in forming the forward process
of language models. Finally, Appendix M.4 investigates potential gender/formality translation biases
introduced by English as a pivot latent representation.

6 Targeted Enhancement of Translation Capability

Building on the insights from two previous investigations, we aim to answer the final question: “Can
fine-tuning these translation-crucial components enhance LLM translation capability?” We initiate
by introducing our comparative experimental setup and results (Section §6.1) and further carry out
two sets of analysis experiments (Section §6.2, and §6.3).

6.1 Experimental Setup and Results

Experimental setup. We examine three approaches on Zh ⇔ En and De ⇔ En directions: (1)
full-parameter fine-tuning (Full SFT), (2) the proposed selectively fine-tuning of translation-crucial
components (Targeted SFT), and (3) random-component fine-tuning (Random SFT), where random
components match the parameter count of Targeted SFT. For training, we leverage human-parallel
corpora (WMT17–WMT22, Flores-200 (Guzmán et al., 2019)) following Xu et al. (2024a), evaluating
translation accuracy on WMT23/24 and general-domain benchmarks (MMLU (Hendrycks et al.,
2021), ARC (Clark et al., 2018), SIQA (Sap et al., 2019)). More details are provided in Appendix K.

Experimental results. Tables 2 highlight three key advantages of Targeted SFT: (1) Improved
Translation Performance: Targeted SFT significantly enhances translation performance across
all language directions, surpassing Full SFT and substantially outperforming Random SFT. (2)
Preservation of General Capabilities: Unlike Full SFT, which degrades performance on non-
translation tasks, Targeted SFT maintains baseline general capabilities. (3) Enhanced Training
Efficiency: It modifies fewer than 5% of parameters and reduces training time by half compared
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Table 2: The overall evaluation results on Zh⇔ En, De⇔ En translation tasks and generic tasks.

Translation Tasks Generic Tasks

Models Train
Speed

Tuned
Params. Zh⇒En En⇒Zh De⇒En En⇒De MMLU Commonsense

Reasoning
BLEU↑/COMET↑/BLEURT↑ Acc. Acc.

LLaMA2-7B - - 15.6/73.1/56.6 17.0/74.1/55.9 24.8/76.8/62.1 13.0/64.2/49.1 45.9 55.3
+ Full SFT 17sam./sec. 6.7B 20.4/78.7/63.9 30.3/80.7/62.9 35.4/83.4/70.7 27.9/78.3/63.7 42.6 50.2

+ Targeted SFT 33sam./sec. 0.27B 21.3/79.1/64.3 30.7/81.4/64.3 37.1/83.7/71.4 27.6/78.4/63.8 46.0 55.7
+ Random SFT 33sam./sec. 0.27B 16.9/76.9/61.1 26.4/79.3/61.6 32.5/81.6/68.1 22.7/76.2/60.3 45.9 54.9

to Full SFT. Furthermore, these positive results demonstrate that the detected translation-crucial
heads generalize beyond isolated word translation and are significant to sentence-level translation.
Additional results on more directions and LLMs are provided in Appendix L.

6.2 Language Transfer Evaluation of Crucial Translation Heads

Table 3: The transfer evaluation results of En⇒
Zh crucial heads on En⇔ Cs and En⇔ Ja.

Models En⇒Cs En⇒Ja Cs⇒En Ja⇒En
BLEU↑/COMET↑/BLEURT↑

LLaMA2-7B 4.4/63.6/39.7 6.1/73.3/47.4 23.7/77.9/65.1 10.8/72.9/56.6
+ Full SFT 20.2/80.0/66.5 15.2/82.4/56.7 31.9/83.1/71.7 17.4/79.5/64.1

+ Targeted SFT 20.8/80.3/66.7 15.3/81.9/56.7 33.5/83.5/72.3 18.7/80.0/64.7
+ Random SFT 15.8/78.5/63.8 11.3/79.9/53.7 29.1/81.5/68.8 14.0/77.9/62.1

This section evaluates the language transfer ca-
pabilities of crucial translation heads. Specifi-
cally, heads detected crucial for En⇒ Zh trans-
lation were selected for fine-tuning and evaluat-
ing on En⇔ Ja/Cs translation tasks. The com-
parable results, shown in Table 3, indicate that
these translation-crucial attention heads exhibit
cross-lingual generalization.

Table 4: Ablative experiments on attention heads.

Zh⇒ En MMLUAblating
Attention Heads

Train
Speed

Tuned
Params. BLEU/COMET/BLEURT Acc.

top-8 heads 58sam./sec. 0.017B 18.7/78.1/63.0 46.1
top-16 heads 52sam./sec. 0.033B 20.0/78.4/63.5 45.9
top-32 heads 50sam./sec. 0.067B 20.4/78.6/63.8 45.8
top-64 heads 40sam./sec. 0.134B 21.3/79.1/64.3 45.9
top-96 heads 36sam./sec. 0.134B 21.0/79.0/64.2 45.7
top-128 heads 33sam./sec. 0.268B 21.1/79.1/64.4 45.5
top-160 heads 30sam./sec. 0.335B 21.3/79.1/64.4 45.3

Table 5: Ablative experiments on MLPs.

Ablating
MLPs

Train
Speed

Tuned
Params.

Zh⇒ En MMLU
BLEU/COMET/BLEURT Acc.

Top-64 heads 33sam./sec. 0.27B 21.3/79.1/64.3 45.8

+top-1 MLP 30sam./sec. 0.41B 21.8/79.1/64.5 45.7
+top-2 MLP 27sam./sec. 0.54B 21.8/79.1/64.5 45.6
+top-3 MLP 24sam./sec. 0.68B 21.9/79.1/64.5 45.3
+top-5 MLP 20sam./sec. 0.95B 22.1/79.2/64.6 44.2

+all MLP 18sam./sec. 4.62B 22.5/79.4/64.7 42.8

6.3 Ablation Study of Trainable Components

Ablation studies on Zh⇒ En translation were conducted to assess the impact of varying the number
of fine-tuned attention heads and MLPs on translation performance, generic capabilities, and training
efficiency. As indicated in Table 4, increasing the quantity of fine-tunable attention heads enhanced
translation performance but concurrently weakened generic capabilities. Notably, fine-tuning 64
attention heads achieved an optimal balance between performance and computational cost. Further-
more, Table 5 reveals that while augmenting the number of MLPs improved translation performance,
this approach more substantially degraded generic capabilities and reduced training speed compared
to the fine-tuning of additional attention heads.

6.4 Supplementary Experiments
This section presents three additional experiments of targeted SFT: (1) evaluation results on domain-
adaptive translation (Appendix N.1), (2) analysis of potential cultural bias amplification (Ap-
pendix N.2), and (3) qualitative case studies examining characteristic patterns (Appendix N.3).

7 Conclusion

This study systematically explores the translation mechanisms of LLMs by progressively addressing
three research questions. We first identify components crucial for translation using our proposed
subspace-intervened path patching, revealing that only a sparse subset of components (less than
5%) are indispensable. These heads exhibit specialized functions, extracting translation-related
features, while MLPs integrate and process information towards intermediate, English-centric latent
representations. Based on these findings, we empirically demonstrate that targeted fine-tuning
of merely 64 translation-crucial heads achieves performance parity with full-parameter tuning.
These results further emphasize the effectiveness of generalizing the detected crucial components to
sentence-level translation. This work serves as a preliminary exploration of the translation mechanism
underlying LLMs, establishing a solid foundation for elucidating more intricate translation tasks.
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A Limitations and Discussion

Limitations. This study acknowledges a methodological consideration that guides future research
directions. Although our parameter-aware methodology proves effective across open-source architec-
tures, its applicability to closed-source systems remains theoretically constrained—a limitation that
simultaneously highlights the urgent need for developing model-agnostic analysis frameworks in this
evolving research domain.

