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Abstract

We study the problem of determining whether a piece of text has been authored by
a human or by a large language model (LLM). Existing state of the art logits-based
detectors make use of statistics derived from the log-probability of the observed
text evaluated using the distribution function of a given source LLM. However,
relying solely on log probabilities can be sub-optimal. In response, we introduce
AdaDetectGPT – a novel classifier that adaptively learns a witness function from
training data to enhance the performance of logits-based detectors. We provide
statistical guarantees on its true positive rate, false positive rate, true negative rate
and false negative rate. Extensive numerical studies show AdaDetectGPT nearly
uniformly improves the state-of-the-art method in various combination of datasets
and LLMs, and the improvement can reach up to 37%. A python implementation of
our method is available at https://github.com/Mamba413/AdaDetectGPT.

1 Introduction

Large language models (LLMs) such as ChatGPT (OpenAI, 2022), PaLM (Chowdhery et al., 2023),
Llama (Grattafiori et al., 2024) and DeepSeek (Bi et al., 2024) have revolutionized the field of
generative artificial intelligence by enabling large-scale content generation across various fields
including journalism, education, and creative writing (Demszky et al., 2023; Milano et al., 2023;
Doshi & Hauser, 2024). However, their ability to produce highly human-like text poses serious
risks, such as the spread of misinformation, academic dishonesty, and the erosion of trust in written
communication (Ahmed et al., 2021; Lee et al., 2023; Christian, 2023). Consequently, accurately
distinguishing between human- and LLM-generated text has emerged as a critical area of research.

There is a growing literature on the detection of machine-generated text; refer to Section 1.1 for
a review. One popular line of research focuses on statistics-based detectors, typically rely on log-
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Figure 1: Workflow of AdaDetectGPT. Built upon Fast-DetectGPT (Bao et al., 2024), our method
adaptively learn a witness function ŵ from training data by maximizing a lower bound on the TNR,
while using normal approximation for FNR control.

probability outputs (i.e., logits) from a source LLM to construct the statistics for classification (see
e.g., Gehrmann et al., 2019; Mitchell et al., 2023). These works are motivated by the empirical
observation that LLM-generated text tends to exhibit higher log-probabilities or larger differences
between the logits of original and perturbed tokens. However, as we demonstrated in Section 3,
relying solely on the logits can be sub-optimal for detecting LLM-generated text.

Our contribution. In this paper, we propose AdaDetectGPT (see Figure 1 for a visualization), an
adaptive LLM detector that leverages external training data to enhance the effectiveness of existing
logits-based detectors. Our approach derives a lower bound on the true negative rate (TNR) of
logits-based detectors and adaptively learns a witness function by optimizing this bound, resulting
in a more powerful detection statistic. The optimization is straightfoward and requires only solving
a system of linear equations. Based on this statistic, we further introduce an approach to select the
classification threshold that controls AdaDetectGPT’s false negative rate (FNR).

Empirically, we conduct extensive evaluations across multiple datasets and a variety of target language
models to demonstrate that AdaDetectGPT consistently outperforms existing logits-based detectors.
In white-box settings – where the target LLM to be detected is the same as the source LLM used to
compute the logits – AdaDetectGPT achieves improvements over the best alternative in area under
the curve (AUC) ranging from 12.5% to 37% over the best existing method. In black-box settings,
where the source and target LLMs differ, it similarly offer gains of up to 20%.

Theoretically, we provide statistical performance guarantees for AdaDetectGPT, deriving finite-
sample error bounds for its TNR, FNR, true positive rate (TPR) and false positive rate (FPR). Existing
literature on logits-based detectors generally lacks systematic statistical analysis. Our work aims to
fill in this gap and contribute toward a deeper understanding of these methods in this emerging field,
by offering a comprehensive analysis based on the aforementioned standard classification metrics.

1.1 Related works

Existing methods for detecting machine-generated text generally fall into three categories: machine
learning (ML)-based, statistics-based, and watermarking-based; see Yang et al. (2024c); Wu et al.
(2025) for recent comprehensive surveys. Our method is most closely related to the first two categories
and, unlike the third, does not rely on knowledge of the specific hash function or random number
generator used during token generation, which are often model-specific and not publicly available.
In what follows, we review the first two categories and defer the discussion of watermarking-based
approaches to Appendix A.

ML-based detection. ML-based methods train classification models on external human- and machine-
authored text for detection. Many methods can be further categorized into two types. The first type
extracts certain features from text and apply classical ML models to train classifiers based on these
features. Various features have been proposed in the literature, ranging from classical term frequency-
inverse document frequency (TF-IDF), unigram, and bigram features (Solaiman et al., 2019), to
more complex features engineered specifically for this task, such as the cross-entropy loss computed
between the source text and a surrogate LLM (Guo et al., 2024a) and the rewriting-based measure
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that quantifies the difference between original texts and their LLM-rewritten versions (Mao et al.,
2024).

The second type of methods fine-tune LLMs directly for classification. This approach is intuitive, as
LLMs are inherently designed for processing text data; we only need to modify the model’s output
to predict a binary label rather than token probabilities. Various LLMs have been employed for
fine-tuning, including RoBERTa (Solaiman et al., 2019; Guo et al., 2023), BERT (Ippolito et al.,
2020) and DistilBERT (Mitrović et al., 2023).

In addition to these two types of methods, Abburi et al. (2023) propose a hybrid approach that uses
the outputs of fine-tuned LLMs as input features for classical ML-based classification. Further efforts
have focused on handling adversarial attacks (Crothers et al., 2022; Krishna et al., 2023; Koike
et al., 2024; Sadasivan et al., 2025), short texts (Tian et al., 2024), out-of-distribution texts Guo et al.
(2024b), biases against non-native English writers (Liang et al., 2023), as well as the downstream
applications of these methods in domains such as education, social media and medicine (Herbold
et al., 2023; Kumarage et al., 2023; Liao et al., 2023).

Statistics-based detection. Statistics-based methods leverage differences in token-level metrics such
as log-probabilities to distinguish between human- and machine-authored text. Unlike ML-based
approaches, many of these methods do not rely on external training data; instead, they directly
use predefined statistical measures as classifiers. In particular, a seminal work by Gehrmann et al.
(2019) propose several such measures, including the average log-probability and the distribution of
absolute ranks of probabilities of tokens across a text. These measures exhibit substantial differences
between human- and machine-authored text, and they have been widely employed and extended in
the literature (see e.g., Mitchell et al., 2023; Su et al., 2023; Bao et al., 2024; Hans et al., 2024).

Other statistical measures employed are calculated based on the N-gram distributions (Solaiman
et al., 2019; Yang et al., 2024b), the intrinsic dimensionality of text (Tulchinskii et al., 2023), the
reward model used in LLMs (Lee et al., 2024) and the maximum mean discrepancy (Zhang et al.,
2024; Song et al., 2025). Recent works have extended these methods to more challenging scenarios,
such as to handle adversarial attacks (Hu et al., 2023), machine-revised text (Chen et al., 2025a)
and black-box settings (Yu et al., 2024; Zeng et al., 2024). Theoretically, Chakraborty et al. (2024)
establish a sample complexity bound for detecting machine-generated text.

