
Proceedings of Machine Learning Research – nnn:1–15, 2023 Full Paper – MIDL 2023

Bi-parametric prostate MR image synthesis using pathology
and sequence-conditioned stable diffusion

Shaheer U. Saeed 1 shaheer.saeed.17@ucl.ac.uk

Tom Syer 2 t.syer@ucl.ac.uk

Wen Yan 1,3 wen-yan@ucl.ac.uk

Qianye Yang 1 qianye.yang.19@ucl.ac.uk

Mark Emberton 4 m.emberton@ucl.ac.uk

Shonit Punwani 2 s.punwani@ucl.ac.uk

Matthew J. Clarkson 1 m.clarkson@ucl.ac.uk

Dean C. Barratt 1 d.barratt@ucl.ac.uk

Yipeng Hu 1 yipeng.hu@ucl.ac.uk
1 Centre for Medical Image Computing, Wellcome/EPSRC Centre for Interventional and Surgical

Sciences and Department of Medical Physics and Biomedical Engineering, University College Lon-

don, London, UK.
2 Centre for Medical Imaging, Division of Medicine, University College London, London, UK.
3 City University of Hong Kong, Department of Electrical Engineering, Hong Kong, China
4 Department of Urology, University College Hospital NHS foundation Trust; and Division of Surgery

and Interventional Science, University College London, London, UK.

Editors: Accepted for publication at MIDL 2023

Abstract

We propose an image synthesis mechanism for multi-sequence prostate MR images con-
ditioned on text, to control lesion presence and sequence, as well as to generate paired
bi-parametric images conditioned on images e.g. for generating diffusion-weighted MR
from T2-weighted MR for paired data, which are two challenging tasks in pathological im-
age synthesis. Our proposed mechanism utilises and builds upon the recent stable diffusion
model by proposing image-based conditioning for paired data generation. We validate our
method using 2D image slices from real suspected prostate cancer patients. The realism of
the synthesised images is validated by means of a blind expert evaluation for identifying
real versus fake images, where a radiologist with 4 years experience reading urological MR
only achieves 59.4% accuracy across all tested sequences (where chance is 50%). For the
first time, we evaluate the realism of the generated pathology by blind expert identification
of the presence of suspected lesions, where we find that the clinician performs similarly
for both real and synthesised images, with a 2.9 percentage point difference in lesion iden-
tification accuracy between real and synthesised images, demonstrating the potentials in
radiological training purposes. Furthermore, we also show that a machine learning model,
trained for lesion identification, shows better performance (76.2% vs 70.4%, statistically
significant improvement) when trained with real data augmented by synthesised data as
opposed to training with only real images, demonstrating usefulness for model training.
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1. Introduction

Image synthesis has been used to augment real training data, for domain adaptation, or
to generate training data for applications with limited real labelled data (Kazeminia et al.,
2020). Within these applications, it has also been demonstrated to be effective for improv-
ing task performance of automated task networks for tasks like organ segmentation, when
synthetic data is used in conjunction with real (Chartsias et al., 2017; Frid-Adar et al.,
2018). While these applications do benefit from realistic synthesised data, it is important
for these synthesised images to be conditioned on features that need simulating within the
context of the relevant clinical application (Kazeminia et al., 2020; Skandarani et al., 2021).

