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ABSTRACT

Comparing Al models to “human level” is often misleading when model scores
come from heterogeneous benchmarks or when human baselines are drawn from
a narrow population. In this paper, we ask whether Al can be evaluated on a more
comprehensive human-referenced scale. To address this, we propose a framework
that calibrate items to the world population and report performance on a common,
human-anchored scale. Concretely, we build on a set of multi-level scales for dif-
ferent capabilities and ‘fix’ the scales so that each level represents a probability of
success of the whole world population on items of a given level of difficulty. As
scales are defined by text rubrics with reference examples (anchors) and the base
B, we aim at calibrating each scale for each capability (reasoning, comprehension,
knowledge, volume, etc.) by compiling publicly released test items spanning ed-
ucation and reasoning benchmarks (PISA, TIMSS, ICAR, UKBioBank, and Re-
liabilityBench). The estimation of B and location of anchor questions is done by
extrapolating from a biased source sample (characterized by its demographics and
other known information of how it was obtained) towards a larger target popula-
tion (with a new demographic profile) using LLMs, with the hypothesis that they
condense vast amounts of demographic data during their training. We explore dif-
ferent prompting mechanisms and ways to specify source and target distributions
and evaluate their quality using group slicing and post-stratification on some of
these datasets. The techniques introduced here allow for the definition of cali-
brated scales from which we can standardize other Al evaluations relative to the
world population.

1 INTRODUCTION

Comparing artificial intelligence with human intelligence has been a constant since the early days
of Al, as a way of showing progress, identifying challenges and providing intuitive information of
what Al can and cannot do. However, the dominant paradigm of Al evaluation today, benchmarking,
inherited from machine learning with the purpose of comparing algorithms on specific tasks, is
now used to compare general-purpose Al systems such as large language models against a ‘human’
average (Eriksson et al.,2025; | Burden et al.,|2025). This collapses wide variation across skills, tasks,
and populations, conflates the difficulty of the problems with the sample choice of the reference
human population (often W.E.L.R.D. convenience groups), and ignores distributional structure (tails,
group slices). Consequently, “human-level” claims are benchmark- and sample-dependent, and Al-
human comparisons lack commensurability and granularity.

Recent evidence has shown why this matters. Reviews of human baselines in Al evaluations have
documented pervasive methodological pitfalls, including small, convenience samples, inconsistent
human-model test sets, and the absence of uncertainty reporting (Wei et al., [2025). In practice, this
has led to contradictory headlines about Al vs human capabilities. For example, LLMs have been
reported to surpass humans on certain academic benchmarks (Boji¢ et al.,|2025) but the same models
can underperform on more realistic tasks (Yeadon et al.|[2024). Similarly, early theory-of-mind eval-
uations suggested near-human success (Kosinski, 2024)), yet follow-up work revealed this apparent
capability is brittle (Shapira et al., [2024)) indicating reliance of LLMs on shallow heuristics rather
than robust understanding. Similarly, agent-based evaluations report best systems at only 50-70%
of human performance (Gou et al., |2025). In contrast, by late 2024, frontier LLMs were scoring
around 90% on multi-subject academic benchmarks like MMLU (covering topics from chemistry to
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law) (Phan et al.| [2025) and exceeding 80% on certain graduate-level and professional exams. Many
models even surpass human experts on specialized tasks: for instance, on the PhD-level GPQA
Diamond science questions (Rein et al., [2024), domain experts average 70% accurac whereas
state-of-the-art models now score 85-88%. Part of the contradictory results are caused by a com-
parison performance with humans that depends strongly on the task distribution in the benchmark,
and the sample of humans used as reference. However, when items (e.g., software engineering prob-
lems) are annotated with a single scale that is normed on human populations, such as the number
of hours a software engineer takes to solve the problem (Kwa et al.| 2025), we can finally compare
Al systems and humans more meaningfully. While this has begun to re-ground progress in human-
relevant units, it does not yet provide a unified, construct-valid ruler across diverse cognitive tasks.
Also, the human sample is very specific and, as any other human sample, biased.

We do not argue that humans should not be used as a reference. On the contrary, in this paper we
explore more meaningful ways of doing that comparison. Actually, we suggest that the metric and
the unit of measurement should not be based on performance on a benchmark but on standardised
scales with human-referenced norms, for different capabilities. Then each value we assign to an Al
system, e.g., metacognition level 2, should represent a proportion of the whole distribution of human
performance for questions of that capability level, not to a single point estimate (e.g., ‘average
person’ or ‘expert’) for a benchmark involving many capabilities.

Capability Rubrics Annotated Benchmark AI system Profile
AS
Original Benchmark ] AS CE CL MC MS ...
Task 1 What's the capital of France? — Task1 2 1 0 3 1
Task 2 Factorise 2521651 Annotator Task2 4 1 2 4 0
Test Annotated Test
Task 1 Continue 1, 3, 5, 7, ... AS CE CL MC MS ...
Task 2 Who's your dad's son's dad? Taskl 2 1 0 3 1
Task2 4 1 2 4 0
Source Human Extrapolator
Sample
Human Results
Extrapolated
& Sample Human Results
Demographics

Figure 1: Calibrated annotations of benchmarks can be used to generate profiles of Al systems on
human-referenced scales (top). In this paper we calibrate 18 dimensions of capability and knowl-
edge, going from level O (near-universal success) to level 5 ~ 1-in-B® people succeeding, with B
being normalized according to the human distribution taken from several tests with human results
(bottom). The calibration uses this source human sample and their demographics through an LLM
to extrapolate to the whole world population to calibrate the scales.

There are significant challenges arising from the use of human populations, some of them faced
by psychology and other social sciences for a century, especially psychometrics. However, human
references in Al research are more prevalent to using a sample of humans that is simply ‘easy
to get’, such as graduate students, collaborators or merely crowdsourced data. This makes some
of the criticisms about bias in collecting human population even more poignant than what has been
traditionally found in psychological studies, where many studies are based on W.E.I.R.D populations
(Henrich et al.| 2010). Furthermore, all attempts to establish “culture-free” formats basically failed,
as no measure escapes contextual bias (Gould,|1996)). However, most of this criticism can be applied
to the goal of characterizing a single or dominant factor of intelligence. When cognitive behavior
is analyzed with a range of capability and knowledge dimensions, and samples get close to the
human population, we could choose this as a norm to compare Al against, rather than a way of
comparing some individuals against human groups. But still, we will always have limited and partial
availability of human data, from biased samples. Inspired by ideas in equating and distribution
mapping from psychometrics and sampling (Davier, 2011} |Kolen & Brennan| 2013)), we propose a
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lightweight approach for doing the extrapolation between a small sample and larger samples, aiming
at approaching the ideal whole-world population (WWP), through the use of demographics and the
extensive knowledge that LLMs condense about human populations.

In sum, in this paper we examine the feasibility of an ambitious vision for an Al evaluation program
that can put Al capabilities on human-referenced scales, in an automated way and for all existing
and future benchmarks, by the use of LLMs as annotators of capabilities and extrapolators between
distributions. To this goal, we (i) use capability scales with clear construct validity, (ii) collect
matched human data from partial distributions and samples, (iii) use LLMs to estimate the reference
distribution (WWP), and (iv) calibrate the scales using this reference distribution. See Figure [1}
This would lead to standardized scales that could be used to report commensurate, population-
anchored measurements of below-human-level, human-level, and above-human-level capabilities,
for the majority of benchmarks in Al for which we do not have human data.

To explore how feasible this vision is, we take a first step in this paper with a series of contributions:

1. We annotate the capability levels of the items of open-sourced tests from ICAR, TIMSS,
PISA, UKBioBank, and ReliabilityBench with logarithmic difficulty, putting them on the
same scales, as defined by the capability rubrics.

2. We introduce several mapping templates based on LLM prompts that can use the source
demographics and target demographics as parameters of the extrapolation.

3. We evaluate these mappings on different slices of the human data in those tests for which
we have individual demographic data, showing that for the best of them errors in the ex-
trapolation are low, and the order of the scales is mostly preserved.

4. We use these mappings on the human data for these and the rest of tests not having de-
mographic data, showing that we can equate different scales of difficulty via our mappings
(e.g., difficulty-7 items on ICAR with difficulty-9 on TIMSS).

