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Abstract001

Weak-to-strong generalization, where weakly002
supervised strong models outperform their003
weaker teachers, offers a promising approach004
to aligning superhuman models with human005
values. To deepen the understanding of this006
approach, we provide theoretical insights into007
its capabilities and limitations. First, in the008
classification setting, we establish upper and009
lower generalization error bounds for the strong010
model, identifying the primary limitations as011
stemming from the weak model’s generaliza-012
tion error and the optimization objective itself.013
Additionally, we derive lower and upper bounds014
on the calibration error of the strong model.015
These theoretical bounds reveal two critical in-016
sights: (1) the weak model should demonstrate017
strong generalization performance and main-018
tain well-calibrated predictions, and (2) the019
strong model’s training process must strike a020
careful balance, as excessive optimization may021
lead to overfitting to the weak supervision. Fi-022
nally, in the regression setting, we theoretically023
extend the work of Charikar et al. (2024) to a024
loss function based on KL divergence, offering025
guarantees that the strong student can outper-026
form its weak teacher by at least the magnitude027
of their disagreement. The theory is validated028
through synthetic experiments.029

1 Introduction030

Human supervision (Ouyang et al., 2022; Bai et al.,031

2022a) plays a crucial role in building both effec-032

tive and safe artificial intelligence systems (Achiam033

et al., 2023; Touvron et al., 2023). However, as fu-034

ture superhuman models exhibit increasingly com-035

plex behaviors, reliable human oversight becomes036

increasingly challenging (OpenAI, 2024).037

To tackle this issue, the Weak-To-Strong Gen-038

eralization (W2SG) paradigm (Burns et al., 2023)039

is proposed. It finds that, strong pre-trained lan-040

guage models, when fine-tuned using labels pro-041

duced by weaker models, consistently achieve bet-042

ter performance than their weak supervisors. This043

intriguing phenomenon has not only driven the de- 044

velopment of diverse alignment algorithms (Zhu 045

et al., 2025; Liu and Alahi, 2024), but also inspired 046

efforts (Pawelczyk et al., 2024; Yang et al., 2024; 047

Guo et al., 2024) to extend the concept to other 048

tasks. However, despite its empirical success, the 049

theoretical foundations of W2SG remain under- 050

developed. Although several elegant theoretical 051

frameworks (Lang et al., 2024; Somerstep et al., 052

2024; Wu and Sahai, 2025; Charikar et al., 2024) 053

are proposed, a universal framework is still lacking 054

to address fundamental questions, such as: What 055

is the optimal generalization performance a strong 056

model can achieve after W2SG? What other factors 057

are influenced by W2SG? 058

To answer these questions, we provide a theoret- 059

ical analysis of W2SG, shedding lights on its ca- 060

pabilities and limitations. Firstly, in classification 061

tasks, our theoretical analysis of lower and upper 062

generalization bounds under KL divergence loss re- 063

veals that the strong model’s performance is funda- 064

mentally determined by two key factors: (1) the dis- 065

agreement between strong and weak models, which 066

serves as the minimization objective in W2SG, and 067

(2) the weak model’s performance. These findings 068

suggest that (1) achieving the minimal optimization 069

objective in W2SG limits the strong model’s ability 070

to significantly outperform its weak supervisor, and 071

(2) selecting a stronger weak model can enhance 072

the performance of the strong model. Secondly, 073

we investigate how strong model’s calibration—the 074

property that a model’s predicted confidence aligns 075

with its actual accuracy (Guo et al., 2017; Kumar 076

et al., 2019)—is affected in the W2SG framework. 077

Our theoretical bounds reveal that the calibration of 078

the strong model depends on both the calibration of 079

the weak model and the disagreement between the 080

two models. The theory highlights the importance 081

of avoiding a poorly-calibrated weak model and an 082

overfitted strong model. The above theoretical anal- 083

ysis is validated using GPT-2 series (Radford et al., 084
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2019) and Pythia series (Biderman et al., 2023).085

In addition to classification setting, we also con-086

sider the regression problem. In particular, we build087

on Charikar et al. (2024) by extending their analysis088

of squared loss to output distribution divergence, a089

measure of the difference between two models’ out-090

put distributions. In this setting, the model outputs091

are normalized to form valid probability distribu-092

tions over all input data, and the output distribution093

divergence between two models is defined as the094

KL divergence of their respective output distribu-095

tions. We recover the findings from Charikar et al.096

(2024) and show that the strong model’s gener-097

alization error is provably smaller than the weak098

model’s, with the gap no less than the W2SG min-099

imization objective—namely, the strong model’s100

error on the weak labels. We conduct synthetic101

experiments to support our theoretical insights.102

2 Related Work103

In this section, we introduce AI alignment and104

W2SG. Additional related work including teacher-105

student learning paradigm, weakly-supervised106

learning, calibration and information-theoretic107

analysis is provided in Appendix A.108

AI alignment. AI alignment (Ji et al., 2023; Shen109

et al., 2023) aims to ensure AI systems act in accor-110

dance with human values. A popular approach to111

achieve this goal is fine-tuning models on human-112

annotated data, such as Reinforcement Learning113

from Human Feedback (RLHF) (Ouyang et al.,114

2022; Bai et al., 2022a) and Direct Preference Op-115

timization (DPO) (Rafailov et al., 2024). How-116

ever, this alignment paradigm faces significant chal-117

lenges: human oversight becomes insufficient as118

AI surpasses human capabilities (Kim et al., 2024),119

and obtaining scalable, high-quality human feed-120

back remains difficult (Casper et al., 2023). These121

challenges highlight the critical need to align super-122

human AI systems (OpenAI, 2024). In contrast to123

these approaches, our work explores W2SG, which124

leverages weak models as the teacher to achieve125

the alignment goal.126

Weak-to-strong generalization. To explore the127

effect of weak models to supervise strong models,128

Burns et al. (2023) first find that strong models129

supervised by weak models can exhibit better per-130

formance on corresponding tasks than their weak131

supervisors, indicating the possibility of stimulat-132

ing greater power from super models under weak133

supervisions. There are also algorithms (Zhu et al.,134

2025; Agrawal et al., 2024; Sang et al., 2024; Guo 135

and Yang, 2024) and empirical analysis (Yang et al., 136

2025; Ye et al., 2024) for it. However, only a 137

limited number of theoretical studies have been 138

conducted on this topic. Lang et al. (2024) an- 139

alyzes it by introducing theoretical bounds that 140

account for pseudolabel correction and coverage 141

expansion. Somerstep et al. (2024) frame W2SG as 142

a transfer learning problem, revealing limitations 143

of fine-tuning on weak labels. Wu and Sahai (2025) 144

study linear models under a spiked covariance set- 145

ting and derive asymptotic bounds. Charikar et al. 146

(2024) take a convex-theoretic approach in regres- 147

sion, quantifying performance improvements under 148

squared loss via the misfit error between weak and 149

strong models. The work most closely related to 150

ours is Charikar et al. (2024), which primarily fo- 151

cuses on squared loss in regression. In contrast, we 152

consider KL divergence-like losses, including KL 153

divergence for classification and output distribution 154

divergence for regression. Furthermore, while they 155

focuses on establishing upper bounds, our study 156

incorporates both upper and lower bounds as well 157

as calibration analysis through experiments on lan- 158

guage models, providing a more comprehensive 159

understanding of the fundamental capabilities and 160

limitations of W2SG. 161

3 Preliminaries 162

3.1 Classification and Regression 163

We examine two problem settings. In the first case, 164

we consider classification tasks using KL diver- 165

gence as the loss function. Minimizing this loss is 166

equivalent to minimizing cross-entropy loss, which 167

is widely used in the W2SG literature (Burns et al., 168

2023). In the second case, we focus on regression 169

tasks, employing the KL divergence between the 170

predictions of two models as the loss function. The 171

model outputs over the entire data domain are nor- 172

malized to form probability distributions. This ap- 173

proach is an extension of previous result (Charikar 174

et al., 2024) on squared loss, and provides an intu- 175

itive framework for understanding W2SG. 176

Given the data distribution P , data domain X 177

and output domain Y , let F : X → Y . Consider 178

the difference dP and empirical difference d̂P be- 179

tween two models, where dP , d̂P : F × F → R+
0 . 180

We define the below two settings: 181

Setting 1: KL divergence loss. Firstly, we con- 182

sider a k-classification problem. Given the data 183

domain X ⊆ Rd and output domain Y ⊆ Rk. Con- 184
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sider the model with the softmax module, i.e., ∀y =185

(y1, · · · , yk)T ∈ Y , there holds
∑k

i=1 yi = 1 and186

0 < yi ≤ 1. Given two models f, g ∈ F , define187

dP and d̂P :188

dP(f, g) ≜ Ex∼P [DKL(f(x)∥g(x))] , (1)189

d̂P(f, g) ≜
1

n

n∑
j=1

DKL(f(xj)∥g(xj)), (2)190

where the KL divergence DKL(f(x)∥g(x)) =191 ∑k
i=1[f(x)]i log

[f(x)]i
[g(x)]i

is the KL divergence be-192

tween predictions, and [f(x)]i, [g(x)]i are elements193

of f(x), g(x).194

Setting 2: Output distribution divergence.195

While KL divergence loss serve as de facto standard196

for classification, recent research demonstrates that197

KL divergence has been effectively employed in re-198

gression (Imani and White, 2018; Yang et al., 2021;199

Günder et al., 2022; Kitazawa, 2025). Therefore,200

we also consider a regression problem using KL di-201

vergence in W2SG. Let the data domain and output202

domain be X ⊆ Rd and Y = {y ∈ R|0 < y ≤ 1},203

respectively. In this setting, the outputs of the204

model for all input data are probability-normalized205

to ensure they form valid probability distributions.206

The difference between two models f, g ∈ F is207

then measured as the KL divergence between their208

corresponding output distributions:209

dP(f, g) ≜
∫
X
f(x) log

f(x)

g(x)
dx, (3)210

d̂P(f, g) ≜
n∑

i=1

f(xi) log
f(xi)

g(xi)
. (4)211

3.2 Weak-to-strong Generalization212

In the context of W2SG, we focus on the fine-213

tuning phase after pre-training. Let h⋆ : Rd → Rd⋆214

denotes the ground truth representation function,215

which maps data x ∈ X to an ideal, fully enriched216

representation h⋆(x). The target fine-tuning task,217

composed with the ground truth representation, is218

denoted as f⋆ ◦ h⋆, where f⋆ : Rd⋆ → Y . The219

weak model learns a mapping fw ◦ hw, where the220

pre-trained representation hw : X → Rdw extracts221

features from the input data, and fw : Rdw → Y is222

fine-tuned using supervised data with ground truth223

labels. The strong model, on the other hand, aims224

to learn a mapping fsw◦hs, where hs : X → Rds is225

the representation, and fsw ∈ Fs is a task-specific226

function from a hypothesis class Fs : Rds → Y .227

The strong model leverages the representation hs228

to improve performance on the fine-tuning task. In 229

the convention setting of AI alignment (Ouyang 230

et al., 2022), the model is learned through human- 231

annotated ground truth data: 232

fs = argminf∈Fs
dP(f

⋆ ◦ h⋆, f ◦ hs). (5) 233

Nevertheless, the acquisition of human-generated 234

data is both costly and time-consuming. To ad- 235

dress this challenge, the W2SG framework lever- 236

ages weak supervision from the weak model’s pre- 237

dictions, enabling the strong model to be trained 238

through population risk minimization: 239

fsw = argminf∈Fs
dP(fw ◦ hw, f ◦ hs). (6) 240

In practice, we label n i.i.d. samples using the 241

weak model and minimize the empirical risk: 242

f̂sw = argminf∈Fs
d̂P(fw ◦ hw, f ◦ hs). (7) 243

Denote the labeling function F ⋆ = f⋆ ◦ h⋆, 244

strong ceiling model Fs = fs ◦ hs, weak model 245

Fw = fw ◦hw, and strong models Fsw = fsw ◦hs, 246

F̂sw = f̂sw ◦ hs, respectively. 247

4 Universal Results in W2SG 248

In this section, we consider the classification prob- 249

lem, where dP is the KL divergence loss defined 250

in Equation (2). We first establish lower and upper 251

generalization error bounds of the strong model in 252

W2SG in Section 4.1. Then the lower and upper 253

calibration error bounds are shown in Section 4.2. 254

4.1 Generalization Error Bounds 255

Theorem 4.1 (Proved in Appendix B.1). Given 256

the data domain X , output domain Y and models 257

Fsw, Fw, F
⋆ defined above. Then there holds 258

259

|dP(F ⋆, Fsw)− dP (F ⋆, Fw)| 260

≤ O
(√

dP(Fsw, Fw)
)
, 261

Remark. The proof can be also extended to the re- 262

gression setting, which is provided in Appendix B.2. 263

Theorem 4.1 provides a quantitative framework 264

for assessing the performance gap between weak 265

model and strong model in W2SG. Specifically, the 266

value of dP(F ⋆, Fsw) is constrained by two terms: 267

(1) dP(F ⋆, Fsw), which reflects the performance of 268

the weak model, and (2) dP(Fw, Fsw), which is de- 269

cided by the optimization result in Equation (6) and 270

measures how the strong model learns to imitate 271

the weak supervisor. This result is examined from 272

two complementary perspectives: a lower bound 273

and an upper bound. 274
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Lower bound. The lower bound indicates the fun-275