Before the advent of deep learning and even to this day, physics- or pre-operative-
imaging-based simulators have been proposed for medical image synthesis, inspired by the
physics of the underlying imaging processes. An example is generating intra-operative
ultrasound data from larger and higher-resolution pre-operative images such as CT (Cong
et al., 2013; Shams et al., 2008). Machine learning approaches for medical image synthesis
have largely been focused on using generative adversarial networks (GANs) (Kazeminia
et al., 2020; Skandarani et al., 2021; Singh and Raza, 2021). Conditional GANs (cGAN)
have been applied to a variety of problems, for both pre- and intra-operative image synthesis,
without relying on patient anatomy being available for synthesis (Kazeminia et al., 2020;
Skandarani et al., 2021; Singh and Raza, 2021). They have also been used for learning
inter-modality correspondence e.g. for generating CT from MR or vice versa (Nie et al.,
2017; Wolterink et al., 2017a,b; Chartsias et al., 2017), conditioned image synthesis for
features of interest e.g. blood vessels (Costa et al., 2017a,b; Isola et al., 2017; Guibas
et al., 2017; Zhao et al., 2017) or tumours (Mukherkjee et al., 2022; Li et al., 2020). While
these GAN-based methods produce realistic images, they often suffer from problems such as
under-represented features of interest (Kazeminia et al., 2020), poor performance on class-
imbalanced data-sets (Kazeminia et al., 2020), especially for under-represented classes, or
other common problems encountered during training, e.g. unstable training, mode collapse
and diminishing gradients (Saxena and Cao, 2021), which prevent them from being widely
usable (Li et al., 2021). Our preliminary experiments using cGANs or their variants were
consistent with these identified limitations, with unconvincing results such as prostate gland
broken, in-painted or lacking details, see illustrated examples (Fig. 1). The results may
suggest lack of generative modelling ability or ineffective conditioning, for this challenging
application with often subtle and sometimes radiologically undetermined pathology.

Recently, diffusion probabilistic models (DPM) have been proposed for image synthesis
(Ho et al., 2020; Nichol and Dhariwal, 2021). These models have shown improved image syn-
thesis capability for a wide array of problems and are capable of incorporating both image-
based and text-based conditioning (Ho et al., 2020; Nichol and Dhariwal, 2021; Ramesh
et al., 2022; Saharia et al., 2022; Rombach et al., 2022). While these models have been
leveraged for medical image synthesis tasks (Kazerouni et al., 2022; Kim and Ye, 2022; Dor-
jsembe et al., 2022; Moghadam et al., 2023; Pinaya et al., 2022), studies so far have focused
mostly on unconditional image synthesis or synthesis conditioned on text-based variables.

In many applications that estimate clinically important pathology, conditioning on often
under-represented diverse pathology or less-specific, higher dimensional data, such as a
specific image sequence in multi-parametric prostate MR, is beneficial or even inevitably
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required. The ability to generate pathological images potentially can provide useful data,
for training junior clinicians as well as developing machine learning models, partly caused
by the low sample availability to diversity ratio in specific disease conditions. In addition,
in our application, prostate cancer is potentially sensitive to multiple sequences of MR
images, reflected by modern uro-radiological guidelines such as PiRADS (pir). For example,
peripheral zone lesions are primarily graded on DW images, while transition zone cancers
are predominantly determined on T2 images but their risk may be upgraded with positive
findings on DW images. The ability to model the conditional distribution of these paired
image data and to synthesise diffusion images, given other complementary sequences are
essential for the above-discussed data augmentation and clinician training applications.

In this work we present a conditional DPM for synthesis of prostate MR images, con-
ditioned not only on text to control variables such as the presence of cancer and sequence
of MR acquisition, i.e. T2-weighted (T2W), apparent diffusion contrast (ADC), diffusion-
weighted (DW), but on images to facilitate generation of corresponding image pairs by
generating DW images conditioned on T2W images. Compared to previous work (Rom-
bach et al., 2022; Saharia et al., 2022; Ramesh et al., 2022), our work investigates combined
conditional image- and text-based synthesis as opposed to only text-based or unconditional
synthesis, or image modification. Furthermore, the text-conditioning used in our work
represents pathological status as opposed to other common visual descriptors used in pre-
vious works. Image-based conditioning for synthesis of MR sequences is also novel, and
different from the previously proposed diffusion-based image modification e.g. inpainting or
super-resolution. We conduct evaluation by: 1) presenting images to a clinician to identify
synthesised images, to test the efficacy of the image synthesis, to demonstrate the realism
of the synthesised images; 2) presenting corresponding T2-weighted and diffusion-weighted,
generated and real, images to a clinician for a cancer detection task, to test the realism
of the generated lesions; and 3) testing the segmentation accuracy for a neural network-
based multi-parametric MR lesion identification task with real data versus with a dataset
augmented using synthesised images.