5. We can express meaningful and commensurate capability levels, such as frontier LLMs
exceeding 90th-percentile human generalization on TIMSS math but fall below 20th-
percentile reliability on PISA reading tails, highlighting non-uniform progress.

Our proposal aims to place both items and models on population-anchored capability scales that
are commensurate in the sense of measurement theory. Instead of percentiles, levels increase log-
arithmically, taken as ratio scales as defined by [Stevens| (1946). Concretely, treating a wider proxy
for humanity as the baseline system provides commensurate units across tasks and domains; scores
become positions on a shared human reference. This makes statements like “below-human level”,
“human level”, and “above human level” precise, supports aggregation across heterogeneous tasks,
and exposes where models exceed typical humans yet remain below human tails (or vice versa).
In short, by anchoring decomposed capability scales to the all-humans distribution, we convert dis-
parate benchmark numbers into comparable measurements, and enable a principled detection of
progress above and below the human baseline.

2 RELATED WORK

Measurement theory (Hand}, 2010)) builds on concepts such as units of measurement, latent variables
explaining physical or social phenomena, standardized scales and commensurability. While well-
established in the physical sciences, the influence on the measurement in the social sciences is also
significant. Contrary to the fairy tale that measurement scales derive from ground truth, many scales
and units are usually based on consensus. For instance, the metric scale for length emerged on a
consensus based on a unit, the meter, initially set as a 10~? of the distance from the North Pole to
the equator, assuming an Earth flattening of 1/334, in the same way it happened with temperature,
which was ‘invented’ as a construct (Chang, |2004). We can define scales using reference points
that are familiar for humans, such as the north pole and the equator, or freezing and boiling water,
and then define the operations that we can do on the scale, e.g., ensuring that differences or ratios
of distances or temperature should be possible (determining an interval or a ratio scale in Stevens’
taxonomy, (Stevens| [1946)). There is nothing against, in principle, taking a similar approach for
cognitive capabilities and other constructs related to intelligence, which would allow us to measure
natural or artificial intelligent systems on commensurate scales.



129

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

151
152
153
154
155

157
158
159
160
161
162
163
164

166
167
168
169
170
171
172
173
174

175
176
177
178
179
180
181
182
183
184
185

Under review as a conference paper at ICLR 2026

In particular, the psychometric measurement of intelligence, while taking inspiration from measure-
ment theory, has long grappled with commensurability. Classical approaches, such as item response
theory (IRT; [Embretson & Reise|[2000), estimate latent traits # from observed responses but de-
pend heavily on dense, representative data — often unavailable beyond biased norm groups. Cultural
variability exacerbates this: Hofstede highlights how national cultures shape values and behaviors,
affecting cognitive test validity across societies (Hofstede, |1980; [Hofstede et al., 2010). Related
critiques like W.E.ILR.D. sampling (Western, Educated, Industrialized, Rich, Democratic) under-
score overrepresentation of atypical populations (Henrich et al., 2010), and point to how test scores
often reflect agent-context interactions rather than purely latent abilities, undercutting the myth of
“culture-free” testing (Cecil [1996). Large datasets and test efforts like PISA and TIMSS, while
stratified, still underrepresent global variance in education and cognitive trajectories (OECD, |2018)),
which can inflate or miscalibrate claims if used by Al evaluation as “human-level” capability. The
ICAR suite (Condon & Revellel |2014) offers open-source items with subgroup norms (e.g., age/-
gender breakdowns), but does not provide world-population extrapolation. However, while most of
psychometric approaches define scales in a populational way based on (subgroups of) humans, there
is also criterion-referenced approaches Hambleton & Rogers| (1991)). For instance, we can deter-
mine short-term memory as how many two-digit numbers a person can remember, or use a rubric to
determine different levels of complexity. However, criterion-referenced scales for different domains
become incommensurate (number of numbers we can remember versus levels of metacognition).
But we can perform an extra step to map them to the same reference points or units, as what Watt
did with the term horsepower in a commensurate way to measure the power that a mill or a light
bulb require (Hernandez-Orallol 2019).

Artificial intelligence evaluation did not evolve from human evaluation but rather from machine
learning and other areas of artificial intelligence. The goal was to compare expected performance
on a task for two or more competing methods, something that has driven the field for decades. But
as soon as general-purpose systems like LLMs started to dominate Al, this kind of benchmark eval-
uvation started to show problems (Eriksson et al.,|2025; [Burden et al.| [2025). There are many other
issues in Al evaluation (Hernandez-Orallol [2017; |Burnell et al., 2023b}; (Cohn & Hernandez-Orallo,
2023} [Reuel-Lamparth et al., 2024), but we want to focus on the use of human baselines. Compar-
ing against humans is critical to determine when Al can automate tasks performed by humans, or
to inform about risks, especially for policy-makers and the general public, given our intuition about
what humans can and cannot do. But the importance of comparing Al against human references
should also remind us how many things can go wrong if human baselines are biased, simplistic or
simply misconceived (Wei et al., 2025). In particular, having a human baseline on a test is not very
useful when the benchmark is modified or replaced by another more difficult benchmark because of
saturation (Hernandez-Orallo} [2020). In fact, it is the difficulty of the items in a benchmark which
should serve to understand human baselines more properly. For instance, what is the level of logical
reasoning that 30% of humans can reach? Is this level achieved by AI? One can argue that difficulty
works very differently in Al and humans, and any kind of common scale that could show high cor-
relation in the probability of success for these two different groups is wishful thinking. However,
there is sufficient evidence that errors in humans and Al systems are correlated, provided we find a
good proxy of difficulty. For instance,|Zhou et al.|(2024) probe parametric difficulty on simple tasks
(e.g., addition, anagrams), showing correlation in performance and the difficulty metrics, with a very
standard logistic shape. Complementary metrics, such as METR’s human-anchored time-horizons
(Kwa et al.l [2025), quantify long-task autonomy (e.g., doubling every seven months), and also show
the correlation between duration and success rate, also well modeled by a logistic function.

The use of psychometrics in Al has a long story, and IRT has long been used for analyzing popu-
lations of Al systems (Martinez-Plumed et al.| |2019), in the same way as factor analysis has been
used for this (Burnell et al., 2023a). However, this is usually limited to one or very few capabilities
(or factors) and they derive from a population of models, a reference point that is very volatile given
the pace of progress in Al. Here, we want to use a criterion-referenced approach mapped to a human
reference, not a “population of LLMs” reference. We require two steps: the criterion-referenced
scales and the human-norming. The ADeLe framework (Zhou et al.l 2025)) introduces criterion-
referenced scales, by annotating items for multi-dimensional cognitive demands (e.g., quantitative-
logical, attention-scan) on ratio scales (Stevens,|1946), enabling the explanation of what benchmarks
measure and the demand-based prediction for anticipating model performance on new task items —
yet it lacks global norming. This is what we do in this paper.
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3 METHODOLOGY

We operationalize “human-level” as a position on population-anchored, psychometrically valid ca-
pability scales. The pipeline has five stages: (i) assemble item pools with observed human perfor-
mance; (ii) annotate instance-level cognitive demands with the ADeLe methodology (Zhou et al.,
20235)); (iii) estimate world-population success for each item via LLM-assisted demographic ad-
justment; (iv) transform success rates into logarithmic, ratio-scaled difficulty levels that are com-
mensurate across domains; and (v) validate the results by estimating total test taker population by
sub-groups to gauge the exactness of extrapolation.

Item pools and observed human performance We curate public, text-only items with item-level
human success rates and standardized scoring. For each item, we retain the full prompt and scoring
protocol, harmonize to dichotomous 0/1 scoring (collapsing partial credit when needed), and exclude
items requiring visual material or with ambiguous keys or insufficient responses. Sampling-frame
descriptors (age, geography, administration year, language) and subgroup identifiers are normalized
across sources; when only aggregates are available, we parse per-item subgroup and full-sample
rates and compute standard errors under a binomial model. These observed rates serve as ground
truth for subgroup-to-sample validation and as inputs to the LLM-based extrapolation to the target
world population.