To conclude this section, we remark that our proposal lies at the intersection between statistics- and
ML-based methods. Similar to many statistics-based approaches, our classifier is constructed based
on the log-probabilities. However, we adaptively learn a witness function via ML to improve its
effectiveness. In this way, our method leverages the strengths of both approaches, leading to superior
detection performance.

2 Preliminaries

We first define the white-box and black-box settings as well as our objective. We next review two
baseline methods, DetectGPT (Mitchell et al., 2023) and Fast-DetectGPT (Bao et al., 2024), as they
are closely related to our proposal. Finally, we introduce the martingale central limit theorem (see
e.g., Hall & Heyde, 2014), which serves as the theoretical basis for our threshold selection.

Task and settings. We study the problem of determining whether a given passage X , represented
as a sequence of tokens (X1, X2, . . . , XL), was authored by a human or generated by a target LLM.
Specifically, let p and q denote the distributions over human-written and LLM-generated tokens,
respectively. Each distribution can be represented as a product of conditional probability functions,∏

t pt for humans and
∏

t qt for the target LLM, where each pt(xt|x<t) (and similarly qt) denotes
the conditional probability mass function of the next token xt given the preceding tokens, where
x<t := (x1, x2, . . . , xt−1) when t > 1 and x<t := ∅ otherwise. Our goal is to develop a classifier to
discriminate between X ∼ p (human) and X ∼ q (LLM).

We assume access to a source LLM’s probability distribution function q′ =
∏

t q
′
t. When q′ = q, it

corresponds to the white-box setting where the source model we have is the same as the target model
we wish to detect. This is the primary setting considered in this paper. For closed-source LLMs such
as GPT-3.5 and GPT-4, their probability functions are not publicly available. In such cases, we utilize
an open-source model with distribution q′ as an approximation of q, resulting in the black-box setting,
which our method is also extended to handle.
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We also assume access to a corpus of n human-authored passages H = {X(i)}ni=1 ∼ p. This
assumption is reasonable, as large corpora of human-written text are readily available online (e.g.,
Wikipedia). Without loss of generality, we assume that all passages have the same number of tokens
L, achieved by zero-padding shorter sequences to match the maximum token length. Throughout
this paper, we use boldface letters (e.g., X) to denote passages, and non-boldface letters (e.g., X) to
denote individual tokens.

Baseline methods. Both DetectGPT and Fast-DetectGPT are statistics-based and rely on the log-
probability of a passage, log q′(X), as the basis for classification. Specifically, DetectGPT considers
the following statistic:

log q′(X)− EX̃∼p′(•|X)[log q
′(X̃)]√

VarX̃∼p′(•|X)(log q
′(X̃))

, (1)

where both the expectation in the numerator and the variance in the denominator are evaluated under
a perturbation function p′, which produces X̃ that is a slightly modified version of X with similar
meaning. The rationale behind this statistic is that, empirically, machine-generated text tends to yield
higher values than human-written text when evaluated using (1) (Mitchell et al., 2023, Figure 2). As
a result, a passage is classified as machine-generated if this statistic is larger than a certain threshold.

A potential limitation of DetectGPT is that sampling from the perturbation distribution p′ requires
multiple calls to the source LLM to generate rewritten versions of the input passage, making the
calculation of (1) computationally expensive. Fast-DetectGPT addresses this issue by proposing a
modified version of (1), given by∑

t log q
′
t(Xt|X<t)−

∑
t EX̃t∼st(•|X<t)

log q′t(X̃t|X<t)√∑
t VarX̃t∼st(•|X<t)

(log q′t(X̃t|X<t))
. (2)

Specifically, notice that log q′(X) can be decomposed as a token-wise sum
∑

t log qs(Xt|X<t).
Thus, the first term in the numerator of (1) is the same as that in (2). However, Fast-DetectGPT
replaces the centering term in (1) with

∑
t EX̃t∼st(•|X<t)

log q′t(X̃t|X<t). Here, s =
∏

t st denotes
a sampling distribution function which may equal q or be derived from another LLM. By replacing
the perturbation function with s, the centering term can be efficiently computed directly from the
LLM’s conditional probabilities. Additionally, due to the conditioning on X<t in the centering term,
the variance term is equal to the sum of the conditional variances of log q′t(X̃t|X<t). Finally, it
classifies a passage as machine-generated if this modified statistic is larger than a certain threshold.

Martingale central limit theorem. The martingale central limit theorem (MCLT) is a fundamental
result in probability theory that enables rigorous statistical inference for time-dependent data. It is
well-suited for analyzing text data where tokens are generated sequentially given their predecessors.
Consider a time series {Zt}t where each Zt represents a real-valued random variable. Suppose there
exists a sequence of monotonically increasing sets of random variables F1 ⊆ F2 ⊆ · · · so that
Zt ∈ Ft for any t. Under certain regularity conditions, MCLT states that the normalized partial sum∑L

t=1[Zt − E(Zt|Ft−1)]√∑L
t=1 Var(Zt|Ft−1)

(3)

converges in distribution to a standard normal random variable as L approaches infinity (Brown,
1971). Notice that the statistic in (3) shares similar structures with that employed in Fast-DetectGPT
(see (2)). In the next section, we will leverage this connection for FNR control through normal
approximation.

3 AdaDetectGPT

We present AdaDetectGPT in this section. We begin by discussing the white-box setting in Parts (a)–
(c): Part (a) introduces the proposed statistical measure; Part (b) discusses our choice of the classi-
fication threshold for FNR control; Part (c) derives a lower bound on the TNR to learn the witness
function. Next, in Part (d), we extend our proposal to the black-box setting. Finally, in Part (e), we
establish the statistical properties of AdaDetectGPT.

4



0 1 2 3
Differences in statistical measures

0

1

FastDetectGPT

AdaDetectGPT

Dataset: SQuAD

1 0 1 2 3 4
Differences in statistical measures

0

1

FastDetectGPT

AdaDetectGPT

Dataset: Writing

Figure 2: Boxplots visualizing the differences in the statistical measures between human- and LLM-
authored passages, comparing AdaDetectGPT (with a learned witness function) and Fast-DetectGPT
(without it). A larger positive difference from zero indicates better detection power. As observed,
the difference computed by AdaDetectGPT is consistently larger than that of Fast-DetectGPT across
the first quartile, median, and third quartile. The left panel shows statistics evaluated on the SQuAD
dataset, while the right panel displays results for the WritingPrompts dataset.

(a) Statistical measure. Notice that q′ = q under the white-box setting. Given a passage X , the
proposed classifier is built upon the following statistic:

Tw(X) :=

∑
t[w(log qt(Xt|X<t))− EX̃t∼qt(•|X<t)

w(log qt(X̃t|X<t))]√∑
t VarX̃t∼qt(•|X<t)

(w(log qt(X̃t|X<t)))
, (4)

where w : R → R denotes a one-dimensional witness function defined over the space of log-
probabilities.