The contributions of this work are summarised: 1) We propose a DPM for synthesis of
prostate MR images with challenging pathology. 2) We propose conditioning the synthe-
sis on text-based inputs to control presence of lesions and MR sequence. 3) We propose
conditional image synthesis to generate DW images from corresponding T2W images as a
means of generating corresponding multi-sequence images. 4) We conduct an evaluation
to demonstrate the effectiveness of the synthesised images not only for clinical training use
cases but also for machine learning model training for a task carried out with the MR images
i.e. lesion identification.

2. Methods

2.1. Forward process

In our application, assume a forward process being the addition of noise in sequential steps
to a given input image, x0 ∼ q(x|y) sampled from a data distribution of real samples q(x),
the distribution to be modelled. Here, y is a variable used to condition the data. At each
time-step t, where t ∈ {1, T}, the added Gaussian noise follows a Markov chain with T
steps, with variance βt, and only depends on the sample from the previous step and the
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variable used for conditioning. The distribution can then be written as q(xt|xt−1, y), with
xt as a latent variable. The diffusion forward process can, therefore, be formulated as:

q(xt|xt−1, y) = N (xt;µt =
√
1− βtxt−1, σt = βtI) (1)

Going from the sample x0 to the sample xT in a closed form thus looks like:

q(x1:T |x0, y) =
T∏
t=1

q(xt|xt−1, y) (2)

Efficient re-parameterising allows to compute xt without needing to compute all the
samples at previous steps. As detailed in previous works (Ho et al., 2020; Nichol and
Dhariwal, 2021; Rombach et al., 2022), it can be shown that by defining αt = 1 − βt,
ᾱt =

∏t
s=0 αs, a sample xt may be sampled as follows:

xt ∼ q(xt|xt−1, y) = N (xt;
√
ᾱtx0, (1− ᾱt)I (3)

Variance β may be fixed, whilst a cosine schedule (Nichol and Dhariwal, 2021) is adapted
in this work, increasing β from 10−4 to 0.02 over T steps.

2.2. Additional input y for conditioning

As in Rombach et al. (2022), we use an encoder τγ , with weights γ, for our variables used
to condition the synthesis y, which maps to an intermediate representation τγ(y) ∈ RM×dτ ,
which is then mapped to the intermediate layers of the U-Net. For language prompts,
the domain-specific encoder may be a transformer model as in Rombach et al. (2022). For
higher-dimensional conditioning data, such as an image, we use a latent representation from
a trained auto-encoder to generate the encoding. In this work the auto-encoder is imple-
mented as a convolutional neural network with 3 down-sampling and 3 up-sampling layers
with the latent representation being 128-dimensional; this is mapped to the intermediate
layers of the U-Net, similar to Rombach et al. (2022). For sample xt, conditioned on y,
consisting of the image encoding and text encoding, this gives us xt ∼ q(xt|xt−1, τγ(y)).
For notational brevity, however, we use y, for both, in the remaining analysis.

2.3. Reverse process

With a sufficiently large T , the distribution approaches an isotropic Gaussian (Ho et al.,
2020). Thus, the data distribution q(x) can be modelled by reversing the noise adding
process from unit Gaussian distribution N (0, I) samples. In practice, however, the reverse
q(xt−1|xt, y) is not known or can be statistically estimated since any statistical estimates
would involve knowing the data distribution (Ho et al., 2020). We can, however, learn to ap-
proximate q(xt−1|xt, y) using a parameterised function ϵθ(xt, t, y) which can be interpreted
as a sequence of de-noising auto-encoders with additional conditioning on the time-step
t. It is easier to parameterise a Gaussian and then remove the predicted Gaussian noise
manually. Thus for sample xt−1 we have:

pθ(xt−1|xt, t, y) = N (xt−1;µθ(xt, t), σθ(xt, t)) (4)
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Then applying the reverse process for all time-steps:

pθ(x0:T , 0 : T, y) = pθ(xT , T, y)
T∏
t−1

pθ(xt−1|xt, t, y) (5)

