
Memory-Maze: Scenario Driven Benchmark and Visual Language
Navigation Model for Guiding Blind People

Masaki Kuribayashi∗1, Kohei Uehara∗2, Allan Wang2,3, Daisuke Sato3,
Renato Ribeiro∗2, Simon Chu3, Shigeo Morishima4

Abstract— Visual Language Navigation (VLN) powered
robots have the potential to guide blind people by under-
standing route instructions provided by sighted passersby.
This capability allows robots to operate in environments often
unknown a prior. Existing VLN models are insufficient for
the scenario of navigation guidance for blind people, as they
need to understand routes described from human memory,
which frequently contains stutters, errors, and omissions of
details as opposed to those obtained by thinking out loud, such
as in the R2R dataset. However, existing benchmarks do not
contain instructions obtained from human memory in natural
environments. To this end, we present our benchmark, Memory-
Maze, which simulates the scenario of seeking route instructions
for guiding blind people. Our benchmark contains a maze-
like structured virtual environment and novel route instruction
data from human memory. Our analysis demonstrates that
instructions data collected from memory were longer and
contained more varied wording. We further propose a VLN
model better equipped to handle the scenario by leveraging
Large Language Models (LLM) and show that existing state-
of-the-art models perform suboptimally on our benchmark.

I. INTRODUCTION

Visual language navigation (VLN) is a task where an
agent with visual access to the surroundings navigates under
a human’s instructions [1]. Recently, navigation robots for
blind people have been developed to help them gain inde-
pendence [2], [3], [4], [5], such as robots that allow users
to choose destinations within prebuilt maps [2], [4], [3].
One scenario in which such robots would benefit from the
VLN technology is where blind people request instructions
to their destinations from sighted passersby in unfamiliar
buildings [6]. In this scenario, the VLN technology de-
ployed on navigation robots may assist their blind users
by understanding verbal instructions from the passersby and
then autonomously guiding them to their destinations. VLN
technology could also allow robots to operate autonomously
without relying on building infrastructure or prebuilt maps,
which is crucial for allowing robots to assist blind people in
navigating various new environments [5], [7].

However, direct application of existing VLN models to
the blind people navigation scenario is currently limited, as
there is a need for a benchmark that reflects the blind users’
demands realistically. Many VLN tasks have been addressed
in environments such as static houses [1] or roadways [9].
Nonetheless, it is also most important for blind individuals

∗ Equal Contribution 1Waseda University 2Miraikan - The National
Museum of Emerging Science and Innovation 3Carnegie Mellon University
4Waseda Research Institute for Science and Engineering, Corresponding
Author Email: rugbykuribayashi@toki.waseda.jp

Fig. 1: Memory-Maze Benchmark. Top: the instructions
obtained in the memory-based scenario contain unique
phrases, highlighted in green, in contrast to those collected
in traditional think-out-loud settings. Middle: Our benchmark
environment based on the CARLA simulator [8]. Bottom: the
VLN agent that navigates within the environment.

to navigate large public spaces such as shopping malls
or university hallways. Compared to existing environments,
these environments are characterized by physical turning
points and intersections, resembling a maze. Besides the
environmental difference, in existing VLN literature, natural
language instructions are provided by thinking out loud. In
other words, annotators visually navigate a virtual environ-
ment and type out instructions for constructing routes concur-
rently. In our scenario, sighted passersby must describe the
route from their memory, which often contains errors such as
inaccurate estimates of distances, hallucinations of landmark
objects, and omissions of key turning points. To the best
of our knowledge, our benchmark is the first to address the



scenario of a blind user seeking memory-based instructions
from sighted passersby in maze-like public spaces.

We present Memory-Maze (Fig. 1), a benchmark that
reflects the blind user navigation scenario. Memory-Maze
contains virtual environments of real-world public spaces. It
is based on CARLA [8], which enables us to simulate various
sensor data (e.g., LiDAR) from robots. It also contains
instructions data gathered from two studies from sighted
individuals. In the first study, instructions were gathered
through online questionnaires by observing walk-through
videos from a first-person perspective. This is similar to
the annotation method used in existing research. In the
second study, instructions were collected in-person by asking
sighted passersby to describe the same routes from their
memories. This reflects the novel scenarios envisioned in our
benchmark. We observed different characteristics among the
two studies in terms of length, number of errors, variety, etc.

Alongside our benchmark, we developed a novel VLN
model that performs competitively in the Memory-Maze
benchmark. Given the differences in environments and
instruction annotation, directly applying existing supervised
models poses a challenge due to their limited performance in
unseen settings [10]. In order to realize a scalable navigation
robot that could be used in various unseen environments for
blind people, our benchmark scenario needs to be handled
without retraining or fine-tuning. Hence, we leverage a
Large Language Model (LLM) due to its high capability
to understand complex natural language and its potential
for generalization in the new task without training. Upon
receiving an instruction, our VLN model utilizes the LLM to
convert the instruction into Python code based on the defined
robot control API (Sec. III-B) for route navigation. This
code generation approach modularizes low-level commands
such as path-planning for collision avoidance, eliminates the
need for prebuilt maps (i.e., navigation graphs), and enables
the model to be applied across unseen environments. Our
experiment showed that our model performed satisfactorily
on our benchmark while outperforming the state-of-the-art
methods [11], [12]. Through the study, we demonstrated
the difficulty of our benchmark and a tendency that onsite
instructions are more difficult for VLN models to handle.

We summarize our contributions below.

1) We constructed Memory-Maze, a benchmark contain-
ing virtual environments of a university building and
a museum, and gathered two sets of instructions, one
collected by thinking out loud and one obtained from
human memory.

