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ABSTRACT

Comparing AI models to “human level” is often misleading when model scores1

come from heterogeneous benchmarks or when human baselines are drawn from2

a narrow population. In this paper, we ask whether AI can be evaluated on a more3

comprehensive human-referenced scale. To address this, we propose a framework4

that calibrate items to the world population and report performance on a common,5

human-anchored scale. Concretely, we build on a set of multi-level scales for dif-6

ferent capabilities and ‘fix’ the scales so that each level represents a probability of7

success of the whole world population on items of a given level of difficulty. As8

scales are defined by text rubrics with reference examples (anchors) and the base9

B, we aim at calibrating each scale for each capability (reasoning, comprehension,10

knowledge, volume, etc.) by compiling publicly released test items spanning ed-11

ucation and reasoning benchmarks (PISA, TIMSS, ICAR, UKBioBank, and Re-12

liabilityBench). The estimation of B and location of anchor questions is done by13

extrapolating from a biased source sample (characterized by its demographics and14

other known information of how it was obtained) towards a larger target popula-15

tion (with a new demographic profile) using LLMs, with the hypothesis that they16

condense vast amounts of demographic data during their training. We explore dif-17

ferent prompting mechanisms and ways to specify source and target distributions18

and evaluate their quality using group slicing and post-stratification on some of19

these datasets. The techniques introduced here allow for the definition of cali-20

brated scales from which we can standardize other AI evaluations relative to the21

world population.22

1 INTRODUCTION23

Comparing artificial intelligence with human intelligence has been a constant since the early days24

of AI, as a way of showing progress, identifying challenges and providing intuitive information of25

what AI can and cannot do. However, the dominant paradigm of AI evaluation today, benchmarking,26

inherited from machine learning with the purpose of comparing algorithms on specific tasks, is27

now used to compare general-purpose AI systems such as large language models against a ‘human’28

average (Eriksson et al., 2025; Burden et al., 2025). This collapses wide variation across skills, tasks,29

and populations, conflates the difficulty of the problems with the sample choice of the reference30

human population (often W.E.I.R.D. convenience groups), and ignores distributional structure (tails,31

group slices). Consequently, “human-level” claims are benchmark- and sample-dependent, and AI-32

human comparisons lack commensurability and granularity.33

Recent evidence has shown why this matters. Reviews of human baselines in AI evaluations have34

documented pervasive methodological pitfalls, including small, convenience samples, inconsistent35

human-model test sets, and the absence of uncertainty reporting (Wei et al., 2025). In practice, this36

has led to contradictory headlines about AI vs human capabilities. For example, LLMs have been37

reported to surpass humans on certain academic benchmarks (Bojić et al., 2025) but the same models38

can underperform on more realistic tasks (Yeadon et al., 2024). Similarly, early theory-of-mind eval-39

uations suggested near-human success (Kosinski, 2024), yet follow-up work revealed this apparent40

capability is brittle (Shapira et al., 2024) indicating reliance of LLMs on shallow heuristics rather41

than robust understanding. Similarly, agent-based evaluations report best systems at only 50–70%42

of human performance (Gou et al., 2025). In contrast, by late 2024, frontier LLMs were scoring43

around 90% on multi-subject academic benchmarks like MMLU (covering topics from chemistry to44
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law) (Phan et al., 2025) and exceeding 80% on certain graduate-level and professional exams. Many45

models even surpass human experts on specialized tasks: for instance, on the PhD-level GPQA46

Diamond science questions (Rein et al., 2024), domain experts average 70% accuracy1, whereas47

state-of-the-art models now score 85–88%. Part of the contradictory results are caused by a com-48

parison performance with humans that depends strongly on the task distribution in the benchmark,49

and the sample of humans used as reference. However, when items (e.g., software engineering prob-50

lems) are annotated with a single scale that is normed on human populations, such as the number51

of hours a software engineer takes to solve the problem (Kwa et al., 2025), we can finally compare52

AI systems and humans more meaningfully. While this has begun to re-ground progress in human-53

relevant units, it does not yet provide a unified, construct-valid ruler across diverse cognitive tasks.54

Also, the human sample is very specific and, as any other human sample, biased.55

We do not argue that humans should not be used as a reference. On the contrary, in this paper we56

explore more meaningful ways of doing that comparison. Actually, we suggest that the metric and57

the unit of measurement should not be based on performance on a benchmark but on standardised58

scales with human-referenced norms, for different capabilities. Then each value we assign to an AI59

system, e.g., metacognition level 2, should represent a proportion of the whole distribution of human60

performance for questions of that capability level, not to a single point estimate (e.g., ‘average61

person’ or ‘expert’) for a benchmark involving many capabilities.62
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Figure 1: Calibrated annotations of benchmarks can be used to generate profiles of AI systems on
human-referenced scales (top). In this paper we calibrate 18 dimensions of capability and knowl-
edge, going from level 0 (near-universal success) to level 5 ≈ 1-in-B5 people succeeding, with B
being normalized according to the human distribution taken from several tests with human results
(bottom). The calibration uses this source human sample and their demographics through an LLM
to extrapolate to the whole world population to calibrate the scales.

There are significant challenges arising from the use of human populations, some of them faced63

by psychology and other social sciences for a century, especially psychometrics. However, human64

references in AI research are more prevalent to using a sample of humans that is simply ‘easy65

to get’, such as graduate students, collaborators or merely crowdsourced data. This makes some66

of the criticisms about bias in collecting human population even more poignant than what has been67

traditionally found in psychological studies, where many studies are based on W.E.I.R.D populations68

(Henrich et al., 2010). Furthermore, all attempts to establish “culture-free” formats basically failed,69

as no measure escapes contextual bias (Gould, 1996). However, most of this criticism can be applied70

to the goal of characterizing a single or dominant factor of intelligence. When cognitive behavior71

is analyzed with a range of capability and knowledge dimensions, and samples get close to the72

human population, we could choose this as a norm to compare AI against, rather than a way of73

comparing some individuals against human groups. But still, we will always have limited and partial74

availability of human data, from biased samples. Inspired by ideas in equating and distribution75

mapping from psychometrics and sampling (Davier, 2011; Kolen & Brennan, 2013), we propose a76

1https://epoch.ai/benchmarks/gpqa-diamond
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lightweight approach for doing the extrapolation between a small sample and larger samples, aiming77

at approaching the ideal whole-world population (WWP), through the use of demographics and the78

extensive knowledge that LLMs condense about human populations.79

In sum, in this paper we examine the feasibility of an ambitious vision for an AI evaluation program80

that can put AI capabilities on human-referenced scales, in an automated way and for all existing81

and future benchmarks, by the use of LLMs as annotators of capabilities and extrapolators between82

distributions. To this goal, we (i) use capability scales with clear construct validity, (ii) collect83

matched human data from partial distributions and samples, (iii) use LLMs to estimate the reference84

distribution (WWP), and (iv) calibrate the scales using this reference distribution. See Figure 1.85