Here, we summarise the entire process as a de-noising function ϵθ(xt, t, y) which is trained
to predict a de-noised version of its input i.e. x0 from xt. To incorporate the encoder used
to pre-process the conditioning variable we may re-write this as ϵθ(xt, t, τγ(y)). As shown
in previous works (Ho et al., 2020; Nichol and Dhariwal, 2021; Rombach et al., 2022), the
objective for this can then be simplified to:

L = Ex,ϵ∼N (0,1),t,y

[
||ϵ− ϵθ(xt, t, y)||11

]
(6)

In this work, we follow the implementation in Rombach et al. (2022) and use a U-Net
as our de-noising function and feed latent representations to the function for training, as in
Rombach et al. (2022), for computational efficiency.

2.4. Sampling from the trained diffusion model

To sample an image from the learnt data distribution with the given conditioning variables.
We sample xT ∼ N (0, I) and compute the sample using our reverse de-noising function
x0 = ϵθ(xt, t, τγ(y)). In practice, however, better performance is seen when noise is added
back using the noise schedule until step t − 1, i.e. using Eq 2.1, and then the de-noising
function is applied again to generate another latent sample x0 to which noise is added back
using the schedule until t− 2, repeated until t− t (Rombach et al., 2022).

3. Experiments

3.1. Datasets

We used two datasets for training, a large open dataset to train and initialise the model for
training with a smaller dataset, both of which are described below.

Open-source prostate MR data This dataset comes from Saha et al. (2022) with
1285 samples of 3D prostate MR images with T2W and ADC available. 190 samples were
removed after a semi-manual process, due to questionable quality and unclear conformity
to radiological reporting standards. Only 10 central slices were used for training from each
of the 3D images since they contain the majority of the prostate volume. 200 patient cases
were held out from training and used for evaluation, details in Sec. 3.3. Further details in
Saha et al. (2022). This dataset was used to generate ADC and T2W used in Sec. 3.3.

Closed source multi-sequence prostate MR data Multi-parametric 3D MR images
were acquired from 850 patients undergoing prostate biopsy and therapy as part of trials
at University College London Hospitals (Hamid et al., 2019; Simmons et al., 2018; Bosaily
et al., 2015; Orczyk et al., 2021; Dickinson et al., 2013; Linch et al., 2017). Patients gave
written consent and ethics approval was obtained as part of the respective trial protocols.
Lesions were manually contoured by a radiologist and were used to generate slice-level binary
labels of lesion presence. Image sequences included T2W and DW with highest b-values =
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1000 or 2000. For the purpose of this study, ten central slices were used for training from
each of the 3D images since they contain the majority of the prostate volume. Slices with
lesions visible, PIRADS ≥ 3, are marked as containing a lesion. 200 samples were held out
from training for purposes of evaluation, see details in Sec. 3.3. This dataset was used to
generate paired T2W and DW images as described in Sec. 3.3. It should be noted that
after training the model with the open-source dataset described above, the model was only
fine-tuned with the paired closed source data.

3.2. Model implementation and training

We closely follow the implementation used in Rombach et al. (2022). Hyper-parameters are
empirically configured, remaining the same as ImageNet experiments using latent diffusion
model or LDM-1 from Rombach et al. (2022) (Appendix). Networks are trained by first
setting to pre-trained weights and the BERT tokeniser is used together with the provided
encoder for encoding text prompts Rombach et al. (2022) (Appendix). The encoder for
cross-sequence translation, i.e. T2W to DW, is trained as a convolutional auto-encoder with
latent representations used for conditioning, details in Sec. 2.2. Models in this work were
trained on slice-level 2D data, for computational/ development efficiency, utilising robust
training strategies and hyperparameter values which may not generalise to 3D samples.

3.3. Usability study

Expert identification of synthesised ADC and T2W images In this experiment
independent 2D slices of T2W and ADC, which are not necessarily from the same patient,
are used. We ask the clinician with 4 years experience reading urological MR, to identify
synthesised images from a mixture of real and synthesised images, regardless of images
containing lesions. Data used consists of 32 2D ADC and 32 2D T2W image slices containing
the prostate, with equal positive-to-negative ratio for lesions and real-to-synthesis ratio. The
ratios are also blind to the observer. Comparisons and results reported in Sec. 4.