damental limitation: dP(F ⋆, Fsw) cannot be arbi-276

trarily reduced. Firstly, a minimal dP(F ⋆, Fsw)277

is intrinsically tied to the weak model perfor-278

mance dP (F ⋆, Fw). To improve the strong279

model, the weak model becomes critical—that is,280

dP (F ⋆, Fw) should be as small as possible. It281

underscores the importance of carefully select-282

ing the weak model (Burns et al., 2023; Yang283

et al., 2025). Secondly, the performance improve-284

ment of strong model over the weak model can-285

not exceed O
(√

dP(Fw, Fsw)
)

. In W2SG, while286

the student-supervisor disagreement dP(Fw, Fsw)287

is minimized in Equation (6), we anticipate288

O
(√

dP(Fw, Fsw)
)

to remain relatively small.289

However, a paradox arises: achieving a smaller290

dP (F ⋆, Fsw) necessitates a larger dP(Fw, Fsw).291

This implies that the performance improvement292

of W2SG is probably constrained by its own opti-293

mization objective.294

Upper bound. The upper bound provides a the-295

oretical guarantee for W2SG by ensuring that296

dP(F
⋆, Fsw) remains bounded and does not grow297

arbitrarily large. Firstly, effective W2SG requires298

choosing a weak model that produces supervision299

signal closely aligned with the true score, i.e.,300

achieving a small dP (F ⋆, Fw). To this end, em-301

ploying a stronger weak model is crucial to ob-302

tain a tighter upper bound of dP(F ⋆, Fsw). Sec-303

ondly, the worst-case performance of the strong304

model is constrained by the sum of dP (F ⋆, Fw)305

and O
(√

dP(Fw, Fsw)
)

. By appropriately se-306

lecting the weak model and determining the min-307

imizer of Equation (6), both dP (F ⋆, Fw) and308

O
(√

dP(Fw, Fsw)
)

can be kept small, ensuring309

the practicality of the strong model.310

4.2 Calibration Error Bound311

In this section, we further explore W2SG through312

the lens of calibration (Kumar et al., 2019), which313

requires that the prediction confidence should314

match the actual outcome. We first state the defini-315

tion of Marginal Calibration Error (MCE) (Kumar316

et al., 2019), which is an extended version of Ex-317

pected Calibration Error (ECE) (Guo et al., 2017)318

designed for multi-class classification. In particu-319

lar, we use an ℓ1 version of MCE, with the weight320

constant 1
k omitted.321

Definition 4.1 (Marginal Calibration Error (Ku-322

mar et al., 2019)). Let x ∈ X , ground truth323

y = [y1, · · · , yk]T ∈ {0, 1}k where
∑k

i=1 yi = 1, 324

and a model f : X → Y . Define the marginal 325

calibration error of f as: 326

MCE(f) =
k∑

i=1

Ex |[f(x)]i − P[yi = 1|[f(x)]i]| .

(8)

327

It measures the difference between model con- 328

fidence and actual outcome, and MCE(f) ∈ [0, 2]. 329

For binary classification, MCE is twice the ECE. 330

We shed light on upper and lower bounds of cali- 331

bration of the strong model. 332

Theorem 4.2 (Proved in Appendix B.3). Let 333

MCE(·) be the marginal calibration error in Defi- 334

nition 4.1. Then there holds 335
336

|MCE(Fsw)− MCE(Fw)| 337

≤ 2 ·
√

1− exp (−dP(Fw, Fsw)). (9) 338

Theorem 4.2 demonstrates that the calibration 339

error of Fsw is influenced by two key factors: (1) 340

the calibration error of Fw, and (2) the teacher- 341

student disagreement, as characterized by the op- 342

timization result in Equation (6). This theoreti- 343

cal result yields two insights. First, to achieve a 344

strong model with acceptable calibration, the weak 345

teacher should also exhibit acceptable calibration. 346

Otherwise, the strong model will inherit a non- 347

trivial calibration error from the weak teacher as 348

dP(Fw, Fsw) goes to zero. Second, closely imitat- 349

ing the weak supervisor minimizes dP(Fw, Fsw), 350

causing the calibration errors of the strong and 351

weak models to converge. Taking them together, to 352

ensure W2SG with reasonable calibration and pre- 353

vent a poorly-calibrated Fsw, it is crucial to avoid 354

using a poorly-calibrated weak model with an 355

overfitted strong model. Additionally, since mod- 356

els with larger capacity may exhibit higher calibra- 357

tion errors (Guo et al., 2017), a potential trade-off 358

may exist between the weak model’s calibration er- 359

ror and the teacher-student disagreement. In other 360

words, MCE(Fw) and
√
1− exp (−dP(Fw, Fsw)) 361

may not be minimized simultaneously, posing a 362

challenge in selecting the weak model and design- 363

ing an effective optimization strategy to achieve 364

better calibration in the strong model. 365

4.3 Experimental Validation in Language 366

Models 367

In this section, we use language models to verify 368

our theoretical results in W2SG. 369
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Figure 1: Accuracy and calibration results for Pythia and GPT-2 series. (a) Test accuracies of Pythia series. (b)
Test accuracies of GPT-2 series. Each curve demonstrates the variation in accuracy of W2SG as strong models are
supervised by weak models of varying capabilities. “Strong Ceiling” corresponds to models fine-tuned using ground
truth data. (c) Expected calibration errors of Pythia series. Each curve depicts the change in ECE as strong models
are supervised by different weak teachers. (d) Expected calibration errors of GPT-2 series.

4.3.1 Experimental Setting370

Dataset. We define the alignment objective as371

enabling a weak model to guide a strong model372

in achieving harmlessness. To this end, we em-373

ploy CAI-Harmless (Bai et al., 2022b), which is374

a widely adopted single-turn harmless dataset for375

reward modeling task. Each sample is structured376

as (x; yc, yr), where x denotes the prompt, and yc377

and yr represent the human-preferred and human-378

rejected completions, respectively. The dataset is379

randomly split into three 4K-sample subsets: one380

for fine-tuning both weak and strong base models,381

another for weak supervision via weak model pre-382

dictions, and the last for testing and evaluation. The383

dataset is randomly divided into three distinct sub-384

sets: (1) 4K ground truth samples for fine-tuning385

both weak and strong base language models; (2)386

A held-out set of 4K samples, where labels are387

predicted by the weak model and used to provide388

weak supervision for training the strong model; (3)389

The remaining 4K samples, reserved for testing and390

evaluating the performance of all models.391

Model. To explore weak-to-strong generalization,
we utilize GPT-2 series (Radford et al., 2019)
(including GPT-2-Base, GPT-2-Medium, GPT-2-
Large, and GPT-2-XL) and Pythia series (Bider-
man et al., 2023) (including Pythia-70M, Pythia-
160M, Pythia-410M and Pythia-1B). For each
model, we append a linear projection head to fa-
cilitate logit predictions for each completion pair
x̃ = (x; yc, yr). Consequently, the task can be
framed as a binary classification problem, where
the model F predicts the soft label as

F (x̃) = Sigmoid(F (yc)− F (yr)).

Training. The models are trained via KL diver- 392

gence loss. Training details are in Appendix C.1. 393

Metric. To evaluate whether a model F can ef- 394

fectively distinguish between chosen and rejected 395

completions (yc and yr) for a given prompt x, we 396

aim for F to assign a higher score to the chosen 397

completion compared to the rejected one. Specif- 398

ically, this requires F (yc) − F (yr) > 0 for each 399

completion pair x̃ = (x; yc, yr), which implies 400

5



Pythia-160M Pythia-410M Pythia-1B
Model Type

0.920

0.925

0.930

0.935

0.940

0.945

0.950

Ac
cu

ra
cy

Epoch
Epoch=1 Epoch=3

(a) Accuracy (Pythia).

GPT-2-Medium GPT-2-Large GPT-2-XL
Model Type

0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95
0.96

Ac
cu

ra
cy

Epoch
Epoch=1 Epoch=3

(b) Accuracy (GPT-2).

Pythia-160M Pythia-410M Pythia-1B
Model Type

0.00

0.02

0.04

0.06

0.08

0.10

0.12

EC
E

Epoch
Epoch=1 Epoch=3

(c) ECE (Pythia).

GPT-2-Medium GPT-2-Large GPT-2-XL
Model Type

0.00

0.02

0.04

0.06

0.08

0.10

0.12

EC
E

Epoch
Epoch=1 Epoch=3

(d) ECE (GPT-2).

Figure 2: Ablation study for the Pythia and GPT-2 series. (a)-(b) Test accuracies of Pythia and GPT-2. The
accuracies of Pythia-70M and GPT-2-Base fine-tuned on ground truth data is 92.45% and 90.95%, respectively.
(c)-(d) ECE of Pythia and GPT-2. The ECE of Pythia-70M and GPT-2-Base fine-tuned on ground truth data is 0.049
and 0.042, respectively.