2) We developed an LLM-based VLN model and our
model outperforms the state-of-the-art models on our
benchmark. We revealed the gap between the instruc-
tions collected based on memory and those collected
by thinking out loud.

The benchmark and the VLN model will be made open-
source upon acceptance.

II. RELATED WORK

A. Assistive Navigation Systems for Blind People

Recently, navigation robots have been explored to aid
blind people in avoiding obstacles while navigating [2], [3],
[4], [13]. A common practice is to prepare prebuilt maps
and infrastructure for localization and manual destination
selection [2], [3], [4]. This practice poses a limitation for
these systems, as prebuilt maps and infrastructure are costly
to obtain and maintain. Consequently, a map-less approach
was also proposed [5]. Based on the instruction from sighted
passersby [6], users input navigation directions through the
buttons on the robot’s handle. However, because the system
needs users to understand and memorize the instructions,
high cognitive loads are placed on the users. To address this,
our work aims to present a system that directly interprets
instructions from sighted passersby and navigates users au-
tonomously to their destinations.

B. Benchmarks in VLN tasks

The VLN task has been conducted in various bench-
marks, ranging from indoor [1], [14], [15] to outdoor [9],
[16], [17] settings. Most of the instruction annotations of
these benchmarks were created by annotators who typed
while concurrently observing a virtual environment or by
researchers who constructed them manually. This way of
obtaining instructions is not suitable for our purpose, as it
does not reflect the scenario of people describing routes from
their memories. In our case, we gathered natural language in-
structions through both an online and an onsite study, where
the onsite study contains instructions provided from human
memories. In addition, most indoor virtual environments do
not feature large public areas where blind people navigate,
such as shopping malls or university hallways. These areas
contain both static and dynamic obstacles and are charac-
terized by the existence of turning points and intersections
(Fig. 2). A similar environment is Touchdown [9]. However,
its map structure is represented by a navigation graph (i.e.,
an undirected graph that represents navigable points with
nodes), whereas we assume no access to navigation graphs.
Furthermore, our environment is fully configurable with
various static and dynamic obstacles.

C. VLN Models

Researchers have explored solutions for VLN tasks us-
ing supervised models [1], [18], [19], which learn from
a sequence of observations and actions to take. These
supervised models often do not transfer well in unseen
environments [10]. With the recent advancements in LLM,
researchers have also explored methods that do not require
retraining [11], [20], [21], [22], [23]. One such approach
was to use LLMs to extract landmarks from instructions and
follow chronologically [20], [21], [23]. Another approach
was to utilize LLM to flexibly determine actions at each
step. NavGPT [11] is a model that uses LLM iteratively to
select the node to navigate to within a navigation graph. Ad-
ditionally, researchers have explored approaches that utilize
the code generation capability of LLM [24], [25]. In the



(a) University (b) Museum 5F (c) Museum 7F

Fig. 2: Bird’s-Eye Views of Memory-Maze Environment. The benchmark contains three environments. The university
includes features such as classrooms, offices, hallways, a kitchen, and a library. The 5th floor of the museum mainly
contains exhibits. The 7th floor contains conference rooms, hallways, and a terrace area. Each environment includes two
routes, totaling six routes.

method proposed by Biggie et al. [25], given a prebuilt 3D
map, images from their robot, and a Python API, the model
generates codes that locate a target object [26], maps the
object’s location on the 3D map, and navigates to the mapped
location [25]. While these methods are effective when the
given instructions include sufficient landmarks, instructions
recalled from memory often contain insufficient landmarks,
potentially leading to failure. Furthermore, these methods are
limited by the need for a navigation graph or 3D map, which
is difficult to construct for every unseen environment. To
eliminate this requirement, models have been proposed to
predict navigation graphs [27] or low-level actions [18], [12]
iteratively. However, the need for iterative inference prolongs
inference time, which may affect navigation by not reacting
to dynamic obstacles responsively. Our model utilizes LLM
to produce navigation codes that follow a specified path in
a single iteration, and allows flexible integration of low-
level planning algorithms for obstacle avoidance. This direct
generation of navigation codes, coupled with existing low-
level planning algorithms, allows operation without the need
for navigation graphs.

III. MEMORY-MAZE

Here, we describe our benchmark’s virtual environment
and the robot simulation program. To simulate our scenario,
we selected a floor of a university building and two floors
in a museum building (Fig. 2), which is characterized by the
existence of multiple turning points.

A. Selecting and Building the Simulator

To simulate a scenario where a robot guides a blind
person, it is necessary to simulate high-fidelity egocentric
visuals that are realistic enough to run an image recognition
algorithm. In robot simulation software such as Gazebo [28],
it is difficult to create visually detailed environments, which
limits the functionality of the image recognition algorithm.
Furthermore, simulators used in existing VLN research, such
as AI2-THOR [29] and Matterport3D [30], are designed for
indoor simulation and are limited in their ability to customize
environments and the types of sensors that can be simulated.
Thus, we built a novel virtual environment from scratch on
top of the CARLA [8] simulator. While primarily developed
for autonomous driving simulations, CARLA’s flexibility and

compatibility with the Unreal Engine allowed us to create a
detailed 3D model of the experimental site. CARLA also
offers the ability to configure the existence of static and
dynamic obstacles and to simulate various sensors like RGB
cameras, depth sensors, and LiDAR sensors.

We created a 3D model of the experimental site using
Fusion 360 [31] and imported it into CARLA. This 3D model
accurately reproduces the experimental site, both visually and
in terms of floor layout. It also includes major objects along
the route (doors, chairs, a statue, etc.).