Expert identification of lesions on ADC and T2W images Using the same data as
in the above synthesised identification task, we now ask the clinician to identify 2D slices
that contain a suspected lesion with PIRADS ≥ 3, regardless of the images being real or
fake. Comparisons and results reported in Sec. 4.

Expert identification of lesions on paired T2W-DW images Using paired T2W-
DW data, the clinician was asked to identify images with a suspected lesion, PIRADS ≥ 3,
regardless of images being real or synthesised. Synthesised paired images were generated by
conditioning DW generation on T2W images. The 32 2D paired T2W- DW images used for
this study are also sampled with equal ratios, between positive and negative and between
real and synthesised, both blind prior to the observer, results reported in Sec. 4.

Machine learning-automated lesion detection An AlexNet (4 convolutional and 4
fully connected layers) was trained for the binary classification task of lesion identification,
as performed by an expert in the previous paragraph, on each 2D slice pair of T2W and DW
images, at the same depth from the same subject. We note that the performance reported
in Sec. 4 is consistent with those reported in similar applications, e.g. (Kwon et al., 2018),
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Task Data Accuracy

Clinician - synthesised identification
Ntrain = 8950
Nusability study = 32 T2W, 32 ADC

ADC (overall) 0.563
ADC (w/ cancer) 0.625
ADC (w/o cancer) 0.500
T2W (overall) 0.625
T2W (w/ cancer) 0.688
T2W (w/o cancer) 0.563

Clinician - lesion identification
Ntrain = 8950
Nusability study = 32 T2W, 32 ADC

ADC (overall) 0.688
ADC (real) 0.625
ADC (synthesised) 0.750
T2W (overall) 0.594
T2W (real) 0.625
T2W (synthesised) 0.563

Clinician - lesion identification
Ntrain = 6500
Nusability study = 32 T2W-DW

T2W-DW paired (overall) 0.563
T2W-DW paired (real) 0.563
T2W-DW paired (synthesised) 0.563

ML model - lesion identification
Trained with real 0.704± 0.035
Trained with real + synthesised 0.762± 0.042

Table 1: Results for both expert clinician and machine learning model experiments, with
details described in Sec. 3. ‘Nset’ indicates the set size in terms of images.

therefore justifies the choice of the widely established baseline, which is also competitive
in a wide variety of other tasks (Krizhevsky et al., 2012). Separate models were trained
using only real images and a dataset augmented with the DPM synthesised images. For the
real case, we use the closed-source dataset and split it into train, validation and holdout
sets, with 510, 170 and 170 patients, respectively, resulting in a total of 5100, 1700 and
1700 2D slices in respective sets. For the augmented dataset, 1600 synthesised images with
lesions and 1600 without, were split into train and validation sets. These were added to
the original sets, resulting in 7500, 2500 in each of the sets, respectively. The holdout set
remains the same with 1700 images. The classification accuracy results are reported on
1700 real 2D slices from the holdout set for both trained models, to compare the difference
between training with and without augmented synthesised images, in Sec. 4.

4. Results

Results comparing real images to synthesised ones are presented in Table 1 and Fig. 1. The
stable diffusion model took approximately 8 days to train on a single Nvidia Tesla V100
GPU, with an average time for sample synthesis being 10 seconds on the same GPU.

Comparing real and synthesised images by expert observer As shown in Table
1, an expert clinician was only able to identify synthesised images from real ones with an
average accuracy of 0.594 averaged over all ADC and T2W images (where chance is 0.500).
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Figure 1: Examples of generated and real images, with keys as follows. Blue: Synthesised
using DPM, Green: Real, Red: Synthesised using cGAN. Left: No Cancer, Right:
Cancer (arrows indicating suspected lesions, w.r.t. PIRADS≥3). Top block:
ADC, Middle block: T2W, Bottom block: Paired T2W-DW (left-right).