This would lead to standardized scales that could be used to report commensurate, population-86

anchored measurements of below-human-level, human-level, and above-human-level capabilities,87

for the majority of benchmarks in AI for which we do not have human data.88

To explore how feasible this vision is, we take a first step in this paper with a series of contributions:89

1. We annotate the capability levels of the items of open-sourced tests from ICAR, TIMSS,90

PISA, UKBioBank, and ReliabilityBench with logarithmic difficulty, putting them on the91

same scales, as defined by the capability rubrics.92

2. We introduce several mapping templates based on LLM prompts that can use the source93

demographics and target demographics as parameters of the extrapolation.94

3. We evaluate these mappings on different slices of the human data in those tests for which95

we have individual demographic data, showing that for the best of them errors in the ex-96

trapolation are low, and the order of the scales is mostly preserved.97

4. We use these mappings on the human data for these and the rest of tests not having de-98

mographic data, showing that we can equate different scales of difficulty via our mappings99

(e.g., difficulty-7 items on ICAR with difficulty-9 on TIMSS).100

5. We can express meaningful and commensurate capability levels, such as frontier LLMs101

exceeding 90th-percentile human generalization on TIMSS math but fall below 20th-102

percentile reliability on PISA reading tails, highlighting non-uniform progress.103

Our proposal aims to place both items and models on population-anchored capability scales that104

are commensurate in the sense of measurement theory. Instead of percentiles, levels increase log-105

arithmically, taken as ratio scales as defined by Stevens (1946). Concretely, treating a wider proxy106

for humanity as the baseline system provides commensurate units across tasks and domains; scores107

become positions on a shared human reference. This makes statements like “below-human level”,108

“human level”, and “above human level” precise, supports aggregation across heterogeneous tasks,109

and exposes where models exceed typical humans yet remain below human tails (or vice versa).110

In short, by anchoring decomposed capability scales to the all-humans distribution, we convert dis-111

parate benchmark numbers into comparable measurements, and enable a principled detection of112

progress above and below the human baseline.113

2 RELATED WORK114

Measurement theory (Hand, 2010) builds on concepts such as units of measurement, latent variables115

explaining physical or social phenomena, standardized scales and commensurability. While well-116

established in the physical sciences, the influence on the measurement in the social sciences is also117

significant. Contrary to the fairy tale that measurement scales derive from ground truth, many scales118

and units are usually based on consensus. For instance, the metric scale for length emerged on a119

consensus based on a unit, the meter, initially set as a 10−5 of the distance from the North Pole to120

the equator, assuming an Earth flattening of 1/334, in the same way it happened with temperature,121

which was ‘invented’ as a construct (Chang, 2004). We can define scales using reference points122

that are familiar for humans, such as the north pole and the equator, or freezing and boiling water,123

and then define the operations that we can do on the scale, e.g., ensuring that differences or ratios124

of distances or temperature should be possible (determining an interval or a ratio scale in Stevens’125

taxonomy, (Stevens, 1946)). There is nothing against, in principle, taking a similar approach for126

cognitive capabilities and other constructs related to intelligence, which would allow us to measure127

natural or artificial intelligent systems on commensurate scales.128
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In particular, the psychometric measurement of intelligence, while taking inspiration from measure-129

ment theory, has long grappled with commensurability. Classical approaches, such as item response130

theory (IRT; Embretson & Reise 2000), estimate latent traits θ from observed responses but de-131

pend heavily on dense, representative data – often unavailable beyond biased norm groups. Cultural132

variability exacerbates this: Hofstede highlights how national cultures shape values and behaviors,133

affecting cognitive test validity across societies (Hofstede, 1980; Hofstede et al., 2010). Related134

critiques like W.E.I.R.D. sampling (Western, Educated, Industrialized, Rich, Democratic) under-135

score overrepresentation of atypical populations (Henrich et al., 2010), and point to how test scores136

often reflect agent-context interactions rather than purely latent abilities, undercutting the myth of137

“culture-free” testing (Ceci, 1996). Large datasets and test efforts like PISA and TIMSS, while138

stratified, still underrepresent global variance in education and cognitive trajectories (OECD, 2018),139

which can inflate or miscalibrate claims if used by AI evaluation as “human-level” capability. The140

ICAR suite (Condon & Revelle, 2014) offers open-source items with subgroup norms (e.g., age/-141

gender breakdowns), but does not provide world-population extrapolation. However, while most of142

psychometric approaches define scales in a populational way based on (subgroups of) humans, there143

is also criterion-referenced approaches Hambleton & Rogers (1991). For instance, we can deter-144

mine short-term memory as how many two-digit numbers a person can remember, or use a rubric to145

determine different levels of complexity. However, criterion-referenced scales for different domains146

become incommensurate (number of numbers we can remember versus levels of metacognition).147

But we can perform an extra step to map them to the same reference points or units, as what Watt148

did with the term horsepower in a commensurate way to measure the power that a mill or a light149

bulb require (Hernández-Orallo, 2019).150

Artificial intelligence evaluation did not evolve from human evaluation but rather from machine151

learning and other areas of artificial intelligence. The goal was to compare expected performance152

on a task for two or more competing methods, something that has driven the field for decades. But153

as soon as general-purpose systems like LLMs started to dominate AI, this kind of benchmark eval-154

uation started to show problems (Eriksson et al., 2025; Burden et al., 2025). There are many other155

issues in AI evaluation (Hernández-Orallo, 2017; Burnell et al., 2023b; Cohn & Hernández-Orallo,156

2023; Reuel-Lamparth et al., 2024), but we want to focus on the use of human baselines. Compar-157

ing against humans is critical to determine when AI can automate tasks performed by humans, or158

to inform about risks, especially for policy-makers and the general public, given our intuition about159

what humans can and cannot do. But the importance of comparing AI against human references160

should also remind us how many things can go wrong if human baselines are biased, simplistic or161

simply misconceived (Wei et al., 2025). In particular, having a human baseline on a test is not very162

useful when the benchmark is modified or replaced by another more difficult benchmark because of163

saturation (Hernandez-Orallo, 2020). In fact, it is the difficulty of the items in a benchmark which164

should serve to understand human baselines more properly. For instance, what is the level of logical165

reasoning that 30% of humans can reach? Is this level achieved by AI? One can argue that difficulty166

works very differently in AI and humans, and any kind of common scale that could show high cor-167

relation in the probability of success for these two different groups is wishful thinking. However,168

there is sufficient evidence that errors in humans and AI systems are correlated, provided we find a169

good proxy of difficulty. For instance, Zhou et al. (2024) probe parametric difficulty on simple tasks170

(e.g., addition, anagrams), showing correlation in performance and the difficulty metrics, with a very171

standard logistic shape. Complementary metrics, such as METR’s human-anchored time-horizons172

(Kwa et al., 2025), quantify long-task autonomy (e.g., doubling every seven months), and also show173

the correlation between duration and success rate, also well modeled by a logistic function.174