By definition, Tw(X) is very similar to Fast-DetectGPT’s statistic in (2), with two modifications:
(i) First, rather than using the raw log conditional probability qt, we apply a witness function w to
these log qt to enhance the detection power of the resulting classifier. Our numerical experiments
demonstrate that this transformation better distinguishes between human- and machine-authored
text (see Figure 2). Below, we further provide a simple analytical example to illustrate this power
enhancement. (ii) Second, we set the the sampling function s in (2) to the source LLM’s q. This
allows the numerator to match the form of the partial sum in (3), which enables the application of
MCLT for FNR control.

An analytical example. Consider a hypothetical “Kingdom of Bit” where all communication uses
just two tokens: 1 (yes) and 0 (no). Let {pt}t denote the true token distribution of this language.
Suppose a malicious wizard creates synthetic citizens who appear similar to ordinary people, but
their language follows a simpler distribution qt(xt|x<t) = q(xt) for some fixed function q, being
independent of the prior context x<t. As we will show later, the detection power of our statistic
crucially depends on the following quantity:

1

L

L∑
t=1

[
EX̃t∼qw(log q(X̃t))− EXt∼pw(log q(Xt))

]
. (5)

The greater the deviation of the expression (5) from zero, the higher the power to detect synthetic
humans. When setting w to the identity function, this expression reduces to

log

(
q(1)

q(0)

)
×

[
q(1)− 1

L

L∑
t=1

pt(1)

]
,

where pt(1) = EX<t∼pp(1|X<t) is determined by the true language distribution p. In this case, (5)
converges to zero as q(1) → 1/2, regardless of the difference between q(1) and the average of pt(1).
As such, there are simple settings in which existing logits-based detectors with an identity witness
function will struggle to distinguish between human and machine authored text, independent of the
actual distance between p and q. However, for any q(1) ̸= 1/2, there exists a function w that makes
(5) equal to q(1) − L−1

∑L
t=1[pt(1)], independent of the log ratio (see Appendix B for a formal

proof). Thus, whenever q(1) differs from the average pt(1), an appropriate transformation w can
reliably detect synthetic humans.

We will discuss how to properly learn the witness function below. Since this is inherently a classifica-
tion problem, it is natural to learn a witness function that maximizes the AUC of the resulting detector.
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Figure 3: Top panel: FNR of the classifier plotted against the significance level α. Bottom panel:
Distribution of statistics evaluated on LLM-generated text. The dashed red line is the density function
of standard normal random variable. Results are shown across three datasets (from left to right) and
two language models (indicated by different colors).

Equivalently, this amounts to finding a witness function that maximizes the TNR for each fixed FNR.
In (b), we discuss how to select the classification threshold to control the FNR at a specified level.
Given this threshold, we then derive a lower bound on the TNR in (c) to be maximized for learning
the witness function.

(b) Classification threshold. Given a witness function w, we aim to determine a threshold c so that
the FNR of the classifier Tw(X) > c is below a specified level α > 0. A key observation is that,
when the passage X is generated from the source LLM, Tw(X) in (4) can be represented by the
partial sum in (3) with Zt = w(log qt(Xt|X<t)) and Ft = X<t. It follows from the MCLT that

FNRw := PX∼q(Tw(X) ≤ c) → Φ(c), as L→ ∞, (6)

where Φ(•) denotes the cumulative distribution function of a standard normal random variable. Thus,
to ensure the desired FNR control, we set the threshold c to the αth quantile of Φ, denoted by zα.

We validate this threshold selection both theoretically and empirically. Specifically, Theorem 2 in (e)
establishes a finite-sample error bound for our classifier’s FNR. Figure 3 illustrates the effectiveness
of FNR control and normal approximation across three benchmark datasets and two language models.

(c) Learning the witness function. With the classifier’s FNR fixed asymptotically at level α, one
can identify the optimal witness function w by maximizing its TNR, defined by

TNRw := PX∼p(Tw(X) ≤ zα), (7)

where the probability is evaluated under the human-generated text distribution p. Toward that end,
we employ MCLT again to derive a closed-form expression of (7).

By definition, we can represent Tw(X) by the difference T (1)
w (X)− T

(2)
w (X) where

T (1)
w (X) =

∑T
t=1[logw(Xt|X<t)− EX̃t∼pt

logw(X̃t|X<t)]√∑
t VarX̃t∼qt

(logw(X̃t|X<t)))
,

T (2)
w (X) =

∑
t[EX̃t∼qt

w(log qt(X̃t|X<t))− EX̃t∼pt
w(log qt(X̃t|X<t))]√∑

t VarX̃t∼qt
(w(log qt(X̃t|X<t)))

.

Here, to ease notations, pt and qt in the expectation and variance are implicitly taken with respect to
their conditional distributions pt(•|X<t) and qt(•|X<t) given X<t.
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Notice that T (1)
w is very similar to Tw — the only difference lies in the centering term: the conditional

expectation is taken with respect to pt instead of qt. Under an equal variance condition where the
variance terms in the denominator evaluated at qt and pt converge to the same quantity asymptotically,
we can invoke the MCLT to prove the asymptotic normality of T (1)

w (X) under the human distribution
p. As a result, TNRw can be approximated by

PX∼p(T
(1)
w (X) ≤ zα + T (2)

w (X)) ≈ EX∼pΦ(zα + T (2)
w (X)). (8)

Given the external human-written text dataset H, one can estimate the right-hand-side of (8) by
n−1

∑n
i=1 Φ(zα + T

(2)
w (X(i))) and optimize this estimator to compute the witness function ŵ.

However, the resulting ŵ depends on the choice of α, which limits its flexibility. To eliminate this
dependence, we derive a lower bound on the TNR in the following theorem.
Theorem 1 (TNR lower bound). Under the equal variance condition specified in Appendix D, TNRw

is asymptotically lower bounded by min{α+Φ′(zα)T
(2∗)
w , 1− α} where Φ′ is the derivative of Φ

and T (2∗)
w denotes a population version of T (2)

w (X), given by

T (2∗)
w =

∑
t[EX<t∼p,X̃t∼qt

w(log qt(X̃t|X<t))− EX<t∼p,X̃t∼pt
w(log qt(X̃t|X<t))]√∑

t EX<t∼pVarX̃t∼qt
(w(log qt(X̃t|X<t)))

. (9)

Compared to T (2)
w (X), both the numerator and denominator of T (2∗)

w are defined by taking expec-
tations with respect to X<t ∼ p for each t. In the analytical example, the numerator simplifies to
(5) after appropriate scaling. According to Theorem 1, optimizing the lower bound is equivalent
to maximizing T (2∗)

w , whose solution is independent of α. We also remark that the maximal value
maxw T

(2∗)
w is similar to certain integral probability metrics (Müller, 1997) such as the maximum

mean discrepancy measure widely studied in machine learning (see e.g., Gretton et al., 2012).