Evaluating lesion realism by comparing expert lesion identification performance
We compare the lesion identification task performance accuracy for real versus synthesised
images. The accuracy for real images, averaged over ADC, T2W and paired T2W-DWI
lesion identification as performed by the expert is 60.4%, and for synthesised averaged over
the same is 62.6%. This gives us only a small difference of 2.1 percentage points between
the lesion identification performance of the expert for real versus synthesised images.

Evaluating usability of synthesised data for machine learning model training
As in Table 1, we observe a 5.8% improvement in accuracy, with statistical significance
(p-value=0.004), for the lesion identification task for the model trained with augmented
data, compared to a model trained with only real images, as described in Sec. 3.3.
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5. Discussion and Conclusion

Based on the results presented in Sec. 4, given that 1) the expert clinician only performed
marginally better than chance in identifying synthesised images and 2) the expert lesion
identification accuracy was similar between the real and generated data, we argue that this
may enable a number of applications including flexible training tools for clinical trainees.
Perhaps more interestingly, some of the most challenging radiologist tasks, such as the
DW reading following a positive reading of T2W images for a transition zone lesion, could
be simulated using the proposed sequence-conditioned models. Furthermore, performance
improvement in lesion identification experiments using machine learning models, with and
without adding synthesised data for training, concludes that the data synthesis approach
is promising for data augmentation. Our proposed method is currently limited in terms of
which areas of prostate can be synthesised since mostly central parts are synthesised by the
trained network, partly due to random sampling without explicit positional conditioning;
we plan to investigate further conditioning schemes that allow control over regions of the
prostate that need to be synthesised. E.g., conditioning mechanism to specify the location
(apical vs near base, peripheral vs transition zones) and severity (PIRADS scores) of lesions.
This would indeed be interesting for targeted sample generation for both applications.

This work proposes a stable-diffusion-based image synthesis method together with a
conditioning scheme to generate realistic prostate MR images where the sequence of MR,
presence of lesions and synthesis of paired data may be controlled. Our quantitative results
demonstrate the usability of the generated images for use cases such as training trainee
clinicians/ radiologists and for improving machine learning model task performance.
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Appendix

Hyper-parameters

The hyper-parameters used in our study are specified in Tab. 2. Training was stopped after
convergence, which is defined as observing an improvement less than 1e−6 in the loss, which
is sometimes referred to as the minimum-delta.

Hyperparameter Value

Diffusion steps (train) 1000
Number of parameters 396M

Channels 192
Depth 2

Channel Multiplier 1, 1, 2, 2 , 4, 4
Batch Size 7

Embedding Dimension 512

Table 2: Hyperparameters used for training the diffusion model which are set empirically
based on experiments from Rombach et al. (2022).

Examples of text prompts

Examples of text prompts used for training are presented in Tab. 3. We used the presence
of cancer together with MR sequence to form text prompts. The prompts were generated
randomly from a list of 8 phrases with the MR sequence or lesion presence being inserted
into each of the phrases as appropriate. Due to the vast prior research into BERT-based
text encoding for diffusion models, we chose to opt for BERT to generate our text encodings.
This allows us to avoid training a binary variable encoder which can map to the intermediate
layers of the UNet, which may be difficult since auto-encoders have not demonstrated to
be suitable to map to dimensions higher than the input as they mostly rely on bottlenecks
with lower dimensions compared to the input for encoding.

Text prompts

‘A T2 image of a prostate with a lesion’
‘Prostate DW image with a lesion’

‘ADC image of a prostate with no lesion’
‘Image of ADC prostate without lesion’

Table 3: Examples of text prompts used

Variability in these text prompts may promote learning higher-level concepts such as
‘prostate’, ‘lesion’ etc.

Methods overview

An overview of the diffusion model is presented in Fig. 2. For obtaining a sample, we
iterate this 50 times by first generating xT randomly, obtaining an estimate for x0 using
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the reverse diffusion network and then adding back 49/50-th of the noise back. Then we
repeat reverse diffusion and add back 48/50th of the noise. We run this for 50 steps until
we add back 0/50-th of the noise and obtain our final sample.

Figure 2: An overview of the diffusion process.
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