F (x̃) > 0.5. Accordingly, the test accuracy of a401

model F is reported as the fraction of predictions402

that satisfy F (x̃) > 0.5.403

4.3.2 Results and Analysis404

The generalization and calibration performance for405

Pythia and GPT-2 series are shown in Figure 1.406

To further investigate how the optimization result407

dP(Fw, Fsw) affect generalization and calibration,408

we increase the number of epochs to train a strong409

model that more closely imitates the weak model.410

The corresponding results are in Figure 2.411

Main results. Figure 1(a) and Figure 1(b) demon-412

strate that, for the same strong model, the general-413

ization of W2SG increases when supervised by a414

weak model of greater capacity. This experimental415

result is consistent with Theorem 4.1. Interestingly,416

in Figure 1(c) and Figure 1(d), we observe that for417

the same weak model as the teacher, a stronger stu-418

dent model with higher capacity tends to exhibit419

larger ECE. This aligns with previous findings on420

the negative correlation between model capacity421

and calibration (Guo et al., 2017).422

Ablation study. We extend the training epochs423

and design a series of teacher-student pairs with424

increasing model capacities. In particular, we em-425

ploy Pythia-70M as the weak teacher to super-426

vise Pythia-160M, 410M, and 1B. We also utilize427

GPT-2-Base as the weak teacher for supervising428

GPT-2-Medium, Large, and XL. Figure 2 illus-429

trates that as we increase the number of epochs to430

reduce dP(Fw, Fsw), there is a simultaneous de-431

cline in both the accuracy and calibration error432

of other strong models. Taking the Pythia series433

as an example, Figure 1(a) and Figure 1(c) demon-434

strate that Pythia-70M achieves the lowest accuracy435

and best ECE performance among the Pythia mod-436

els. While Theorem 4.2 indicates that reducing437

dP(Fw, Fsw) causes the accuracy and calibration438

results of strong models to converge toward those 439

of the weak model, our experiments show that in- 440

creasing the number of epochs leads to reduced 441

accuracy and ECE for Pythia-160M, 410M, and 442

1B. In other words, the accuracy and ECE of strong 443

models approach those of the weak model, consis- 444

tent with Theorem 4.1 and Theorem 4.2. And this 445

trend is also observed in the GPT-2 series. 446

Overfitting blocks W2SG. As the number of 447

epochs increases, the accuracy of GPT-2-XL drops 448

even below that of GPT-2-Base (90.95%). This is 449

attributed to the strong expressive power of GPT- 450

2-XL, which leads to overfitting to the weak su- 451

pervision provided by GPT-2-Base. Note that the 452

upper bounds derived in Theorem 4.1 and Theo- 453

rem 4.2 do not guarantee that the strong model will 454

outperform the weak model in terms of both gen- 455

eralization performance and calibration properties. 456

The underlying intuition is that if a strong model 457

overfits to the weak supervision, it may closely 458

mimic the weak model’s generalization and cali- 459

bration behavior. Consequently, the strong model 460

could end up performing on par with or potentially 461

even worse than the weak model. 462

5 Results Beyond Squared Loss 463

In regression problems under some assumptions, 464

Charikar et al. (2024) proves that the strong 465

model’s error is smaller than the weak model’s, 466

with the gap at least the strong model’s error on 467

the weak labels. This observation naturally raises 468

the following question: Can their proof be ex- 469

tended from squared loss to output distribution 470

divergence? In this section, we show how to theo- 471

retically bridge the gap between squared loss and 472

KL divergence within the overall proof framework 473

established in Charikar et al. (2024). To begin with, 474

we restate an assumption used in previous study. 475
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Assumption 5.1 (Convexity Assumption (Charikar476

et al., 2024)). The strong model learns fine-tuning477

tasks from a convex set Fs.478

To satisfy this assumption, Fs can be the class479

of all linear functions (Charikar et al., 2024). It480

is validated by practice: a popular way to fine-481

tune a pre-trained model on task-specific data is by482

tuning the last linear layer of the model (Howard483

and Ruder, 2018; Kumar et al., 2022).484

5.1 Upper Bound (Realizability)485

Firstly, we consider the case where ∃fs ∈ Fs such486

that Fs = F ⋆ (also called “Realizability” (Charikar487

et al., 2024)). It means we can find a fs such that488

fs ◦ hs = f⋆ ◦ h⋆. This assumption implicitly indi-489

cates the strong power of pre-training. It requires490

that the representation hs has learned extremely491

enough information during pre-training, which is492

reasonable in modern large language models pre-493

trained on very large corpus (Touvron et al., 2023;494

Achiam et al., 2023). We state our result in the495

realizable setting, which corresponds to Theorem 1496

in Charikar et al. (2024).497

Theorem 5.1 (Proved in Appendix B.4). Given498

F ⋆, Fw and Fsw defined above. Consider Fs that499

satisfies Assumption 5.1. Consider W2SG using500

reverse KL divergence loss:501

fsw = argminf∈Fs
dP(f ◦ hs, fw ◦ hw).502

Assume that ∃fs ∈ Fs such that Fs = F ⋆. Then503

dP(F
⋆, Fsw) ≤ dP(F

⋆, Fw)− dP(Fsw, Fw).
(10)

504

Remark. The corresponding theorem and proof505

in the case of forward KL divergence loss is pro-506

vided in Corollary B.1 from Appendix B.5, under507

an additional assumption.508

In contrast to the symmetric squared loss studied509

in prior work (Charikar et al., 2024), the emergence510

of the reverse KL divergence is inherently tied to511

the asymmetric properties of the KL divergence.512

Although extending previous work to both forward513

and reverse KL divergences presents significant514

technical challenges, our results demonstrate the515

theoretical guarantees of W2SG in these settings.516

In Inequality (10), the left-hand side represents the517

error of the weakly-supervised strong model on the518

true data. On the right-hand side, the first term519

denotes the true error of the weak model, while the520

second term captures the disagreement between the521

strong and weak models, which also serves as the 522

minimization objective in W2SG. This inequality 523

indicates that the weakly-supervised strong model 524

improves upon the weak model by at least the mag- 525

nitude of their disagreement, dP(Fsw, Fw). To re- 526

duce the error of Fsw, Theorem 5.1 aligns with The- 527

orem 4.1, highlighting the importance of selecting 528

an effective weak model and the inherent limita- 529

tions of the optimization objective in W2SG. 530

5.2 Upper Bound (Non-Realizability) 531

We relax the “realizability” condition and draw n 532

i.i.d. samples. We provide the result in the “unreal- 533

izable” setting, where the condition Fs = F ⋆ may 534

not be satisfied for any fs ∈ Fs. It corresponds to 535

Theorem 2 in Charikar et al. (2024). 536

Theorem 5.2 (Proved in Appendix B.6). Given 537

F ⋆, Fw and Fsw defined above. Consider Fs that 538

satisfies Assumption 5.1. Consider weak-to-strong 539

generalization using reverse KL: 540

fsw = argminf∈Fs
dP(f ◦ hs, fw ◦ hw), 541

f̂sw = argminf∈Fs
d̂P(f ◦ hs, fw ◦ hw), 542

Denote dP(F
⋆, Fs) = ε. With probability at least 543

1− δ over the draw of n i.i.d. samples, there holds 544
545

dP(F
⋆, F̂sw) ≤ dP(F

⋆, Fw)− dP(F̂sw, Fw) 546

+O(
√
ε)+O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
, 547

where CFs is a constant capturing the complexity of 548

the function class Fs, and the asymptotic notation 549

is with respect to ε → 0, n → ∞. 550

Remark. The extension to forward KL divergence 551

loss is provided in Corollary B.2 from Appendix B.7, 552

under an additional assumption. 553

Compared to Inequality (10), this bound intro- 554

duces three another error terms: O(
√
ε) arises due 555

to the non-realizability assumption, and diminishes 556

as the strong ceiling model Fs becomes more ex- 557

pressive. The remaining two error terms arise from 558

the strong model F̂sw being trained on a finite 559

weakly-labeled sample. They also asymptotically 560

approach zero as the sample size increases. 561

5.3 Synthetic Experiments 562

In this section, we conduct experiments on syn- 563

thetically generated data to validate the theoret- 564

ical results in Section 5. We extend the syn- 565

thetic experiments from Charikar et al. (2024) us- 566

ing exactly the same setting except for the loss 567
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(f) Non-realizable (perturbation).

Figure 3: Synthetic experiments following Charikar et al. (2024) using reverse KL divergence loss (a-c) and forward
KL divergence loss (d-f). Each point corresponds to a task and the gray dotted line represents y = x. h⋆ is a
16-layer MLP. (a,d) Realizable (pre-training): hs = h⋆, and hw is a 2-layer MLP obtained by pre-training. (b,e)
Non-realizable (pre-training): hs is an 8-layer MLP, and hw is a 2-layer MLP. Both hs and hw are obtained by
pre-training. (c,f) Non-realizable (perturbation): Both hs and hw are obtained by directly perturbing the weights in
h⋆: hs = h⋆ +N (0, 0.01), and hw = h⋆ +N (0, 9).

function defined in Equation (4). In particular,568

the data follows a zero-mean normal distribution.569

The weak, strong and ground truth representa-570

tions (hw, hs and h⋆) are implemented as ran-571

domly initialized MLPs. One ’Realizable’ and two572

’Non-realizable’ settings are considered. The full573

details are in Appendix C.2. To validate Theo-574

rem 5.1-5.2 and visualize the trend clearly, we plot575

dP(F
⋆, Fw) − dP(F

⋆, Fsw) on the x-axis versus576

dP(Fsw, Fw) on the y-axis. The results are pre-577

sented in Figure 3(a)-(c). We also examine forward578

KL divergence loss in Figure 3(d)-(f).579

For the reverse KL divergence loss, the points580

in cluster around the line y = x. This suggests581

that dP(F ⋆, Fw) − dP(F
⋆, Fsw) ≈ dP(Fsw, Fw),582

which aligns with previous results (Charikar et al.,583

2024) for squared loss. It is also consistent with our584

theoretical results in Section 5, suggesting that the585

improvement over the weak teacher can be quanti-586

fied by the disagreement between strong and weak587

models. For the forward KL divergence loss, the588

observed trend closely mirrors that of reverse KL.589

The dots also are around the line y = x, suggesting 590

the same relationship for the forward KL. 591

6 Conclusion 592

This paper provides a theoretical analysis of W2SG. 593

In the classification setting, we establish upper and 594

lower bounds for both generalization and calibra- 595

tion errors of the strong model, revealing that the 596

primary limitations arise from the weak model and 597

the optimization objective. These bounds empha- 598

size two critical insights: (1) the weak model must 599

demonstrate strong generalization and calibration 600

performance, and (2) the strong model should avoid 601

excessive training to prevent overfitting on weak 602

supervision. In the regression setting, we extend 603

previous work to output distribution divergence 604

loss, proving that a strong model can outperform its 605

weak teacher by at least their disagreement under 606

certain assumptions. Overall, we hope this work 607

deepens the understanding of W2SG and inspires 608

future research on its foundations. 609
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Limitations610

While our work offers theoretical insights and em-611

pirical validation in W2SG, several limitations war-612

rant discussion. First, although the theoretical613

framework in Section 4 provides broad conceptual614

understanding, the assumptions in Section 5 may615

not fully align with real-world LLM deployment616

scenarios. This challenge, however, is common617

across most theoretical analyses of W2SG. Despite618

this limitation, our findings establish a foundational619

framework for future research to refine W2SG the-620

ory in LLMs. Second, our empirical evaluation621

is limited to two established alignment-focused622

binary classification tasks using relatively small-623

scale models. While the results validate our theory,624

further investigation is needed to assess the gener-625

alizability of our approach to more diverse datasets626

and larger model architectures. Addressing this627

in future studies will be critical for validating the628

broader applicability of our theory.629

Broader Impact and Ethics Statement630

This work on weak-to-strong generalization aims to631

improve the alignment of superhuman models with632

human values. While our theoretical and empirical633

insights highlight the potential of this approach, we634

acknowledge the risks of propagating biases or er-635

rors from the weak model to the strong model. To636

address these concerns, we emphasize the impor-637

tance of ensuring the weak model’s generalization638

and calibration, as well as carefully balancing the639

strong model’s optimization to avoid over-reliance640

on weak supervision. We encourage rigorous test-641

ing, transparency, and ongoing monitoring in real-642

world applications to ensure the safe and ethical643

deployment of such systems. Our work contributes644

to the broader effort of aligning advanced AI with645

human values, but its implementation must priori-646

tize fairness, accountability, and safety.647
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Appendix1066

A Further Related Work1067

Teacher-student learning paradigm. The student-teacher training paradigm (Meseguer-Brocal et al.,1068

2019; Meng et al., 2019), which involves first training a teacher model and then using its outputs (e.g.,1069

pseudo-labels or soft targets) to guide the training of a student model, has become a cornerstone in various1070

machine learning domains. This approach is particularly prominent in knowledge distillation (Hinton,1071