Motivated by Theorem 1, we replace the expectations EX<t∼p in both the numerator and denominator
of T (2∗)

w with their empirical average over the dataset H, denote the resulting estimator by T̂ (2)
w and

compute ŵ = argmaxw∈W T̂
(2)
w over a function class W . Since w is a one-dimensional function

over the space of real-valued logits, the optimization is relatively simple.

Specifically, we adopt a linear function class W = {w(z) = ϕ(z)⊤β : ∥β∥2 = 1} for some
bounded d-dimensional feature mapping ϕ. In this case, T̂ (2)

w simplifies to β⊤ψ/
√
β⊤Σβ for some

d-dimensional vector ψ and d× d semi-definite positive matrix Σ (see Appendix C for the detailed
derivation). With some calculations, our estimated regression coefficients β̂ can be efficiently obtained
by solving the linear system Σβ = ψ, leading to ŵ = β̂⊤ϕ. We set ϕ to the B-spline basis function
(De Boor, 1978) in our implementation and relegate additional details to Appendix C.

(d) Extension to black-box settings. When the target LLM’s logits are unavailable, we employ an
open-source LLM with a distribution similar to that of the target model to construct the statistical
measure in (4). The witness function is then learned in the same manner as described in (c). We
empirically evaluate this approach in Section 4.

TNR
Theorem 3

FPR
Corollary 5

FNR
Theorem 2

TPR
Corollary 4G

ro
u
n
d
tr
u
th

Inference

Figure 4: A summary of our
theories.

(e) Statistical guarantees. In the following, we establish finite-sample
bounds for the FNR, TNR, FPR and TPR of the proposed classifier
in the white-box setting; see Figure 4 for a summary of our theories.
Recall that L denotes the number of tokens in a passage, n denotes
the number of human-authored passages in the training data and α
is the target FNR level we wish to control. We also define w∗ =

argmaxw∈W T
(2∗)
w as the population limit of our estimated witness

function ŵ. Finally, let VL denote the ratio

L−1
∑L

t=1 VarX̃t∼qt
(ŵ(log qt(X̃t|X<t)))

L−1
∑L

t=1 VarX∼q(ŵ(log qt(Xt|X<t)))
.

Theorem 2 (FNR). Assume the denominator of VL is bounded away from zero. Then the expected
FNR of our classifier FNRŵ is upper bounded by E(FNRŵ) ≤ α+O

(
L−1/2 logL

)
+O
(
E|VL−1|1/3

)
,

where the expectation on the left-hand-side is taken with respect to ŵ.
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Theorem 3 (TNR). Under a minimal eigenvalue assumption in Appendix D, with some absolute
constant γ > 0 depending only on the eigenvalue decay, the expected TNR of our classifier TNRŵ is
lower bounded by E(TNRŵ) ≥ TNRw∗ −O

(
dγ/

√
n
)
.

Corollary 4 (TPR). Under the condition in Theorem 2, the expected TPR of our classifier is lower
bounded by E(TPRŵ) = 1− E(FNRŵ) ≥ 1− α−O

(
L−1/2 logL

)
−O

(
E|VL − 1|1/3

)
.

Corollary 5 (FPR). Under the condition in Theorem 3, the expected FPR of our classifier is upper
bounded by E(FPRŵ) = 1− E(TNRŵ) ≤ 1− TNRw∗ +O

(
dγ/

√
n
)
.

We make a few remarks:

• Theorem 2 provides an upper bound on the difference between our classifier’s expected FNR and
the target level α. This excess FNR depends on two factors: (i) the number of tokens L, and (ii)
the variance ratio VL. As L diverges to infinity and VL stabilizes to 1, the FNR of our classifier
approaches the target level. We remark that assumptions similar to the bounded denominator
condition in Theorem 2 are commonly imposed (see e.g., Bolthausen, 1982; Hall & Heyde, 2014).

• Theorem 3 establishes an upper bound on the difference between our classifier’s TNR and that of
the oracle classifier, which has access to the population-level optimal witness function w∗ . This
difference depends on: (i) the training sample size n, and (ii) the dimensionality d of the feature
mapping ϕ. Since ϕ is defined over the space of one-dimensional log probabilities of tokens, rather
than the token space itself, d is independent of the vocabulary size, and can be treated as fixed.
Consequently, as the training data size n grows to infinity, our classifier’s TNR converges to that of
the oracle classifier. According to Theorem 1, with a sufficiently large max

w∈W
T

(2∗)
w , the expected

TNR can reach up to 1− α.
• Corollaries 4 and 5 follow directly from Theorems 2 and 3, due to the relationships between TPR

and FNR, and between FPR and TNR.

Together, these results suggest that our classifier is expected to achieve a high AUC as the significance
level α varies, which we will verify empirically in the next section.

4 Experiments

We conduct numerical experiments in both white-box and black-box settings to illustrate the useful-
ness of AdaDetectGPT. To save space, some implementation details are provided in Appendix C.

Datasets. We consider five widely-used datasets for comparing different detectors, including SQuAD
for Wikipedia-style question answering (Rajpurkar et al., 2016), WritingPrompts for story generation
(Fan et al., 2018), XSum for news summarization (Narayan et al., 2018), Yelp for crowd-sourced
product reviews (Zhang et al., 2015), and Essay for high school and university-level essays (Verma
et al., 2024). Following Bao et al. (2024), we randomly sample 500 human-written paragraphs from
each dataset and generate an equal number of machine-authored paragraphs by prompting an LLM
with the first 120 tokens of the human-written text and requiring it to complete the text with up to
200 tokens. This is a challenging setting where LLM-generated text is mixed with human writing. To
evaluate AdaDetectGPT, we compute the AUC on each of the five datasets, with its witness function
ŵ trained on two randomly selected datasets that differ from the test dataset.

Benchmark methods. In white-box settings, we compare the proposed AdaDetectGPT against eight
state-of-the-art detectors: Likelihood, Entropy, LogRank (Gehrmann et al., 2019), LogRank Ratio
(LRR, Su et al., 2023), DetectGPT (Mitchell et al., 2023) and its variants Normalized Perturbed log
Rank (NPR, Su et al., 2023), Fast-DetectGPT (Bao et al., 2024), DNAGPT (Yang et al., 2024b). In
black-box settings, we further compare against RoBERTaBase and RoBERTaLarge (Solaiman et al.,
2019), Binoculars (Hans et al., 2024), RADAR (Hu et al., 2023), and BiScope (Guo et al., 2024a), but
omit DetectGPT, NPR and DNAGPT due to their high computational cost. This yields ten baseline
algorithms. We measure the detection power of each detector using AUC.

White-box results. We first consider the white-box setting where we employ various source models
summarized in Table S4 for text generation, with parameter sizes ranging from 1 to 20 billion. Table 1
reports the AUC scores of various detectors across all combinations of datasets and five source models.
It can be seen that AdaDetectGPT achieves the highest AUC across all combinations of datasets
and source models, outperforming Fast-DetectGPT – the best baseline method – by 12.5%-37%.
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Table 1: AUC scores of various detectors in the white-box setting. The “Relative” rows report the
percentage improvement of AdaDetectGPT over Fast-DetectGPT.