The use of psychometrics in AI has a long story, and IRT has long been used for analyzing popu-175

lations of AI systems (Martı́nez-Plumed et al., 2019), in the same way as factor analysis has been176

used for this (Burnell et al., 2023a). However, this is usually limited to one or very few capabilities177

(or factors) and they derive from a population of models, a reference point that is very volatile given178

the pace of progress in AI. Here, we want to use a criterion-referenced approach mapped to a human179

reference, not a “population of LLMs” reference. We require two steps: the criterion-referenced180

scales and the human-norming. The ADeLe framework (Zhou et al., 2025) introduces criterion-181

referenced scales, by annotating items for multi-dimensional cognitive demands (e.g., quantitative-182

logical, attention-scan) on ratio scales (Stevens, 1946), enabling the explanation of what benchmarks183

measure and the demand-based prediction for anticipating model performance on new task items –184

yet it lacks global norming. This is what we do in this paper.185
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3 METHODOLOGY186

We operationalize “human-level” as a position on population-anchored, psychometrically valid ca-187

pability scales. The pipeline has five stages: (i) assemble item pools with observed human perfor-188

mance; (ii) annotate instance-level cognitive demands with the ADeLe methodology (Zhou et al.,189

2025); (iii) estimate world-population success for each item via LLM-assisted demographic ad-190

justment; (iv) transform success rates into logarithmic, ratio-scaled difficulty levels that are com-191

mensurate across domains; and (v) validate the results by estimating total test taker population by192

sub-groups to gauge the exactness of extrapolation.193

Item pools and observed human performance We curate public, text-only items with item-level194

human success rates and standardized scoring. For each item, we retain the full prompt and scoring195

protocol, harmonize to dichotomous 0/1 scoring (collapsing partial credit when needed), and exclude196

items requiring visual material or with ambiguous keys or insufficient responses. Sampling-frame197

descriptors (age, geography, administration year, language) and subgroup identifiers are normalized198

across sources; when only aggregates are available, we parse per-item subgroup and full-sample199

rates and compute standard errors under a binomial model. These observed rates serve as ground200

truth for subgroup-to-sample validation and as inputs to the LLM-based extrapolation to the target201

world population.202

Instance-level demand annotation with ADeLe To preserve construct validity, we adopt the203

ADeLe framework (Zhou et al., 2025) to annotate each item instance along multiple capability204

scales. ADeLe treats demand as multi-dimensional and instance-specific: a single item can place205

high demand on, say, Quantitative-Logical reasoning while placing low demand on Attention-and-206

Scan. Concretely, we use the ADeLe v1.0 scales and public rubrics2, which cover a broad set of207

18 cognitive demands (see Table 6). Demands are assigned on a ratio scale Stevens (1946) with208

an absolute zero and consistent differences across levels, with rubrics designed so that doubling the209

demand halves the log-odds of success.210

We prompt a strong LLM (i.e., GPT-5 Chat, Llama 4, GPT 4.1, DeepSeek v3.1, and GROK3) to211

apply the public rubrics consistently at scale, and applied to item text and scoring rules without212

access to model outputs. For each item i and capability c, we obtain a vector of demand levels213

per item, di,c ∈ {0, 1, 2, 3, 4, 5+}. The result is a capability-aligned description of what the item214

requires, independent of who answers it.215

Instance-based calibration with LLMs Let pgi be the observed success rate for item i in sampling216

frame g (e.g., a PISA wave or an ICAR cohort). Our target is to estimate the probability that a217

randomly drawn human from the 2025 world population answers item i correctly under comparable218

exam conditions (pWi ).219

Estimating pWi from pgi requires an extrapolation across populations. We operationalize this as LLM-220

assisted post-stratification by prompting a strong language model to translate the observed rate in221

g to the global reference W, explicitly accounting for (i) the global age distribution, (ii) education222

access and quality, (iii) forgetting after schooling, (iv) fluid/crystallized ability trajectories over the223

lifespan, (v) specialization and exposure for domain knowledge, (vi) health and cognitive decline,224

and (vii) language factors.225

Prompts include (a) contextual introduction (situating the data set and test domain), (b) focal-group226

description (long-form prose containing all known demographic details g), (c) item content (e.g.,227

question stems, answer choices, and correct answer), (d) observed focal-group success rate pgi , (e)228

reference-group description (long-form prose containing all known demographic details), (f) an ex-229

plicit inference request for the model to respond with a prediction of the reference group’s success230

rate for the current item, given the focal groups success rate and all of the demographic detail). The231

base prompts used for each dataset (see Table 1, Appendix A.4) appear in Table 5. Rationales are232

logged for auditability.233

In the original ADeLe paper (Zhou et al., 2025), scales are understood with ratio-scaled difficulty234

using a rule of thumb of each level roughly corresponds to Li = logB(
√
B/pWi ). With a base235

2https://kinds-of-intelligence-cfi.github.io/ADELE/
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B = 10 level L∈ [0, 1) corresponds to 10–100% of the world population succeeding (“common”236

items), L∈ [1, 2) to 1–10% (“uncommon”), L∈ [2, 3) to 0.1–1% (“rare”), and so on. This provides237

a single, commensurate ruler across domains: equal steps in L imply equal multiplicative changes in238

success odds in the population. However, this population is not calibrated per or across dimensions.239

We thus refine ADeLe’s approach to pursue an LLM-prompted demographic adjustment to estimate240

world-population success pWi , yielding difficulties in a logarithic scale Li = − logB(p
W
i ).241

Validation In the validation setting we compared extrapolations from sub-groups to the full pop-242

ulation using four metrics, both between LLM-predicted results and real outcomes from samples243

with sufficient granularity in demographics. The mean absolute error (MAE) and root mean squared244

error (RMSE) capture the average and squared deviations between predicted and true success rates.245

In addition, Pearson’s correlation r measures linear agreement in magnitudes, while Spearman’s246

correlation ρ captures whether the relative item ranking is preserved.247

4 EXPERIMENTS248

4.1 DATA249

We evaluate the methodology on five public sources that together cover large-scale educational as-250

sessments, open cognitive tests, a population cohort, and an LLM-oriented reliability suite. From251

PISA 2009 (OECD, 2009; Lundahl & Serder, 2020; Breakspear, 2014) and TIMSS 2003/2011252

Grade 4/8 mathematics and science, we use released items with item-level human success rates and253

official sampling documentation; items requiring visual material are excluded so that all compar-254

isons are text-only and scored 0/1 under the original rubrics. ICAR Letter & Number Series and255

Verbal Reasoning (Condon & Revelle, 2014) provide purely textual items with both participant-level256

responses and subgroup metadata from several cohorts, enabling robust subgroup-to-sample valida-257

tion. The UK Biobank Fluid Intelligence test (Sudlow et al., 2015; Lyall et al., 2016; Fawns-Ritchie258

& Deary, 2020) contributes a timed, text-only, 13-item reasoning measure from a very large pop-259

ulation sample. ReliabilityBench (Zhou et al., 2024) supplies 401 non-visual items with human260

success rates and human difficulty judgments across five subdomains; it lacks individual covariates261

and is therefore used for calibration but not subgroup validation. Table 1 summarizes these datasets,262

highlighting their purpose, scale, and the specific text-only subsets employed in our experiments.263

All items are annotated with ADeLe demand profiles using the public rubrics (Zhou et al., 2025).264

Table 1: Summary of datasets and the text-only subsets used in this work.