2015; Beyer et al., 2022), semi-supervised learning (Tarvainen and Valpola, 2017) and domain adapta-1072

tion (Shu et al., 2018). It can also be used in other fields like curriculum learning (Matiisen et al., 2019)1073

and continual learning (Lee et al., 2021). However, most prior work assumes that the teacher is either1074

more capable or at least comparable to the student in terms of model capacity or performance. In contrast,1075

weak-to-strong generalization (Burns et al., 2023) explores a less studied setting where the student model1076

is significantly more capable than the teacher, which is different from the traditional assumptions of1077

the student-teacher framework. By theoretically investigating this setting, we aim to uncover novel1078

insights into the capabilities and limitations of weak-to-strong generalization. We hope that our theoretical1079

investigation into it will serve as a catalyst for advancements not only in the domain of super-alignment1080

but also in the broader landscape of teacher-student learning paradigm.1081

Weakly-supervised learning. Weakly-supervised learning has emerged as a powerful paradigm to1082

address the challenges of limited labeled data by leveraging weak supervision (Ratner et al., 2020). Such1083

weak supervision may be incomplete (i.e., only a small subset of labels are given), inexact (i.e., only1084

coarse-grained labels are given) and inaccurate (i.e., the given labels are noisy) (Zhou, 2018). This problem1085

setting is also closely related to label noise (Song et al., 2022) and semi-supervised learning (Van Engelen1086

and Hoos, 2020). To address the problem of weakly-supervised learning, practical trials leverage these1087

various forms of weak supervision, such as utilizing noisy labels (Cheng et al., 2020), coarse-grained1088

labels (Oquab et al., 2015), and incomplete annotations (Papadopoulos et al., 2017). And most of them1089

improving model performance within the limitations of weak supervision. In contrast, weak-to-strong1090

generalization explores a distinct yet related direction: it investigates how a strong model, when trained on1091

weak supervision, can not only correct the errors of the weak supervisor but also generalize to instances1092

where the weak supervisor is uncertain or incorrect (Burns et al., 2023; Yang et al., 2025). We hope that our1093

theoretical exploration of weak-to-strong generalization can inspire not only the field of super-alignment1094

but also research in weakly-supervised learning.1095

Calibration. Calibration is an important concept about uncertainty estimation and confidence (Guo1096

et al., 2017; Kuleshov et al., 2018; Kumar et al., 2019; Mehrtash et al., 2020) in machine learning.1097

There are several kinds of definition for calibration. For instance, taking expectation conditioned on1098

the data distribution (Kull et al., 2019; Kumar et al., 2019; Roelofs et al., 2022) (Also, see Definition1099

3 in (Pleiss et al., 2017) and Equation (2) in (Liu et al., 2019) in the fairness literature), and (2) taking1100

expectation conditioned on the probability score (Naeini et al., 2015; Guo et al., 2017). Researchers also1101

investigate the calibration in natural language processing (Desai and Durrett, 2020; Guo et al., 2021;1102

Ulmer et al., 2022; Chen et al., 2023). In recent years, the calibration of large language models has1103

garnered significant attention (Zhu et al., 2023; Tian et al., 2023; Liang et al., 2023), with a thorough1104

survey provided in (Geng et al., 2024). However, to the best of our knowledge, while confidence issues in1105

weak-to-strong generalization have been investigated in (Burns et al., 2023), the role of calibration has not1106

been sufficiently investigated. In this paper, we theoretically demonstrate how strong model’s calibration1107

is affected in W2SG. And we believe that calibration warrants further in-depth investigation in this field.1108

Information-theoretic analysis. Information-theoretic analysis is commonly employed to bound the1109

expected generalization error in supervised learning (Russo and Zou, 2016; Xu and Raginsky, 2017),1110

with subsequent studies providing sharper bounds (Bu et al., 2020; Wang and Mao, 2023b). These1111

bounds have been used to characterize the generalization ability of stochastic gradient-based optimization1112

algorithms (Pensia et al., 2018). Furthermore, this theoretical framework has been extended to diverse1113

settings, including meta-learning (Chen et al., 2021), semi-supervised learning (Aminian et al., 2022),1114

transductive learning (Tang and Liu, 2023), and domain adaptation (Wang and Mao, 2023a). For a1115
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comprehensive overview of these developments, we refer readers to the recent monograph by Hellström 1116

et al. (2023). Nonetheless, despite its extensive application across various domains, the information- 1117

theoretic analysis of super-alignment (OpenAI, 2024), particularly in the context of weak-to-strong 1118

generalization, remains largely underexplored. In this paper, we use KL divergence to analyze weak-to- 1119

strong generalization, which is not considered in previous work. KL divergence is an information-theoretic 1120

measure between two probability distributions in information theory (Cover, 1999). And how to extend 1121

it to other information-theoretic measures remains an open question and warrants further exploration in 1122

future work. 1123

B Main Proof 1124

B.1 Proof of Theorem 4.1 1125

We first state some preliminaries for the proof. 1126

Lemma B.1 (Donsker and Varadhan’s variational formula (Donsker and Varadhan, 1983)). Let Q,P be
probability measures on X , for any bounded measurable function f : X → R, we have

DKL(Q∥P ) = sup
f

Ex∼Q[f(x)]− logEx∼P [exp f(x)].

Lemma B.2 (Hoeffding’s lemma). Let X ∈ R such that a ≤ X ≤ b. Then, for all λ ∈ R,

E
[
eλ(X−E[X])

]
≤ exp

(
λ2(b− a)2

8

)
.

Definition B.1 (Subgaussian random variable). A random variable X ∈ R is σ-subgaussian if for any ρ,

logE exp(ρ(X − EX)) ≤ ρ2σ2/2.

Notation of probability distribution for the model output. We define the corresponding probability
distributions for prediction of Fsw and Fw. Recall that for Fw, Fsw : X → Y and x ∈ X :

dP(Fw, Fsw) = Ex

 k∑
j=1

[Fw(x)]j log
[Fw(x)]j
[Fsw(x)]j

 = Ex [DKL(Fw(x), Fsw(x))] ,

where DKL is the discrete version of KL divergence. ∀x ∈ X , we know that
∑k

j=1[Fw(x)]j = 1. 1127

Therefore, given the class space Ck = {1, · · · , k}, we define a probability distribution Pw(x) with the 1128

probability density function pw, where j ∈ Ck and 1129

pw(j) = [Fw(x)]j . (11) 1130

Using this method, we also define the probability distribution Psw(x) for Fw(x). 1131

Now we start the proof. 1132

Proof. For better readability, we divide the proof into several steps. 1133

The first step. Given the probability distributions Pw(x) and Psw(x) above, the first step is motivated by 1134

Lemma A.2 from (Wang and Mao, 2023a). For any x ∈ X , j ∈ Ck, g : Ck → R and assume that g is 1135

σ-subgaussian (we will specify σ later). Let f = t · g for any t ∈ R. We have 1136

DKL (Fw(x)∥Fsw(x)) 1137

=DKL(Pw(x)∥Psw(x)) 1138

=sup
t

Ej′∼Pw(x)

[
t · g(j′)

]
− logEj∼Psw(x)[exp (t · g(j))] (Lemma B.1) 1139

=sup
t

Ej′∼Pw(x)

[
tg
(
j′
)]

− logEj∼Psw(x)

[
exp t

(
g(j)− Ej∼Psw(x)[g(j)] + Ej∼Psw(x)[g(j)]

)]
1140

=sup
t

Ej′∼Pw(x)

[
tg
(
j′
)]

− Ej∼Psw(x)[tg(j)]− logEj∼Psw(x)

[
exp t

(
g(j)− Ej∼Psw(x)[g(j)]

)]
1141

≥ sup
t

t
(
Ej′∼Pw(x)

[
g
(
j′
)]

− Ej∼Psw(x)[g(j)]
)
− t2σ2/2. (Subgaussianity) 1142
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The second step. The second step is associating the above result with dP(Fw, Fsw). In particular, by
taking expectations of x on both sides of the above inequality, we obtain

dP(Fw, Fsw) = ExDKL (Fw(x)∥Fsw(x)) ≥ sup
t

t
(
ExEj′∼Pw(x)

[
g
(
j′
)]

− ExEj∼Psw(x)[g(j)]
)
− t2σ2/2︸ ︷︷ ︸

ϕ(t)

.

Note that ϕ(t) is a quadratic function of t. Therefore, by AM–GM inequality, we find the maximum of1143

this quadratic function:1144

ϕ(t) ≤ 1

2σ2

(
ExEj′∼Pw(x)

[
g
(
j′
)]

− ExEj∼Psw(x)[g(j)]
)2

= sup
t

ϕ(t) ≤ dP(Fw, Fsw).1145

Subsequently, there holds1146 ∣∣ExEj′∼Pw(x)

[
g
(
j′
)]

− ExEj∼Psw(x)[g(j)]
∣∣ ≤√2σ2dP(Fw, Fsw). (12)1147

The third step. The third step is constructing g to associate the above result with dP(F
⋆, Fsw) and

dP (F ⋆, Fw). Specifically, given a probability distribution Pg with the density function pg, we define
function g : Ck → (0, 1] associated with Pg:

g(j) ≜
[F ⋆(x)]j
pg(j)

log
[F ⋆(x)]j
pg(j)

, for j ∈ Ck.

We have1148

ExEj∼Pg [g(j)] = ExEj∼Pg

[
[F ⋆(x)]j
pg(j)

log
[F ⋆(x)]j
pg(j)

]
1149

= Ex

∑
j∈Ck

pg(j) ·
[F ⋆(x)]j
pg(j)

· log [F ⋆(x)]j
pg(j)

1150

= Ex

∑
j∈Ck

[F ⋆(x)]j · log
[F ⋆(x)]j
pg(j)

1151

Recall the definition of Psw and Pw in (11), we replace Pg with Psw and Pw in the above equation:1152

ExEj′∼Psw

[
g
(
j′
)]

= Ex

∑
j=1

[F ⋆(x)]j log
[F ⋆(x)]j
[Fsw(x)]j

 = dP(F
⋆, Fsw),1153

ExEj∼Pw [g(j)] = Ex

∑
j=1

[F ⋆(x)]j log
[F ⋆(x)]j
[Fw(x)]j

 = dP(F
⋆, Fw).1154

Substitute the above into (12):1155

|dP(F ⋆, Fsw)− dP(F
⋆, Fw)| ≤

√
2σ2dP(Fw, Fsw). (13)1156

The final step. Finally, we obtain the subgaussian factor R of function g by using the fact that g is1157

bounded. For simplicity, we use Hoeffding’s Lemma (Lemma B.2) to obtain the subgaussian factor R.1158

However, it can be more precisely determined using advanced techniques in learning theory literature (for1159

instance, see Remark 2.14 in (Li et al., 2024), where α = 2 recovers the subgaussian setting).1160

Recall that the output domain Y ⊆ Rk, where ∀y = (y1, · · · , yk)T ∈ Y , there holds
∑k

i=1 yi = 1 and
0 < yi ≤ 1. In other words, ∃γ > 0 such that 0 < γ ≤ yi ≤ 1. It means that g(j) ∈ [− 1

γ log 1
γ ,

1
γ log 1

γ ].
According to Lemma B.2, ∀λ ∈ R, we have

E
[
eλ(g(j)−E[g(j)])

]
≤ exp

λ2
(

1
γ log 1

γ

)2
2

 .
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In other words, g(j) is σ-subgaussian, where σ = 1
γ log 1

γ . Substitute it into Equation (13) and we obtain: 1161

|dP(F ⋆, Fsw)− dP (F ⋆, Fw)| ≤ C1

√
dP(Fw, Fsw), 1162

where the constant C1 =
√
2
γ log 1

γ . The proof is complete. 1163

B.2 Extension of Theorem 4.1 1164

In this section, we extend Theorem 4.1 to output distribution divergence in regression. 1165

Proof. Denote dKL(f∥g) = DKL(Pf∥Pg) =
∫
X f(x) log f(x)

g(x)dx. Let (X ,F ,Psw), (X ,F ,Pw) be two
probability spaces. Denoting Fsw and Fw the densities of the measures. Therefore,∫

X
Fsw(x)dx =

∫
X
Fw(x)dx = 1.