Instance-level demand annotation with ADelLe To preserve construct validity, we adopt the
ADeLe framework (Zhou et al. |2025) to annotate each item instance along multiple capability
scales. ADeLe treats demand as multi-dimensional and instance-specific: a single item can place
high demand on, say, Quantitative-Logical reasoning while placing low demand on Attention-and-
Scan. Concretely, we use the ADelLe v1.0 scales and public rubricﬂ which cover a broad set of
18 cognitive demands (see Table [6). Demands are assigned on a ratio scale [Stevens| (1946) with
an absolute zero and consistent differences across levels, with rubrics designed so that doubling the
demand halves the log-odds of success.

We prompt a strong LLM (i.e., GPT-5 Chat, Llama 4, GPT 4.1, DeepSeek v3.1, and GROK3) to
apply the public rubrics consistently at scale, and applied to item text and scoring rules without
access to model outputs. For each item ¢ and capability ¢, we obtain a vector of demand levels
per item, d; . € {0,1,2,3,4,5+}. The result is a capability-aligned description of what the item
requires, independent of who answers it.

Instance-based calibration with LLMs Let p! be the observed success rate for item 7 in sampling
frame g (e.g., a PISA wave or an ICAR cohort). Our target is to estimate the probability that a
randomly drawn human from the 2025 world population answers item ¢ correctly under comparable
exam conditions (p}V).

Estimating p}" from p? requires an extrapolation across populations. We operationalize this as LLM-
assisted post-stratification by prompting a strong language model to translate the observed rate in
g to the global reference W, explicitly accounting for (i) the global age distribution, (ii) education
access and quality, (iii) forgetting after schooling, (iv) fluid/crystallized ability trajectories over the
lifespan, (v) specialization and exposure for domain knowledge, (vi) health and cognitive decline,
and (vii) language factors.

Prompts include (a) contextual introduction (situating the data set and test domain), (b) focal-group
description (long-form prose containing all known demographic details g), (c) item content (e.g.,
question stems, answer choices, and correct answer), (d) observed focal-group success rate pf , (&)
reference-group description (long-form prose containing all known demographic details), (f) an ex-
plicit inference request for the model to respond with a prediction of the reference group’s success
rate for the current item, given the focal groups success rate and all of the demographic detail). The
base prompts used for each dataset (see Table [Tl Appendix appear in Table 5] Rationales are
logged for auditability.

In the original ADeLe paper (Zhou et al., [2025)), scales are understood with ratio-scaled difficulty
using a rule of thumb of each level roughly corresponds to L; = log B(\/E /p¥V). With a base

https://kinds-of-intelligence—-cfi.github.io/ADELE/
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B =10 level L € [0,1) corresponds to 10-100% of the world population succeeding (“common”
items), L€ [1,2) to 1-10% (“uncommon”), L € [2,3) to 0.1-1% (“rare”), and so on. This provides
a single, commensurate ruler across domains: equal steps in L imply equal multiplicative changes in
success odds in the population. However, this population is not calibrated per or across dimensions.
We thus refine ADeLe’s approach to pursue an LLM-prompted demographic adjustment to estimate
world-population success p)", yielding difficulties in a logarithic scale L; = — log 5 (p}V).

Validation In the validation setting we compared extrapolations from sub-groups to the full pop-
ulation using four metrics, both between LLM-predicted results and real outcomes from samples
with sufficient granularity in demographics. The mean absolute error (MAE) and root mean squared
error (RMSE) capture the average and squared deviations between predicted and true success rates.
In addition, Pearson’s correlation r measures linear agreement in magnitudes, while Spearman’s
correlation p captures whether the relative item ranking is preserved.

4 EXPERIMENTS

4.1 DATA

We evaluate the methodology on five public sources that together cover large-scale educational as-
sessments, open cognitive tests, a population cohort, and an LLM-oriented reliability suite. From
PISA 2009 (OECD] 2009; [Lundahl & Serder, [2020; Breakspear, 2014) and TIMSS 2003/2011
Grade 4/8 mathematics and science, we use released items with item-level human success rates and
official sampling documentation; items requiring visual material are excluded so that all compar-
isons are text-only and scored 0/1 under the original rubrics. ICAR Letter & Number Series and
Verbal Reasoning (Condon & Revellel2014) provide purely textual items with both participant-level
responses and subgroup metadata from several cohorts, enabling robust subgroup-to-sample valida-
tion. The UK Biobank Fluid Intelligence test (Sudlow et al.,|2015} [Lyall et al., 2016} [Fawns-Ritchie
& Dearyl [2020) contributes a timed, text-only, 13-item reasoning measure from a very large pop-
ulation sample. ReliabilityBench (Zhou et al.| 2024) supplies 401 non-visual items with human
success rates and human difficulty judgments across five subdomains; it lacks individual covariates
and is therefore used for calibration but not subgroup validation. Table[I]summarizes these datasets,
highlighting their purpose, scale, and the specific text-only subsets employed in our experiments.
All items are annotated with ADeLe demand profiles using the public rubrics (Zhou et al.l 2025).

Table 1: Summary of datasets and the text-only subsets used in this work.

Dataset Description Scale / coverage This work (subset)
PISA Lun- International assessment of 15-year-olds 57 countries; 4,500-40,000 Text-only items: 12 math,
dahl & Serder| in reading, mathematics, and science students per country. 32 reading, 20 science.
(2020); Breaks-| (2009); ability estimated via item re-
pear|(2014) sponse modeling with a focus on practical

skills.
TIMSS Grade 4/8 mathematics & science; 2003: G8=48 countries, 300 text-only questions

released items from 2003 and 2011;
multiple-choice and constructed re-
sponses spanning content and cognitive
domains.

G4=26 c.; 2011: G4=57 c.,
G8=56 c¢. (>360,000 stu-
dents)

across 30 countries; 27
prompt variants each;
evaluation subset of 5,000
variants.

ICAR (Condon
& Revelle|
2014).

Public-domain cognitive tests; we use
Letter & Number Series (9) and Verbal
Reasoning (16), all multiple-choice and
purely textual.

Validation sample 97,000
(199 countries); additional
cohorts: English 145,000,
Chinese 240, German 106.

25 items used to compare
item success across lan-
guages/contexts.

UK Biobank
(Sudlow et al.|
2015)

Fluid Intelligence (Verbal-Numerical
Reasoning): 13 multiple-choice items
under a 2-minute limit, probing verbal
and numerical reasoning.

502,649 participants;
completed by n=168,415;
20,000 repeated after 4
years.

13 text-only timed items
as a human reference.

ReliabilityBench
Zhou et al.
2024)

LLM reliability benchmark with human
difficulty judgments across five subdo-
mains; provides human success rates; all
items non-visual.

189 adults in US/UK (64%
female; ages 19-78); no
individual-level covariates.

401 questions; 27 prompt
variants each; used for cal-
ibration only.
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4.2 EXPERIMENTAL SETUP

We validate the extrapolation procedure with a unified pipeline that operates on any dataset providing
item text and scoring (stems, options, keys, and scoring rules), observed item-level success rates, and
metadata sufficient to define demographic subgroups.

For each dataset, we construct focal subgroups directly from the available metadata (for example,
Younger/Older, Men/Women, or Country X) and compute their observed item-level success rates.
The reference group is the full set of participants who attempted the item. We adopt a strict part-to-
whole convention: members of a focal subgroup remain part of the reference group so that the task
is to infer from a subset to the whole rather than to another subset. When a required characteristic is
missing (e.g., gender not reported), those participants are excluded only from analyses that depend
on that characteristic and retained elsewhere. Items with too few attempts or ambiguous scoring are
filtered out to avoid unstable rates.

For every focal-group—item pair, we prompt LLMs to predict the reference-group success rate given
a brief description of the dataset and test domain including the sampling frame; a prose description
of the focal subgroup; the full item content and correct answer; the focal-group success rate; and
a concise description of the reference group (see Sec. [3| for details). The prompt instructs the
model to return a single numeric percentage for the reference group and a short rationale linking
the adjustment to the item and sampling differences. To probe robustness, we paraphrase each
prompt into 27 variants by reordering sections, varying connective phrasing, and altering numeric
formatting, while keeping all factual content fixed.