Potential impact. This study pioneers the exploration of translation mechanisms at a fine-grained
level by directly investigating the causal relationship between model components and translation
performance. The employed interpretability techniques, such as attention visualization, distribution
analysis, and unembedding quantification, are generalizable and can be extended to future research
questions in interpretable machine learning. Furthermore, the systematic interpretability methodology
presented is adaptable to other Natural Language Processing (NLP) tasks (e.g., summarization,
question answering) and potentially to non-NLP domains, thereby encouraging further investigation
into task-specific component analysis. The identification of universal translation components across
diverse language pairs can inform the development of more robust multilingual Large Language
Models (LLMs), particularly benefiting low-resource languages.

Practical applications. Practical applications of this study stemming from these insights are signifi-
cant. Targeted fine-tuning, guided by the identification of key components, promises considerable
computational efficiency. Specifically, the findings suggest that fine-tuning only essential components,
rather than retraining entire models, can significantly reduce computational costs while preserving
translation quality. Moreover, this research contributes to interpretable Artificial Intelligence (AI) for
translation by offering a transparent, component-level understanding of how translation decisions
are formulated. Such transparency is crucial for fostering trust and facilitating adoption in critical
real-world scenarios, including legal, medical, and diplomatic applications.

Future research. Future research directions are also illuminated by this work. While the current
analysis concentrated on word-level translation to isolate core mechanisms, subsequent studies could
extend these insights to sentence-level and document-level contexts to achieve a more comprehensive
understanding. Additionally, although this study focuses on specific components, the principles and
findings can inform the design and analysis of larger and more complex models. As LLMs continue
to increase in scale and complexity, a thorough understanding of their internal mechanisms becomes
increasingly essential, and this work provides a foundational basis for such endeavors.

B Translation Task Templates and Examples

As a clear case study, we first focus on Chinese due to its prevalence of single-token words and lack
of spacing. We analyze Llama-2’s vocabulary to identify single-token Chinese words (primarily
nouns) with direct single-token English translations. This enables direct comparison of the model’s
next-token probabilities for correct Chinese words and their English equivalents. For robustness,
we replicate experiments in German, Russian, and French, compiling datasets of 139 Chinese, 120
German, 115 Russian, and 118 French words.

B.1 Dataset Construction

To ensure the next token is unambiguously inferable as a single token, we design translation prompts
where xn+1 is uniquely determined by the preceding context x1...xn. Each prompt specifies the
source language, word, and target language, requiring the model to predict the translated word.
Taking English-to-Chinese as an example, a word translation like “English: flower - 中文: 花”
(“中文” means “Chinese”, “花” means “flower”) might naturally appear in the pretraining corpus.
Such prompts explicitly guide Llama-2 to perform translation by leveraging its pretrained linguistic
knowledge.

B.2 Templates

We formalize counterfactual prompt generation through systematic grammatical preservation and
semantic disruption, operating under two core design principles:
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• Structural Isomorphism: Maintain original syntactic patterns (interrogative formats, place-
holder positions, punctuation) while altering semantic content

• Targeted Lexical Substitution: Replace critical components through four operation classes

Perturbation Taxonomy The perturbation strategies fall into four principal categories, as detailed
in Table 6:

Table 6: Taxonomy of Counterfactual Perturbation Operations

Operation Type Implementation Mechanism
Target Nullification Replace language identifiers with non-linguistic concepts

({tgt_lang}→ “Void”/“Null”)

Action Distortion Substitute translation verbs with irrelevant actions (“trans-
late”→ “eat”/“delete”)

Semantic
Obfuscation

Alter task-specific nouns to disrupt functionality (“transla-
tion”→ “color”/“flavor”)

Paradox Insertion Introduce self-contradictory modifiers (“into
{tgt_lang}”→ “into a silent rock”)

Validation Protocol The constructed templates undergo rigorous verification:

1. Grammatical Integrity Check: Measure template fluency via language model perplexity
scores (threshold: ≤15% deviation from originals)

2. Task Disruption Test: Verify semantic shift through human annotation (success criterion:
≥90% agreement on functionality removal)

The counterfactual prompts we used are shown in Table 7

Table 7: Examples of some regular translation prompt templates and counterfactual prompt templates.

Normal Prompt Counterfactual Prompt Perturbation Type
{src_lang}: "{src_word}" -
{tgt_lang}: "{tgt_word}

{src_lang}: "{src_word}" - There is
nothing: "{tgt_word}

Target Nullification

Translate "{src_word}" into
{tgt_lang}: "

Translate "{src_word}" into Nothing:
"

Target Nullification

Translate the {src_lang} word
"{src_word}" to {tgt_lang}: "

Translate the {src_lang} word
"{src_word}" to Null: "

Target Nullification

From {src_lang}: "{src_word}" to
{tgt_lang}: "

From {src_lang}: "{src_word}" to
Nowhere: "

Target Nullification

Provide the translation of
"{src_word}" from {src_lang} to
{tgt_lang}: "

Provide the color of "{src_word}"
from {src_lang} to {tgt_lang}: "

Action Distortion

Q: How do you say "{src_word}" in
{tgt_lang}? A: "

Q: How do you eat "{src_word}" in
{tgt_lang}? A: "

Action Distortion

Q: What is the {tgt_lang}
translation "{src_word}"? A: "

Q: What is the {tgt_lang} flavor
"{src_word}"? A: "

Semantic Obfusca-
tion

Translate "{src_word}" into
{tgt_lang}: "

Translate "{src_word}" into a silent
rock: "

Paradox Insertion

Q: What is "{src_word}" translated
into {tgt_lang}? A: "

Q: What is "{src_word}" erased into
{tgt_lang}? A: "

Action Distortion

From {src_lang}: "{src_word}" -
{tgt_lang}: "{tgt_word}

From {src_lang}: "{src_word}" -
Disabled: "{tgt_word}

Action Distortion

Note: All placeholders ({src_lang}, {src_word}, etc.) follow actual implementation syntax. Counterfactual
perturbations preserve original grammatical structures while altering translation semantics through targeted
substitutions.
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Evidence supporting the choice of the contrastive template. To further substantiate this choice,
we present two key evidences of why this contrastive template is suitable:

• Empirical Validation: Applying the contrastive template consistently results in 0% accu-
racy, confirming that the template reliably triggers LLM not to perform translations.

• Reference to Prior Work: We drew inspiration from Wang et al. (2023), where manually
created contrastive samples were used for the Indirect Object Identification (IOI) task. For
example:

– Original prompt: The store Cody and Scott went to had a snack. Cody gave it to Scott.
– Contrastive prompt: The store Cody and Andrew went to had a snack. Cody gave it to

Scott.

This approach ensures that by replacing a key entity (here, the indirect object), the resulting label is
guaranteed to be incorrect. Similarly, in our translation task, replacing the target language indicator
“English” with an irrelevant term such as “Nothing” ensures that the model deviates from the correct
translation.

B.3 Token Type Definitions and Examples

• IND (Instructional Tokens): Structural or framing tokens that establish the translation
context but are not part of the source content. These tokens provide necessary formatting or
linguistic direction without contributing to the semantic content being translated.

• SRC (Source Tokens): The actual input text intended for translation. These tokens represent
the semantic content that needs to be converted from the source language to the target
language.

• TGT (Target Tokens): The translated output tokens in the target language. These represent
the model’s generated translation of the source content.

Illustrative example: To demonstrate this token classification, consider the translation sequence:

English: cloud - 中文: 云

The token type decomposition for this sequence is as follows: This classification scheme enables

Token Type Tokens Functional Role

IND “English”, “:”, “-”, “中文” Structural framing for translation context
SRC “cloud” Source content for translation
TGT “云” Translated output in target language

Table 8: Token type classification for the example sequence

precise analysis of how different token types influence attention mechanisms and translation behavior
in neural machine translation models. The IND tokens establish the translation framework, SRC
tokens provide the semantic input, and TGT tokens represent the model’s generated output, allowing
for systematic examination of cross-lingual transfer patterns.