B. Implementation of the Control Program

Our next step was to develop a control program for the
robot in the simulator. Utilizing CARLA’s Python API to
control the navigation robot, we implemented various control
functions. We describe four major functions implemented.

We implemented functions for the agent to move
forward (move_forward(distance)), find a
turning point (detect_turning_point()),
and turn (turn(direction)) using CARLA’s
vehicle.apply_control API. When using the
move_forward(distance) function, to ensure the
robot moves along the path without colliding with walls,
we implemented a feature that makes the robot navigate as
closely to the center of the corridor as possible. We calculate
the central path based on the coordinates of the four corners
of the corridor in the 3D model. The central path tracking
is realized through PID control, which adjusts the robot’s
steering angles. When the detect_turning_point()
function is used, it determines if the robot is in the
pre-annotated areas of turning points and returns navigable
directions if the robot is in one of them. Once the robot
is at the turning point, it could change its direction using
the turn(direction) function. In our experiment,
coordinates of the corridor’s corners and the turning point
areas are acquired from the virtual environment to reduce
errors resulting from noise in perception or control, and
focus on executing instructions. However, these can be
obtained using prior well-established methods [5].

Additionally, we implemented an image recognition mod-
ule detect_from_RGB_image(object), to manage
landmark-related instructions such as “turn after finding



TABLE I: Data Analysis. The table presents the route
length (RL), mean, median, and standard deviation (SD) of
word counts in the collected instructions, and their failure
rates (FR). For the onsite instructions, we also report the
alternative rate (AR), the rate of describing alternative routes.

Route RL Iteration Mean Median SD FR AR

Online Study

University R1 40.27m 1 51.8 47.0 17.8 0.0% -
2 69.8 64.0 19.9 0.0% -

University R2 156.68m 1 81.3 81.0 24.9 9.09% -
2 98.3 99.0 31.2 3.03% -

Museum 5F R1 71.18m 1 81.4 78.0 36.3 17.39% -
2 88.9 90.0 32.3 17.39% -

Museum 5F R2 44.05m 1 60.1 53.5 21.5 9.09% -
2 71.0 61.0 33.9 4.55% -

Museum 7F R1 86.10m 1 98.2 91.5 42.5 13.64% -
2 96.7 90.0 42.2 18.18% -

Museum 7F R2 79.40m 1 71.3 68.0 25.8 4.35% -
2 95.0 85.0 47.4 0.00% -

Onsite Study

University R1 40.27m 1 73.9 74.5 36.6 25.0% 10.0%
2 102.9 94.5 51.1 25.0% 10.0%

University R2 156.68m 1 131.0 115.5 73.2 40.0% 15.0%
2 147.3 143.0 65.0 35.0% 15.0%

Museum 5F R1 71.18m 1 68.2 64.0 27.4 76.19% 0.0%
2 97.1 92.0 27.0 9.52% 0.0%

Museum 5F R2 44.05m 1 65.5 51.0 42.7 45.45% 59.1%
2 83.4 68.5 39.7 4.55% 63.6%

Museum 7F R1 86.10m 1 68.7 69.5 27.5 54.54% 4.5%
2 89.0 84.0 24.0 13.64% 9.0%

Museum 7F R2 79.40m 1 79.5 69.0 40.0 52.38% 85.7%
2 99.0 96.0 37.5 23.81% 90.1%

a chair.” While most existing object detection models are
designed to identify objects from predefined classes, they
are not capable of detecting arbitrary objects. Therefore,
we used Grounding DINO [32], an open-vocabulary object
detection model. Open-vocabulary object detection models
output bounding boxes for any object by using the object’s
name as a query. With the object detection model selected,
we then used CARLA’s robot ego-centric RGB sensors to
capture images. To address tasks requiring the robot to
identify an object multiple times (e.g., “turn after passing
four doors”), we added tracking algorithms to avoid counting
the same object in different frames as distinct entities.

We further assume that in instructions that require finding
landmark objects, the objects are located in close vicinity. For
example, in the instruction “turn after finding [object],” al-
though the camera could capture the object at a considerable
distance, such instructions typically imply that “[object]”
is near the robot. Therefore, we utilized the depth sensors
available in CARLA to measure the distance to each object
in the image, filtering out objects that are far away to ensure
only those at close range are detected. We set the distance
threshold to be four meters.

IV. INSTRUCTION DATA COLLECTION

A. Procedure

We conducted two studies, one online and one onsite, to
collect natural language instruction data for routes at three
locations: a floor across three buildings in a university and
two floors in a museum. We designed the route as shown
in Fig. 2. The studies were approved by our institutional
review board (IRB), and informed consent was obtained from
all participants. For each route, we obtained two rounds of
instructions: one asking participants to describe the route
to a blind person with a navigation robot naturally (first

(a) University Online Study (b) University Onsite Study

(c) Museum Online Study (d) Museum Onsite Study

Fig. 3: Word Clouds. The onsite instruction data contains
unique phrases that come from talking while recalling from
the memory, such as “uh,” “maybe,” and “okay.”

iteration) and another asking participants to describe the
route after providing them with a brief description of the
capability of the navigation robot (second iteration). The
second instruction was collected to obtain more accurate
memory-based instructions given by passersby. This was
achieved by explaining the robot’s capability (e.g., being able
to detect objects) to the participants. It simulates a scenario
where a blind user may provide sighted passersby with robot
information to obtain refined instructions. We expect that
telling them about robots’ capabilities would enable VLN
models to achieve better performance.