For the LLM estimator we use a small set of instruction-tuned models spanning providers and sizes
(GPT 5 Chat, GPT4.1, Llama 4, DeepSeek v3.1, and GROK3), queried with the 27 family of para-
phrased prompts as described in table [5|per item with low temperature and no use of tools. For each
response we parse the terminal percentage and convert to a probability. Predicted world-population
rates are aggregated across item variation per model.

We validate the demographic extrapolation in a setting where the target is observable. For datasets
that allow partitioning participants into demographic subgroups, we ask an LLM to infer full-sample
(reference) item success rates from subgroup information within the same dataset. Subgroups are
defined either from participant-level covariates (e.g., age, gender, country) or from published sub-
group aggregates; in both cases, the item-wise success rates for the full sample are known and serve
as ground truth. The model receives the item, the focal subgroup description and success rate, and
the dataset’s sampling frame, and is tasked with predicting the corresponding full-sample rate. Ac-
curate recovery of these known totals from subgroup evidence demonstrates that the LLM performs
the intended demographic adjustment, lending confidence to its use for estimating world-population
success probabilities when direct observations are unavailable.

5 RESULTS AND ANALYSIS

5.1 COMPARING GROUND TRUTH/ BASELINE WITH EXTRAPOLATION

Tables [2] and [T4]report validation results when models are asked to extrapolate from subgroup infor-
mation to the overall population. On the ICAR benchmark, all systems achieve very low error MAE
~20.03-0.04) and extremely high correlations with the ground truth distribution (Pearson r > 0.92).
This indicates that, when the item space is relatively homogeneous and well-structured, extrapola-
tion from subgroups to the global sample is highly reliable.

Table 2: Validation results on ICAR benchmark (lower MAE/RMSE is better, higher r is better).

Model N MAE RMSE Pearsonr Spearman r
gpt-5-chat 2993  0.030 0.044 0.976 0.968
Ilama-4 3121 0.033  0.052 0.971 0.963
gpt-4.1 3123 0.040  0.058 0.958 0.944
deepseek-v3.1 3124 0.043  0.085 0.922 0914
grok-3 3115 0.043  0.068 0.939 0.920
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By contrast, on TIMSS the same procedure yields substantially weaker performance: errors are
three to five times larger (MAE ~0.12-0.16) and correlations are much lower, often around 0.5-0.7.
This gap suggests that the more heterogeneous content and cross-national variability in TIMSS
makes extrapolation from subgroups far less accurate, and highlights important differences between
benchmarks in how well subgroup-to-population generalization can be achieved.

Although current results show clear limitations, especially on heterogeneous data like TIMSS, the
high correlations observed on ICAR demonstrate that models can, in principle, capture stable diffi-
culty patterns and generalize them from subgroups to populations. This suggests that with further
scale, better training data, and more explicit calibration, models may extend this capability to more
complex, diverse assessments. In that sense, the present gap is not a hard limit but a challenge that
can plausibly be overcome as the technology matures.

The baseline correlations between sub-samples and the full population as shown in tables [3] and
show that even without model extrapolation, subgroup performance aligns closely with overall
outcomes. On ICAR, the agreement is exceptionally strong (r =~ 0.95), while for TIMSS it is
notably weaker (r ~ 0.83), reflecting the greater heterogeneity and cross-national variability in the
TIMSS data.

Table 3: ICAR ground truth / baseline — anonymized summary across focal groups.

# Focal groups avgN avg MAE avg RMSE avgPearsonr avg Spearman r
7 33.143 0.068 0.086 0.948 0.894

5.2 EXTRAPOLATION OF DEMAND LEVELS

Calibration goes one step further than validation by asking models to extrapolate from the set of
test takers represented in the benchmark to the distribution of the entire world population. In other
words, instead of predicting overall outcomes from a subgroup, the model now estimates global
capability levels from the entire available sample. Tables [4] and show that this procedure is
more demanding: while correlations remain reasonably strong on ICAR (Pearson r» ~ 0.93 for
the best models), errors are noticeably higher than in validation, reflecting the difficulty of scaling
predictions beyond the observed sample. On TIMSS the challenge is even greater, with only one
model (DeepSeek-v3.1) maintaining acceptable calibration quality, while others exhibit very high
error and weak correlations.

Table 4: Calibration results on ICAR benchmark (lower MAE/RMSE is better, higher r is better).

Model N MAE RMSE Pearsonr Spearman r
deepseek-v3.1 674 0.166  0.180 0.933 0.912
llama-4 669 0.168 0.184 0.920 0.893
gpt-5-chat 673 0.173  0.186 0.938 0.933
gpt-4.1 672 0264  0.282 0.857 0.829
grok-3 671 0336  0.355 0.802 0.780

These results underline that calibration is an iterative process: extrapolating overall capabilities
is feasible, but current models require further refinement and methodological support to approach
reliable accuracy at the population level.

Finally, we create demand levels based on |Zhou et al.| (2025), and change those based on the new,
extrapolated outcomes, to calculate the new demand levels for world population for each of the
test

3To be included in the code repository
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6 CONCLUSION

This paper sets an ambitious program in which most benchmarking in Al evaluation could be com-
pared against humans on a set of meaningful and commensurate capability and knowledge dimen-
sions. For this we need criterion-referenced scales for a set of several dimensions, such as|Zhou et al.
(2025)), fixed with a calibration of the scales to commensurate units, using the levels of the WWP
on those scales. While this may look circular, it is not. We can choose the average foot size of the
world-population as reference, operationalize into smaller or large units, and use that to measure the
feet of people, and then the length of other objects. We explored whether this could be performed in
an automated way using LLMs as our calibration tool across populations. This choice allows for a
systematic, fast and reproducible way of using more sources of human data in the future to improve
our calibration mappings. This also shows the potential of LL.Ms for this population extrapolation.
Our results show that the methodology we have presented is powerful, leading to low error in the
extrapolation while maintaining the ranking of human success rates, with results heavily depending
on the LLM being chosen in some cases.

There are several limitations of this work. First, we have only considered a limited number of
sources for human data, but it is important to highlight that openly avalaible human results on tests
at the instance level and detailed demographics are unfortunately unusual. Second, we have only
used a few prompting schemes with a limited number of LLMs, but this actually shows that there is
margin of improvement, and the diversity of methods shows what can be done with the approaches
that are time and cost-effective, compared to fine-tuning and, of course, human extrapolation or
running these tests on unbiased samples of the WWP. Third, among the limitations we count the
ethical issues that arise from the correct and incorrect interpretation of this work: even if our goal
was to go beyond the current state of the art of biased and partial human baselines, there is always
a degree of bias in our choice of datasets, extrapolation based by models that are trained on biased
samples, etc. However, we show how the extrapolations can be evaluated, and this paper places the
bar at a higher place that we hope new papers can criticize and improve. For more information about
the ethical implications we refer to the “Ethics Statement” in the supplementary material.

This paper should allow the reunderstanding of all benchmark results in the past few years across
many capabilities with a simple automated annotation procedure and without the need of any further
human testing. This is not only extremely relevant for Al at the scientific and policy-making levels,
but it is also relevant for the ‘equating’ of human populations in the social sciences.

REFERENCES

Ljubia Boji¢, Predrag Kovacevi¢, and Milan Cabarkapa. Does gpt-4 surpass human performance
in linguistic pragmatics? Humanities and Social Sciences Communications, 12(1):1-10, 2025.

Simon Breakspear. How does pisa shape education policy making? why how we measure learning
determines what counts in education. In Centre for Strategic Education: Seminar Series, volume
240, pp. 16, 2014.

John Burden, Marko Tesi¢, Lorenzo Pacchiardi, and José Herndndez-Orallo. Paradigms of ai evalu-
ation: Mapping goals, methodologies and culture. arXiv preprint arXiv:2502.15620, 2025.

Ryan Burnell, Han Hao, Andrew RA Conway, and Jose Hernandez Orallo. Revealing the structure
of language model capabilities. arXiv preprint arXiv:2306.10062, 2023a.