Dataset Method Source Model
GPT-2 OPT-2.7 GPT-Neo GPT-J GPT-NeoX Avg.

SQuAD

Likelihood 0.7043 0.6872 0.6722 0.6414 0.5948 0.6600
Entropy 0.5513 0.5289 0.5392 0.5385 0.5402 0.5396
LogRank 0.7328 0.7169 0.7047 0.6738 0.6179 0.6892
LRR 0.7703 0.7623 0.7553 0.7286 0.6632 0.5849
NPR 0.8783 0.8342 0.8311 0.7330 0.6454 0.6182
DNAGPT 0.8640 0.8413 0.8106 0.7671 0.6933 0.7953
DetectGPT 0.8565 0.8167 0.8047 0.7124 0.6380 0.6047
Fast-DetectGPT 0.9042 0.8801 0.8731 0.8417 0.7866 0.8571
AdaDetectGPT 0.9265 0.9058 0.9088 0.8618 0.8292 0.8864
Relative ( ) 23.2696 21.4914 28.1306 12.6659 19.9396 20.4909

Writing

Likelihood 0.7297 0.7119 0.7032 0.6937 0.6811 0.7039
Entropy 0.5154 0.5132 0.5098 0.5126 0.5275 0.5157
LogRank 0.7510 0.7332 0.7253 0.7141 0.7029 0.7253
LRR 0.7801 0.7599 0.7624 0.7489 0.7362 0.6015
NPR 0.8760 0.8329 0.8373 0.8008 0.7854 0.4942
DNAGPT 0.8962 0.8503 0.8590 0.8450 0.8199 0.8541
DetectGPT 0.8540 0.8060 0.8173 0.7681 0.7514 0.6286
Fast-DetectGPT 0.8972 0.8891 0.8904 0.8879 0.8782 0.8886
AdaDetectGPT 0.9352 0.9175 0.9290 0.9190 0.9158 0.9233
Relative ( ) 36.9089 25.5699 35.2136 27.7142 30.8963 31.1543

XSum

Likelihood 0.6410 0.6264 0.6197 0.6086 0.5906 0.6173
Entropy 0.5637 0.5571 0.5864 0.5606 0.5679 0.5671
LogRank 0.6623 0.6493 0.6493 0.6310 0.6109 0.6406
LRR 0.6952 0.6795 0.6967 0.6612 0.6447 0.5361
NPR 0.8211 0.7713 0.8273 0.7676 0.7290 0.6178
DNAGPT 0.7531 0.7283 0.7160 0.6939 0.6634 0.7109
DetectGPT 0.8073 0.7639 0.8244 0.7599 0.7239 0.6110
Fast-DetectGPT 0.8293 0.8067 0.8137 0.7926 0.7622 0.8009
AdaDetectGPT 0.8534 0.8420 0.8532 0.8347 0.8061 0.8379
Relative ( ) 14.1250 18.2659 21.1936 20.3301 18.4492 18.5779

We also evaluate AdaDetectGPT on three more advanced open-source LLMs: Qwen2.5 (Bai et al.,
2025), Mistral (Jiang et al., 2023), and LLaMA3 (Grattafiori et al., 2024). As shown in Table S7,
AdaDetectGPT delivers consistent improvements over Fast-DetectGPT and maintains competitive
performance across five datasets, achieving the best results in most cases. These findings highlight
the advantage of using an adaptively learned witness function for classification.

In Appendix F.3, we analyze the computational cost of AdaDetectGPT. Training the witness function
typically requires less than one minute across different sample sizes and dimensions, with memory
usage below 0.5 GB. In Appendix F.4, we further conduct a sensitivity analysis to investigate the
sensitivity of AdaDetectGPT’s AUC score to various factors that may affect the estimation of the
witness function. Our results show that AdaDetectGPT is generally robust to the size of training
data, the number of B-spline features, and the distributional shift between training and test data,
consistently maintaining superior performance over baselines.

Black-box results. We next consider the black-box setting, where the task is to detect text generated
by three widely used advanced LLMs: GPT-4o (Hurst et al., 2024), Claude-3.5-Haiku (Anthropic,
2024), and Gemini-2.5-Flash (Comanici et al., 2025). In this setting, token-level log-probabilities are
not publicly accessible. To implement Fast-DetectGPT and AdaDetectGPT, we use google/gemma-
2-9b and google/gemma-2-9b-it (Team et al., 2024) as the sampling and scoring models, respec-
tively, to construct the classification statistics described in Section 2. The results are reported in
Tables 2 and S8. Overall, Fast-DetectGPT remains the strongest baseline, although it occasionally
underperforms Binoculars or RADAR. Nonetheless, AdaDetectGPT consistently improves upon
Fast-DetectGPT across various datasets, with gains on Essay reaching up to 37.8%.
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Table 2: AUC scores of various detectors to detect text generated by GPT-4o and Claude-3.5 across
datasets.

Method GPT-4o Claude-3.5
XSum Writing Yelp Essay Avg. XSum Writing Yelp Essay Avg.

RoBERTaBase 0.5141 0.5352 0.6029 0.5739 0.5655 0.5206 0.5386 0.5630 0.5593 0.5566
RoBERTaLarge 0.5074 0.5827 0.5027 0.6575 0.5626 0.5462 0.6149 0.5105 0.6063 0.5695
Likelihood 0.5194 0.7661 0.8425 0.7849 0.7282 0.6780 0.7502 0.7134 0.6160 0.6894
Entropy 0.5397 0.7021 0.7291 0.6951 0.6665 0.5935 0.6594 0.6625 0.5742 0.6142
LogRank 0.5123 0.7478 0.8259 0.7786 0.7161 0.5109 0.6653 0.7244 0.7111 0.6529
LRR 0.5116 0.6099 0.6828 0.6930 0.6243 0.5268 0.5560 0.5527 0.6535 0.5723
Binoculars 0.9022 0.9572 0.9840 0.9777 0.9552 0.9012 0.9393 0.9752 0.9603 0.9440
RADAR 0.9580 0.8046 0.8558 0.8394 0.8644 0.9187 0.7264 0.8424 0.9152 0.8507
BiScope 0.8333 0.8733 0.9700 0.9600 0.9092 0.8533 0.8800 0.8800 0.9567 0.8925
Fast-DetectGPT 0.9048 0.9588 0.9847 0.9800 0.9571 0.9019 0.9361 0.9768 0.9608 0.9439
AdaDetectGPT 0.9072 0.9611 0.9832 0.9841 0.9589 0.9176 0.9400 0.9728 0.9610 0.9478
Relative ( ) 2.4288 5.6095 — 20.4444 4.2454 16.0326 6.0543 — 0.3405 6.9929

Table 3: Detection of LLM-generated text under two adversarial attacks in black-box settings.