In the first study, participants completed an online ques-
tionnaire designed to gather instructions that were similar
to those in prior works. They were first presented with a
scenario in which they communicated with a blind person
accompanied by a navigation robot capable of following
natural language instructions and 360◦ video walkthroughs of
two routes. They were then asked to type instructions to the
destination. They were allowed to re-watch the walkthrough
videos at any time. We collected four instructions per par-
ticipant. In total, 78 participants participated in the study,
resulting in 312 instructions. The participants were gathered
through university recruitment or through an online survey
platform, and all were unfamiliar with the shown routes.
The study was conducted in Japan, and the instructions were
translated into English using GPT-4.

In the second study, we conducted an onsite in-person
study. The aim of this study was to gather data that re-
flects the realistic scenario of sighted people describing the
route from their memory. Thus, they did not watch the
walkthrough video or experience the route during the study.
The experimenter roleplayed as blind individuals, asked them
for directions to the route destinations, and instructed them
to describe the route verbally in two rounds. For the first
iteration, we asked participants to describe the routes as
naturally as possible. For the second iteration, to obtain
more accurate instructions for the benchmark, in addition to
explaining the robot’s capabilities, the experimenter pointed



Fig. 4: Method Overview. Given a set of instructions from a sighted passerby, the LLM first parses it into an itemized
format. Then, combined with the API specification, the LLM generates Python code directly to control the robot, which
runs in the virtual environment using the simulated sensor inputs.

out errors in the participants’ given instructions, such as a
missing turn, and asked them to explain the route again.
For the university routes, we recruited sighted passersby and
ensured that all participants were familiar with the route by
using a pre-study check survey. In this study, each partici-
pant described a single route, resulting in two instructions
per participant. In total, 40 participants participated in the
study at the university, contributing 80 instructions. For the
museum routes, we recruited staff or recent visitors who
were familiar with the museum layouts. In this study, each
participant described two routes, resulting in four instructions
per participant. In total, 43 participants participated in the
study at the museum, contributing 172 instructions.

B. Benchmark Statistics

The mean, median, and standard deviation (SD) for the
length of collected instructions are reported in Table I. First,
we observed that the mean length and SD are longer for
the second iteration in most cases, as participants tended
to add more information on the second iteration. Also, we
observed a tendency for instructions collected onsite to have
higher lengths and more length variation. This is because, in
the online study, participants described relevant and mostly
accurate information about landmarks and turning points,
while in the onsite study, many participants tried to be
descriptive, relying on their memory, such as adding audio,
olfactory cues, and conversational phrases such as “I’m not
100% sure about this, but I think...”.

The average instruction length and route distance in our
benchmark are greater than those in previous datasets. For
example, the R2R dataset includes instructions averaging
approximately 30 words and route distances of about 10 me-
ters [1], and the RxR dataset features instructions averaging
78 words and route distances of 14.9 meters [33].

The word clouds of the collected instructions are shown in
Fig. 3. For the university environment, although the samples
collected in the onsite study are fewer, they include 521
different words compared to the 381 words found in the
samples from the online study. The same trend was noted
in the museum environment, with 611 different words found
in the onsite study and 586 words in the online study. This
shows the greater diversity in the instructions’ wording when
described from memory. Although the instructions from the

online study were translated using LLM, we believe that
these results hold in the instructions’ original language.

In Table I, we also manually analyzed each instruction to
determine if it contained significant errors, i.e., the number
of failures in describing the route correctly. One author
first conducted an initial failure review, after which multiple
authors engaged in a discussion to reach a consensus on
all samples. Reasons for the instructions in the online study
that were classified as failures are turning to the wrong
direction at a turning point, instructing a turn at the incorrect
turning point, and suggesting unnecessary extra turns. For
instructions collected in the onsite study, the reasons for the
failures were containing extra turns, directing to an incorrect
direction, leading to a wrong destination, lacking essential
turn information, turning to incorrect directions at a turn,
and containing inaccurate environmental details.

Interestingly, while examining the instructions, we realized
that in the real world, humans may be able to correct errors in
the instructions. For example, according to some passersby,
the robot should go through a corridor between the hexagon
exhibitions and the rectangular exhibition immediately to
the right for museum 5F R2. However, there is actually no
corridor between these two exhibitions. But it is possible to
imagine where the nonexistent corridor might lead and try
to find a detour. Being able to recognize errors in memory-
based instructions is vital for aiding blind people to follow
instructions provided by passersby. This is a unique aspect
of our benchmark.

Finally, as shown in Table I, during the onsite study, we
observed that participants sometimes described alternative
routes compared to those we had initially anticipated and
illustrated in Fig. 2, when they described the routes from
their memory. Surprisingly, some participants described a
different route in the second iteration compared to their
initial description. This highlights the potential of humans
to describe alternative routes in real-world scenarios and
the need for VLN models to perform equally well in these
alternative routes, thereby underscoring the naturalness of
our benchmark.

V. VLN MODEL IMPLEMENTATION

In this section, we describe our proposed VLN model
used to test our benchmark. To satisfy the requirements
of our scenario, it contains two characteristics. First, we



utilized LLM’s capability to generalize to various tasks and
comprehend complex natural language instructions, so that
no additional training is required when deployed in a new
environment. Second, our method requires only a single
inference iteration to generate low-level navigation code for
robot control, in contrast to existing models that perform
repeated inferences during navigation, which may prolong
navigation time. It also eliminates the need for a navigation
graph by generating codes that directly interface with low-
level navigation modules. The generation of navigation code
potentially leads to the flexibility of integrating existing,
well-established methods into various modules, such as for
obstacle avoidance or turning point detection.