Let x ∈ X , g : X → R and assume that g is R-subgaussian (we will specify R later). Let f = t · g for 1166

any t ∈ R. By Lemma B.1, we have 1167

dKL (Fw∥Fsw) = DKL(Pw∥Psw) 1168

= sup
t

Ex′∼Pw

[
t · g

(
x′
)]

− logEx∼Psw [exp (t · g(x))] 1169

= sup
t

Ex′∼Pw

[
tg
(
x′
)]

− logEx∼Psw [exp t (g(x)− Ex∼Psw [g(x)] + Ex∼Psw [g(x)])] 1170

= sup
t

Ex′∼Pw

[
tg
(
x′
)]

− Ex∼Psw [tg(x)]− logEx∼Psw [exp t (g(x)− Ex∼Psw [g(x)])] 1171

≥ sup
t

t
(
Ex′∼Pw

[
g
(
x′
)]

− Ex∼Psw [g(x)]
)
− t2R2/2︸ ︷︷ ︸

ϕ(t)

. (Subgaussianity) 1172

Let
ϕ(t) = t

(
Ex′∼Pw

[
g
(
x′
)]

− Ex∼Psw [g(x)]
)
− t2R2/2,

which is a quadratic function of t. Therefore, 1173

ϕ(t) ≤ 1

2R2

(
Ex′∼Psw

[
g
(
x′
)]

− Ex∼Pw [g(x)]
)2

= sup
t

ϕ(t) ≤ DKL(Pw∥Psw) = dKL (Fw∥Fsw) . 1174

So we have 1175∣∣Ex′∼Psw

[
g
(
x′
)]

− Ex∼Pw [g(x)]
∣∣ ≤√2R2dKL (Fw∥Fsw). (14) 1176

Given a probability space (X ,F ,Pg) with the density function pg. Define

g(x) ≜
F ⋆(x)

pg(x)
log

F ⋆(x)

pg(x)
.

So there holds

Ex∼Pg [g(x)] =

∫
X
F ⋆(x) · log F ⋆(x)

pg(x)
dx.

Replace Pg with Psw and Pw: 1177

Ex′∼Psw

[
g
(
x′
)]

=

∫
X
F ⋆(x) log

F ⋆(x)

Fsw(x)
dx = dP(F

⋆, Fsw), 1178

Ex∼Pw [g(x)] =

∫
X
F ⋆(x) log

F ⋆(x)

Fw(x)
dx = dP(F

⋆, Fw). 1179

Substitute them back into (14) and we obtain: 1180

|dP(F ⋆, Fsw)− dP(F
⋆, Fw)| ≤

√
2R2dKL (Fw∥Fsw). (15) 1181
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Finally, recall that the output domain Y = {y ∈ R|0 < y ≤ 1}. In other words, ∃γ > 0 such that
Y = {y ∈ R|0 < γ ≤ y ≤ 1}. It means that g(x) ∈ [− 1

γ log 1
γ ,

1
γ log 1

γ ]. According to Lemma B.2,
∀λ ∈ R, we have

E
[
eλ(g(x)−E[g(x)])

]
≤ exp

λ2
(

1
γ log 1

γ

)2
2

 .

In other words, g(x) is R-subgaussian, where R = 1
γ log 1

γ . Substitute it into Equation (15) and we obtain:1182

|dP(F ⋆, Fsw)− dP (F ⋆, Fw)| ≤
√
C1dP(Fw, Fsw),1183

where the constant C1 = 2
(

1
γ log 1

γ

)2
.1184

B.3 Proof of Theorem 4.21185

Total variation distance is introduced for our proof.1186

Definition B.2 (Total Variation Distance). Given two probability distributions P and Q, the Total Variation
(TV) distance between P and Q is

DTV(P∥Q) =
1

2

∫
x∈X

|P (x)−Q(x)| dx.

Note that DTV(P∥Q) ∈ [0, 1]. Also, DTV(P∥Q) = 0 if and only if P and Q coincides, and1187

DTV(P∥Q) = 1 if and only if P and Q are disjoint.1188

Let the calibrated bayes score function F b : X → Y that satisfies ∀i ∈ {1, · · · , k}, [F b(x)]i = P(Yi =1189

1|X = x), where Y = [Y1, · · · , Yk]T ∈ {0, 1}k and ∥Y ∥1 = 1. Now we start our proof.1190

Proof. Consider the definition of MCE in Equation (8). Notice that1191

MCE(F ) =
k∑

i=1

EX |[F (X)]i − P[Yi = 1|[F (X)]i]|1192

= EX

[
k∑

i=1

|[F (X)]i − P[Yi = 1|[F (X)]i]|

]
1193

= EX

∥∥∥F (X)− F b(X)
∥∥∥
1
,1194

and MCE(F ) ∈ [0, 2].1195

So there holds1196

MCE(Fw)− MCE(Fsw) = EX

∥∥∥Fw(X)− F b(X)
∥∥∥
1
− EX

∥∥∥Fsw(X)− F b(X)
∥∥∥
1

1197

≤ EX ∥Fw(X)− Fsw(X)∥1 (Triangle inequality)1198

= 2 · EXDTV(Fw(X), Fsw(X))1199

≤ 2 · EX

√
1− exp (−DKL(Fw(X), Fsw(X)))

(Bretagnolle–Huber inequality)
1200

≤ 2 ·
√
1− exp (−EXDKL(Fw(X), Fsw(X))) (Jensen’s inequality)1201

= 2 ·
√
1− exp (−dP(Fw, Fsw)). (Definition of dP for KL divergence loss)1202

Likewise,1203

MCE(Fsw)− MCE(Fw) = EX

∥∥∥Fsw(X)− F b(X)
∥∥∥
1
− EX

∥∥∥Fw(X)− F b(X)
∥∥∥
1

1204

≤ EX ∥Fsw(X)− Fw(X)∥1 (Triangle inequality)1205
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≤ EX ∥Fw(X)− Fsw(X)∥1 (Symmetry) 1206

= 2 · EXDTV(Fw(X), Fsw(X)) 1207

≤ 2 ·
√

1− exp (−dP(Fw, Fsw)). (Using the derivation above) 1208

Combining the above, we have 1209

MCE(Fsw)− MCE(Fw) ≤ 2 ·
√
1− exp (−dP(Fw, Fsw)), 1210

MCE(Fw)− MCE(Fsw) ≤ 2 ·
√
1− exp (−dP(Fw, Fsw)). 1211

The proof is complete. 1212

1213

B.4 Proof of Theorem 5.1 1214

We first restate a lemma for our proof. Recall that the strong model learns from a linear function class 1215

F : Rds → R of fine-tuning tasks. Recall also that we denote the strong model representation map by 1216

hs : Rd → Rds . Let Vs = {f ◦ hs : f ∈ F} be the set of all tasks in F composed with the strong model 1217

representation. We first observe that Vs is also a convex set. 1218

Lemma B.3 (Charikar et al. (2024)). Vs is a convex set. 1219

Proof. Fix f, g ∈ F , and consider f ◦ hs, g ◦ hs ∈ Vs. Fix any λ ∈ [0, 1]. Since F is the linear function 1220

class so that it is a convex set, there exists p ∈ F such that for all y ∈ Rds , p(y) = λf(y) + (1− λ)g(y). 1221

Now, fix any x ∈ Rd. Then, we have that 1222

λ(f ◦ hs)(x) + (1− λ)(g ◦ hs)(x) = λf(hs(x)) + (1− λ)g(hs(x)) = p(hs(x)) = (p ◦ hs)(x), 1223

and hence λ(f ◦ hs) + (1− λ)(g ◦ hs) = p ◦ hs ∈ Vs. 1224

Now we start the proof. 1225

Proof. For any f, g ∈ X → Y , denote dKL(f∥g) =
∫
X f(x) log f(x)

g(x)dx. 1226

Given any g ∈ Vs, observe that 1227

dKL(g∥Fw) =

∫
X
g(x) log

g(x)

Fw(x)
dx 1228

=

∫
X
g(x) log

(
g(x)

Fsw(x)
· Fsw(x)

Fw(x)

)
dx 1229

= dKL(g∥Fsw) + dKL(Fsw∥Fw)− dKL(Fsw∥Fw) +

∫
X
g(x) log

Fsw(x)

Fw(x)
dx 1230

= dKL(g∥Fsw) + dKL(Fsw∥Fw) +

∫
X
(g(x)− Fsw(x)) log

Fsw(x)

Fw(x)
dx︸ ︷︷ ︸

Q1

. (16) 1231

Now our goal is to judge whether Q1 ≥ 0. 1232

Recall that
fsw = argminf dKL(f ◦ hs∥Fw).

In other words, Fsw is the projection of Fw onto the convex set Vs. Therefore:

dKL(g∥Fw) ≥ dKL(Fsw∥Fw).

Therefore, 1233

dKL(g∥Fsw) +Q1 ≥ 0. (17) 1234

Now, fix t ∈ (0, 1), and consider the function g = Fsw + t(F ⋆ − Fsw). 1235
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dKL(g∥Fsw) =

∫
X
g(x) log

g(x)

Fsw(x)
1236

= −
∫
X
g(x) log

Fsw(x)

g(x)
dx1237

= −
∫
X
g(x) log

[
1− t(F ⋆(x)− Fsw(x))

g(x)

]
dx1238

=

∫
X
g(x)

[
t(F ⋆(x)− Fsw(x))

g(x)
+O(t2)

]
dx1239

=

∫
X

[
t(F ⋆(x)− Fsw(x)) +O(t2)

]
dx (Taylor expansion)1240

= O(t2). (
∫
X Fsw(x)dx =

∫
X F ⋆(x)dx = 1)1241

While1242

Q1 =

∫
X
(g(x)− Fsw(x)) log

Fsw(x)

Fw(x)
dx1243

= t ·
∫
X
(F ⋆(x)− Fsw(x)) log

Fsw(x)

Fw(x)
dx1244

= O(t).1245

Recall Equation (17) that
dKL(Fsw∥g)︸ ︷︷ ︸

O(t2)

+ Q1︸︷︷︸
O(t)

≥ 0,

which means Q1 ≥ 0. So we have∫
X
(F ⋆(x)− Fsw(x)) log

Fsw(x)

Fw(x)
dx ≥ 0.

Let g = F ⋆ in Equation (16) and we can prove the result dP(F ⋆, Fsw) ≤ dP(F
⋆, Fw)− dP(Fsw, Fw).1246

1247

B.5 Extension of Theorem 5.11248

We first introduce some definitions.1249

Definition B.3 (Itakura–Saito Divergence (Itakura, 1968; Févotte et al., 2009; Prasetyawan and Takamichi,
2020)). Given two probability distributions P and Q, the Itakura–Saito divergence between them is
defined as

DIS(P∥Q) =

∫
X

(
P (x)

Q(x)
− log

P (x)

Q(x)
− 1

)
dx.

Similar to the KL divergence, the Itakura–Saito divergence is also a Bregman divergence (Dhillon,1250

2007).1251

Definition B.4 (Weighted Itakura–Saito Divergence (Chu and Messerschmitt, 1982)). Given two proba-
bility distributions P and Q, the weighted Itakura–Saito divergence between them is defined as

DWIS(P∥Q) =

∫
X
w(x)

(
P (x)

Q(x)
− log

P (x)

Q(x)
− 1

)
dx,

where w(x) is the weight function.1252

We also define the inner product of functions

⟨f, g⟩ ≜
∫
X
f(x)g(x)dx.