Paraphrasing Decoherence
DetectGPT Xsum Writing PubMed Avg. Xsum Writing PubMed Avg.

Fast (GPT-J/GPT-2) 0.9178 0.9137 0.7944 0.8753 0.7884 0.9595 0.7870 0.8449
Ada (GPT-J/GPT-2) 0.9225 0.9121 0.8029 0.8792 0.8765 0.9597 0.8284 0.8882
Fast (GPT-J/Neo-2.7) 0.9602 0.9185 0.7310 0.8699 0.8579 0.9701 0.7609 0.8630
Ada (GPT-J/Neo-2.7) 0.9623 0.9181 0.7587 0.8797 0.9230 0.9704 0.8124 0.9019
Fast (GPT-J/GPT-J) 0.9537 0.9458 0.7041 0.8679 0.8836 0.9869 0.7550 0.8752
Ada (GPT-J/GPT-J) 0.9587 0.9449 0.7308 0.8781 0.9336 0.9864 0.8008 0.9070

Additionally, we evaluate AdaDetectGPT’s robustness to two adversarial attacks, paraphrasing and
decoherence, in the black-box setting. As shown in Table 3, AdaDetectGPT demonstrates greater
resilience than Fast-DetectGPT to adversarially perturbed texts. The improvement reaches up to 10%
for paraphrasing and up to 85% for decoherence. Finally, we employ the same five LLMs from Table
1 to compare Fast-DetectGPT and AdaDetectGPT in black-box settings. Following Bao et al. (2024),
we use GPT-J as the source LLM for detecting each of the remaining four target LLMs. Due to space
constraints, the results are presented in Table S11 of Appendix F.5, where AdaDetectGPT uniformly
outperforms Fast-DetectGPT in all cases, with improvements of up to 29%.

5 Conclusion

We propose AdaDetectGPT, an adaptive LLM detector that learns a witness function w to boost the
performance of existing logits-based detectors. A natural approach to learning w is to maximize
the TNR of the resulting detector for a fixed FNR level α. Our proposal has two novelties. First,
by connecting Fast-DetectGPT’s statistic to martingale theory and applying the MCLT, we obtain a
closed-form expression for the classification threshold that achieves FNR control at level α. Second,
the TNR is a highly complex function of α and w, which makes the learned witness function α-
dependent — that is, it maximizes the TNR at a particular FNR level but does not guarantee optimality
at other FNR levels. To address this, we derive a lower bound on the TNR and propose to learn w by
maximizing this lower bound. Our lower bound separates the effects of α and w: the witness function
w affects the lower bound only through T (2)∗

w , which is independent of α. Consequently, the witness
function that maximizes this lower bound simultaneously maximizes it across all FNR levels.

In our implementation, we opted to learn the witness function via a B-spline basis due to the
straightforward nature of the optimization (finding the optimal witness function boils down to solving
a system of linear equations) and its favorable theoretical properties (the estimation error can attain
Stone’s optimal convergence rate, Stone, 1982, see Appendix E.6 for more details). The number of
basis functions can be selected in a data driven way via Lepski’s method (Lepski & Spokoiny, 1997).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We confirm the claims in abstract and introduction are accurately reflected by
methodology, theory, and experiments in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation of the work in Appendix G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The assumptions are intuitively illustrated in Section 3 and rigorous stated in
Appendix D. The proof is attached into Appendix E.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The detailed setting for reproducibility are provided in Section 4 and Ap-
pendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The dataset and code in this paper are either publicly available or submitted as
a new asset.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details for experiments are shown in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results are accompanied by the error bars as can be seen from Figure 2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided the compute resources in Appendix C – Hardware details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts of this work is discussed in Appendix G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

20

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This research does not involve data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In Section 4 and Appendix C, we have explicitly cited or credited the assets
used in the paper and explicitly mentioned the corresponding licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

21



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new asset is the implementation of the methods introduced in the paper.
The documentation for the new asset is provided alongside.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

22

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is used only for writing and editing, and it does not impact the core
methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional related works: Watermarking-based detection

Watermarking embeds subtle signals into LLM-generated text to distinguish it from human-written
text (see Ji et al., 2025, Section 4.2, for a recent review of LLM watermarking). Aaronson & Kirchner
(2023) propose a watermarking technique based on Gumbel sampling. Follow-up works have
focused on preserving text quality during watermarking (Christ et al., 2024; Dathathri et al., 2024;
Giboulot & Furon, 2024; Liu & Bu, 2024; Wouters, 2024; Wu et al., 2024), enhancing watermark
detection (Dathathri et al., 2024; Huo et al., 2024; Cai et al., 2025) and maintaining robustness against
adversarial edits (Golowich & Moitra, 2024).

Our work is related to a line of research that frames watermark detection as a statistical hypothesis
testing problem (see e.g., Kirchenbauer et al., 2023; Hu et al., 2024; Kuditipudi et al., 2024; Zhao et al.,
2024; Li et al., 2025a,b; Chen et al., 2025b). Under this framework, rejection of the null hypothesis
(that no watermark is present) provides statistical evidence that the text was likely generated by an
LLM.

B Details on the analytic example in Section 3

In this section, we provide rigorous discussion about the analytic example presented in Section 3.
Noted that

EX̃t∼q,X<t∼p {w(log q(Xt)} = q(1)w(log q(1)) + q(0)w(log q(0)),

EX<t+1∼p {w(log q(Xt))} = pt(1)w(log q(1)) + pt(0)w(log q(0)).

It follows that

EX̃t∼q,X<t∼p {w(log q(Xt)} − EX<t+1∼p {w(log q(Xt))}
=(q(1)− pt(1)) [w(log q(1))− w(log q(0))] .

If w is an identity function, i.e., w(x) = x, then the statistics (5) becomes

1

L
log
(q(1)
q(0)

) L∑
t=1

(q(1)− pt(1)).

In this case, (5) converges to zero as q → 1/2 regardless the distribution of pt. However, if we
consider adaptive witness function, the statistics in (5) becomes

1

L
[w(log q(1))− w(log q(0))]

L∑
t=1

(q(1)− pt(1)).

When q(1) ̸= 1/2 (without generality, we assume q(1) = 1 − q(0) > 1/2), there always exists a
witness function w(z) = I

{
z > log q(1)+log q(0)

2

}
such that (5) becomes

1

L
[I{log q(1) > log q(0)} − I{log q(0) > log q(1)}]

L∑
t=1

(q(1)− pt(1))

=
1

L

L∑
t=1

(q(1)− pt(1)) = q(1)− 1

L

L∑
t=1

pt(1),

which is independent of the log ratio.