Ryan Burnell, Wout Schellaert, John Burden, Tomer D Ullman, Fernando Martinez-Plumed,
Joshua B Tenenbaum, Danaja Rutar, Lucy G Cheke, Jascha Sohl-Dickstein, Melanie Mitchell,
et al. Rethink reporting of evaluation results in ai. Science, 380(6641):136—138, 2023b.

Stephen J. Ceci. On Intelligence: A Biological Treatise on Intellectual Development. Harvard
University Press, Cambridge, MA, expanded edition edition, 1996. ISBN 0-674-63456-X.

Hasok Chang. [Inventing temperature: Measurement and scientific progress. Oxford University
Press, 2004.

Anthony G Cohn and José Herndndez-Orallo. A framework for characterising evaluation instru-
ments of ai performance. 2023.



389
390
391

392

393

394
395
396

397
398
399

400
401
402

403

404
405
406
407

409
410

411

412
413

414
415

416

417
418
419

420
421

422
423

424
425

426
427

428
429
430
431
432

Under review as a conference paper at ICLR 2026

David M Condon and William Revelle. The international cognitive ability resource (icar): A project
to create a public domain psychometric intelligence test. Journal of Personality and Social Psy-
chology, 107(2):312-337, 2014.

Alina A Davier. Statistical models for test equating, scaling, and linking. Springer, 2011.
Susan E Embretson and Steven P Reise. Item response theory for psychologists. 2000.

Maria Eriksson, Erasmo Purificato, Arman Noroozian, Joao Vinagre, Guillaume Chaslot, Emilia
Gomez, and David Fernandez-Llorca. Can we trust ai benchmarks? an interdisciplinary review
of current issues in ai evaluation. arXiv preprint arXiv:2502.06559, 2025.

Chloe Fawns-Ritchie and Ian J. Deary. Reliability and validity of the uk biobank cognitive tests.
PLoS ONE, 15(4):0231627, 2020. doi: 10.1371/journal.pone.0231627. URL https://doi.
org/10.1371/journal.pone.0231627.

Boyu Gou, Zanming Huang, Yuting Ning, Yu Gu, Michael Lin, Weijian Qi, Andrei Kopanev, Botao
Yu, Bernal Jiménez Gutiérrez, Yiheng Shu, et al. Mind2web 2: Evaluating agentic search with
agent-as-a-judge. arXiv preprint arXiv:2506.21506, 2025.

Stephen Jay Gould. The mismeasure of man. WW Norton & Company, 1996.

Daniela Giihne, Philipp Doebler, David M. Condon, Fang Luo, and Luning Sun. Validity and relia-
bility of automatically generated propositional reasoning items: A multilingual study of the chal-
lenges of verbal item generation. European Journal of Psychological Assessment, 2021. doi: 10.
1027/1015-5759/a000616. URL https://doi.org/10.1027/1015-5759/a000616.

Ronald K Hambleton and H Jane Rogers. Advances in criterion-referenced measurement. In Ad-
vances in educational and psychological testing: Theory and applications, pp. 3—43. Springer,
1991.

David J. Hand. Measurement Theory and Practice: The World Through Quantification. Wiley, 2010.

Joseph Henrich, Steven J Heine, and Ara Norenzayan. The weirdest people in the world? Behavioral
and brain sciences, 33(2-3):61-83, 2010.

José Herndndez-Orallo. The measure of all minds: evaluating natural and artificial intelligence.
Cambridge University Press, 2017.

José Hernandez-Orallo. Unbridled mental power. Nature Physics, 15(1):106-106, 2019.

Jose Hernandez-Orallo. Ai evaluation: On broken yardsticks and measurement scales. In Workshop
on evaluating evaluation of Al systems at AAAI. Association for the Advancement of Artificial
Intelligence Menlo Park, 2020.

Geert Hofstede. Culture’s consequences: International differences in work-related values. Sage
publications, 1980.

Geert Hofstede, Gert Jan Hofstede, and Michael Minkov. Cultures and organizations: Software of
the mind. McGraw-Hill, 2010.

Michael J Kolen and Robert L Brennan. Test equating: Methods and practices. Springer Science &
Business Media, 2013.

Michal Kosinski. Evaluating large language models in theory of mind tasks. Proceedings of the
National Academy of Sciences, 121(45):e2405460121, 2024.

Thomas Kwa, Ben West, Joel Becker, Amy Deng, Katharyn Garcia, Max Hasin, Sami Jawhar,
Megan Kinniment, Nate Rush, Sydney Von Arx, Ryan Bloom, Thomas Broadley, Haoxing Du,
Brian Goodrich, Nikola Jurkovic, Luke Harold Miles, Seraphina Nix, Tao Lin, Neev Parikh, David
Rein, Lucas Jun Koba Sato, Hjalmar Wijk, Daniel M Ziegler, Elizabeth Barnes, and Lawrence
Chan. Metr: Measuring ai ability to complete long tasks. arXiv preprint arXiv:2503.14499, 2025.

10


https://doi.org/10.1371/journal.pone.0231627
https://doi.org/10.1371/journal.pone.0231627
https://doi.org/10.1371/journal.pone.0231627
https://doi.org/10.1027/1015-5759/a000616

433
434
435

436
437
438
439
440

441
442
443

444
445

446

447
448
449

450
451
452

453
454

456

457

459

460
461
462
463
464
465
466

467

468

470
471
472
473

474

475
476
477
478

479
480

Under review as a conference paper at ICLR 2026

Christian Lundahl and Margareta Serder. Is pisa more important to school reforms than educational
research? the selective use of authoritative references in media and in parliamentary debates.
Nordic Journal of Studies in Educational Policy, 6(3):193-206, 2020.

Donald M. Lyall, Breda Cullen, Mike Allerhand, Daniel J. Smith, Daniel Mackay, Jonathan Evans,
Jana Anderson, Chloe Fawns-Ritchie, Andrew M. Mclntosh, Ian J. Deary, and Jill P. Pell. Cog-
nitive test scores in uk biobank: Data reduction in 480,416 participants and longitudinal stability
in 20,346 participants. PLoS ONE, 11(4):e0154222, 2016. doi: 10.1371/journal.pone.0154222.
URLhttps://doi.org/10.1371/journal.pone.0154222

Fernando Martinez-Plumed, Ricardo BC Prudéncio, Adolfo Martinez-Usd, and José Hernandez-
Orallo. Item response theory in ai: Analysing machine learning classifiers at the instance level.
Artificial intelligence, 271:18-42, 2019.

OECD. PISA 2006 Technical Report. PISA. OECD Publishing, Paris, 2009. doi: 10.1787/
9789264048096-en. URL https://doi.org/10.1787/9789264048096—en.

OECD. Pisa 2018 results (volume i): What students know and can do, 2018.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Anka Reuel-Lamparth, Amelia Hardy, Chandler Smith, Max Lamparth, Malcolm Hardy, and
Mykel J Kochenderfer. Betterbench: Assessing ai benchmarks, uncovering issues, and estab-
lishing best practices. Advances in Neural Information Processing Systems, 37:21763-21813,
2024.

John Rust, Michal Kosinski, and David Stillwell. Modern Psychometrics: The Science of Psy-
chological Assessment. Routledge, London, 4 edition, 2020. ISBN 9781315637686. doi:
10.4324/9781315637686. URL https://doi.org/10.4324/9781315637686,

Natalie Shapira, Mosh Levy, Seyed Hossein Alavi, Xuhui Zhou, Yejin Choi, Yoav Goldberg,
Maarten Sap, and Vered Shwartz. Clever hans or neural theory of mind? stress testing so-
cial reasoning in large language models. In Yvette Graham and Matthew Purver (eds.), Pro-
ceedings of the 18th Conference of the European Chapter of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 2257-2273, St. Julian’s, Malta, March 2024. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2024.eacl-long.138. URL https:
//aclanthology.org/2024.eacl-1long.138/l

Stanley Smith Stevens. On the theory of scales of measurement. Science, 103(2684):677-680, 1946.

Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John Danesh, Paul
Downey, Paul Elliott, Jane Green, Martin Landray, Bette Liu, Paul Matthews, Giok Ong, Jill
Pell, Alan Silman, Alan Young, Tim Sprosen, Tim Peakman, and Rory Collins. Uk biobank: An
open access resource for identifying the causes of a wide range of complex diseases of middle
and old age. PLoS Medicine, 12(3):e1001779, 2015. doi: 10.1371/journal.pmed.1001779. URL
https://doi.org/10.1371/journal.pmed.1001779.