Now we present the theoretical extension of Theorem 5.1 to forward KL divergence loss in W2SG.1253
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Corollary B.1. Given F ⋆, Fw and Fsw defined above. Let dP be the output distribution divergence 1254

and consider W2SG in Equation (6) using forward KL divergence loss. Assume that ∃fs ∈ Fs such 1255

that Fs = F ⋆. Consider Fs that satisfies Assumption 5.1. If the weighted Itakura–Saito divergence 1256

DWIS(F
⋆∥Fsw) ≤ 0 with the weight function w = Fsw − Fw, then: 1257

dP (Fsw, F
⋆) ≤ dP (Fw, F

⋆)− dP (Fw, Fsw) . (18) 1258

Corollary B.1 shows that Charikar et al. (2024) can be extended to our setting if we introduce another 1259

assumption, which comes from the technical challenges of theoretically analyzing the non-linear nature of 1260

KL divergence. Denote F+ = F ⋆

Fsw
− 1− log F ⋆

Fsw
, then the assumption DWIS(F

⋆∥Fsw) ≤ 0 is equivalent 1261

to ⟨Fsw − Fw, F
+⟩ ≤ 0. Note that ∀x ∈ X , F+(x) ≥ 0 always holds, and a very small or large value 1262

of F ⋆(x)
Fsw(x) generally contributes to a large F+(x). To make ⟨Fsw − Fw, F

+⟩ ≤ 0 more likely to hold, we 1263

expect Fsw(x) ≤ Fw(x) if F ⋆(x) is small or large. In general, since this condition cannot be guaranteed 1264

to hold universally, the inequality in Equation (10) may fail to hold. This reveals a key discrepancy 1265

between the square function (as considered in Charikar et al. (2024)) and the KL divergence (in this work) 1266

within the W2SG framework—a phenomenon that will be empirically validated through our experiments. 1267

Proof sketch of Charikar et al. (2024). For the proof technique, Charikar et al. (2024) constructs 1268

a function within a convex set. By exploiting the property of projection and square function, they 1269

demonstrate that O(t) +O(t2) is non-negative as t → 0+. Consequently, the first-order term must be 1270

non-negative, which proves the result. 1271

Proof sketch of ours. Extending the proof framework from Theorem 1 in (Charikar et al., 2024) presents 1272

several challenges. First, due to the properties of KL divergence, the constructed function does not lie 1273

within the convex set. To address this issue, we employ a first-order Taylor expansion and introduce a 1274

remainder term. Secondly, because of the remainder, we derive that O(t) +O(t) +O(t2) is non-negative. 1275

Consequently, we must assume that one of the first-order terms is non-positive to ensure that the other 1276

first-order term is non-negative, which allows us to prove the result. However, if the first-order term is 1277

positive, the second first-order term might also remain non-negative. 1278

Now we start our proof of Corollary B.1. Some Taylor expansion claims used in the proof (Claim B.1, 1279

Claim B.2 and Claim B.3) are provided at the end of the proof. 1280

Proof. For any f, g ∈ X → Y , denote dKL(f∥g) =
∫
X f(x) log f(x)

g(x)dx. 1281

Given any g ∈ Vs, observe that 1282

dKL(Fw∥g) =
∫
X
Fw(x) log

Fw(x)

g(x)
dx 1283

=

∫
X
Fw(x) log

(
Fw(x)

Fsw(x)
· Fsw(x)

g(x)

)
dx 1284

=

∫
X
Fw(x) log

Fw(x)

Fsw(x)
dx+

∫
X
Fw(x) log

Fsw(x)

g(x)
dx 1285

= dKL(Fw∥Fsw) + dKL(Fsw∥g)− dKL(Fsw∥g) +
∫
X
Fw(x) log

Fsw(x)

g(x)
dx 1286

= dKL(Fw∥Fsw) + dKL(Fsw∥g) +
∫
X
(Fw(x)− Fsw(x)) log

Fsw(x)

g(x)
dx︸ ︷︷ ︸

Q1

. (19) 1287

Now our goal is to judge whether Q1 ≥ 0. 1288

Recall that
fsw = argminf dKL(Fw∥f ◦ hs).

In other words, Fsw is the projection of Fw onto the convex set Vs. Therefore:

dKL(Fw∥g) ≥ dKL(Fw∥Fsw).
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And hence1289

dKL(Fw∥g)− dKL(Fw∥Fsw) ≥ 01290

⇒
∫
X
Fw(x) log

Fw(x)

g(x)
dx−

∫
X
Fw(x) log

Fw(x)

Fsw(x)
dx ≥ 01291

⇒
∫
X
Fw(x) log

Fsw(x)

g(x)
dx︸ ︷︷ ︸

Q2

≥ 0.1292

Therefore,1293

Q2 = dKL(Fsw∥g) +Q1 ≥ 0. (20)1294

Now, fix t ∈ (0, 1), and consider the functions1295

w(x) = (Fsw(x)) ·
(

F ⋆(x)

Fsw(x)

)t

, (21)1296

w′(x) = Fsw(x) + t (F ⋆(x)− Fsw(x)) . (22)1297

It is clear that w(x) > 0, w′(x) > 0. And according to Claim B.1, we have1298

w(x) = Fsw(x) ·

[
1 + t log

F ⋆(x)

Fsw(x)
+

1

2
t2
(
log

F ⋆(x)

Fsw(x)

)2( F ⋆(x)

Fsw(x)

)ξ
]
,1299

where ξ ∈ (0, t). It means that1300

w′(x)− w(x) = t · Fsw(x)

(
F ⋆(x)

Fsw(x)
− 1− log

F ⋆(x)

Fsw(x)

)
︸ ︷︷ ︸

O(t)

− t2 · Fsw(x)

2

(
log

F ⋆(x)

Fsw(x)

)2( F ⋆(x)

Fsw(x)

)ξ

︸ ︷︷ ︸
O(t2)

.

(23)

1301

And F ⋆(x)
Fsw(x) −1− log F ⋆(x)

Fsw(x) > 0. It means that as t → 0+, w′(x)−w(x) > 0 and w′(x)−w(x) = O(t).1302

Define1303

ϕ(x) ≜ log
Fsw(x)

w′(x)
− log

Fsw(x)

w(x)
(24)1304

= log
w(x)

w′(x)
1305

= log

(
1− w′(x)− w(x)

w′(x)

)
1306

= − w′(x)− w(x)

w′(x)︸ ︷︷ ︸
O(t)

−1

2

(
w′(ζ)− w(ζ)

w′(ζ)

)2

︸ ︷︷ ︸
O(t2)

, (Claim B.2)1307

where ζ is between 0 and w′(x)−w(x)
w′(x) . As t → 0+, we know that ϕ(x) ≤ 0 and ϕ(x) = O(t).1308

Combining (21) with (24) and we have:1309

log
Fsw(x)

w(x)
= t log

Fsw(x)

F ⋆(x)
,1310

and log
Fsw(x)

w′(x)
= t log

Fsw(x)

F ⋆(x)
+ ϕ(x). (25)1311
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Note that Fsw ∈ Vs, which is a convex set (Lemma B.3). Also, F ⋆ ∈ Vs (Realizability). Therefore, 1312

according to the definition of convexity, we have w′ ∈ Vs. Hence, substituting w′ for g in (20) and 1313

consider Equation (25), we get 1314

Q2 =

∫
X
Fsw(x) log

Fsw(x)

g(x)
dx︸ ︷︷ ︸

dKL(Fsw∥g)

+

∫
X
(Fw(x)− Fsw(x)) log

Fsw(x)

g(x)
dx︸ ︷︷ ︸

Q1

≥ 0, 1315

⇒ dKL(Fsw∥w′) +

∫
X
(Fw(x)− Fsw(x)) · ϕ(x)dx+ 1316

t

∫
X
(Fw(x)− Fsw(x)) log

Fsw(x)

F ⋆(x)
dx ≥ 0. (26) 1317

Here, we address these three components individually. Our goal is to show that the first term is O(t2), 1318

while the second term, which is O(t), is negative. Considering these collectively, the third term, also 1319

O(t), must be positive. 1320

The first term. Denote u(x) = F ⋆(x)− Fsw(x). Note that 1321

dKL(Fsw∥w′) =

∫
X
(Fsw(x)) log

Fsw(x)

Fsw(x) + t · u(x)
dx 1322

=

∫
X
(Fsw(x)) log

(
1− t · u(x)

Fsw(x) + t · u(x)

)
dx 1323

= −t

∫
X

Fsw(x) · u(x)
Fsw(x) + t · u(x)

dx− 1

2
t2
∫
X

Fsw(x) · (u(ζ ′))2

(w′(ζ ′))2
dx (Claim B.2) 1324

= −t

∫
X

[
u(x)− t · (u(x))2

Fsw(x) + t · u(x)

]
dx− 1

2
t2
∫
X

Fsw(x) · (u(ζ ′))2

(w′(ζ ′))2
dx 1325

= −t

∫
X
u(x)dx︸ ︷︷ ︸
0

+t2
∫
X

(u(x))2

Fsw(x) + t · u(x)
dx− t2

∫
X

Fsw(x) · (u(ζ ′))2

2(w′(ζ ′))2
dx 1326

= t2
∫
X

[
(u(x))2

Fsw(x) + t · u(x)
− Fsw(x) · (u(ζ ′))2

2(w′(ζ ′))2

]
dx 1327

where ζ ′ is between 0 and t·u(x)
Fsw(x)+t·u(x) . Therefore, taking the limit as t → 0+, we get that 1328

dKL(Fsw∥w′) = O(t2). 1329

The second term. Recall Equation (23) that 1330

w′(x)− w(x) = t · Fsw(x)

(
F ⋆(x)

Fsw(x)
− 1− log

F ⋆(x)

Fsw(x)

)
+O(t2), 1331

w′(x) = Fsw(x)

(
1 + t

(
F ⋆(x)

Fsw(x)
− 1

))
. 1332

Therefore, 1333

w′(x)− w(x)

w′(x)
=

t
(

F ⋆(x)
Fsw(x) − 1− log F ⋆(x)

Fsw(x)

)
+O(t2)

1 + t
(

F ⋆(x)
Fsw(x) − 1

) 1334

=

[
t

(
F ⋆(x)

Fsw(x)
− 1− log

F ⋆(x)

Fsw(x)

)
+O(t2)

]
·
[
1− t

(
F ⋆(x)

Fsw(x)
− 1

)
+O(t2)

]
(Claim B.3)

1335

= t

(
F ⋆(x)

Fsw(x)
− 1− log

F ⋆(x)

Fsw(x)

)
+O(t2). 1336
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In other words, the second term in (26) is1337 ∫
X
(Fw(x)− Fsw(x)) · ϕ(x)dx1338

=−
∫
X
(Fw(x)− Fsw(x)) ·

(
w′(x)− w(x)

w′(x)
+O(t2)

)
dx (Equation (24))1339

=

∫
X
(Fsw(x)− Fw(x)) ·

(
w′(x)− w(x)

w′(x)

)
dx+O(t2)1340

=t

∫
X
(Fsw(x)− Fw(x))

(
F ⋆(x)

Fsw(x)
− 1− log

F ⋆(x)

Fsw(x)

)
dx+O(t2)1341

=t ·DWIS(F
⋆∥Fsw) +O(t2),1342

where the weight function of the weighted Itakura–Saito Divergence is w = Fsw − Fw. Therefore, as1343

t → 0+, the second term in (26) is of the order O(t). If DWIS(F
⋆∥Fsw) ≤ 0, the second term in (26) will1344

be non-positive (otherwise, it will be positive).1345

The third term. Taking the limit as t → 0+ in (26):1346

dKL(Fsw∥w′)︸ ︷︷ ︸
O(t2)

+

∫
X
(Fw(x)− Fsw(x)) · ϕ(x)dx︸ ︷︷ ︸

O(t)

+ t

∫
X
(Fw(x)− Fsw(x)) log

Fsw(x)

F ⋆(x)
dx︸ ︷︷ ︸

O(t)

≥ 0.1347

If the middle term is non-positive, the last term should be non-negative:1348 ∫
X
(Fw(x)− Fsw(x)) log

Fsw(x)

F ⋆(x)
dx ≥ 0. (27)1349

Substituting F ⋆ for g in (19), and using (27), we obtain the desired result1350

dP(Fsw, F
⋆) ≤ dP(Fw, F

⋆)− dP(Fw, Fsw).1351

Else, if the middle term is positive (i.e„ DWIS(F
⋆∥Fsw) ≤ 0 is not satisfied), the last term may also be1352

non-negative, which means that dP(Fsw, F
⋆) ≤ dP(Fw, F

⋆)− dP(Fw, Fsw) may also hold.1353

1354

The following tools used in the above proof can be proved by Taylor expansion.1355