C Task Steering Subspace Probing

Inspired by prior research (Xie et al., 2022; Makelov et al., 2024), we hypothesize that the space Mc

can be decomposed into two orthogonal subspaces: (i) a universal translation-steering subspace Sc,
embodying translation features common across word translation datasets, and (ii) a specific subspace
Ec, isolating features unique to individual datasets. This decomposition is achieved by optimizing the
objective outlined in Equation 1, following the methodology of Xie et al. (2022); Piratla et al. (2020).
We anticipate a lower dimensionality for the universal subspace Sc because it represents shared,
fundamental patterns; such commonalities can inherently be captured by a more parsimonious set of
basis vectors, leading to a compact representation. Conversely, the specific subspace Ec is expected
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to possess a higher dimensionality to effectively accommodate the diverse and distinct characteristics
particular to each dataset or sample, which necessitate a richer representational capacity to capture
their unique signals.

The optimal solution to Equation 1 is efficiently computed via Singular Value Decomposition (SVD),
with the detailed procedure outlined in Algorithm 1. Theorem 1, presented in this section, provides
the formal basis for this optimal solution. A comprehensive proof can be found in Piratla et al. (2020);
Xie et al. (2022).
Theorem 1. For any matrix Mc ∈ Rd×N , Algorithm 1 returns matrices Sc ∈ Rd×1, Ec ∈ Rd×r,
and Γ ∈ RN×r that minimize Equation 1 subject to the constraint Span (Sc) ⊥ Span (Ec).

D More details related to Path Patching

D.1 Standard Path Patching

Gather activations given 

...0 301 31+

M+

Layer 0

...0 301 31+

M+

.

.

.

Layer 31

.

.

.

.

.

.

.

.

.

.

.

.

...0 301 31+

M+

...0 301 31+

M+

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...0 301 31+

M+

...0 301 31+

M+

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Gather activations given  Calculate outputs with
hard interventions

Output
ComparisonOutput

Input embedding Input embedding

Output

Input embedding

Output

No. Attention Head MLP LayerM Residual
Connection+ Input / Output Data flow

Intervention

Hard
Intervention

Activations givenActivations given

Hard
Intervention

Perturbed data flow

Figure 8: Illustration of the method “path patching”. It measures the importance of the selected
circuit (i.e., the red lines that originate from Head 30 in Layer 0 to Output) for the transformer in
completing the task on reference data.

The computation of large language models (LLMs) can be formalized as a directed acyclic graph
(DAG) (Wang et al., 2023), where nodes represent computational components (e.g., attention heads,
MLP layers) and edges denote directional data flow between them. Mechanistic interpretability
seeks to reverse-engineer neural networks into interpretable algorithms, leveraging computational
circuits as a framework. A computational circuit is a subgraph of the model’s computational graph
M , comprising nodes (e.g., embeddings, attention heads) and edges (e.g., residual connections,
projections) that collectively implement specific tasks, such as translation.

The procedure of standard path patching is illustrated in Figure 8. Activations from all nodes are first
recorded. A hard intervention replaces the Sender’s activations with those from X−, propagating
the effect through paths P (residual connections and MLPs). Concurrently, other attention heads
are frozen to X+ to isolate the Sender’s impact. The resulting logits are compared to quantify the
Sender’s causal contribution: significant changes indicate critical paths for task execution. Since
residual streams and MLPs process tokens independently (Elhage et al., 2021), perturbing activations
at the END token position suffices to measure effects on next-token prediction.
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D.2 Comparison of the proposed subspace-intervened path patching with standard path
patching

Standard path patching techniques intervene on the entire activation vector of a component within
neural networks (Heimersheim and Nanda, 2024; Wang et al., 2023). However, these activations often
exhibit polysemanticity, simultaneously encoding multiple unrelated concepts. This polysemantic
nature presents a significant challenge in mechanistic interpretability, as full-vector patching conflates
the causal effects of target functions (such as translation) with numerous irrelevant functions encoded
within the same vector space.

To address this limitation, our proposed method identifies and intervenes upon low-dimensional sub-
spaces specifically responsible for translation within the activation space. This subspace-intervened
approach enables the isolation of specific causal mechanisms of translation from confounding
functionalities, providing a more fine-grained and accurate understanding of the model’s internal
translation processes. By moving from full-vector to subspace intervention, we achieve a targeted
and necessary design that facilitates precise mechanistic analysis in large language models.

To validate the effectiveness of our subspace-intervened path patching approach, we conducted
comprehensive experiments comparing it with standard path patching baselines across multiple
translation directions. Our evaluation encompassed both high-resource (English-Chinese) and low-
resource (English-Swahili) language pairs to assess the generalizability of our method.

We implemented both approaches on the same pre-trained multilingual language model architecture.
For standard path patching, we followed the methodology described in prior work, intervening on
complete activation vectors. For our subspace-intervened approach, we first identified translation-
specific subspaces through targeted projection techniques before performing interventions.

Evaluation metrics included:

• Average logit changes when intervening on identified components
• Accuracy drop when knocking out the top-5 most crucial attention heads
• Translation performance measured by BLEU, COMET, and BLEURT scores after targeted

supervised fine-tuning (SFT) of the top-32 identified heads

Table 9 presents a detailed comparison between standard path patching and our subspace-intervened
approach across multiple translation directions. The results demonstrate the superior performance of
our method in identifying components critical to translation.

Table 9: Comparison of standard path patching versus subspace-intervened approach across translation
directions

Translation Pairs
Top Crucial Heads Avg. Logits Acc. Drop Targeted SFT

Layer, Head Change Knockout Top-5 Performance
BLEU/COMET/BLEURT

En→Zh (standard) (31, 8), (14, 10), (30, 18) -2.69% -25% 27.3/79.8/62.4
En→Zh (subspace) (15, 21), (31, 11), (18, 26) -4.47% -39% 28.9/80.5/63.1
Zh→En (standard) (15, 19), (31, 22), (14, 10) -1.71% -22% 18.5/77.9/62.8
Zh→En (subspace) (31, 27), (31, 11), (14, 14) -2.49% -31% 19.8/78.4/63.3
En→Sw (standard) (22, 17), (31, 8), (16, 6) -3.12% -28% 1.83/51.5/40.9
En→Sw (subspace) (16, 26), (31, 8), (18, 11) -6.81% -42% 3.91/55.1/43.7
Sw→En (standard) (14, 14), (31, 22), (15, 11) -1.43% -21% 14.5/67.1/53.2
Sw→En (subspace) (31, 27), (30, 18), (14, 10) -2.01% -26% 15.9/67.9/54.0

The results reveal several key findings. First, our subspace-intervened method identifies components
more critical to translation, as evidenced by the larger average logit changes across all translation
directions. For instance, in the English-Swahili translation direction, our method produces a logit
change of -6.81% compared to -3.12% with standard path patching, indicating the identification of
more influential components.

Second, knockout validation further confirms the superiority of our approach. When the top-5 most
crucial heads identified by our method are knocked out, we observe significantly larger accuracy
drops compared to standard path patching. This demonstrates that our method more accurately
identifies components essential to the translation mechanism.
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Third, targeted supervised fine-tuning of only the top-32 heads identified by our subspace-intervened
approach yields superior translation performance across all evaluated directions. This targeted
enhancement capability is particularly valuable for resource-efficient model improvement, as it
enables precise modifications to the most relevant components without extensive full-model fine-
tuning.

These empirical results validate that our subspace-intervened path patching method provides a more
fine-grained and accurate analysis of translation mechanisms in large language models, addressing
the challenge of polysemanticity that limits standard approaches.

D.3 Explanation for the heatmaps.

Figure 1 provides a direct comparison of the impact of patching individual attention heads across
different translation directions. The color intensity of each square represents the magnitude of the
logit change resulting from patching the corresponding attention head, with deeper red indicating
a more significant logit decrease. The consistent deep red of the square at position (8,31) across
all six subfigures demonstrates its critical negative impact on performance in all tested translation
directions. To supplement this visual representation, we provide the specific quantitative values for
the average logit decrease when patching head (8,31): These quantitative measurements confirm that

Table 10: Average logit decrease when patching attention head (8,31)
Translation Direction Average Logit Decrease

Zh→ En -1.70
Zh→ Fr -2.80
Zh→ Ru -1.20
En→ Zh -1.10
Fr→ Zh -3.20
Ru→ Zh -5.00

patching head (8,31) consistently and substantially degrades model performance across all translation
directions, with the most significant impact observed in the Ru→ Zh direction (-5.00 logit decrease).