Louis Leon Thurstone. Primary Mental Abilities. University of Chicago Press, Chicago, IL, 1938.

Kevin Wei, Patricia Paskov, Sunishchal Dev, Michael J Byun, Anka Reuel, Xavier Roberts-Gaal,
Rachel Calcott, Evie Coxon, and Chinmay Deshpande. Position: Human baselines in model
evaluations need rigor and transparency (with recommendations & reporting checklist). In Forty-
second International Conference on Machine Learning Position Paper Track, 2025.

Will Yeadon, Alex Peach, and Craig Testrow. A comparison of human, gpt-3.5, and gpt-4 perfor-
mance in a university-level coding course. Scientific Reports, 14(1):23285, 2024.

11


https://doi.org/10.1371/journal.pone.0154222
https://doi.org/10.1787/9789264048096-en
https://doi.org/10.4324/9781315637686
https://aclanthology.org/2024.eacl-long.138/
https://aclanthology.org/2024.eacl-long.138/
https://aclanthology.org/2024.eacl-long.138/
https://doi.org/10.1371/journal.pmed.1001779

481
482
483

484
485
486
487

488

490
491
492
493
494

496
497
498
499
500
501
502

503
504
505
506
507
508
509
510

511

512
513
514

516
517
518
519

520

521
522
523
524

Under review as a conference paper at ICLR 2026

Lexin Zhou, Wout Schellaert, Fernando Martinez-Plumed, Yael Moros-Daval, César Ferri, and José
Herndndez-Orallo. Larger and more instructable language models become less reliable. Nature,
633(8031):1-8, 2024. doi: 10.1038/s41586-024-07930-y.

Lexin Zhou, Lorenzo Pacchiardi, Fernando Martinez-Plumed, Katherine M Collins, Yael Moros-
Daval, Seraphina Zhang, Qinlin Zhao, Yitian Huang, Luning Sun, Jonathan E Prunty, et al.
General scales unlock Al evaluation with explanatory and predictive power. arXiv preprint
arXiv:2503.06378, 2025.

A APPENDIX

A.1 ETHICS STATEMENT

The use of human baselines is controversial as much as it can give the impression that there is
a standard or average human capability, even used as a target for the field. This misappreciation
is behind blurry concepts such as human-level machine intelligence, artificial general intelligence
or even superintelligence. Separating levels on several abilities allows us talk about profiles, as
the diversity of people and Al systems will have very different profiles, defined by levels on these
abilities.

Our paper is actually motivated by the biases and ethical issues of the use of human baselines, and
in this pursuit we must also highlight some other biases that are difficult to avoid. While the whole
world population is an ideal target as a reference, it can also be dominated by behavioral patterns
in big countries such as India and China, not properly accounting for capability or knowledge dis-
tribution of small countries or minorities. Also, using all ages and health conditions is a moving
target, and includes babies and people with age-related cognitive decline, portraying a picture of
‘human-level’ that may be easier to meet by Al than educated, healthy samples.

It is important to realize, though, that we use human data to fix the scales. Once this is done for
all the cognitive capabilities and knowledge dimensions, we can still put groups of people in these
scales, and obtain their profile. For instance, we could show that educated students from PISA
results may well be above the average metacognition capability in the world population, and below
in customary knowledge. Similarly, we can compare Al and different human groups on the same
scale, for different dimensions. We are using the human data for fixing the scales; as the meter or
the Celsius degree, the choice is not that relevant, but rather how our measurement instruments then
map different individuals or groups on that scale.

A.2 REPRODUCIBILITY STATEMENT

The data we used in this paper is already open, available and traceable through the references pro-
vided. The code and results from this paper will be available shortly after acceptance. Links to data,
along with the full code and results will be available on a dedicated public github repository.

A.3 LLM USAGE STATEMENT

LLMs were used not only as subjects of study, but as annotators and extrapolators in our method-
ology. This section, however, discloses the use of LLM for polishing the writing of rubrics or parts
of the paper, assistance with coding, error screening and creating skeletons of reports, papers or
summaries as part of this project.

A.4 DATA

Here we include the full dataset descriptions. For each source (PISA, TIMSS, ICAR, UK Biobank,
and ReliabilityBench) we document provenance and access, target populations and coverage, item
formats and scoring (including IRT where applicable), inclusion/exclusion criteria (notably removal
of visually dependent items), construction of prompt variants, sampling for evaluation sets, prepro-
cessing steps, and known limitations. A high-level summary appears in Table
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A.4.1 PISA

The Program for International Student Assessment (PISA) is recognized worldwide for evaluating
the academic competence of 15-year-olds Lundahl & Serder| (2020); Breakspear| (2014). The eval-
uation covers reading, science, and mathematics, and assesses critical thinking, problem-solving,
and the application of knowledge in these areas. It primarily focuses on practical skills rather than
memorization.

The data utilized come from the 2009 survey. Its assessment encompasses 57 countries, 30 OECD
members and 27 partner members (which include countries from East and Southeast Asia, Central
and Eastern Europe, the Middle East, Central and South America and North Africa). Each country’s
test population included between 4,500 and 40,000 students. Additionally, each assessed question
comes with a point score representing the estimated student’s ability. This is determined using item
response modeling. The relative difficulty of the questions on a test is estimated by considering the
proportion of test takers who answered each question correctly OECD| (2009).

For our specific experiments, we filter out items for which visual information is not necessary to
answer the question. Therefore, we are not limited to multimodal models. This yields 12 math
items, 32 reading items, and 20 science items.

A.4.2 TIMSS

The Trends in International Mathematics and Science Study (TIMSS), conducted by the Interna-
tional Association for the Evaluation of Educational Achievement (IEA), is an international assess-
ment that measures mathematics and science achievement of students in Grade 4 (approximately
age 9-10) and Grade 8 (approximately age 13-14). TIMSS also collects background data (student,
teacher, and school questionnaires).

The data used in this study are drawn exclusively from publicly released questions, available via
the NCES “TIMSS - Released Assessment Questions” portal (see https://nces.ed.gov/
timss/released-questions.asp). The released items include the full mathematics and
science assessment items for the 2003 and 2011 waves, for both Grade 4 and Grade 8. These items
cover the TIMSS content domains (for example, number, algebra, geometry, data/statistics in math-
ematics; life, physical, earth sciences in science) and cognitive domains (knowing, applying, rea-
soning). Format types among the released items include multiple-choice questions and constructed
responses. These released assessment items are the basis for our analyses. In 2003, TIMSS included
Grade 8 students from 48 participating countries and Grade 4 students from 26 countries, yielding
a database covering more than 360,000 students worldwide. In 2011, TIMSS expanded its reach,
assessing Grade 4 students in 57 countries and education systems, and Grade 8 students in 56 sys-
tems. As in previous cycles, each participating system provided nationally representative samples of
students. The 2011 assessments followed the same structure as 2003, including both multiple-choice
and constructed-response items in mathematics and science, balanced across content and cognitive
domains.

For our experiments, as with PISA, we exclude items that rely on visual material. Since only a
portion of the full TIMSS assessment is publicly released, our analyses are restricted to this subset.
Nevertheless, the released items retain the structure, content balance, and difficulty profile of the
complete assessment, ensuring that the resulting comparisons remain meaningful and representative.
We work with a set of 300 questions distributed across 30 countries. Each question is expanded into
27 prompt variations. To construct the evaluation set, we apply stratified sampling at the country
level and select a subset of 5,000 prompt variations.

A.4.3 ICAR

The International Cognitive Ability Resource (ICAR) is constituted by a set of tests that are intended
to serve as public-domain alternatives to traditional (often proprietary) human cognitive-ability mea-
sures, such as those found on commercial intelligence quotient tests (Condon & Revellel 2014). For
the present work, we focus on the ICAR’s Letter and Number Series and Verbal Reasoning subtests.
These tests were chosen because of their purely textual contents which could be processed without
needing to deal with issues of multimodality.
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The 9 items that comprise the Letter and Number Series test are similar in design to the well-known
tests of the same name introduced by Thurstone (Thurstone, |1938)). Test-takers must discern the
patterns present in a sequence of letters or numbers and select the letter or number that completes
the sequence from a set of choices. For a simple example, one might be presented with a sequence
such as “1 —3 -5 -7 —?” and answer choices: 8,9, 11, or 13.