Dataset Description Scale / coverage This work (subset)

PISA Lun-
dahl & Serder
(2020); Breaks-
pear (2014)

International assessment of 15-year-olds
in reading, mathematics, and science
(2009); ability estimated via item re-
sponse modeling with a focus on practical
skills.

57 countries; 4,500–40,000
students per country.

Text-only items: 12 math,
32 reading, 20 science.

TIMSS Grade 4/8 mathematics & science;
released items from 2003 and 2011;
multiple-choice and constructed re-
sponses spanning content and cognitive
domains.

2003: G8=48 countries,
G4=26 c.; 2011: G4=57 c.,
G8=56 c. (>360,000 stu-
dents)

300 text-only questions
across 30 countries; 27
prompt variants each;
evaluation subset of 5,000
variants.

ICAR (Condon
& Revelle,
2014).

Public-domain cognitive tests; we use
Letter & Number Series (9) and Verbal
Reasoning (16), all multiple-choice and
purely textual.

Validation sample 97,000
(199 countries); additional
cohorts: English 145,000,
Chinese 240, German 106.

25 items used to compare
item success across lan-
guages/contexts.

UK Biobank
(Sudlow et al.,
2015)

Fluid Intelligence (Verbal–Numerical
Reasoning): 13 multiple-choice items
under a 2-minute limit, probing verbal
and numerical reasoning.

502,649 participants;
completed by n=168,415;
20,000 repeated after 4
years.

13 text-only timed items
as a human reference.

ReliabilityBench
Zhou et al.
(2024)

LLM reliability benchmark with human
difficulty judgments across five subdo-
mains; provides human success rates; all
items non-visual.

189 adults in US/UK (64%
female; ages 19–78); no
individual-level covariates.

401 questions; 27 prompt
variants each; used for cal-
ibration only.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 EXPERIMENTAL SETUP265

We validate the extrapolation procedure with a unified pipeline that operates on any dataset providing266

item text and scoring (stems, options, keys, and scoring rules), observed item-level success rates, and267

metadata sufficient to define demographic subgroups.268

For each dataset, we construct focal subgroups directly from the available metadata (for example,269

Younger/Older, Men/Women, or Country X) and compute their observed item-level success rates.270

The reference group is the full set of participants who attempted the item. We adopt a strict part-to-271

whole convention: members of a focal subgroup remain part of the reference group so that the task272

is to infer from a subset to the whole rather than to another subset. When a required characteristic is273

missing (e.g., gender not reported), those participants are excluded only from analyses that depend274

on that characteristic and retained elsewhere. Items with too few attempts or ambiguous scoring are275

filtered out to avoid unstable rates.276

For every focal-group–item pair, we prompt LLMs to predict the reference-group success rate given277

a brief description of the dataset and test domain including the sampling frame; a prose description278

of the focal subgroup; the full item content and correct answer; the focal-group success rate; and279

a concise description of the reference group (see Sec. 3 for details). The prompt instructs the280

model to return a single numeric percentage for the reference group and a short rationale linking281

the adjustment to the item and sampling differences. To probe robustness, we paraphrase each282

prompt into 27 variants by reordering sections, varying connective phrasing, and altering numeric283

formatting, while keeping all factual content fixed.284

For the LLM estimator we use a small set of instruction-tuned models spanning providers and sizes285

(GPT 5 Chat, GPT4.1, Llama 4, DeepSeek v3.1, and GROK3), queried with the 27 family of para-286

phrased prompts as described in table 5 per item with low temperature and no use of tools. For each287

response we parse the terminal percentage and convert to a probability. Predicted world-population288

rates are aggregated across item variation per model.289

We validate the demographic extrapolation in a setting where the target is observable. For datasets290

that allow partitioning participants into demographic subgroups, we ask an LLM to infer full-sample291

(reference) item success rates from subgroup information within the same dataset. Subgroups are292

defined either from participant-level covariates (e.g., age, gender, country) or from published sub-293

group aggregates; in both cases, the item-wise success rates for the full sample are known and serve294

as ground truth. The model receives the item, the focal subgroup description and success rate, and295

the dataset’s sampling frame, and is tasked with predicting the corresponding full-sample rate. Ac-296

curate recovery of these known totals from subgroup evidence demonstrates that the LLM performs297

the intended demographic adjustment, lending confidence to its use for estimating world-population298

success probabilities when direct observations are unavailable.299

5 RESULTS AND ANALYSIS300

5.1 COMPARING GROUND TRUTH/ BASELINE WITH EXTRAPOLATION301

Tables 2 and 14 report validation results when models are asked to extrapolate from subgroup infor-302

mation to the overall population. On the ICAR benchmark, all systems achieve very low error (MAE303

≈0.03–0.04) and extremely high correlations with the ground truth distribution (Pearson r > 0.92).304

This indicates that, when the item space is relatively homogeneous and well-structured, extrapola-305

tion from subgroups to the global sample is highly reliable.306

Table 2: Validation results on ICAR benchmark (lower MAE/RMSE is better, higher r is better).

Model N MAE RMSE Pearson r Spearman r

gpt-5-chat 2993 0.030 0.044 0.976 0.968
llama-4 3121 0.033 0.052 0.971 0.963
gpt-4.1 3123 0.040 0.058 0.958 0.944
deepseek-v3.1 3124 0.043 0.085 0.922 0.914
grok-3 3115 0.043 0.068 0.939 0.920
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By contrast, on TIMSS the same procedure yields substantially weaker performance: errors are307

three to five times larger (MAE ≈0.12–0.16) and correlations are much lower, often around 0.5–0.7.308

This gap suggests that the more heterogeneous content and cross-national variability in TIMSS309

makes extrapolation from subgroups far less accurate, and highlights important differences between310

benchmarks in how well subgroup-to-population generalization can be achieved.311

Although current results show clear limitations, especially on heterogeneous data like TIMSS, the312

high correlations observed on ICAR demonstrate that models can, in principle, capture stable diffi-313

culty patterns and generalize them from subgroups to populations. This suggests that with further314

scale, better training data, and more explicit calibration, models may extend this capability to more315

complex, diverse assessments. In that sense, the present gap is not a hard limit but a challenge that316

can plausibly be overcome as the technology matures.317

The baseline correlations between sub-samples and the full population as shown in tables 3 and318

16 show that even without model extrapolation, subgroup performance aligns closely with overall319

outcomes. On ICAR, the agreement is exceptionally strong (r ≈ 0.95), while for TIMSS it is320

notably weaker (r ≈ 0.83), reflecting the greater heterogeneity and cross-national variability in the321

TIMSS data.322

Table 3: ICAR ground truth / baseline — anonymized summary across focal groups.