E Additional Mechanistic Analysis

E.1 Extend Subspace path-patching to Low-Resource and Typologically Diverse Language
Pairs

To validate the universality and robustness of our findings across diverse linguistic scenarios, we
extended our analysis to include low-resource and typologically diverse language pairs. Specifically,
we incorporated Swahili (sw) and Bengali (bn) as low-resource languages, along with Arabic (ar) as
a typologically distinct language from the Germanic and Sino-Tibetan families. All experiments used
identical model architectures, training procedures, and evaluation metrics as described in the main
paper to ensure methodological consistency.

The results presented in Table 11 demonstrate that the key findings regarding sparsity and transfer-
ability of crucial attention heads persist across these challenging language settings. The proportion of
crucial heads remains consistently low (2.05%–3.71%), comparable to the high-resource language
pairs analyzed in the main paper. This confirms the sparsity phenomenon is not an artifact of resource
abundance.

Notably, several heads exhibit cross-lingual transferability across diverse language families. Head
(8,31) appears as crucial in all six language pairs, while heads (18,30) and (10,14) are critical in four
pairs each. This consistent emergence of specific heads across typologically distinct languages sug-
gests they encode universal translation mechanisms rather than language-specific artifacts. The logits
change ratios (-6.81% to -9.17%) further confirm that these heads significantly impact translation
quality, with more negative values correlating with lower-resource settings where translation quality
is inherently more challenging.
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Table 11: Results on low-resource and typologically diverse language pairs. Heads appearing in at
least two language pairs are marked in bold.
Language Pair Crucial Heads Proportion Top Crucial Heads (Layer, Head) Average Logits Change Ratio
En-Sw 2.93% (16,26),(31,8),(18,11),(17,25),(15,17),. . . -6.81%
Zh-Sw 3.32% (31,8),(18,11),(16,26),(17,25),(14,10),. . . -7.19%
En-Bn 3.71% (30,18),(31,8),(14,10),(26,7),(28,20),. . . -9.17%
Zh-Bn 2.34% (31,8),(30,18),(18,11),(14,10),(26,7),. . . -8.20%
En-Ar 2.83% (30,18),(31,8),(14,10),(31,4),(20,18),. . . -8.20%
Zh-Ar 2.05% (31,8),(30,18),(14,10),(31,4),(12,17),. . . -8.94%
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(b) Zh⇒ Bn
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(c) Zh⇒ Sw
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(d) En⇒ Ar
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(e) En⇒ Bn
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Figure 9: Importance of heads related to translation across different directions. Each square at
position (x, y) refers to the x-th head in the y-th layer. Red (Brown) squares denote heads (MLPs)
that have a positive impact on predicting the target token, while grey (purple) squares indicate heads
(MLPs) with a negative effect.

These results substantiate that the sparsity and transferability of crucial attention heads represent
fundamental properties of multilingual translation models, independent of resource availability or
linguistic typology. The findings reinforce the generalizability of our core conclusions and provide
empirical evidence for the existence of universal attention mechanisms in neural machine translation
architectures.

E.2 Extend Subspace path-patching to Sentence-level translation

To extend our mechanistic analysis beyond word-level translation, we conducted experiments on
sentence-level translation using the WMT23 English-to-Chinese dataset. The experimental pro-
cedures followed the methodology outlined in Section 4 of the main paper, maintaining identical
model architectures, training configurations, and evaluation protocols. This extension allowed us
to investigate the generalizability of our findings to more complex translation scenarios involving
long-range dependencies, contextual variations, and multi-token mappings.

Table 12: Comparison of Crucial Attention Heads and Performance Impact Across Translation Tasks

En⇒Zh Top Crucial Heads (Layer, Head)
Performance Metric Change Performance Drop Performance Drop
(lower logits or higher PPL (Knockout Top-5 (Knock out Top-5

means poorer translation quality) Overlapping Heads) Sentence-Level Heads)

word-level (15, 21), (31, 11), (18, 26), (16, 26), -4.47% (logits) -39% -2%(31, 8), (26, 30), (20, 20), (14, 16),. . .

sentence-level (20, 11), (18, 26), (14, 7), (20, 20), +10.5% (PPL) -36% -43%(14, 16), (14, 13), (22, 26), (28, 18),. . .

The causal analysis revealed a 46.9% overlap (30 out of 64) between the top crucial attention heads
for word-level and sentence-level translation tasks, with representative overlapping heads including
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(18, 26), (20, 20), and (14, 16). This substantial overlap indicates a shared core translation circuit that
operates across different levels of translation complexity.

Ablation experiments demonstrated that knocking out five shared heads resulted in significant
performance degradation for both word-level (-39% in logits) and sentence-level (-36% in PPL)
translation tasks. Conversely, ablating five heads crucial exclusively for sentence-level translation had
minimal impact on word-level performance (-2%) but caused substantial degradation in sentence-level
translation (-43% in PPL). This differential effect highlights the functional specialization of attention
mechanisms.

Behavioral pattern analysis further revealed distinct functional roles:

• Overlapping heads primarily focused on local syntax and translation indicators, handling
fundamental cross-lingual mappings that remain consistent across word and sentence con-
texts.

• Non-overlapping heads specialized in processing long-range dependencies and broader
source contexts, addressing the increased complexity of sentence-level translation where
contextual relationships span multiple tokens.

These findings demonstrate that while core translation mechanisms are preserved across task complex-
ities, sentence-level translation recruits additional specialized attention heads to manage contextual
and structural complexities not present in word-level translation. The results validate the methodolog-
ical approach of initially isolating word-level mechanisms while establishing the scalability of our
analysis framework to more complex translation scenarios.

E.3 Extend Subspace path patching to Multilingual Mathematical Reasoning

To further validate the task-agnostic nature of our method, we applied our analysis framework to
multilingual mathematical reasoning using the MGSM dataset (Shi et al., 2023). This experiment
demonstrates how our approach adapts to new domains by constructing task-specific counterfactual
datasets.

Following the methodology outlined in Section 3, we generated counterfactual examples by altering
task instructions while preserving the core mathematical content. The analysis was performed on a
multilingual transformer model, where we systematically evaluated attention heads across all layers.

We illustrate the counterfactual generation process with the following representative example from
our multilingual analysis:

Table 13: Example of counterfactual pair generation for multilingual mathematical reasoning. The
core problem remains identical while the task instruction changes from numerical answer generation
to sentence rephrasing.

Factual Example (Xf ) Counterfactual Example (Xcf )

肖恩有五个玩具。圣诞节他从他爸爸妈
妈那里各得到了两个玩具。他现在有多
少个玩具？请给出数字:

肖恩有五个玩具。圣诞节他从他爸爸妈
妈那里各得到了两个玩具。他现在有多
少个玩具？请转述句子:

(Shawn has five toys. For Christmas, he got two
toys each from his mom and dad. How many toys
does he have now? Give the number:)

(Shawn has five toys. For Christmas, he got two
toys each from his mom and dad. How many toys
does he have now? Rephrase the sentence:)

Our analysis identified a sparse set of critical attention heads for mathematical reasoning, comprising
only 3.95% of all heads in the model. This sparsity pattern aligns with observations from our
translation experiments, indicating consistent underlying mechanisms across tasks.

The most influential heads and their impact were quantified as follows:

• Top-5 critical heads: (11, 8), (12, 22), (6, 22), (18, 12), (4, 31)

• Average logit decrease: 9.76% when ablating these heads

• Performance impact: Ablating the top-10 heads caused a 60% drop in task accuracy
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These results confirm that our method effectively identifies components critical to mathematical
reasoning across languages. The significant performance degradation upon ablation of these heads
validates their functional importance, while the consistent sparsity pattern across tasks demonstrates
the robust adaptability of our approach to new domains.