We define the following as inputs to the agent: natural lan-
guage instruction, the sensor input which includes the details
obtained from sensors, API specification which includes the
commands and their explanations in Python that the agent
can use as described in Sec. III-B, API implementation which
is the actual implementation of the API specification, and
the initial orientation of the robot. We assume the initial
orientation is predetermined, as the blind user can adjust it
in place. We used the GPT-4 model for the LLM, which is
provided via a public API. For the initial setup of the prompt,
instructions from five participants in the online study were
used as references to construct the prompt for the proposed
systems. The remaining were used for the evaluation in
Sec. VI. The implementation overview is shown in Fig. 4.

A. Parsing Instruction

The system first parses a natural language instruction to
step-by-step instructions using LLM. This was done to or-
ganize our benchmark’s diverse natural language instruction
and make it more interpretable before generating navigation
codes. To achieve this, we prompt LLMs with a set of
rules they should follow, such as the requirement to describe
when and which turning point to turn, and which object
the robot should detect, along with examples of possible
input and expected output. After parsing, each navigation
step is returned as a brief sentence. We employ a two-stage
prompting process with the LLM to generate more accurate
outputs. Initially, we prompt LLM to provide a thought to
guide the generation of the first output. Following this, we
prompt LLM to refine the output by incorporating a second
thought, leading to the finalized output.

B. Navigation Code Generation

After the parsed instructions have been obtained,
the LLM now generates the navigation codes in
Python. We prompt LLM with an API specification
that includes a range of commands for robot operations
(e.g., move_forward(distance) function). These
commands are complete with docstrings of their usage
explanation [25], [26] and instructions to generate
Python codes that follow the provided specification.
For detect_from_RGB_image(object), our model
uses an open vocabulary object detector internally (Sec. III-
B) and flexibly determines which object to detect by

TABLE II: Performance of VLN Models. We compare
our method with state-of-the-art VLN models that fulfill the
requirements relevant to our scenario.

Condition Online Study Data Onsite Study Data
Method Parser Route SR↑ OSR↑ SPD↓ CLS↑ SR↑ OSR↑ SPD↓ CLS↑

NavGPT University R1 0.04 0.09 37.54 0.05 0.02 0.04 40.58 0.05
NaVid University R1 0.00 0.00 35.73 0.03 0.00 0.00 36.67 0.02

Proposed University R1 0.20 0.24 17.01 0.56 0.23 0.33 21.04 0.46
Proposed ✓ University R1 0.30 0.35 19.66 0.49 0.30 0.38 18.32 0.54

NavGPT University R2 0.00 0.00 162.10 0.01 0.00 0.00 161.13 0.01
NaVid University R2 0.00 0.00 149.79 0.00 0.00 0.00 151.47 0.00

Proposed University R2 0.00 0.00 93.66 0.32 0.03 0.03 117.52 0.20
Proposed ✓ University R2 0.04 0.04 81.59 0.38 0.03 0.03 98.13 0.29

NavGPT Museum 5F R1 0.00 0.00 50.76 0.00 0.00 0.00 51.30 0.00
NaVid Museum 5F R1 0.00 0.00 54.59 0.01 0.00 0.00 55.50 0.01

Proposed Museum 5F R1 0.11 0.20 35.46 0.44 0.02 0.02 43.35 0.32
Proposed ✓ Museum 5F R1 0.20 0.26 26.71 0.60 0.05 0.07 29.14 0.54

NavGPT Museum 5F R2 0.00 0.07 37.47 0.07 0.00 0.07 35.67 0.06
NaVid Museum 5F R2 0.00 0.00 43.74 0.01 0.00 0.00 43.82 0.01

Proposed Museum 5F R2 0.05 0.18 23.17 0.25 0.00 0.02 29.08 0.37
Proposed ✓ Museum 5F R2 0.05 0.32 16.43 0.29 0.00 0.02 24.78 0.37

NavGPT Museum 7F R1 0.00 0.00 54.70 0.08 0.00 0.00 36.00 0.14
NaVid Museum 7F R1 0.00 0.00 73.76 0.06 0.00 0.00 71.30 0.07

Proposed Museum 7F R1 0.02 0.02 55.99 0.31 0.05 0.05 46.67 0.42
Proposed ✓ Museum 7F R1 0.02 0.02 42.59 0.48 0.09 0.09 25.22 0.67

NavGPT Museum 7F R2 0.00 0.00 61.64 0.01 0.00 0.00 60.43 0.01
NaVid Museum 7F R2 0.00 0.00 67.39 0.02 0.00 0.00 69.18 0.00

Proposed Museum 7F R2 0.15 0.26 47.41 0.17 0.00 0.10 52.81 0.16
Proposed ✓ Museum 7F R2 0.07 0.35 36.78 0.25 0.02 0.12 46.74 0.22

generating an object argument. The API specification was
formatted to the similar format of the previous work [25],
[26], but with additional notes, such as how each function
should be and not be used. We employ the same two-stage
refining method as in the parsing stage. Finally, we execute
the generated code using the API implementation, given the
initial orientation.

VI. EXPERIMENT

A. Baselines

In our scenario, VLN agents are expected to demonstrate
strong transferability, as blind users may navigate across
diverse unseen locations by asking sighted passersby for
directions. To evaluate this capability, we compare our
model with two prior state-of-the-art methods that leverage
foundation models and exhibit strong zero-shot performance:
NavGPT [11] and NaVid [12].