The 16 items that comprise the Verbal Reasoning test include a mixture of short logic puzzles, basic
arithmetic word problems, odd-one-out vocabulary items, and antonym tasks. Each item is multiple-
choice with a single correct answer, designed to be solvable from the text alone without specialized
background knowledge.

For the present work, the analyzed examinee responses to these tests came from two sources. The
first was the original validation sample of the ICAR (Condon & Revelle, 2014). This large-scale
dataset consisted of nearly 97,000 examinees (mean age 26 years, range 14-90; 66% female) from
199 countries, most of whom were students and approximately 75% of whom were located in the
United States. The second data source was a multilingual validation study for an entirely different
test (Giihne et al.| 2021)), in which participants also completed subsets of the relevant ICAR items.
This latter study featured three distinct samples: a large and heterogeneous English-speaking cohort
(n ~ 145,000, mean age 25, from over 200 countries), a Chinese secondary school sample (n ~ 240,
mean age 15), and a smaller German university student sample (n ~ 106, mean age 23). Together,
these data allowed for comparisons of item success rates among examinees across language and
cultural contexts.

A.4.4 UKBIOBANK

The UK Biobank is a large, population-based cohort study established to investigate the genetic,
environmental, and lifestyle determinants of health in middle and older age (Sudlow et al.l [2015]).
Between 2006 and 2010, over 500,000 adults aged 40-69 years were recruited from across the
United Kingdom and completed extensive baseline assessments, including a brief computerized
cognitive battery administered via touchscreen in the Assessment Centre Environment (ACE).

For the present work, we focus on the UK Biobank Fluid Intelligence test (also referred to as the
Verbal-Numerical Reasoning test), which was selected because its items were text-based and could
be processed without visual or multimodal input. This test comprises 13 multiple-choice items
sampling both verbal and numerical reasoning, administered under a strict two-minute time limit,
and scored as the number of correct responses (Lyall et al.| 2016, [Fawns-Ritchie & Dearyl, [2020).
Items included short word problems and logical puzzles designed to probe problem-solving ability
under time pressure, with no requirement for specialized knowledge.

At baseline, a large sub-sample of participants (n = 168,415) completed the Fluid Intelligence test
(Fawns-Ritchie & Dearyl 2020). The UK Biobank cohort as a whole included 502,649 participants
(56% female; mean age at recruitment = 56 years, range 40-69), recruited across 22 assessment
centres to capture socioeconomic, ethnic, and geographic diversity (Sudlow et al.l 2015). A smaller
group (n ~ 20,000) repeated the cognitive battery, including the Fluid Intelligence test, approxi-
mately four years later, enabling evaluation of longitudinal stability (Lyall et al., 2016)). Together,
these data provide one of the largest available reference samples for human performance on timed
reasoning tasks.

A.4.5 RELIABILITYBENCH

ReliabilityBench, proposed in|Zhou et al.|(2024), is designed to assess the reliability of LLMs. The
benchmark first gathers human assessments of question difficulty across five subdomains (simple
numeracy ,vocabulary reshuffle, geographical knowledge, basic and advanced science questions and
information-centric transformations) and subsequently evaluates LLM performance on the same
questions to establish a difficulty measure consistent with human perception. Consequently, the
benchmark also records human success rates, offering human-performance data that reflect per-
ceived question difficulty.

ReliabilityBench was taken by 189 residents in the U.S and the U.K, 64% female and 36% male,
with an age range between 19 and 78 years. However, the dataset does not include individual-
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level information about participants, which prevents stratification or the creation of distinct human
reference groups for evaluation. As such, this dataset was only be used for calibration.

None of the questions in ReliabilityBench has visual information. Accounting for all subdomains
we work with a total of 401 questions. Each question is expanded into 27 prompt variations.

A.5 BASE-PROMPT

Table 5: Example PISA item and setup for extrapolation task.

Section Content

Introduction overall We have PISA results from 57 countries (30 OECD + 27 partner
countries).

Demographics Students aged 15 years 3 months to 16 years 2 months, attending at

least Grade 7 or equivalent.
About 400,000—450,000 students were assessed, representing ~20
million 15-year-olds globally (stratified sampling).

Item introduction Consider the following question that was asked to all these students:

Item Question: The picture shows the footprints of a
man walking. The pacelength P is the distance
between the rear of two consecutive footprints.

For men, the formula n/P = 140 gives an ap-
proximate relationship between n and P, where:
n = number of steps per minute, and P =
pacelength in metres.

Bernard knows his pacelength is 0.80 metres.
The formula applies to Bernard’s walking.

Task: Calculate Bernard’s walking speed in me-
tres per minute and in kilometres per hour. Show
your working out.

Percentage success rate This question had a 19% success rate in the PISA sample.

Reference group —

Instruction calibration How would you translate this success rate in the PISA sample to
the percentage of success that the whole world population would
achieve under similar exam conditions?

Mapping requires taking into account: cross-country distribution,
age distribution, health conditions, access to education, forgetting,
development of fluid/crystallised intelligence, acquired knowledge,
cognitive decline, etc.

According to these factors, and how they affect this question, what is
the probability that a randomly sampled human worldwide in 2025
would answer correctly? Please give a percentage at the end.

We iterated various versions of the, Introduction overall, Item introduction, Instruction calibration,
and Instruction validation, in order to generate variation and check for robustness of results.

The full variations will be provided in the code repository.
A.6 ADELE COGNITIVE ABILITY DIMENSIONS
Table[6]lists the ADeLe cognitive ability dimensionsZhou et al.|(2025) used in our analyses, provid-

ing brief, non-exhaustive descriptions to clarify how we map task demands to abilities. For complete
rubrics and scale definitions, please refer to the original ADeLe paper.

A.7 DIFFERENTIATION TO DIFFICULTY MODELLING IN PSYCHOMETRICS

In Classical Test Theory, the “p-value”, i.e., the proportion of respondents who obtain the correct
response for an item, is an important index for item analysis (Rust et al., 2020). It is often referred
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Table 6: Cognitive demand dimensions in the ADeLe framework. Adapted from|Zhou et al.| (2025)).

Dimension (Broad) Dimension Description of Demands
(Specific)

Focus on or locate specific elements within a given stream of
information or environment in the whole process of solving a
task.

Understand text, stories or the semantic content of other rep-
lension resentations of ideas in different formats or modalities.

erbal Generate and articulate ideas, stories, or semantic content in
different formats or modalities.

Build new concepts, engage in inductive and analogical rea-
soning, map relationships between domains, and generate ab-
stractions from concrete examples.

tualisation,
and CL

tion

y

 Identifying vant Recognise what information helps solve the task or does not,
Information and how this recognition process unfolds as they work toward
the solution.

gnition and

Thinking Monitor or regulate multiple thought processes to answer the
S question effectively, ranging from simple recall to high-level
critical thinking.

Thinking pmct

Calibrating Knowns Recognise the boundaries of one’s knowledge and confidently
" and Unknowns identify what one knows they know, knows they don’t know,
or is uncertain about.

Model the minds of other agents or reasoning about how the
beliefs, desires, intentions, and emotions of multiple other
agents might interact to determine future behaviours.

Match and apply rules, procedures, algorithms or systematic
steps to premises to solve problems, derive conclusions and
make decisions.

Work with and reason about quantities, numbers, and numeri-
cal relationships.

cal Understand spatial relationships between objects and predict-
ing physical interactions.

Knowledge of Knowledge or conceptual understanding in applied sciences
Applied Sciences (e.g., medicine, law, education, business, agriculture, engi-
neering except IT).