# Focal groups avg N avg MAE avg RMSE avg Pearson r avg Spearman r

7 33.143 0.068 0.086 0.948 0.894

5.2 EXTRAPOLATION OF DEMAND LEVELS323

Calibration goes one step further than validation by asking models to extrapolate from the set of324

test takers represented in the benchmark to the distribution of the entire world population. In other325

words, instead of predicting overall outcomes from a subgroup, the model now estimates global326

capability levels from the entire available sample. Tables 4 and 15 show that this procedure is327

more demanding: while correlations remain reasonably strong on ICAR (Pearson r ≈ 0.93 for328

the best models), errors are noticeably higher than in validation, reflecting the difficulty of scaling329

predictions beyond the observed sample. On TIMSS the challenge is even greater, with only one330

model (DeepSeek-v3.1) maintaining acceptable calibration quality, while others exhibit very high331

error and weak correlations.332

Table 4: Calibration results on ICAR benchmark (lower MAE/RMSE is better, higher r is better).

Model N MAE RMSE Pearson r Spearman r

deepseek-v3.1 674 0.166 0.180 0.933 0.912
llama-4 669 0.168 0.184 0.920 0.893
gpt-5-chat 673 0.173 0.186 0.938 0.933
gpt-4.1 672 0.264 0.282 0.857 0.829
grok-3 671 0.336 0.355 0.802 0.780

These results underline that calibration is an iterative process: extrapolating overall capabilities333

is feasible, but current models require further refinement and methodological support to approach334

reliable accuracy at the population level.335

Finally, we create demand levels based on Zhou et al. (2025), and change those based on the new,336

extrapolated outcomes, to calculate the new demand levels for world population for each of the337

tests3.338

3To be included in the code repository
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6 CONCLUSION339

This paper sets an ambitious program in which most benchmarking in AI evaluation could be com-340

pared against humans on a set of meaningful and commensurate capability and knowledge dimen-341

sions. For this we need criterion-referenced scales for a set of several dimensions, such as Zhou et al.342

(2025), fixed with a calibration of the scales to commensurate units, using the levels of the WWP343

on those scales. While this may look circular, it is not. We can choose the average foot size of the344

world-population as reference, operationalize into smaller or large units, and use that to measure the345

feet of people, and then the length of other objects. We explored whether this could be performed in346

an automated way using LLMs as our calibration tool across populations. This choice allows for a347

systematic, fast and reproducible way of using more sources of human data in the future to improve348

our calibration mappings. This also shows the potential of LLMs for this population extrapolation.349

Our results show that the methodology we have presented is powerful, leading to low error in the350

extrapolation while maintaining the ranking of human success rates, with results heavily depending351

on the LLM being chosen in some cases.352

There are several limitations of this work. First, we have only considered a limited number of353

sources for human data, but it is important to highlight that openly avalaible human results on tests354

at the instance level and detailed demographics are unfortunately unusual. Second, we have only355

used a few prompting schemes with a limited number of LLMs, but this actually shows that there is356

margin of improvement, and the diversity of methods shows what can be done with the approaches357

that are time and cost-effective, compared to fine-tuning and, of course, human extrapolation or358

running these tests on unbiased samples of the WWP. Third, among the limitations we count the359

ethical issues that arise from the correct and incorrect interpretation of this work: even if our goal360

was to go beyond the current state of the art of biased and partial human baselines, there is always361

a degree of bias in our choice of datasets, extrapolation based by models that are trained on biased362

samples, etc. However, we show how the extrapolations can be evaluated, and this paper places the363

bar at a higher place that we hope new papers can criticize and improve. For more information about364

the ethical implications we refer to the “Ethics Statement” in the supplementary material.365

This paper should allow the reunderstanding of all benchmark results in the past few years across366

many capabilities with a simple automated annotation procedure and without the need of any further367

human testing. This is not only extremely relevant for AI at the scientific and policy-making levels,368

but it is also relevant for the ‘equating’ of human populations in the social sciences.369
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A APPENDIX488

A.1 ETHICS STATEMENT489

The use of human baselines is controversial as much as it can give the impression that there is490

a standard or average human capability, even used as a target for the field. This misappreciation491

is behind blurry concepts such as human-level machine intelligence, artificial general intelligence492

or even superintelligence. Separating levels on several abilities allows us talk about profiles, as493

the diversity of people and AI systems will have very different profiles, defined by levels on these494

abilities.495

Our paper is actually motivated by the biases and ethical issues of the use of human baselines, and496

in this pursuit we must also highlight some other biases that are difficult to avoid. While the whole497

world population is an ideal target as a reference, it can also be dominated by behavioral patterns498

in big countries such as India and China, not properly accounting for capability or knowledge dis-499

tribution of small countries or minorities. Also, using all ages and health conditions is a moving500

target, and includes babies and people with age-related cognitive decline, portraying a picture of501

‘human-level’ that may be easier to meet by AI than educated, healthy samples.502

It is important to realize, though, that we use human data to fix the scales. Once this is done for503

all the cognitive capabilities and knowledge dimensions, we can still put groups of people in these504

scales, and obtain their profile. For instance, we could show that educated students from PISA505

results may well be above the average metacognition capability in the world population, and below506

in customary knowledge. Similarly, we can compare AI and different human groups on the same507

scale, for different dimensions. We are using the human data for fixing the scales; as the meter or508

the Celsius degree, the choice is not that relevant, but rather how our measurement instruments then509

map different individuals or groups on that scale.510

A.2 REPRODUCIBILITY STATEMENT511

The data we used in this paper is already open, available and traceable through the references pro-512

vided. The code and results from this paper will be available shortly after acceptance. Links to data,513

along with the full code and results will be available on a dedicated public github repository.514

A.3 LLM USAGE STATEMENT515

LLMs were used not only as subjects of study, but as annotators and extrapolators in our method-516

ology. This section, however, discloses the use of LLM for polishing the writing of rubrics or parts517

of the paper, assistance with coding, error screening and creating skeletons of reports, papers or518

summaries as part of this project.519

A.4 DATA520

Here we include the full dataset descriptions. For each source (PISA, TIMSS, ICAR, UK Biobank,521

and ReliabilityBench) we document provenance and access, target populations and coverage, item522

formats and scoring (including IRT where applicable), inclusion/exclusion criteria (notably removal523

of visually dependent items), construction of prompt variants, sampling for evaluation sets, prepro-524

cessing steps, and known limitations. A high-level summary appears in Table 1.525
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A.4.1 PISA526