NavGPT [11] demonstrates strong zero-shot transfer ca-
pability by leveraging an LLM, visual foundation model, and
an object detector to iteratively select destinations within a
navigation graph until the agent determines it has reached
the goal. We used GPT-4o-mini for the LLM and for the
visual foundation model, and the same Grounding DINO [32]
for the object detector. As NavGPT requires a navigation
graph to operate, we constructed navigation graphs over the
environments following the R2R dataset [1].

NaVid [12], a state-of-the-art VLN model that demon-
strates strong generalization to unseen environments, em-
ploys a visual foundation model and operates without a
navigation graph, relying solely on camera input, similar
to our model. We strictly controlled the agent by following
NaVid’s established pipeline. We initialized its weights using
an open-sourced checkpoint.

B. Metrics

For the metrics, we employ success rate (SR), oracle
success rate (OSR), and shortest path distance (SPD) [1],
[34], and coverage weighted by length score (CLS) [35].



TABLE III: Effect of Instruction Refinement. While in
most cases refining instruction leads to an increase in per-
formance, in certain cases, it was not always the case, due
to redundant referral to surrounding objects.

Condition Online Study Data Onsite Study Data
Route Iteration SR↑ OSR↑ SPD↓ CLS↑ SR↑ OSR↑ SPD↓ CLS↑

University R1 1 0.43 0.48 16.37 0.56 0.25 0.40 20.41 0.52
University R1 2 0.17 0.22 22.94 0.41 0.35 0.35 16.23 0.56

University R2 1 0.04 0.04 86.82 0.36 0.00 0.00 93.32 0.31
University R2 2 0.04 0.04 76.36 0.41 0.05 0.05 102.95 0.28

Museum 5F R1 1 0.26 0.30 25.80 0.60 0.00 0.00 27.21 0.56
Museum 5F R1 2 0.13 0.22 27.61 0.61 0.10 0.14 31.07 0.52

Museum 5F R2 1 0.05 0.27 17.77 0.27 0.00 0.00 25.75 0.32
Museum 5F R2 2 0.05 0.36 15.09 0.30 0.00 0.05 23.82 0.43

Museum 7F R1 1 0.00 0.00 46.57 0.43 0.09 0.09 23.77 0.68
Museum 7F R1 2 0.05 0.05 38.61 0.53 0.09 0.09 26.66 0.65

Museum 7F R2 1 0.00 0.26 37.24 0.26 0.00 0.05 46.71 0.21
Museum 7F R2 2 0.13 0.43 36.33 0.24 0.05 0.19 46.76 0.23

As CLS computes the similarity of the path on the graph,
it requires a dense navigation graph to map the navigated
trajectory onto. Thus, we divided passable corridors into
50 cm square grids to serve as nodes on a graph and
mapped predicted and ground truth paths onto it to calculate
this metric [36]. For routes where participants described an
alternative path, we used the participant-described route as
the ground truth.

VII. RESULTS AND DISCUSSION

A. Performance of the Proposed Method

As shown in Table II, our model outperforms NavGPT
and NaVid. The baselines’ suboptimal performances can be
attributed to two factors: their deviation from the correct
direction, and their premature decision that they had reached
the goal. This is due to the fact that the baselines refer to
the environment at each navigation step with an LLM. For
example, if NavGPT makes a mistake even once during this
process, it will be challenging for the model to recover the
agent back to the correct path. Additionally, NaVid tends
to make unnecessary frequent turns after initially following
the route correctly for several iterations, likely due to the
longer sequence of turns and longer instructions in our
benchmark, which NaVid was not trained to handle. In
contrast, our method achieves the desired outcome through
a single iteration of code generation inference, removing
the need to initiate inferences at every intermediate step for
instructions like “go straight for 100m and then turn right.”.
We also observed that the instruction parsing module boosted
the performance of our method in most cases.

B. Difficulty of the Benchmark

In Table II, it is observed that the performances from
onsite instructions tended to be lower than those from online
instructions, as it is more likely for the route instructions
to contain errors due to human memory, and it is harder
for the system to recover from errors. Overall, our results
demonstrate the difficulty of the instruction data from human
memory and the value of our benchmark.

Across all routes, both our model and the baselines showed
suboptimal or low performance. One major reason was the

difficulty in handling the varied and inaccurate input instruc-
tions. In longer routes, participants tended to inaccurately
estimate lengths for certain path segments and not include
sufficient information about the destination.

Upon closer inspection, many instructions in our bench-
mark contained phrases that required a combined understand-
ing of both natural language and the building’s structure,
which our proposed model failed to follow. One example was
a phrase such as “go along this path and turn right in the
first intersection,” which was often described at the starting
point of University R1. The instruction skips the right turn
in the first turning point by describing it as “go along this
path,” because the building structure only allows a right turn
at the immediate corner. As a result, the instruction starts by
describing the first left turn where there are two possible
directions to proceed. Similar instructions also frequently
appeared to describe the third and fourth turns in University
R2. While humans can naturally follow such instructions,
our model was unable to handle this data, as it explicitly
takes into account turning points. This variation in the levels
of topological details further highlights the difficulty of our
benchmark, which imitates real-world scenarios of blind
people seeking navigation instructions.

C. Effect of Refining Instruction

In Table III, we report the performance of our proposed
method across different instruction iterations. The first itera-
tion corresponds to the most natural, memory-based instruc-
tion, while the second represents memory-based instructions
that are more accurate and contain features that may better
assist the VLN agent in navigation. Generally, we found
that refining the instruction led to a slight performance
improvement. However, surprisingly, it was not always the
case, particularly Museum 5F R1 and University R1 of the
online study data. This happened because participants tended
to describe more objects during the second iteration, which
contained greater variation in object descriptions. As such,
the two routes contained much richer object landmarks along
the routes for participants to describe. For example, one
participant described only turning point-related information
at the first iteration, while in the second iteration, the
participant also described objects to ignore, such as, “then,
you will come across an intersection with a door on the left
and an intersection with doors on both sides, but ignore them
and continue straight ahead.” Nonetheless, the tendency
of refined instructions to yield better performance suggests
that, when deploying VLN-equipped robots, it is beneficial
to assist sighted passersby in recalling routes more and in
conveying environmental information in a format that is more
compatible with robotic interpretation.