KNa

tomary Everyday Knowledge in information that most people in a given society

KNc )

Knowledge typically acquire through daily life experiences, social inter-
B actions, and media.
KN Knowledge . . .
_ Knowledge of Knowledge or conceptual understanding in formal sciences
KN bormal Sciences (e.g., mathematics, logic, computer science, statistics).
_ Knowledge of Knowledge or conceptual understanding in natural sciences
KN otural Sciences (e.g., physics, chemistry, biology, astronomy, earth sciences,
ecology).
_ Knowledge of Knowledge or conceptual understanding in social sciences and
KNS oocial Sciences humanities (e.g., history, psychology, sociology, literature, art,
philosophy).
I . . R R | How uncommon the task is or how unlikely it is that the in-
AT Atypicality AT Atypicality stance has appeared in various sources (internet, textbooks,
tests).
Proportional to the logarithm of the time a fully competent
VO Volume VO Volume

human needs to read and complete the task in ideal conditions,
excluding interruptions.

The chance of error (percentage) of a task if following obvious
cues or by random guess.

to as item facility or item easiness, as it indicates the opposite of item difficulty among a particular
group of respondents. According to more advanced measurement theory, for instance, Item Re-
sponse Theory, item difficulty is a parameter of the item: it is defined as the point on the ability axis
where the Item Characteristic Curve (i.e., a logistic curve that describes responses to a certain item
given different levels of ability) is steepest. In other words, item difficulty is where a respondent
needs a higher level of ability to have a good chance of getting the item correct (i.e., more than 50%
probability in a 2-PL IRT model). Notably, item difficulty as defined either in Classical Test Theory
or Item Response Theory is derived empirically: Item-level response data is required to calibrate
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the items in order to understand how difficult each item is. This is fundamentally different from
how item difficulty is operationalised in this study. Here we adopt a criterion-referenced approach,
where, according to the ADeLe v1.0, 18 cognitive scales are proposed and specific rubrics corre-
sponding to different cognitive demands are objectively defined|Zhou et al.|(2025). Based on these
rubrics, we are able to quantify the difficulty of each item and subsequently translate it into a success
rate (the p-value) in the whole world population.

A.8 ADDITIONAL EXPERIMENTS

A.8.1 ICAR VALIDATION AND CALIBRATION

On ICAR validation (Table [7), all models achieve very low error (MAE ~0.03-0.04) and very
high correlations (r > 0.92). Calibration (Table [§)) is more challenging, with errors roughly five
times larger (MAE ~0.17-0.34) and correlations dropping, though the best models still maintain
r =~ 0.93. The baseline summary across focal groups (Table [9) shows average error of 0.068 and
strong correlation (r == 0.95).

Table 7: Validation results on ICAR benchmark (lower MAE/RMSE is better, higher r is better).

Model N MAE RMSE Pearsonr Spearman r
gpt-5-chat 2993  0.030  0.044 0.976 0.968
llama-4 3121 0.033  0.052 0.971 0.963
gpt-4.1 3123 0.040  0.058 0.958 0.944
deepseek-v3.1 3124 0.043  0.085 0.922 0.914
grok-3 3115 0.043  0.068 0.939 0.920

Table 8: Calibration results on ICAR benchmark (lower MAE/RMSE is better, higher r is better).

Model N MAE RMSE Pearsonr Spearman r
deepseek-v3.1 674 0.166  0.180 0.933 0912
llama-4 669 0.168  0.184 0.920 0.893
gpt-5-chat 673 0.173  0.186 0.938 0.933
gpt-4.1 672 0.264 0.282 0.857 0.829
grok-3 671 0336  0.355 0.802 0.780

Table 9: ICAR ground truth / baseline — anonymized summary across focal groups.

# Focal groups avgN avg MAE avg RMSE avg Pearsonr avg Spearman r

7 33.143 0.068 0.086 0.948 0.894

A.8.2 PISA VALIDATION AND CALIBRATION

Validation on PISA (Table [10) reveals moderate performance: MAE in the range of 0.087-0.112
and correlations around 0.76-0.83. Calibration (Table [IT)) is clearly more demanding, with only
DeepSeek-v3.1 retaining high correlation (r ~ 0.94) while other models show larger errors and
reduced agreement.
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Table 10: Validation results on PISA benchmark (lower MAE/RMSE is better, higher 7 is better).

Model N MAE RMSE Pearsonr Spearman r
gpt-5-chat 18,976  0.087  0.111 0.825 0.783
gpt-4.1 18,962 0.111  0.141 0.792 0.735
deepseek-v3.1 18,928 0.111 0.147 0.763 0.714
llama-4 18,946 0.112  0.147 0.781 0.730
grok-3 18,910 0.112  0.140 0.818 0.772

Table 11: Calibration results on PISA benchmark (lower MAE/RMSE is better, higher r is better).

Model N MAE RMSE Pearsonr Spearman r
deepseek-v3.1 1,719 0.132  0.144 0.938 0.940
llama-4 1,721 0.246  0.269 0.770 0.761
gpt-5-chat 1,721  0.257  0.268 0.902 0.909
grok-3 1,720 0323 0.340 0.780 0.784
gpt-4.1 1,719 0333 0.346 0.845 0.861

669 A.8.3 UKBIOBANK CALIBRATION

670 For UK Biobank calibration (Table[I2)), performance varies strongly across models. DeepSeek-v3.1
671 performs best with MAE=0.184 and correlations above 0.90, while other systems show higher errors
672 and substantially weaker alignment.

Table 12: Calibration results on UK Biobank benchmark (lower MAE/RMSE is better, higher r is

better).
Model N MAE RMSE Pearsonr Spearman r
deepseek-v3.1 351 0.184  0.210 0.908 0.899
llama-4 351 0250  0.289 0.844 0.881
gpt-5-chat 351 0.265 0.312 0.781 0.779
gpt-4.1 351 0.366 0.402 0.766 0.760
grok-3 351 0412  0.467 0.596 0.589

673 A.8.4 RELIABILITYBENCH CALIBRATION

674 On ReliabilityBench calibration (Table [I3), only GPT-4.1 maintains reasonable accuracy
675 (MAE=0.103, r =~ 0.77-0.85). All other models show high error (=0.27-0.28) and very low corre-
676 lations, highlighting the difficulty of this benchmark.
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Table 13: Calibration results on ReliabilityBench (lower MAE/RMSE is better, higher r is better).

Model N MAE RMSE Pearsonr Spearman r
GPT-4.1 10,867 0.103  0.231 0.771 0.846
deepseek-v3.1 8,125 0.274 0414 0.281 0.318
gpt-5-chat 8,129 0.278  0.410 0.228 0.257
grok-3 8,131 0.278 0417 0.218 0.257
llama-4 8,130 0.279 0412 0.245 0.275

677 A.8.5 TIMSS VALIDATION AND CALIBRATION

678 TIMSS validation (Table[T4) is substantially harder, with errors around 0.12-0.16 and correlations
679 in the 0.5-0.7 range. Calibration (Table further exposes model limitations: only DeepSeek-v3.1
680 retains good accuracy (MAE=0.088, r ~ 0.87), while other models fail to calibrate reliably.

Table 14: Validation results on TIMSS benchmark (lower MAE/RMSE is better, higher r is better).

Model N MAE RMSE Pearsonr Spearman r
deepseek-v3.1 4,689 0.121  0.149 0.706 0.663
gpt-5-chat 4,694 0.124  0.159 0.637 0.576
grok-3 4,688 0.154  0.209 0.529 0.500
gpt-4.1 4,608 0.154  0.205 0.554 0.511
llama-4 4,673 0.164  0.217 0.550 0.512

Table 15: Calibration results on TIMSS benchmark (lower MAE/RMSE is better, higher r is better).

Model N MAE RMSE Pearsonr Spearman r
deepseek-v3.1 57 0.088 0.110 0.871 0.831
gpt-5-chat 57 0432 0.482 0.435 0.475
grok-3 57 0435 0.486 0.073 0.142
llama-4 57 0445 0.49% 0.441 0.661
gpt-4.1 57 0445 0.496 0.172 0.271

st A.8.6 TIMSS GROUND TRUTH/ BASELINE

Table 16: TIMSS ground truth / baseline - anonymized summary across all countries.

# Countries avgN avgMAE avgRMSE avgPearsonr avg Spearman r

87 55.22 0.129 0.149 0.828 0.790
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