The experiment establishes two key properties of our framework: (1) its ability to generalize to
multilingual contexts without task-specific modifications, and (2) its capacity to pinpoint functionally
critical components even in complex reasoning tasks. The identified heads likely correspond to
mechanisms for numerical processing and instruction comprehension, suggesting potential cross-task
similarities in how transformers handle structured reasoning problems.

F Discussion of the Emergence of Translation-Crucial Components

To provide rigorous quantitative support for these observations, we analyzed the logit changes induced
by Supervised Fine-Tuning (SFT) and Continued Pre-training (CPT) relative to the base model. We
performed a Two-Sample Kolmogorov-Smirnov (K-S) test on the overall logit change distributions
and quantified the magnitude of change within the top 32 attention heads, as summarized in Table 1.

The results demonstrate that CPT induces a statistically significant distributional shift (p < 0.00001),
while SFT does not (p = 0.355).

To further validate the emergence and refinement of translation-crucial components, we conducted a
comparative causal analysis across three model configurations: (1) a randomly initialized baseline,
(2) the multilingual pre-trained LLaMA-2 model, and (3) the SFT-fine-tuned variant. We employed
logit change matrix analysis to quantify structural patterns in translation-related attention heads,
with statistical significance assessed using distributional shift metrics at a significance threshold of
p < 0.05.

The randomly initialized model exhibited an unstructured logit change matrix with no discernible
specialized translation heads, indicating the absence of innate translation capabilities. In contrast,
the pre-trained LLaMA-2 model developed a sparse set of critical translation heads, demonstrating a
statistically significant distributional shift from the random baseline. This confirms that functional
translation circuits emerge during multilingual pre-training.

Subsequent analysis of the SFT-fine-tuned model revealed only a minor distributional shift relative to
the pre-trained model, which did not reach statistical significance. This negligible change indicates
that supervised fine-tuning primarily enhances or slightly refines pre-existing translation components
rather than inducing new structural formations.

These results collectively provide empirical support for a two-stage development process of translation
capabilities: (1) component formation occurs during multilingual pre-training through exposure
to diverse linguistic patterns, and (2) component refinement occurs during SFT through targeted
optimization. The statistically significant emergence in pre-training versus the insignificant shift
during fine-tuning underscores that SFT functions as a calibration mechanism for pre-established
structures rather than an architectural catalyst.
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(a) LLaMA2-7B
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(b) LLaMA2-13B
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(c) Mistral-7B

Figure 10: Comparison of the results of path patching experiments on LLaMA2-7B, LLaMA2-13B,
and Mistral-7B (Jiang et al., 2023) across Zh⇒ En translation task. Each square at position (x, y)
refers to the xth-head in the y-th layer. Red (Brown) squares denote heads (mlps) that have a positive
impact on predicting the target token, while grey (purple) squares indicate heads (mlps) with a
negative effect. For each head/MLP, a darker color indicates a larger logit difference from the original
model before patching.
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(b) En⇒ Fr
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(c) En⇒ Ru
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(d) De⇒ En
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(e) Fr⇒ En
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Figure 11: Importance of heads related to translation across different directions. Each square at
position (x, y) refers to the x-th head in the y-th layer. Red (Brown) squares denote heads (MLPs)
that have a positive impact on predicting the target token, while grey (purple) squares indicate heads
(MLPs) with a negative effect.

G Additional Detection Results of More LLMs

Crucial Component Detection. Figure 10 extends key component identification to LLaMA2-13B
and Mistral-7B. All three models exhibit sparse localization of translation-critical attention heads
(e.g., 17.24, 16.0) in middle layers, despite architectural differences (e.g., LLaMA2-13B’s 40 layers
with 40 heads per layer).

Figure 11 illustrates the detection results for bidirectional translation directions (En⇒ X and X⇒
En). While the multi-token nature of English tokens results in fewer prominent detection instances,
the findings remain consistent with the earlier analysis in Section §4.2. Together, these observations
support the conclusion that translation mechanisms utilize a sparse subset of attention heads, which
are language-agnostic, thereby underscoring their generalization capacity.

H Additional Experiments for Validating Crucial Components
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Figure 12: Translation accuracy changes
when components are progressively
knocked out.

Further elaboration on selection of correct translation
samples for analysis. Focusing on correctly translated
samples was intentional to eliminate task ambiguity and
ensure a focused exploration of the translation mechanism.
Incorrect translations could reflect task failure or unrelated
issues, complicating the analysis. By selecting the cor-
rect translations, we can more accurately trace the role of
attention heads via path patching. Therefore, our exper-
imental setup is appropriate for exploring the translation
mechanism in LLMs. Using a controlled, correct transla-
tion dataset aligns with prior interpretation research (e.g.,
Wang et al. (2023); Zhang et al. (2025)), where analyses
were conducted on manually curated correct task datasets.
This ensures observed patterns directly reflect the trans-
lation process rather than error-driven noise. The correct
translation selection choice will not bias the results for two reasons: The samples used for path
patching and those used in subsequent validation are entirely separate. This separation prevents any
potential bias introduced by selecting correctly translated samples for path patching from affecting
the validity of our conclusive claims.
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Figure 13: The attention values visualization of
the role-classified key heads in En⇒ Fr, which
show different characteristics of different crucial
heads.
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Figure 14: The attention values visualization of
the role-classified key heads in En⇒ De, which
show different characteristics of different crucial
heads.

Experimental results on random datasets. We have also replicated the experiment using randomly
selected samples (132 samples), including those with translation errors. The results shown in
Figure 12 remain consistent with our original findings, reinforcing the correctness and robustness of
our claims.

I Statistical Significance of Behavioral Patterns Analysis

For our behavioral patterns analysis, we utilized 100 randomly selected Chinese-to-English (Zh↔En)
translation samples. This approach aligns with established practices in influential interpretability
studies (Voita et al., 2019; Wang et al., 2023), which prioritize representative examples over large
sample sizes through careful manual inspection to uncover underlying mechanistic behaviors.

Quantitative Analysis of Attention Patterns To validate the statistical significance of our ob-
served behavioral patterns, we conducted a rigorous quantitative analysis of the key attention pat-
tern—specifically, the phenomenon of attention heads focusing on source tokens.

Within our sample of 100 translations, this pattern occurred in 81 instances, representing an 81%
consistency rate. To establish the statistical significance of this observation, we computed the 95%
Wilson score confidence interval, which yielded [72.0%, 87.9%]. This interval substantially exceeds
the chance level of 50%, indicating systematic behavior rather than random occurrence.

Furthermore, we performed a binomial test to evaluate the null hypothesis that the observed pattern
occurs at chance level. The test results allowed us to reject the null hypothesis (p < 0.001), confirming
the statistical significance of the identified attention behavior across our sample.

Implications for Interpretability These quantitative results reinforce the validity of our qualita-
tive analysis approach. The high consistency rate and statistical significance demonstrate that the
behavioral patterns we identified are robust and reflect systematic processing mechanisms rather
than isolated incidents. This methodological approach, combining targeted quantitative validation
with in-depth qualitative inspection, provides a comprehensive framework for interpreting model
behaviors in neural machine translation systems.

J Additional Behavioral Analysis of Translation Directions and More LLMs

Extended Behavioral Pattern Analysis of Crucial Heads Across Diverse Language Pairs. To
investigate the consistency of crucial head types and broaden the scope of our behavioral pattern
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Figure 15: The attention values visualization of
the role-classified key heads in Zh⇒ Fr, which
show different characteristics of different crucial
heads.
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Figure 16: The attention values visualization of
the role-classified key heads in Zh⇒ De, which
show different characteristics of different crucial
heads.

analysis, we conducted evaluations on multiple translation directions beyond the initial English-
to-Chinese (Zh⇒En) focus (see Figure 4). This extended analysis incorporated English⇒France
(En⇒Fr), English⇒German (En⇒De), Chinese ⇒ France (Zh⇒Fr), and Chinese ⇒ German
(Zh⇒De) language pairs, as illustrated in Figure 13, 14, 15, and 16 respectively.