C Experiment details

Details for witness function estimation. In this part, we illustrate how we fetch external text datasets
for training witness function in our experiments. As mentioned in the main text, when testing the
performance of AdaDetectGPT on one dataset (e.g., XSum), we randomly select two other datasets
(e.g., SQuAD and WritingPrompt) for training the witness function. This ensures the data for testing
would not be included for training.
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Recall that the population version of objective function for estimating w is∑
t[EX<t∼p,X̃t∼qt

w(log qt(X̃t|X<t))]−
∑

t[EX<t∼p,X̃t∼pt
w(log qt(X̃t|X<t))]√∑

t EX<t∼pVarX̃t∼qt
(w(log qt(X̃t|X<t)))

. (10)

In the implementation, we made three modifications to this objective function to facilitate the
computation, accommodate black-box settings with unavailable logits and handle prompts that are
not explicitly included in the text:

1. We replace the expectation EX<t∼p in the numerator of (10) with its empirical average over the
human-authored passages {X(i)}i. This leads to the following objective function:∑

i

∑
t EX̃t∼qt

[w(log qt(X̃t|X(i)
<t))]−

∑
i

∑
t[w(log qt(X

(i)
t |X(i)

<t))]

n
√∑

t EX<t∼pVarX̃t∼qt
(w(log qt(X̃t|X<t)))

. (11)

2. Taking the expectation EX̃t∼qt
and the variance VarX̃t∼qt

is time-consuming, as these operations
need to be repeated L times – once at every token position t. To address this, we approximate
X

(i)
<t in the first term of the numerator of (11) by X̃(i)

t , sampled from the LLM distribution qt.
This, in turn, allows us to approximate the expectation by∑

i

∑
t[w(log qt(X̃

(i)
t |X̃(i)

<t))]−
∑

i

∑
t[w(log qt(X

(i)
t |X(i)

<t))]

n
√∑

t EX<t∼pVarX̃t∼qt
(w(log qt(X̃t|X<t)))

,

where X̃(i) denotes the ith passage generated from q by prompting the LLM to rewrite X(i).
As for the variance operator, we similarly approximate EX<t∼p in the denominator by EX<t∼q.

This allows us to upper bound the denominator by n
√∑

t Var(w(log qt(X̃t|X̃<t))), leading to
the following lower bound of the objective function,∑

i

∑
t[w(log qt(X̃

(i)
t |X̃(i)

<t))]−
∑

i

∑
t[w(log qt(X

(i)
t |X(i)

<t))]

n
√∑

t Var(w(log qt(X̃t|X̃<t)))
,

where the variance in the denominator can be estimated by the sampling variance estimator

V̂ar(w(log qt(X̃t|X̃<t))) =
1

n− 1

n∑
i=1

[
w(log qt(X̃

(i)
t |X̃(i)

<t))−
1

n

n∑
j=1

w(log qt(X̃
(j)
t |X̃(j)

<t ))
]2
.

3. To further simplify the objective function, we interchange the order of
∑

t and V̂ar in the denomi-
nator, leading to∑

i

∑
t[w(log qt(X̃

(i)
t |X̃(i)

<t))]−
∑

i

∑
t[w(log qt(X

(i)
t |X(i)

<t))]

n
√

V̂ar(
∑

t w(log qt(X̃t|X̃<t)))
. (12)

Additionally, since the numerator incorporates both human- and LLM-authored text, we refine the
denominator of Equation (12) by replacing the sampling variance estimator with a simple average
of the estimators computed using human- and LLM-written text

1

2
V̂ar

(∑
t

w(log qt(X̃t|X̃<t))

)
+

1

2
V̂ar

(∑
t

w(log qt(Xt|X<t))

)
.

This yields our final objective function, in the form of a two-sample t-test statistic,∑
i

∑
t[w(log qt(X̃

(i)
t |X̃(i)

<t))]−
∑

i

∑
t[w(log qt(X

(i)
t |X(i)

<t))]

n
√
0.5V̂ar(

∑
t w(log qt(X̃t|X̃<t))) + 0.5V̂ar(

∑
t w(log qt(Xt|X<t)))

. (13)
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Compared to its population-level version (10), (13) is more suitable for black-box settings. In such
settings, the distribution q is unknown, making the expectation and variance over q in (10) infeasible
to compute. In contrast, (13) relies on text generated by the LLM. Therefore, even without access to
q, we can still prompt the target LLM to produce X̃ . Likewise, for detecting text generated under
specific prompts, we can incorporate these prompts into the rewriting process to produce X̃ .

We next discuss the computation of ŵ that maximizes (13). To ease notation, we denoted
log q(X

(i)
t |X(i)

<t) as z(h)it . Similarly, for the log-probabilities computed from machine-generated
text, we define them as z(m)

it s. Using these notations, (13) can be represented by

1√
Var(

∑
t w(z

(m)
t )) + Var(

∑
t w(z

(h)
t ))

(
n∑

i=1

1

L

L∑
t=1

w(z
(m)
it )−

n∑
i=1

1

L

L∑
t=1

w(z
(h)
it )

)
, (14)

up to some proportional constant.

Recall that we restrict the witness function to take a linear form of w(z) = ϕ(z)⊤β, where ϕ(z)
denotes the B-spline basis function (De Boor, 1978) and β denotes the regression coefficients. Then
numerator of (14) then becomes

n∑
i=1

1

L

L∑
t=1

ϕ(z
(m)
it )⊤β −

n∑
i=1

1

L

L∑
t=1

ϕ(z
(h)
it )⊤β,

whereas the denominator becomes
√
β⊤(Σ̂(m) + Σ̂(h))β, where Σ̂(h) =

∑n
i=1 Σ̂

(h)
i ,

Σ̂
(h)
i =

1

L
(Z

(h)
i )⊤Z

(h)
i − µ̂

(h)
i (µ̂

(h)
i )⊤,

Z
(h)
i =

(
ϕ(z

(h)
i1 ), . . . , ϕ(z

(h)
iL )
)⊤

,

µ̂
(h)
i =

1

L

L∑
t=1

ϕ(z
(h)
it )⊤,

and Σ̂(m) can be similarly defined. Consequently, the objective function can be rewritten as:[∑n
i=1

1
L

∑L
t=1 ϕ(z

(m)
it )⊤ −

∑n
i=1

1
L

∑L
t=1 ϕ(z

(h)
it )⊤

]
β√

β⊤(Σ̂(h) + Σ̂(m))β

=

[
n∑

i=1

1

L

L∑
t=1

ϕ(z
(m)
it )⊤ −

n∑
i=1

1

L

L∑
t=1

ϕ(z
(h)
it )⊤

]
β × 1

∥(Σ̂(h) + Σ̂(m))1/2β∥2

=

[
n∑

i=1

1

L

L∑
t=1

ϕ(z
(m)
it )⊤ −

n∑
i=1

1

L

L∑
t=1

ϕ(z
(h)
it )⊤

]
× (Σ̂(h) + Σ̂(m))−

1
2α,

where α = (Σ̂(h) + Σ̂(m))1/2β/∥(Σ̂(h) + Σ̂(m))1/2β∥2 whose ℓ2 norm equals 1. It is immediate to
see that the argmax α̂ has a closed-form expression,

α̂ =
α̃

∥α̃∥2
where

α̃ = (Σ̂(h) + Σ̂(m))−
1
2

[
n∑

i=1

1

L

L∑
t=1

ϕ(z
(m)
it )−

n∑
i=1

1

L

L∑
t=1

ϕ(z
(h)
it )

]
. (15)

This leads to

β̂ = (Σ̂(h) + Σ̂(m))−1/2α̂.
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and ŵ(z) = ϕ(z)⊤β̂.