VIII. CONCLUSION AND FUTURE WORK

This work proposed Memory-Maze and a VLN model.
Our VLN model operates with a single inference, can achieve
zero-shot transfer, and can operate without a prebuilt map.
It is a first step towards utilizing VLN technology for



navigation robots for blind people. Our experiment demon-
strated that our model could complete the task while also
outperforming prior methods. The results also reflect the
difficulty of our benchmark. More importantly, we found
that realistic instructions collected in the onsite environment,
where participants had to rely on human memories, were
longer with greater variation in words, and contained more
errors compared to the instructions collected online. Through
the study with the baseline and our proposed VLN model, we
also observed a gap between the instructions collected onsite
and those collected in traditional settings. Upon qualitative
inspection, we observed evidence of the tendency for onsite
instruction to be more difficult for the model to handle,
such as the ones that required understanding of “go along
this path.” This suggests that future works on VLN should
consider a more adaptive map representation where nodes
and turns are not strictly defined, or a more flexible approach
to accommodate varying topological descriptions.

For future work, we aim to implement additional modules
that detect potential errors in the navigation so that the user
can ask for the route again. Also, while in this study, we only
used instructions from participants, for future practical usage,
we aim to also explore the interactive aspect with users and
robots. For example, the method could also benefit a blind
user, which could guide the instruction from passersby to be
better or rephrase it themself, potentially leading to better
performance of the robot. Additionally, we are in the process
of including more locations to our benchmark. We believe
that our benchmark based on the scenario of a navigation
robot for blind people provides a new perspective to the
VLN task, as it contains greater variety in descriptions, is of
higher difficulty, and most importantly, reflects a real-world
application scenario.

IX. THEME RELEVANCE

This paper seeks to bring attention to human understanding
of route instructions in visual language navigation (VLN),
particularly in scenarios where the robot seeks route instruc-
tions from humans in the real world. In traditional VLN
settings, route instructions are annotated by humans with per-
fect knowledge of the routes, as the human annotators have
the luxury of experiencing the routes repeatedly to refresh
their memories. Additionally, traditional route instructions
are shorter and are mostly limited to small, simpler spaces
such as houses or offices. By collecting route instruction
data from the real world, we discovered that memory-based
instructions often contain ambiguities and errors. However,
humans may be able to detect these errors in the instructions,
whereas existing leading VLN models fail to do so. Addi-
tionally, existing VLN models struggle to follow long route
instructions in large public spaces. This is because existing
models lack a recovery mechanism should they fail while
following the routes.

Our paper contributes to the workshop’s theme by adding
discussion to the following topics. AI alignment: We ob-
served a significant difference between VLN route instruction
data obtained in the traditional idealized setting and those

obtained in the real-world memory-based setting. Future
VLN models need to address this gap. Data accessibility: We
proposed a new paradigm to collect VLN route instruction
data more aligned with human interpretations. Applications
in human-robot interaction: We based our studies on the
real-world scenario where a blind person uses a navigation
robot to obtain route instructions from passersby and proceed
towards a destination, when they enter an area they have
never been to before.

ACKNOWLEDGEMENT

We deeply thank Hironobu Takagi for engaging in the
discussion of this project. We also thank Miraikan staff mem-
bers for their support of our studies. This work was supported
by JSPS KAKENHI No. 23KJ2048 and 21H05054.

REFERENCES

[1] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf,
I. Reid, S. Gould, and A. Van Den Hengel, “Vision-and-language
navigation: Interpreting visually-grounded navigation instructions in
real environments,” in CVPR, 2018.

[2] J. Guerreiro, D. Sato, S. Asakawa, H. Dong, K. M. Kitani, and
C. Asakawa, “Cabot: Designing and evaluating an autonomous navi-
gation robot for blind people,” in ASSETS, 2019.

[3] S. Liu, A. Hasan, K. Hong, R. Wang, P. Chang, Z. Mizrachi, J. Lin,
D. L. McPherson, W. A. Rogers, and K. Driggs-Campbell, “Dragon:
A dialogue-based robot for assistive navigation with visual language
grounding,” RA-L, 2024.

[4] S. Kayukawa, D. Sato, M. Murata, T. Ishihara, A. Kosugi, H. Takagi,
S. Morishima, and C. Asakawa, “How users, facility managers, and
bystanders perceive and accept a navigation robot for visually impaired
people in public buildings,” in RO-MAN, 2022.

[5] M. Kuribayashi, T. Ishihara, D. Sato, J. Vongkulbhisal, K. Ram,
S. Kayukawa, H. Takagi, S. Morishima, and C. Asakawa, “Pathfinder:
Designing a map-less navigation system for blind people in unfamiliar
buildings,” in CHI, 2023.

[6] K. Müller, C. Engel, C. Loitsch, R. Stiefelhagen, and G. Weber,
“Traveling more independently: A study on the diverse needs and
challenges of people with visual or mobility impairments in unfamiliar
indoor environments,” TACCESS, 2022.

[7] M. Kuribayashi, K. Uehara, A. Wang, S. Morishima, and C. Asakawa,
“Wanderguide: Indoor map-less robotic guide for exploration by blind
people,” in CHI, 2025.