Our findings indicate that while the fundamental insights observed in En⇒Zh largely hold across other
language pairs, nuanced variations in crucial head behavior did emerge. Specifically, several source
heads (e.g., (18, 17)), and position heads (e.g., (4, 31)) exhibited consistent cruciality and behavioral
patterns across all the Zh⇒En, En⇒Fr, En⇒De, Zh⇒Fr, and Zh⇒De translation directions. This
suggests a degree of universality for certain attention mechanisms irrespective of the specific language
pair.

However, the cruciality of some heads demonstrated language-pair dependency. For instance, heads
(4, 14), (27, 14), identified as indicator heads, were also crucial for the En⇒Fr and Zh⇒Fr directions
but did not exhibit the same type of functional role. Such variations indicate that while the identified
categories of crucial heads (source, position, indicator) are generally stable, the specific instantiation
and relative importance of individual heads within these categories can be influenced by the linguistic
characteristics of the language pair in question. Despite these specific variations, the core observation
of distinct functional roles for different head types remains robust. This comprehensive analysis
across multiple language pairs has been incorporated to underscore the generalizability, as well as the
language-specific nuances, of the identified behavioral patterns.
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(b) LLaMA2-13B
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(c) Mistral-7B

Figure 17: We investigate the projection of each MLP layer input (MLPin) along the direction of the
source language, indicator, and random English tokens ({SRC},{IND}, and {RAND}), respectively.
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(c) Mistral-7B

Figure 18: We investigate the projection of each MLP layer (MLPout −MLPin) along the direction
of the target language, and random English tokens ({TGT} (i.e., right translation), and {RAND} (i.e.,
wrong translation)), respectively.

Analysis of Crucial MLPs. Figures 17 and 18 reveal consistent MLP dynamics across models. For
MLP input/{SRC},{IND} similarities, trends follow ascending-descending phases with inflection
points at layers (13-18-28) for LLaMA2-7B, (13-18-35) for LLaMA2-13B, and (13-20-28) for Mistral-
7B. Similarly, MLPout−MLPin and target token {TGT} similarities show stabilization-to-increase
patterns with identical inflection layers. This synchronization across models indicates a shared
computation mechanism: attention heads initiate translation processing, which MLPs subsequently
refine. These results demonstrate robustness across architectures and scales.
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(c) Mistral-7B

Figure 19: We investigate the projection of each MLP layer (MLPout −MLPin) along the direction
of the different languages.

Cross-Lingual Bridge Translation. We extend our analysis to non-English pairs (e.g.,
French/Japanese Chinese) by examining token-level dynamics. As shown in Figure 19, similar-
ity trends between MLPout −MLPin representations and cross-lingual embeddings align with the
bridge-translation hypothesis: in layers 15–24, English-centric latent representations dominate across
LLaMA2-13B and Mistral-7B, with similarity declining sharply in layers 25–32. This reinforces the
observed paradigm where LLMs internally map source languages to English-like representations be-
fore generating target outputs, corroborating findings in multilingual latent alignment studies (Wendler
et al., 2024; Zhao et al., 2024b). The consistency across both architectures underscores the generality
of English’s intermediary role.

K Experimental Setup Details

Following the gradient rescaling method proposed by (Yu et al., 2025), gradients are adjusted by a
factor of H

h , where H is the total number of attention heads in a layer and h represents the updated
heads in the same layer. For model fine-tuning, we use Llama2-7B and Llama2-13B with a learning
rate of 2× 10−5, a batch size of 128, and train for 2 epochs. The warm-up ratio is set to 0.02, and
weight decay is configured at 0.1. All experiments are conducted on a cluster of 8 NVIDIA A100 80
GB GPUs.
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Translation Tasks Generic Tasks

Models Train
Speed

Tuned
Params.

En⇒Zh En⇒De En⇒Ru MMLU Commonsense
Reasoning

BLEU↑/COMET↑/BLEURT↑ Acc. Acc.
LLaMA2-7B - - 17.0/74.1/55.9 13.0/64.2/49.1 12.8/70.5/52.4 45.9 55.3

+ Full SFT 17sam./sec. 6.7B 30.3/80.7/62.9 27.9/78.3/63.7 19.5/80.0/63.2 40.2 50.0
+ Targeted SFT 33sam./sec. 0.27B 30.7/81.4/64.3 27.6/78.4/63.8 20.1/80.4/63.6 46.2 56.0
+ Random SFT 33sam./sec. 0.27B 26.4/79.3/61.6 22.7/76.2/60.3 15.8/77.9/60.7 46.1 55.2

LLaMA2-13B - - 23.0/77.5/59.1 17.1/67.7/52.8 15.6/72.9/55.1 55.1 58.4
+ Full SFT 12sam./sec. 13.0B 32.8/81.8/64.4 29.8/80.0/65.8 20.7/81.6/65.0 53.7 56.4

+ Targeted SFT 28sam./sec. 0.32B 33.4/82.2/64.8 30.1/80.1/65.9 21.3/81.8/65.3 54.9 58.1
+ Random SFT 28sam./sec. 0.32B 28.8/80.6/63.3 24.6/78.3/62.9 17.3/80.0/62.8 55.0 58.2

Mistral-7B - - 13.7/68.0/49.6 15.6/63.1/49.3 11.2/65.1/48.1 62.7 59.2
+ Full SFT 17sam./sec. 6.7B 31.1/80.6/63.4 26.5/77.4/62.8 19.6/79.5/62.5 43.0 40.8

+ Targeted SFT 33sam./sec. 0.27B 31.9/82.0/65.1 26.3/78.0/63.2 20.5/79.9/63.1 62.5 59.1
+ Random SFT 33sam./sec. 0.27B 27.5/79.5/61.6 22.2/75.5/59.8 15.6/77.4/60.5 62.4 59.2

Table 14: The evaluation results of En⇒X translation (average WMT23 and WMT24 evaluation
results) and generic tasks of different SFT strategies.

Translation Tasks Generic Tasks

Models Train
Speed

Tuned
Params.

Zh⇒En De⇒En Ru⇒En MMLU Commonsense
Reasoning

BLEU↑/COMET↑/BLEURT↑ Acc. Acc.
LLaMA2-7B - - 15.6/73.1/56.6 24.8/76.8/62.1 20.2/73.8/60.3 45.9 55.3

+ Full SFT 17sam./sec. 6.7B 20.4/78.7/63.9 35.4/83.4/70.7 25.8/79.8/67.6 42.6 50.2
+ Targeted SFT 33sam./sec. 0.27B 21.7/79.1/64.4 37.1/83.7/71.4 27.8/80.3/68.4 46.0 55.7
+ Random SFT 33sam./sec. 0.27B 16.9/76.9/61.1 32.5/81.6/68.1 23.7/78.2/65.3 45.9 54.9

LLaMA2-13B - - 17.3/74.0/57.8 27.0/78.0/63.8 22.2/74.9/61.5 55.1 58.4
+ Full SFT 12sam./sec. 13.0B 22.4/79.5/65.3 36.9/84.0/71.6 27.8/80.8/68.9 50.0 55.3

+ Targeted SFT 28sam./sec. 0.32B 23.6/80.5/66.5 38.3/84.7/72.7 29.7/81.5/69.3 54.9 58.1
+ Random SFT 28sam./sec. 0.32B 19.0/78.1/63.1 34.2/81.8/68.9 25.3/79.3/66.6 55.5 58.8

Mistral-7B - - 16.9/74.3/58.1 26.6/77.9/63.9 22.6/75.3/62.5 62.7 59.2
+ Full SFT 17sam./sec. 6.7B 19.7/78.4/63.1 32.0/82.2/69.0 24.0/78.7/66.2 40.3 50.3

+ Targeted SFT 33sam./sec. 0.27B 21.2/79.2/64.3 33.7/83.0/70.2 26.4/79.6/66.4 62.9 59.1
+ Random SFT 33sam./sec. 0.27B 16.8/77.1/61.1 29.3/80.6/66.8 21.4/77.1/63.9 62.5 59.3

Table 15: The evaluation results of X⇒En translation (average WMT23 and WMT24 evaluation
results) and generic tasks of different SFT strategies.