The Program for International Student Assessment (PISA) is recognized worldwide for evaluating527

the academic competence of 15-year-olds Lundahl & Serder (2020); Breakspear (2014). The eval-528

uation covers reading, science, and mathematics, and assesses critical thinking, problem-solving,529

and the application of knowledge in these areas. It primarily focuses on practical skills rather than530

memorization.531

The data utilized come from the 2009 survey. Its assessment encompasses 57 countries, 30 OECD532

members and 27 partner members (which include countries from East and Southeast Asia, Central533

and Eastern Europe, the Middle East, Central and South America and North Africa). Each country’s534

test population included between 4,500 and 40,000 students. Additionally, each assessed question535

comes with a point score representing the estimated student’s ability. This is determined using item536

response modeling. The relative difficulty of the questions on a test is estimated by considering the537

proportion of test takers who answered each question correctly OECD (2009).538

For our specific experiments, we filter out items for which visual information is not necessary to539

answer the question. Therefore, we are not limited to multimodal models. This yields 12 math540

items, 32 reading items, and 20 science items.541

A.4.2 TIMSS542

The Trends in International Mathematics and Science Study (TIMSS), conducted by the Interna-543

tional Association for the Evaluation of Educational Achievement (IEA), is an international assess-544

ment that measures mathematics and science achievement of students in Grade 4 (approximately545

age 9-10) and Grade 8 (approximately age 13-14). TIMSS also collects background data (student,546

teacher, and school questionnaires).547

The data used in this study are drawn exclusively from publicly released questions, available via548

the NCES “TIMSS – Released Assessment Questions” portal (see https://nces.ed.gov/549

timss/released-questions.asp). The released items include the full mathematics and550

science assessment items for the 2003 and 2011 waves, for both Grade 4 and Grade 8. These items551

cover the TIMSS content domains (for example, number, algebra, geometry, data/statistics in math-552

ematics; life, physical, earth sciences in science) and cognitive domains (knowing, applying, rea-553

soning). Format types among the released items include multiple-choice questions and constructed554

responses. These released assessment items are the basis for our analyses. In 2003, TIMSS included555

Grade 8 students from 48 participating countries and Grade 4 students from 26 countries, yielding556

a database covering more than 360,000 students worldwide. In 2011, TIMSS expanded its reach,557

assessing Grade 4 students in 57 countries and education systems, and Grade 8 students in 56 sys-558

tems. As in previous cycles, each participating system provided nationally representative samples of559

students. The 2011 assessments followed the same structure as 2003, including both multiple-choice560

and constructed-response items in mathematics and science, balanced across content and cognitive561

domains.562

For our experiments, as with PISA, we exclude items that rely on visual material. Since only a563

portion of the full TIMSS assessment is publicly released, our analyses are restricted to this subset.564

Nevertheless, the released items retain the structure, content balance, and difficulty profile of the565

complete assessment, ensuring that the resulting comparisons remain meaningful and representative.566

We work with a set of 300 questions distributed across 30 countries. Each question is expanded into567

27 prompt variations. To construct the evaluation set, we apply stratified sampling at the country568

level and select a subset of 5,000 prompt variations.569

A.4.3 ICAR570

The International Cognitive Ability Resource (ICAR) is constituted by a set of tests that are intended571

to serve as public-domain alternatives to traditional (often proprietary) human cognitive-ability mea-572

sures, such as those found on commercial intelligence quotient tests (Condon & Revelle, 2014). For573

the present work, we focus on the ICAR’s Letter and Number Series and Verbal Reasoning subtests.574

These tests were chosen because of their purely textual contents which could be processed without575

needing to deal with issues of multimodality.576
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The 9 items that comprise the Letter and Number Series test are similar in design to the well-known577

tests of the same name introduced by Thurstone (Thurstone, 1938). Test-takers must discern the578

patterns present in a sequence of letters or numbers and select the letter or number that completes579

the sequence from a set of choices. For a simple example, one might be presented with a sequence580

such as “1 – 3 – 5 – 7 – ?” and answer choices: 8, 9, 11, or 13.581

The 16 items that comprise the Verbal Reasoning test include a mixture of short logic puzzles, basic582

arithmetic word problems, odd-one-out vocabulary items, and antonym tasks. Each item is multiple-583

choice with a single correct answer, designed to be solvable from the text alone without specialized584

background knowledge.585

For the present work, the analyzed examinee responses to these tests came from two sources. The586

first was the original validation sample of the ICAR (Condon & Revelle, 2014). This large-scale587

dataset consisted of nearly 97,000 examinees (mean age 26 years, range 14–90; 66% female) from588

199 countries, most of whom were students and approximately 75% of whom were located in the589

United States. The second data source was a multilingual validation study for an entirely different590

test (Gühne et al., 2021), in which participants also completed subsets of the relevant ICAR items.591

This latter study featured three distinct samples: a large and heterogeneous English-speaking cohort592

(n ≈ 145,000, mean age 25, from over 200 countries), a Chinese secondary school sample (n ≈ 240,593

mean age 15), and a smaller German university student sample (n ≈ 106, mean age 23). Together,594

these data allowed for comparisons of item success rates among examinees across language and595

cultural contexts.596

A.4.4 UKBIOBANK597

The UK Biobank is a large, population-based cohort study established to investigate the genetic,598

environmental, and lifestyle determinants of health in middle and older age (Sudlow et al., 2015).599

Between 2006 and 2010, over 500,000 adults aged 40–69 years were recruited from across the600

United Kingdom and completed extensive baseline assessments, including a brief computerized601

cognitive battery administered via touchscreen in the Assessment Centre Environment (ACE).602

For the present work, we focus on the UK Biobank Fluid Intelligence test (also referred to as the603

Verbal-Numerical Reasoning test), which was selected because its items were text-based and could604

be processed without visual or multimodal input. This test comprises 13 multiple-choice items605

sampling both verbal and numerical reasoning, administered under a strict two-minute time limit,606

and scored as the number of correct responses (Lyall et al., 2016; Fawns-Ritchie & Deary, 2020).607

Items included short word problems and logical puzzles designed to probe problem-solving ability608

under time pressure, with no requirement for specialized knowledge.609

At baseline, a large sub-sample of participants (n = 168,415) completed the Fluid Intelligence test610

(Fawns-Ritchie & Deary, 2020). The UK Biobank cohort as a whole included 502,649 participants611

(56% female; mean age at recruitment = 56 years, range 40–69), recruited across 22 assessment612

centres to capture socioeconomic, ethnic, and geographic diversity (Sudlow et al., 2015). A smaller613

group (n ≈ 20,000) repeated the cognitive battery, including the Fluid Intelligence test, approxi-614

mately four years later, enabling evaluation of longitudinal stability (Lyall et al., 2016). Together,615

these data provide one of the largest available reference samples for human performance on timed616

reasoning tasks.617

A.4.5 RELIABILITYBENCH618

ReliabilityBench, proposed in Zhou et al. (2024), is designed to assess the reliability of LLMs. The619

benchmark first gathers human assessments of question difficulty across five subdomains (simple620

numeracy ,vocabulary reshuffle, geographical knowledge, basic and advanced science questions and621

information-centric transformations) and subsequently evaluates LLM performance on the same622

questions to establish a difficulty measure consistent with human perception. Consequently, the623

benchmark also records human success rates, offering human-performance data that reflect per-624

ceived question difficulty.625

ReliabilityBench was taken by 189 residents in the U.S and the U.K, 64% female and 36% male,626

with an age range between 19 and 78 years. However, the dataset does not include individual-627
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level information about participants, which prevents stratification or the creation of distinct human628

reference groups for evaluation. As such, this dataset was only be used for calibration.629

None of the questions in ReliabilityBench has visual information. Accounting for all subdomains630

we work with a total of 401 questions. Each question is expanded into 27 prompt variations.631

A.5 BASE-PROMPT632

Table 5: Example PISA item and setup for extrapolation task.