[8] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in CoRL, 2017.

[9] H. Chen, A. Suhr, D. Misra, N. Snavely, and Y. Artzi, “Touchdown:
Natural language navigation and spatial reasoning in visual street
environments,” in CVPR, 2019.

[10] W. Wu, T. Chang, X. Li, Q. Yin, and Y. Hu, “Vision-language
navigation: A survey and taxonomy,” NCAA, 2023.

[11] G. Zhou, Y. Hong, and Q. Wu, “Navgpt: Explicit reasoning in vision-
and-language navigation with large language models,” in AAAI, 2024.

[12] J. Zhang, K. Wang, R. Xu, G. Zhou, Y. Hong, X. Fang, Q. Wu,
Z. Zhang, and H. Wang, “Navid: Video-based vlm plans the next step
for vision-and-language navigation,” RSS, 2024.

[13] S. Cai, A. Ram, Z. Gou, M. A. W. Shaikh, Y.-A. Chen, Y. Wan,
K. Hara, S. Zhao, and D. Hsu, “Navigating real-world challenges:
A quadruped robot guiding system for visually impaired people in
diverse environments,” in CHI, 2024.

[14] J. Thomason, M. Murray, M. Cakmak, and L. Zettlemoyer, “Vision-
and-dialog navigation,” in CoRL, 2020.

[15] Y. Qi, Q. Wu, P. Anderson, X. Wang, W. Y. Wang, C. Shen, and A. v. d.
Hengel, “Reverie: Remote embodied visual referring expression in real
indoor environments,” in CVPR, 2020.

[16] H. De Vries, K. Shuster, D. Batra, D. Parikh, J. Weston, and D. Kiela,
“Talk the walk: Navigating new york city through grounded dialogue,”
arXiv, 2018.

[17] Z. Huang, Z. Shangguan, J. Zhang, G. Bar, M. Boyd, and E. Ohn-Bar,
“Assister: Assistive navigation via conditional instruction generation,”
in ECCV, 2022.



[18] J. Krantz, E. Wijmans, A. Majumdar, D. Batra, and S. Lee, “Beyond
the nav-graph: Vision-and-language navigation in continuous environ-
ments,” in ECCV, 2020.

[19] P. Anderson, A. Shrivastava, J. Truong, A. Majumdar, D. Parikh,
D. Batra, and S. Lee, “Sim-to-real transfer for vision-and-language
navigation,” in CoRL, 2021.

[20] D. Shah, B. Osiński, S. Levine, et al., “Lm-nav: Robotic navigation
with large pre-trained models of language, vision, and action,” in
CoRL, 2023.

[21] R. Schumann, W. Zhu, W. Feng, T.-J. Fu, S. Riezler, and W. Y.
Wang, “Velma: Verbalization embodiment of llm agents for vision
and language navigation in street view,” in AAAI, 2024.

[22] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” in ICML, 2022.

[23] P. Chen, X. Sun, H. Zhi, R. Zeng, T. H. Li, G. Liu, M. Tan, and C. Gan,
“a2 nav: Action-aware zero-shot robot navigation by exploiting vision-
and-language ability of foundation models,” 6th Robot Learning
Workshop: Pretraining, Fine-Tuning, and Generalization with Large
Scale Models, NeurIPS, 2023.

[24] C. Huang, O. Mees, A. Zeng, and W. Burgard, “Visual language maps
for robot navigation,” in ICRA, 2023.

[25] H. Biggie, A. N. Mopidevi, D. Woods, and C. Heckman, “Tell me
where to go: A composable framework for context-aware embodied
robot navigation,” in CoRL, 2023.

[26] D. Surís, S. Menon, and C. Vondrick, “Vipergpt: Visual inference via
python execution for reasoning,” in ICCV, 2023.

[27] J. Krantz, A. Gokaslan, D. Batra, S. Lee, and O. Maksymets,
“Waypoint models for instruction-guided navigation in continuous
environments,” in CVPR, 2021.

[28] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in IROS, 2004.

[29] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti,
M. Deitke, K. Ehsani, D. Gordon, Y. Zhu, et al., “Ai2-thor: An
interactive 3d environment for visual ai,” arXiv, 2017.

[30] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niebner, M. Savva,
S. Song, A. Zeng, and Y. Zhang, “Matterport3d: Learning from rgb-d
data in indoor environments,” in 3DV, 2017.

[31] Autodesk, “Autodesk fusion: More than cad, it’s the future of design
and manufacturing,” Retrieved in February, 2024 from https://www.
autodesk.com/products/fusion-360/overview, 2024.

[32] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang,
H. Su, J. Zhu, et al., “Grounding dino: Marrying dino with grounded
pre-training for open-set object detection,” in ECCV, 2024.

[33] A. Ku, P. Anderson, R. Patel, E. Ie, and J. Baldridge, “Room-
across-room: Multilingual vision-and-language navigation with dense
spatiotemporal grounding,” in EMNLP, 2020.

[34] J. Gu, E. Stefani, Q. Wu, J. Thomason, and X. Wang, “Vision-
and-language navigation: A survey of tasks, methods, and future
directions,” in ACL, 2022.

[35] V. Jain, G. Magalhaes, A. Ku, A. Vaswani, E. Ie, and J. Baldridge,
“Stay on the path: Instruction fidelity in vision-and-language naviga-
tion,” in ACL, 2019.

[36] G. Ilharco, V. Jain, A. Ku, E. Ie, and J. Baldridge, “General evaluation
for instruction conditioned navigation using dynamic time warping,”
arXiv, 2019.