L Comparison Experimental Results on More LLMs

We investigate whether our method generalizes to larger LLMs (Llama-2-13B) and diverse architec-
tures (Mistral-7B). As shown in Tables 14 and 15, Targeted SFT exhibits three consistent advantages
across LLMs: (1) Enhanced translation performance, particularly in X En, surpassing Full SFT
and significantly outperforming Random SFT; (2) Generalization preservation, maintaining baseline
non-translation task performance unlike Full SFT; (3) Training efficiency, modifying fewer than 5%
of parameters and reducing training time by 50% compared to Full SFT.

M Additional Analyses of English-centric representation

M.1 Correlation Analysis between English Similarity and Translation Quality

To quantitatively establish the relationship between English-centric representations and translation
performance, we conducted a comprehensive correlation analysis. We measured the Pearson correla-
tion coefficient between the cosine similarity of intermediate representations to English embeddings
and three translation quality metrics: BLEU-1, chrF, and TER scores. This analysis was performed
across 12 typologically diverse non-English to non-English language pairs at varying resource levels.

All correlation analyses were conducted using a standardized evaluation framework. We selected
12 language pairs spanning diverse language families and resource levels, including both high-
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resource (e.g., German-French) and low-resource (e.g., Swahili-Hausa) combinations. Translation
quality was measured using BLEU-1, chrF, and TER metrics computed against professional human
reference translations. Cosine similarity was calculated between intermediate representations and
target language embeddings using the model’s native embedding space.

For the pivot language investigation, we used identical architectures and evaluation protocols for
both Llama and Qwen2.5 models to ensure comparability. The logits lens analysis was performed
by extracting hidden representations at each layer and projecting them into the model’s vocabulary
space using the unembedding matrix. Layer-wise similarity was computed against embeddings of
pivot language tokens.

The results, summarized in Table 16, demonstrate a strong and statistically significant correlation
between English similarity and translation quality. The average correlation coefficients across all
language pairs were 0.905 for BLEU-1, 0.873 for chrF, and -0.919 for TER. These findings provide
empirical evidence that the English-centricity phenomenon is not merely superficial but fundamentally
influences translation outcomes.

Table 16: Pearson correlation between English similarity and translation quality metrics
Correlation with English Similarity BLEU-1 Score chrF Score TER Score
Average across 12 language pairs 0.905 0.873 -0.919

M.2 Investigation of Pivot Language Determinants

We hypothesized that the emergence of English as a pivot language stems from its dominance in the
pre-training corpus. To test this, we analyzed two models with contrasting pre-training distributions:
the Llama models, pre-trained on a corpus with overwhelming English dominance (Touvron et al.,
2023), and Qwen2.5, pre-trained on a corpus with predominant Chinese data (Yang et al., 2024).

Our experiments revealed a clear correspondence between corpus dominance and pivot language
emergence. In the Llama models, English consistently emerged as the pivot language. Conversely, in
Qwen2.5, Chinese emerged as the pivot language instead of English. This cross-model comparison
provides preliminary support for our hypothesis that the pivot language is determined by the dominant
language in the pre-training corpus.

M.3 Qualitative Analysis via Logits Lens

To elucidate the internal mechanism through which the pivot language emerges, we performed a
logits lens analysis following established methodologies (Zhao et al., 2024b; Wendler et al., 2024).
This technique allows visualization of how representations evolve through the model’s layers during
translation.

The analysis reveals a consistent pattern: source language representations progressively shift toward
their pivot language counterparts in intermediate layers before transitioning to the target language.
For example, when translating “车” (Chinese) to “voiture” (French), the representation explicitly
resolves to the English word “car” in layers 19-27 before shifting to “voiture” in the final layers. This
demonstrates a mechanistic pathway where the pivot language serves as an intermediate representation
bridge during translation.

M.4 Exploration of English Latent Representation Regarding Gender and Formality

Our investigation extends to analyzing how the English pivot handles linguistic features without direct
English equivalents, specifically grammatical gender and formality. This analysis provides crucial
insights into the limitations and capabilities of the pivot-based multilingual translation approach.

We conducted a targeted analysis using datasets created for French (fr) and Spanish (es), focusing on
two key linguistic dimensions: gendered professions and formal versus informal expressions.

For gendered professions, we utilized the FBK-MT/gender-bias-PE dataset (Savoldi et al., 2024). For
formal versus informal expressions, we curated a list of common formal and informal expressions in
both languages. Sample instances from these datasets are presented in Tables 17 and 18.
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Table 17: Examples of gendered professions in French and Spanish
Profession (English) French (Masculine) French (Feminine) Spanish (Masculine) Spanish (Feminine)
Actor Acteur Actrice Actor Actriz
Waiter Serveur Serveuse Camarero Camarera
Baker Boulanger Boulangère Panadero Panadera
Nurse Infirmier Infirmière Enfermero Enfermera

Table 18: Examples of formal versus informal expressions in French and Spanish
Category French (Informal) French (Formal) Spanish (Informal) Spanish (Formal)
People (man) un mec un homme un tío un hombre
Car une bagnole une voiture un coche un automóvil
Work / Job un boulot un travail un curro un trabajo
Money le fric l’argent la pasta el dinero

Applying the analysis methodology from Section 5, we measured both the intermediate representa-
tion’s similarity to the English pivot and the final translation accuracy. Our findings reveal a critical
asymmetry in how these features are processed, as summarized in Table 19.

Table 19: Analysis of gender and formality features in English latent representation
Language Feature Avg. Cosine Similarity to English Representation Translation Accuracy
Gender (Male Professions) 0.32 73%
Gender (Female Professions) 0.11 48%
Formality (Formal Expressions) 0.31 65%
Formality (Informal Expressions) 0.34 69%

The results demonstrate that male-gendered professional nouns are processed effectively, with their
representations showing high similarity to the English pivot (0.32) and resulting in high translation
accuracy (73%). In contrast, the representations for female-gendered nouns show significantly lower
similarity (0.11), which correlates with a dramatic drop in accuracy to 48%. Interestingly, both formal
and informal expressions are processed with comparable accuracy, suggesting the model preserves
this feature through the intermediate representation.

We hypothesize that this gender-specific failure is due to well-documented biases in large-scale
training corpora, where female-gendered terms are less frequent (Ding et al., 2025). The model’s
reliance on a biased English latent space makes it unable to robustly encode and transmit grammatical
gender information that is explicitly marked in the source language but often neutralized in English.

N Supplementary Experiments

N.1 More evaluation results of targeted SFT on domain-adaptive translation

To further evaluate the broader applicability of our approach beyond general-domain translation, we
conducted additional experiments on specialized domains. Specifically, we tested our method on
medical and legal translation tasks using established benchmarks: ELRC-Medical-V2 for English-to-
German medical translation and M3T for English-to-Chinese legal translation. For these specialized
domain experiments, we maintained the same training configurations as described in the main paper.
We compared three approaches:

• Full SFT: Supervised fine-tuning of all model parameters

• Targeted SFT: Our proposed approach of fine-tuning only specific attention heads

• Random SFT: Fine-tuning of randomly selected parameters (baseline)

Evaluation was performed using standard metrics, including BLEU, COMET, and BLEURT scores,
to provide a comprehensive assessment of translation quality.
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The performance of each approach on specialized domain translation tasks is presented in Table 20.
The results demonstrate that our Targeted SFT approach remains highly competitive in specialized

Table 20: Performance comparison on specialized domain translation tasks.
Lang Pair Domain Full SFT Targeted SFT Random SFT

BLEU/COMET/BLEURT BLEU/COMET/BLEURT BLEU/COMET/BLEURT
En→ De Medical 41.0/88.5/79.1 39.9/87.4/77.5 28.9/83.9/73.8
En→ Zh Legal 52.2/90.5/80.5 45.8/89.2/78.1 8.07/75.2/65.8

domains, significantly outperforming the Random SFT baseline across all metrics. However, it does
not match the performance of Full SFT in these specialized domains. We attribute this performance
gap to several factors:

1. Dataset Distribution and Overfitting: Since the training and test sets in specialized
domains typically share the same distribution (via a split of one dataset), Full SFT is more
prone to overfitting to the specific characteristics of the domain. In contrast, our Targeted
SFT approach maintains better generalization by limiting parameter updates.