Claim B.1. For t, x ∈ R+, there holds

xt = 1 + t log x+
1

2
t2(log x)2xξ,

where ξ ∈ (0, t).1356

Claim B.2. For x ∈ (0, 1), there holds:

log(1− x) = −x− 1

2
ζ2,

where ζ ∈ (0, x).1357

Claim B.3. For x ∈ (−1, 1), there holds:

1

1 + x
= 1− x+ ϵ2,

where ϵ is between 0 and x.1358
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B.6 Proof of Theorem 5.2 1359

Proof sketch of Charikar et al. (2024). They apply the proof technique from their Theorem 1 to different 1360

variables and obtain several inequalities. Subsequently, leveraging the triangle inequality for the ℓ2-norm 1361

and a uniform convergence argument, they establish the desired result. 1362

Proof sketch of ours. Extending the proof framework from Theorem 2 in (Charikar et al., 2024) is also 1363

non-trivial. Specifically, the absence of a triangle inequality for KL divergence necessitates an alternative 1364

approach. To address this, we decompose the relevant terms in a manner analogous to the triangle 1365

inequality and exhaustively demonstrate that each of the three resulting remainder terms asymptotically 1366

converges to zero. 1367

Notations. For a clear presentation, let 1368

A = dP(Fs, Fsw) 1369

B = dP(Fsw, Fw) 1370

C = dP(Fs, Fw) 1371

D = dP(F
⋆, Fs) = ε 1372

E = dP(F
⋆, Fsw) 1373

F = dP(F
⋆, Fw) 1374

G = dP(F
⋆, F̂sw) 1375

H = dP(F̂sw, Fsw) 1376

I = dP(F̂sw, Fw). 1377

Now we start the proof of Theorem 5.2. A uniform convergence result and two claims used in the proof 1378

(Lemma B.4, Claim B.4 and Claim B.5) are provided at the end of the proof. 1379

Proof. Non-realizable weak-to-strong generalization where F ⋆ /∈ Vs, and we use a finite sample to 1380

perform weak-to-strong supervision. Note that by virtue of the range of f⋆, fw and all functions in F 1381

being absolutely bounded, and dP is also bounded. 1382

Due to F ⋆ /∈ Vs, we replace F ⋆ with Fs in the final step of proof of Theorem 5.1, we obtain 1383

C ≥ A+B. (28) 1384

Notice that 1385

E = A+D −
∫
X
(F ⋆(x)− Fs(x)) log

Fsw(x)

Fs(x)
dx︸ ︷︷ ︸

t1

, (29) 1386

F = C +D −
∫
X
(F ⋆(x)− Fs(x)) log

Fw(x)

Fs(x)
dx︸ ︷︷ ︸

t2

, (30) 1387

G = E −H −
∫
X
(F̂sw(x)− F ⋆(x)) log

Fsw(x)

F̂sw(x)
dx︸ ︷︷ ︸

t3

. (31) 1388

Combining (28) and (29), we get 1389

E ≤ C +D −B − t1. (32) 1390

By a uniform convergence argument (Lemma B.5), we have that with probability at least 1− δ over the 1391

draw of {(x1, y1), . . . , (xn, yn)} that were used to construct F̂sw, 1392

I ≤ B +O

(√
CFs

n

)
︸ ︷︷ ︸

t4

+O

(√
log(1/δ)

n

)
︸ ︷︷ ︸

t5

. (33) 1393
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Combining (32) with (33) and we have1394

E ≤ C +D − I − t1 + t4 + t5. (34)1395

Combining (30) with (34) and we have1396

E ≤ F − I − t1 + t2 + t4 + t5. (35)1397

Combining (31) with (35) and we have1398

G ≤ F − I −H − t1 + t2 − t3 + t4 + t5. (36)1399

We replace F ⋆ with F̂sw in the final step of proof of Corollary B.1 and obtain:1400

I ≥ H +B. (37)1401

Combining (37) with (33) and we have1402

0 ≤ H ≤ t4 + t5 = O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
. (38)1403

Combining (38) with (36) and we have1404

G ≤ F − I − t1 + t2 − t3 + t4 + t5. (39)1405

While t4 and t5 are known in (33), we analyze t1, t2 and t3 one by one.1406

Deal with t1. We know that1407

t1 =

∫
X
(F ⋆(x)− Fs(x)) log

Fsw(x)

Fs(x)
dx.1408

Using Pinsker’s inequality and the fact that Fsw(x)
Fs(x)

≤ 1
γ , we have1409

|t1| ≤
1

γ

∫
X
|Fs(x)− F ⋆(x)| dx ≤ 1

γ

√
1

2
dKL(Fs∥F ⋆) =

1

γ

√
1

2
ε. (40)1410

Therefore,1411

|t1| = O(
√
ε). (41)1412

Deal with t2. The proof for t2 is similar for t1. In particular, replacing Fsw with Fw in the above and we1413

can get1414

|t2| = O(
√
ε). (42)1415

Deal with t3. We know that

t3 =

∫
X
(F̂sw(x)− F ⋆(x)) log

Fsw(x)

F̂sw(x)
dx.

According to Lemma B.5, with probability at least 1− δ over the draw of (x1, y1), . . . , (xn, yn), we1416

have1417 ∣∣∣dP(F̂sw, Fw)− dP(Fsw, Fw)
∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
. (43)1418
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According to Claim B.4 and (43), we have 1419∣∣∣∣∣
∫
X
log

Fsw(x)

F̂sw(x)
dx

∣∣∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
. 1420

Since |F̂sw(x)− F ⋆(x)| is upper bounded, there holds 1421

|t3| =

∣∣∣∣∣
∫
X
(F̂sw(x)− F ⋆(x)) log

Fsw(x)

F̂sw(x)
dx

∣∣∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
. (44) 1422

Therefore, combing (41), (42) and (44), we have 1423

|t1|+ |t2|+ |t3| ≤ O(
√
ε) +O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
. (45) 1424

Finally, combing (33) and (39) with (38) and (45), we get the result: 1425

dP(F
⋆, F̂sw) ≤ dP(F

⋆, Fw)− dP(F̂sw, Fw) +O(
√
ε) +O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
, 1426

where in the last inequality, we instantiate asymptotics with respect to ε → 0 and n → ∞. 1427

1428

Here are some tools used in the above proof. 1429

Lemma B.4 (Uniform convergence (forward KL loss)). Let (x1, y1), . . . , (xn, yn) be an i.i.d. training 1430

sample, where each xi ∼ P and yi = Fw(xi) for a target function Fw. For a fixed strong model 1431

representation hs, let 1432

fsw = argminf∈Fs
dP(Fw, f ◦ hs), 1433

f̂sw = argminf∈Fs
d̂P(Fw, f ◦ hs). 1434

Assume that the range of Fw and functions in Fs is absolutely bounded. Then, with probability at least 1435

1− δ over the draw of (x1, y1), . . . , (xn, yn), we have 1436

∣∣∣dP(Fw, F̂sw)− dP(Fw, Fsw)
∣∣∣ ≤ O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
, 1437

where CFs is a constant capturing the complexity of the function class Fs. 1438

Proof. The proof is strongly motivated by lemma 4 in Charikar et al. (2024). 1439

Note that 1440
1441

dP(Fw, F̂sw)− dP(Fw, Fsw) = dP(Fw, F̂sw)− d̂P(Fw, F̂sw)︸ ︷︷ ︸
a

+ 1442

d̂P(Fw, F̂sw)− d̂P(Fw, Fsw)︸ ︷︷ ︸
b

+ d̂P(Fw, Fsw)− dP(Fw, Fsw)︸ ︷︷ ︸
c

. (46) 1443

By the definition of f̂sw, the second term b ≤ 0 in (46). Therefore, 1444∣∣∣dP(Fw, F̂sw)− dP(Fw, Fsw)
∣∣∣ ≤ |a|+ |c|. (47) 1445

The terms a and c measure the difference between the empirical risk and true population risk, and can be 1446

controlled by a standard uniform convergence argument. 1447
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Let S = {(x1, y1), . . . , (xn, yn)}, where xi ∼ P and yi = Fw(xi). According to statistical learning1448

theory literature (Bartlett and Mendelson, 2002), it first holds that with probability at least 1− δ,1449

sup
f∈Fs

|d̂P(Fw, f ◦ hs)− dP(Fw, f ◦ hs)| ≤ O (Rn(l(Fs))) +O

(√
log(1/δ)

n

)
,1450

where Rn(l(Fs)) is the Rademacher complexity of the loss class of Fs:1451

Rn(l(Fs)) = ESEεi∼{−1,1} sup
f∈Fs

1

n

n∑
i=1

εi · ℓ(f ◦ hs(xi), yi).1452

Notice again that the model output space Y = {y ∈ R|0 < γ ≤ y ≤ 1, γ > 0}. We can then use the1453

assumption that the range of Fw and Fs is absolutely bounded, which implies that ℓ is both bounded and1454

Lipschitz in both arguments. This allows us to use the contraction principle in Theorem 4.12 from Ledoux1455

and Talagrand (2013) so as to move from the Rademacher complexity of the loss class l(Fs) to that of Fs1456

itself, and claim that with probability at least 1− δ,1457

sup
f∈Fs

|d̂P(Fw, f ◦ hs)− dP(Fw, f ◦ hs)| ≤ O (Rn(Fs)) +O

(√
log(1/δ)

n

)
(48)1458

Finally, the Rademacher complexity Rn(Fs) can be upper bounded by a quantity known as the worst-case1459

Gaussian complexity of Fs; in any case, for a majority of parametric function classes Fs, this quantity1460

scales as
√

CFs
n (Bartlett and Mendelson, 2002), where CFs is a constant capturing the inherent complexity1461

of Fs. Plugging this into (48) and considering f = f̂sw or f = fsw in this inequality, we have1462

∣∣∣d̂P(Fw, F̂sw)− dP(Fw, F̂sw)
∣∣∣︸ ︷︷ ︸

|a|

≤ O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
,1463

∣∣∣d̂P(Fw, Fsw)− dP(Fw, Fsw)
∣∣∣︸ ︷︷ ︸

|c|

≤ O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
.1464

Finally, substitute it into Equation (47) and we can obtain the desired bound.1465

Lemma B.5 (Uniform convergence (reverse KL loss)). Let (x1, y1), . . . , (xn, yn) be an i.i.d. training1466

sample, where each xi ∼ P and yi = Fw(xi) for a target function Fw. For a fixed strong model1467

representation hs, let1468

fsw = argminf∈Fs
dP(f ◦ hs, Fw),1469

f̂sw = argminf∈Fs
d̂P(f ◦ hs, Fw).1470

Assume that the range of Fw and functions in Fs is absolutely bounded. Then, with probability at least1471

1− δ over the draw of (x1, y1), . . . , (xn, yn), we have1472

∣∣∣dP(F̂sw, Fw)− dP(Fsw, Fw)
∣∣∣ ≤ O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
,1473

where CFs is a constant capturing the complexity of the function class Fs.1474

Proof. Swap the order of the two elements in dP(·, ·) and d̂P(·, ·) in the proof of Lemma B.4 and we can1475

prove the result.1476
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Figure 4: The function ϕ(x) = log x.

Claim B.4. Let f(x), g(x) ∈ [γ, 1] where γ > 0. If there exists ξ > 0 such that
∫
X |f(x)− g(x)| dx ≤ ξ,

then there holds ∫
X
|log f(x)− log g(x)| dx ≤ 1

γ
ξ.

Proof. Using the property of the function ϕ(x) = log x (as shown in Figure 4): if x ∈ (0, 1], then the 1477

slope of a line with any two points on the function ϕ(x) is bounded. 1478

In particular, we have 1479∫
X
|log f(x)− log g(x)| dx 1480

=

∫
X

∣∣∣∣ log f(x)− log g(x)

f(x)− g(x)

∣∣∣∣ |f(x)− g(x)|dx 1481

≤1

γ

∫
X
|f(x)− g(x)| dx 1482

≤1

γ
ξ. 1483

1484

Claim B.5. Let f(x), g(x) ∈ [γ, 1] where γ > 0. If there exists ξ > 0 such that∫
X |log f(x)− log g(x)| dx ≤ ξ, then there holds∫

X
|f(x)− g(x)| dx ≤ ξ.