Section Content
Introduction overall We have PISA results from 57 countries (30 OECD + 27 partner

countries).
Demographics Students aged 15 years 3 months to 16 years 2 months, attending at

least Grade 7 or equivalent.
About 400,000–450,000 students were assessed, representing ∼20
million 15-year-olds globally (stratified sampling).

Item introduction Consider the following question that was asked to all these students:
Item Question: The picture shows the footprints of a

man walking. The pacelength P is the distance
between the rear of two consecutive footprints.
For men, the formula n/P = 140 gives an ap-
proximate relationship between n and P , where:
n = number of steps per minute, and P =
pacelength in metres.
Bernard knows his pacelength is 0.80 metres.
The formula applies to Bernard’s walking.
Task: Calculate Bernard’s walking speed in me-
tres per minute and in kilometres per hour. Show
your working out.

Percentage success rate This question had a 19% success rate in the PISA sample.
Reference group —
Instruction calibration How would you translate this success rate in the PISA sample to

the percentage of success that the whole world population would
achieve under similar exam conditions?
Mapping requires taking into account: cross-country distribution,
age distribution, health conditions, access to education, forgetting,
development of fluid/crystallised intelligence, acquired knowledge,
cognitive decline, etc.
According to these factors, and how they affect this question, what is
the probability that a randomly sampled human worldwide in 2025
would answer correctly? Please give a percentage at the end.

We iterated various versions of the, Introduction overall, Item introduction, Instruction calibration,633

and Instruction validation, in order to generate variation and check for robustness of results.634

The full variations will be provided in the code repository.635

A.6 ADELE COGNITIVE ABILITY DIMENSIONS636

Table 6 lists the ADeLe cognitive ability dimensions Zhou et al. (2025) used in our analyses, provid-637

ing brief, non-exhaustive descriptions to clarify how we map task demands to abilities. For complete638

rubrics and scale definitions, please refer to the original ADeLe paper.639

A.7 DIFFERENTIATION TO DIFFICULTY MODELLING IN PSYCHOMETRICS640

In Classical Test Theory, the “p-value”, i.e., the proportion of respondents who obtain the correct641

response for an item, is an important index for item analysis (Rust et al., 2020). It is often referred642
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Table 6: Cognitive demand dimensions in the ADeLe framework. Adapted from Zhou et al. (2025).

Dimension (Broad) Dimension
(Specific)

Description of Demands

AS
Attention
and Scan

AS
Attention
and Scan

Focus on or locate specific elements within a given stream of
information or environment in the whole process of solving a
task.

CE
Comprehension
and Expression

CEc
Verbal
Comprehension

Understand text, stories or the semantic content of other rep-
resentations of ideas in different formats or modalities.

CEe
Verbal
Expression

Generate and articulate ideas, stories, or semantic content in
different formats or modalities.

CL
Conceptualisation,
Learning and
Abstraction

CL
Conceptualisation,
Learning and
Abstraction

Build new concepts, engage in inductive and analogical rea-
soning, map relationships between domains, and generate ab-
stractions from concrete examples.

MC
Metacognition and
Critical Thinking

MCr
Identifying Relevant
Information

Recognise what information helps solve the task or does not,
and how this recognition process unfolds as they work toward
the solution.

MCt
Critical Thinking
Processes

Monitor or regulate multiple thought processes to answer the
question effectively, ranging from simple recall to high-level
critical thinking.

MCu
Calibrating Knowns
and Unknowns

Recognise the boundaries of one’s knowledge and confidently
identify what one knows they know, knows they don’t know,
or is uncertain about.

MS
Mind Modelling
and Social
Cognition

MS
Mind Modelling
and Social
Cognition

Model the minds of other agents or reasoning about how the
beliefs, desires, intentions, and emotions of multiple other
agents might interact to determine future behaviours.

QL
Quantitative and
Logical Reasoning

QLl
Logical
Reasoning

Match and apply rules, procedures, algorithms or systematic
steps to premises to solve problems, derive conclusions and
make decisions.

QLq
Quantitative
Reasoning

Work with and reason about quantities, numbers, and numeri-
cal relationships.

SN
Spatial Reasoning
and Navigation

SNs
Spatio-physical
Reasoning

Understand spatial relationships between objects and predict-
ing physical interactions.

KN Knowledge

KNa
Knowledge of
Applied Sciences

Knowledge or conceptual understanding in applied sciences
(e.g., medicine, law, education, business, agriculture, engi-
neering except IT).

KNc
Customary Everyday
Knowledge

Knowledge in information that most people in a given society
typically acquire through daily life experiences, social inter-
actions, and media.

KNf
Knowledge of
Formal Sciences

Knowledge or conceptual understanding in formal sciences
(e.g., mathematics, logic, computer science, statistics).

KNn
Knowledge of
Natural Sciences

Knowledge or conceptual understanding in natural sciences
(e.g., physics, chemistry, biology, astronomy, earth sciences,
ecology).

KNs
Knowledge of
Social Sciences

Knowledge or conceptual understanding in social sciences and
humanities (e.g., history, psychology, sociology, literature, art,
philosophy).

AT Atypicality AT Atypicality
How uncommon the task is or how unlikely it is that the in-
stance has appeared in various sources (internet, textbooks,
tests).

VO Volume VO Volume
Proportional to the logarithm of the time a fully competent
human needs to read and complete the task in ideal conditions,
excluding interruptions.