2. Domain-Specific Patterns: Specialized domains such as medical and legal texts exhibit
unique syntactic structures and low-frequency terminology that may require modifying more
parameters than our targeted approach adjusts. These domain-specific patterns might be
distributed across a broader set of model components.

3. Head Specialization: Attention heads optimized for general-domain translation may not
fully overlap with those essential for specialized domains. Different linguistic phenomena
in specialized texts might activate different attention mechanisms that are not targeted by
our approach.

These findings reveal an important trade-off between parameter efficiency and peak performance in
specialized domains. While our Targeted SFT approach offers significant computational advantages
and maintains competitive performance, achieving state-of-the-art results in highly specialized
domains may require more extensive parameter modification. This represents an interesting direction
for future investigation, as discussed in Section 6 of the main paper.

N.2 Supplementary Analysis of Potential Cultural Bias Amplification by Targeted SFT

Machine translation systems face the challenge of linguistic hegemony, where dominant languages
may impose their cultural frameworks and expressions onto less dominant languages. This phe-
nomenon can result in the loss of cultural specificity and nuance in translations. To evaluate whether
our targeted fine-tuning of only the crucial heads responsible for translation mechanim might inadver-
tently amplify such translation biases, we conducted a dedicated analysis focusing on the preservation
of culturally specific terms.

We assessed translation quality using the CAMT dataset (Yao et al., 2024), which contains culturally
specific terms and expressions across multiple domains. For evaluation, we employed the CSI-Match
metric (Yao et al., 2024), specifically designed to measure the translation accuracy of culturally
specific items. The CSI-Match metric operates by comparing translations of culture-specific concepts
against reference translations produced by native speakers, with scores calculated based on semantic
similarity and cultural appropriateness. The metric ranges from 0 to 100, with higher scores indicating
better preservation of cultural specificity and thus a lower risk of linguistic hegemony (Yao et al.,
2024; Conia et al., 2024).

We compared our proposed Targeted SFT approach against three baselines:

1. Base model: Llama-2-7B without fine-tuning
2. Full SFT: Standard full-parameter fine-tuning on the translation dataset
3. Random SFT: Fine-tuning on randomly selected parameter subsets of equivalent size to our

targeted approach

For all models, we evaluated English-to-Chinese (En→Zh) translation performance using multiple
metrics: BLEU, COMET, BLEURT, and CSI-Match. All experiments were conducted using identical
hyperparameters and evaluation protocols to ensure fair comparison.
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The performance of all models across different evaluation metrics is presented in Table 21

Table 21: Translation performance and cultural specificity preservation across different fine-tuning
approaches for English-to-Chinese translation.

Model (En→Zh) BLEU COMET BLEURT CSI-Match
Base (Llama-2-7B) 19.54 73.57 51.02 16.12

w/ Full SFT 25.50 79.35 58.28 18.44
w/ Targeted SFT 25.85 79.58 58.64 18.62
w/ Random SFT 19.98 74.73 52.88 16.13

The results demonstrate that our Targeted SFT approach achieves a CSI-Match score of 18.62, which
is comparable to the more resource-intensive Full SFT baseline (18.44). Statistical analysis using
a paired t-test revealed no significant difference between these two approaches (p = 0.42). This
indicates that our targeted method successfully improves translation performance without introducing
additional risks of cultural bias amplification compared to standard full fine-tuning. Notably, both the
Base model and Random SFT approach showed significantly lower CSI-Match scores (16.12 and
16.13, respectively), suggesting that neither preserves cultural specificity as effectively as the more
systematic fine-tuning approaches. The minimal difference between the Base model and Random
SFT indicates that arbitrary parameter updates do not substantially improve cultural specificity
preservation. Across all metrics, our Targeted SFT consistently performed at least as well as Full
SFT, confirming its efficiency and effectiveness in maintaining translation quality while preserving
cultural nuances. The marginal improvement in CSI-Match score over Full SFT, while not statistically
significant, suggests that our targeted approach may offer slight advantages in preserving cultural
specificity. This analysis provides empirical evidence that our targeted fine-tuning approach does not
exacerbate linguistic hegemony risks while maintaining competitive translation performance across
standard quality metrics.

N.3 Additional Qualitative Analysis of Targeted Supervised Fine-Tuning

Performance-Efficiency Trade-offs Tables 4 and 5 present a comprehensive quantitative analysis of
the trade-offs between translation performance, training efficiency, computational cost, and catas-
trophic forgetting in targeted supervised fine-tuning (SFT). The results demonstrate that incrementally
increasing the number of fine-tuned attention heads yields progressive improvements in translation
performance. However, this enhancement comes with proportional increases in memory consumption
and training time. Notably, excessive tuning of attention heads exacerbates catastrophic forgetting
effects, leading to significant degradation in the model’s general capabilities across non-translation
tasks.

Error Analysis of Underperforming Cases An in-depth error analysis was conducted on underper-
forming Chinese-to-English (Zh→En) translation cases to identify systematic failure patterns. The
analysis revealed three primary error categories accounting for over 70% of significant performance
gaps:

Style, Diction, and Idiomatic Expressions Targeted SFT frequently produces overly literal transla-
tions that fail to capture appropriate stylistic and idiomatic expressions. For instance, the phrase “新
冠肺炎对毒品市场的影响” (COVID-19’s impacts on the pharmaceutical showcase) was translated
as “COVID-19’s impacts on the drug market” instead of the contextually appropriate “pharmaceutical
showcase.” This pattern indicates limitations in capturing domain-specific terminology and idiomatic
nuances.

Noisy Data Robustness The approach exhibits reduced resilience to ambiguous or noisy input data.
A representative example is the mistranslation of “第9草” (Article 9) as “9th draft” rather than the
correct legal terminology “Article 9.” This vulnerability suggests challenges in handling ambiguous
lexical items and domain-specific abbreviations.

Factual Hallucinations The model occasionally generates unsupported factual details not present in
the source text. For example, the input “充电盒未充满电充电指示灯红灯长亮...” (The charging
indication light on the charging box is not yet fully charged, the red light is on...) was erroneously
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expanded to include “green light” in the translation, introducing information absent from the original
text.

Optimal Configuration and Performance Our method achieves a performance ceiling statistically
comparable to full fine-tuning while significantly reducing computational overhead. By exclusively
tuning the 64 attention heads most critical for translation tasks, we maintain translation quality within
1% of full fine-tuning performance while reducing memory requirements by 42% and training time
by 38%. This optimal configuration, empirically validated in Tables 4 and 5, demonstrates that
targeted SFT can effectively balance performance gains with computational efficiency when applied
selectively to the most relevant model components.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Limitations are discussed in Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The proof for theoretical results and theorems are proved in Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The reproduction information is provided in Section 6.1, and Appendix K.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides the anonymous GitHub link for open access to the data
and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental setting/details are provided in Section 6.1, and Appendix K.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We show error bars in Section 5.1 and Section 6.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Experimental compute resources are provided in Appendix K.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have provided broader impacts discussions in Appendix A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper doesn’t have such risks.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we have followed the proper use and credited the owners for the assets as
shown in Section 3, and Appendix B.1, K.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The newly constructed analysis dataset is well documented in Section 3 and
Appendix B.1, B.2.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development does not involve LLMs as any important
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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