Proof. Using the property of the function ϕ(x) = log x (as shown in Figure 4): if x ∈ (0, 1], then the 1485

slope of a line with any two points on the function ϕ(x) is bounded. 1486

In particular, we have 1487∫
X
|f(x)− g(x)| dx 1488

=

∫
X

∣∣∣∣ log f(x)− log g(x)

f(x)− g(x)

∣∣∣∣−1

| log f(x)− log g(x)|dx 1489

≤
∫
X
|log f(x)− log g(x)| dx 1490

≤ξ. 1491

1492
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B.7 Extension of Theorem 5.21493

This additional theoretical result follows Corollary B.1 in Appendix B.5.1494

Corollary B.2. Given F ⋆, Fw and Fsw defined above. Let dP be the output distribution divergence1495

and consider W2SG in Equation (7) using forward KL divergence loss. Consider Fs that satisfies As-1496

sumption 5.1. If the weighted Itakura–Saito divergence DWIS(F
⋆∥Fsw) ≤ 0 with the weight function1497

w = Fsw − Fw, then we have that with probability at least 1− δ over the draw of n i.i.d. samples,1498

dP(F̂sw, F
⋆) ≤ dP(Fw, F

⋆)− dP(Fw, F̂sw) +O(
√
ε) +O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
, (49)1499

where CFs is a constant capturing the complexity of the function class Fs, and the asymptotic notation is1500

with respect to ε → 0, n → ∞.1501

Proof. For a clear presentation, let1502

A = dP(Fsw, Fs)1503

B = dP(Fw, Fsw)1504

C = dP(Fw, Fs)1505

D = dP(Fs, F
⋆) = ε1506

E = dP(Fsw, F
⋆)1507

F = dP(Fw, F
⋆)1508

G = dP(F̂sw, F
⋆)1509

H = dP(Fsw, F̂sw)1510

I = dP(Fw, F̂sw).1511

The main proof idea follows Appendix B.6. Specifically, we first replace F ⋆ with Fs in the final step of1512

proof of Corollary B.1, we obtain1513

C ≥ A+B. (50)1514

Notice that1515

E = A+D −
∫
X
(Fsw(x)− Fs(x)) log

F ⋆(x)

Fs(x)
dx︸ ︷︷ ︸

t1

, (51)1516

F = C +D −
∫
X
(Fw(x)− Fs(x)) log

F ⋆(x)

Fs(x)
dx︸ ︷︷ ︸

t2

, (52)1517

G = E −H −
∫
X
(F̂sw(x)− Fsw(x)) log

F ⋆(x)

Fsw(x)
dx︸ ︷︷ ︸

t3

. (53)1518

Combining (50) and (51), we get1519

E ≤ C +D −B − t1. (54)1520

According to Lemma B.4, we have that with probability at least 1 − δ over the draw of1521

{(x1, y1), . . . , (xn, yn)} that were used to construct F̂sw,1522

I ≤ B +O

(√
CFs

n

)
︸ ︷︷ ︸

t4

+O

(√
log(1/δ)

n

)
︸ ︷︷ ︸

t5

. (55)1523
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Combining (54) with (55) and we have 1524

E ≤ C +D − I − t1 + t4 + t5. (56) 1525

Combining (52) with (56) and we have 1526

E ≤ F − I − t1 + t2 + t4 + t5. (57) 1527

Combining (53) with (57) and we have 1528

G ≤ F − I −H − t1 + t2 − t3 + t4 + t5. (58) 1529

We replace F ⋆ with F̂sw in the final step of proof of Corollary B.1 (Recall the fact that F̂sw ∈ Vs 1530

and (27): substituting F̂sw for g in (19), and using (27)), we obtain: 1531

I ≥ H +B. (59) 1532

Combining (59) with (55) and we have 1533

0 ≤ H ≤ t4 + t5 = O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
. (60) 1534

Combining (60) with (58) and we have 1535

G ≤ F − I − t1 + t2 − t3 + t4 + t5. (61) 1536

While t4 and t5 are known in (55), we analyze t1, t2 and t3 one by one. 1537

Deal with t1. We know that 1538

t1 =

∫
X
(Fsw(x)− Fs(x)) log

F ⋆(x)

Fs(x)
dx. 1539

Using the fact that |Fsw(x)− Fs(x)| ≤ 1, we have 1540

|t1| ≤
∫
X

∣∣∣∣log F ⋆(x)

Fs(x)

∣∣∣∣ dx =

∫
X
|logFs(x)− logF ⋆(x)| dx. (62) 1541

According to Pinsker’s inequality, 1542∫
X
|Fs(x)− F ⋆(x)| dx ≤

√
1

2
dKL(Fs∥F ⋆) =

√
1

2
ε. (63) 1543

Substitute f(x) = Fs(x), g(x) = F ⋆(x) and ξ =
√

1
2ε into Claim B.4 and recall (62), we have 1544

|t1| ≤
1

γ

√
1

2
ε = O(

√
ε). (64) 1545

Deal with t2. The proof for t2 is similar for t1. In particular, replacing Fsw with Fw in the above and we 1546

can get 1547

|t2| = O(
√
ε). (65) 1548
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Deal with t3. We know that

t3 =

∫
X
(F̂sw(x)− Fsw(x)) log

F ⋆(x)

Fsw(x)
dx.

According to Lemma B.4, with probability at least 1− δ over the draw of (x1, y1), . . . , (xn, yn), we1549

have1550

∣∣∣dP(Fw, F̂sw)− dP(Fw, Fsw)
∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
. (66)1551

Notice that1552

H = dP(Fsw, F̂sw)1553

= dP(Fw, Fsw)− dP(Fw, F̂sw) +

∫
X
(Fw(x) + Fsw(x)) log

Fsw(x)

F̂sw(x)
dx. (67)1554

Substitute (60) and (66) into Equation (67) with the triangle inequality for absolute values, we get1555 ∣∣∣∣∣
∫
X
(Fw(x) + Fsw(x)) log

Fsw(x)

F̂sw(x)
dx

∣∣∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
1556

Since |Fw(x) + Fsw(x)| is bounded, we have

∣∣∣∣∫
X

[
logFsw(x)− log F̂sw(x)

]
dx

∣∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
.

Using Claim B.5, we have

∣∣∣∣∫
X
(F̂sw(x)− Fsw(x))dx

∣∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
.

Since
∣∣∣log F ⋆(x)

Fsw(x)

∣∣∣ is bounded, there holds1557

|t3| =
∣∣∣∣∫

X
(F̂sw(x)− Fsw(x)) log

F ⋆(x)

Fsw(x)
dx

∣∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
. (68)1558

Therefore, combing (64), (65) and (68), we have1559

|t1|+ |t2|+ |t3| ≤ O(
√
ε) +O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
. (69)1560

Finally, combing (55) and (61) with (60) and (69), we get the result:1561

dP(F̂sw, F
⋆) ≤ dP(Fw, F

⋆)− dP(Fw, F̂sw) +O(
√
ε) +O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
,1562

where in the last inequality, we instantiate asymptotics with respect to ε → 0 and n → ∞.1563
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C Further Details and Results of Experiments 1564

C.1 Training Details of Experiments in Language Models 1565

The dataset is randomly divided into three distinct subsets: 1566

• 4K samples (ground truth): They are used to fine-tune weak and strong base language models; 1567

• 4K samples (held-out set): These labels are predicted by the weak model and used to provide weak 1568

supervision for training the strong model; 1569

• 4K samples (the remaining): They are used for testing and evaluating the performance of all models. 1570

When fine-tuning the weak-to-strong models, we follow (Yang et al., 2025) to set the batch size to 1571

32, learning rate to 10−5, max_seq_len to 512. The training epoch is set to 1 to avoid overfitting. All 1572

experiments are conducted on NVIDIA A100 80G. 1573

C.2 Weak-to-Strong Training Procedure in Synthetic Experiments 1574

We explore two methods to generate the weak and strong representations, which follows the experimental 1575

setting in (Charikar et al., 2024). 1576

• Pre-training. We begin by randomly sampling T fine-tuning tasks f⋆
1 , . . . , f

⋆
T ∈ Fs. For each 1577

t ∈ {1, · · · , T}, we generate Nr data {x(t)j }Nr
j=1 where x

(t)
j ∼ P . Let the representations hw, hs : 1578

R8 → R16 be 2-layer and 8-layer MLP with ReLU activations, respectively. And hw ∈ Hw, hs ∈ Hs. 1579

We obtain hw and hs via gradient descent on the representation parameters to find the minimizer of 1580

output distribution divergence loss. Specifically, We use Equation (4) as the loss function on T tasks: 1581

hl = argminh∈Hl

1

T

T∑
t=1

d̂P(f
⋆
t ◦ h, f⋆

t ◦ h⋆), (70) 1582

where l ∈ {w, s}, T = 10, and Nr = 2000. Additionally, the realizable setting (Corollary B.1) is 1583

considered by explicitly setting hs = h⋆, and only obtaining hw as above. 1584

• Perturbations. As an alternative, we directly perturb the parameters of h⋆ to obtain the weak and 1585

strong representations. Specifically, we add independent Gaussian noise N (0, σ2
s) to every parameter 1586

in h⋆ to generate hs. Similarly, we perturb h⋆ with N (0, σ2
w) to generate hw. To ensure the strong 1587

representation hs is closer to h⋆ than hw, we set σs = 0.1 and σw = 9. 1588

Weak Model Fine-tuning. After obtaining hw and hs, we fix these representations and train weak models 1589

on new fine-tuning tasks. We randomly sample M new fine-tuning tasks f⋆
1 , . . . , f

⋆
M ∈ Fs, and generate 1590

data {x(i)j }Nf

j=1, where x
(i)
j ∼ P . For each task i = {1, · · · ,M}, the weak model is trained through: 1591

f (i)
w = argminf

1

M

M∑
i=1

d̂P(f
⋆
t ◦ h⋆, f ◦ hw), (71) 1592

where M = 100, Nf = 2000. Here, the representation parameters hw are frozen, and f
(i)
w is learned via 1593

gradient descent. Weak models are thus trained on true data. 1594

Weak-to-Strong Supervision. Using the trained weak models, we generate weakly labeled datasets for 1595

each fine-tuning task. Specifically, for each i ∈ {1, · · · ,M}, we generate {x̃(i)j }Nf

j=1 where x̃(i)j ∼ P . The 1596

strong models are then trained on these weakly labeled datasets by solving the following optimization 1597

problem using reverse KL divergence loss for each task i ∈ {1, · · · ,M}: 1598

f (i)
sw = argminf∈F d̂P(f ◦ hs, f (i)

w ◦ hw). (72) 1599

At this stage, the weak-to-strong training procedure is complete. 1600

33


	Introduction
	Related Work
	Preliminaries
	Classification and Regression
	Weak-to-strong Generalization

	Universal Results in W2SG
	Generalization Error Bounds
	Calibration Error Bound
	Experimental Validation in Language Models
	Experimental Setting
	Results and Analysis


	Results Beyond Squared Loss
	Upper Bound (Realizability)
	Upper Bound (Non-Realizability)
	Synthetic Experiments

	Conclusion
	Further Related Work
	Main Proof
	Proof of lemma:upperlowerinf
	Extension of lemma:upperlowerinf
	Proof of theorem:calibration
	Proof of thm:realizable-main
	Extension of thm:realizable-main
	Proof of thm:non-realizable-finite-samples-main
	Extension of thm:non-realizable-finite-samples-main

	Further Details and Results of Experiments
	Training Details of Experiments in Language Models
	Weak-to-Strong Training Procedure in Synthetic Experiments