UG Unguessability UG Unguessability
The chance of error (percentage) of a task if following obvious
cues or by random guess.

to as item facility or item easiness, as it indicates the opposite of item difficulty among a particular643

group of respondents. According to more advanced measurement theory, for instance, Item Re-644

sponse Theory, item difficulty is a parameter of the item: it is defined as the point on the ability axis645

where the Item Characteristic Curve (i.e., a logistic curve that describes responses to a certain item646

given different levels of ability) is steepest. In other words, item difficulty is where a respondent647

needs a higher level of ability to have a good chance of getting the item correct (i.e., more than 50%648

probability in a 2-PL IRT model). Notably, item difficulty as defined either in Classical Test Theory649

or Item Response Theory is derived empirically: Item-level response data is required to calibrate650
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the items in order to understand how difficult each item is. This is fundamentally different from651

how item difficulty is operationalised in this study. Here we adopt a criterion-referenced approach,652

where, according to the ADeLe v1.0, 18 cognitive scales are proposed and specific rubrics corre-653

sponding to different cognitive demands are objectively defined Zhou et al. (2025). Based on these654

rubrics, we are able to quantify the difficulty of each item and subsequently translate it into a success655

rate (the p-value) in the whole world population.656

A.8 ADDITIONAL EXPERIMENTS657

A.8.1 ICAR VALIDATION AND CALIBRATION658

On ICAR validation (Table 7), all models achieve very low error (MAE ≈0.03–0.04) and very659

high correlations (r > 0.92). Calibration (Table 8) is more challenging, with errors roughly five660

times larger (MAE ≈0.17–0.34) and correlations dropping, though the best models still maintain661

r ≈ 0.93. The baseline summary across focal groups (Table 9) shows average error of 0.068 and662

strong correlation (r ≈ 0.95).663

Table 7: Validation results on ICAR benchmark (lower MAE/RMSE is better, higher r is better).

Model N MAE RMSE Pearson r Spearman r

gpt-5-chat 2993 0.030 0.044 0.976 0.968
llama-4 3121 0.033 0.052 0.971 0.963
gpt-4.1 3123 0.040 0.058 0.958 0.944
deepseek-v3.1 3124 0.043 0.085 0.922 0.914
grok-3 3115 0.043 0.068 0.939 0.920

Table 8: Calibration results on ICAR benchmark (lower MAE/RMSE is better, higher r is better).

Model N MAE RMSE Pearson r Spearman r

deepseek-v3.1 674 0.166 0.180 0.933 0.912
llama-4 669 0.168 0.184 0.920 0.893
gpt-5-chat 673 0.173 0.186 0.938 0.933
gpt-4.1 672 0.264 0.282 0.857 0.829
grok-3 671 0.336 0.355 0.802 0.780

Table 9: ICAR ground truth / baseline — anonymized summary across focal groups.

# Focal groups avg N avg MAE avg RMSE avg Pearson r avg Spearman r

7 33.143 0.068 0.086 0.948 0.894

A.8.2 PISA VALIDATION AND CALIBRATION664

Validation on PISA (Table 10) reveals moderate performance: MAE in the range of 0.087–0.112665

and correlations around 0.76–0.83. Calibration (Table 11) is clearly more demanding, with only666

DeepSeek-v3.1 retaining high correlation (r ≈ 0.94) while other models show larger errors and667

reduced agreement.668
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Table 10: Validation results on PISA benchmark (lower MAE/RMSE is better, higher r is better).

Model N MAE RMSE Pearson r Spearman r

gpt-5-chat 18,976 0.087 0.111 0.825 0.783
gpt-4.1 18,962 0.111 0.141 0.792 0.735
deepseek-v3.1 18,928 0.111 0.147 0.763 0.714
llama-4 18,946 0.112 0.147 0.781 0.730
grok-3 18,910 0.112 0.140 0.818 0.772

Table 11: Calibration results on PISA benchmark (lower MAE/RMSE is better, higher r is better).

Model N MAE RMSE Pearson r Spearman r

deepseek-v3.1 1,719 0.132 0.144 0.938 0.940
llama-4 1,721 0.246 0.269 0.770 0.761
gpt-5-chat 1,721 0.257 0.268 0.902 0.909
grok-3 1,720 0.323 0.340 0.780 0.784
gpt-4.1 1,719 0.333 0.346 0.845 0.861

A.8.3 UKBIOBANK CALIBRATION669

For UK Biobank calibration (Table 12), performance varies strongly across models. DeepSeek-v3.1670

performs best with MAE=0.184 and correlations above 0.90, while other systems show higher errors671

and substantially weaker alignment.672

Table 12: Calibration results on UK Biobank benchmark (lower MAE/RMSE is better, higher r is
better).

Model N MAE RMSE Pearson r Spearman r

deepseek-v3.1 351 0.184 0.210 0.908 0.899
llama-4 351 0.250 0.289 0.844 0.881
gpt-5-chat 351 0.265 0.312 0.781 0.779
gpt-4.1 351 0.366 0.402 0.766 0.760
grok-3 351 0.412 0.467 0.596 0.589

A.8.4 RELIABILITYBENCH CALIBRATION673

On ReliabilityBench calibration (Table 13), only GPT-4.1 maintains reasonable accuracy674

(MAE=0.103, r ≈ 0.77–0.85). All other models show high error (≈0.27–0.28) and very low corre-675

lations, highlighting the difficulty of this benchmark.676
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Table 13: Calibration results on ReliabilityBench (lower MAE/RMSE is better, higher r is better).

Model N MAE RMSE Pearson r Spearman r

GPT-4.1 10,867 0.103 0.231 0.771 0.846
deepseek-v3.1 8,125 0.274 0.414 0.281 0.318
gpt-5-chat 8,129 0.278 0.410 0.228 0.257
grok-3 8,131 0.278 0.417 0.218 0.257
llama-4 8,130 0.279 0.412 0.245 0.275

A.8.5 TIMSS VALIDATION AND CALIBRATION677

TIMSS validation (Table 14) is substantially harder, with errors around 0.12–0.16 and correlations678

in the 0.5–0.7 range. Calibration (Table 15) further exposes model limitations: only DeepSeek-v3.1679

retains good accuracy (MAE=0.088, r ≈ 0.87), while other models fail to calibrate reliably.680

Table 14: Validation results on TIMSS benchmark (lower MAE/RMSE is better, higher r is better).

Model N MAE RMSE Pearson r Spearman r

deepseek-v3.1 4,689 0.121 0.149 0.706 0.663
gpt-5-chat 4,694 0.124 0.159 0.637 0.576
grok-3 4,688 0.154 0.209 0.529 0.500
gpt-4.1 4,698 0.154 0.205 0.554 0.511
llama-4 4,673 0.164 0.217 0.550 0.512

Table 15: Calibration results on TIMSS benchmark (lower MAE/RMSE is better, higher r is better).

Model N MAE RMSE Pearson r Spearman r

deepseek-v3.1 57 0.088 0.110 0.871 0.831
gpt-5-chat 57 0.432 0.482 0.435 0.475
grok-3 57 0.435 0.486 0.073 0.142
llama-4 57 0.445 0.494 0.441 0.661
gpt-4.1 57 0.445 0.496 0.172 0.271

A.8.6 TIMSS GROUND TRUTH/ BASELINE681

Table 16: TIMSS ground truth / baseline - anonymized summary across all countries.

# Countries avg N avg MAE avg RMSE avg Pearson r avg Spearman r

87 55.22 0.129 0.149 0.828 0.790
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