Pre-trained language models. We assess the performance of our method using text generated from
various pre-trained language models outlined in Table S4. Following the setting in Bao et al. (2024),
for the models with over 6B parameters, we employ half-precision (torch.float16), otherwise, we
use full-precision (torch.float32).

Table S4: Description of the source models that is used to produce machine-generated text. †: we
present the address of models in https://huggingface.co/.

Name Model† Scale (Billion)

GPT-2 (Radford et al., 2019) openai-community/gpt2-xl 1.5B
GPT-Neo (Black et al., 2021) EleutherAI/gpt-neo-2.7B 2.7B
OPT-2.7 (Zhang et al., 2022) facebook/opt-2.7b 2.7B
GPT-J (Wang & Komatsuzaki, 2021) EleutherAI/gpt-j-6B 6B
Qwen2.5 (Yang et al., 2024a) Qwen/Qwen2.5-7B 7B
Mistral (Jiang et al., 2023) mistralai/Mistral-7B-v0.3 7B
Llama (AIMeta, 2024) meta-llama/Meta-Llama-3-8B 8B
GPT-NeoX (Black et al., 2022) EleutherAI/gpt-neox-20b 20B

Setup of the closed-source LLMs. For the gpt-4o, the version is set as gpt-4o-2024-08-06. The
generation process by sending the following messages to the service. Message for XSum and Writing
is the same as that described in Section C.2 in Bao et al. (2024). We describe that for Yelp and Essay
are:

[
{'role ': 'system ', 'content ': 'You are a Review writer on Yelp.'},
{'role ': 'user ', 'content ': 'Please write an article with about 150

↪→ words starting exactly with: <prefix >'},
]

and

[
{'role ': 'system ', 'content ': 'You are a student of high school and

↪→ university level. And now , you are an Essay writer.'},
{'role ': 'user ', 'content ': 'Please write an essay with about 200

↪→ words starting exactly with: <prefix >'},
]

respectively.

For Claude-3.5-Haiku, the system instruction was set analogously (e.g., Yelp review or essay writer),
while the user role contained the corresponding content prompt.

For Gemini, the instruction was fed into the system_instruction parameter, with a value identical
to the concatenation of the system content and the user content used for GPT-4o.

For all closed-source models, the temperature parameter is set to 0.8 to encourage the generated text
to be creatively diverse and less predictable.

Setting on experiments with adversarial attacks. In Table 3, we have conducted experiments
to evaluate the robustness of AdaDetectGPT against 2 adversarial attacks: (i) paraphrasing, where
an LLM is instructed to rephrase human-written text, and (ii) decoherence, where the coherence
LLM-generated text is intentionally reduced to avoid detection. These experiments were carried out
across 3 datasets and 3 types of sampling and scoring models setup, resulting in a total of 18 settings.
Both adversarial attacks were implemented following Bao et al. (2024).

Implementations of baselines. For the baselines considered in our experiments, we use the existing
implementation provided in https://github.com/baoguangsheng/fast-detect-gpt, which
is distributed in the MIT License. We run DetectGPT and NPR with default 100 perturbations with
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the T5 model (Raffel et al., 2020) and run DNA-GPT with a truncate-ratio of 0.5 and 10 prefix
completions per passage.

Evaluation Metric. We measure the detection accuracy by AUC (short for “area under the curve”).
AUC ranges from 0.0 to 1.0, an AUC of 1.0 indicates a perfect classifier and vice versa. The relative
improvement of AdaDetectGPT over FastDetectGPT is calculated by AdaDetectGPT−FastDetectGPT

1.0−FastDetectGPT , which
represents how much improvement has been made relative to the maximum possible improvement
for FastDetectGPT.

Hardware details. Most of experiments are run on a Tesla A100 GPU (40GB) with 10 vCPU Intel
Xeon Processor and 72GB RAM. For the experiments where the source model is GPT-NeoX, we run
on a H20-NVLink (96GB) GPU with 20 vCPU Intel(R) Xeon(R) Platinum and 200GB RAM.

D Technical assumptions

In this section, we list the assumptions required for the theorems presented in Section 3 to hold, and
discuss when they are expected to hold and how they may be relaxed.
Assumption 1 (Margin). With Tw(•) defined as in (4) and w∗(•) defined as the optimizer of (9), for
any α ∈ (0, 1) there are constants δα, Cα depending only on α such that for any x ≤ δα it holds that
PX∼p(|Tw∗(X)− zα| ≤ x) ≤ Cαx.

We also require the following technical conditions hold in order to obtain TNR lower bound and FNR
control (Theorem 1 and Theorem 2).
Assumption 2 (Minimum eigenvalue). For each t = 1, . . . , L introduce the quantities

µ
(1)
t = EX<t∼pEX̃t∼qt

ϕ(log qt(X̃t | X<t)),

Σt = EX<t∼pEX̃t∼qt
ϕ(log qt(X̃t | X<t))ϕ(log qt(X̃t | X<t))

⊤ − µ
(1)
t (µ

(1)
t )⊤.

There are absolute constant C > 0 and γ > 0 such that λmin(Σt) ≥ Cd−γ for all t.

Assumption 3 (Equal variance). For any non-constant witness function w, define

σ2
q,L :=

1

L

L∑
t=1

VarX̃t∼qt

(
w(log qt(X̃t|X̃<t))

)
,

σ2
p,L :=

1

L

L∑
t=1

VarX̃t∼pt

(
w(log qt(X̃t|X̃<t))

)
.

σ2
q,L, σ

2
p,L are lower bounded by some constant σ2

w > 0 almost surely. Moreover, σq,L − σp,L → 0
in probability as L→ ∞.

Assumption 4. For any witness function w, define

σ̄2
q,L =

1

L

L∑
t=1

VarX∼q

(
w(log qt(X̃t|X̃<t))

)
,

σ̄2
p,L =

1

L

L∑
t=1

VarX∼p

(
w(log qt(X̃t|X̃<t))

)
.

If X ∼ q, then σ̄2
q,L/σ

2
q,L → 1 in probability. If X ∼ p, then σ̄2

p,L/σ
2
p,L → 1 in probability.

Conditions similar to Assumption 1 are commonly assumed; see, for instance, Audibert & Tsybakov
(2007); Qian & Murphy (2011); Luedtke & Van Der Laan (2016); Shi et al. (2020a,b, 2022). As-
sumption 2 is mild, since the constant γ is allowed to be arbitrarily large. Assumption 3 basically
requires the conditional variance of logits be asymptotically equivalent for human-authored and
machine-generated passages. This assumption is not overly restrictive, as the variance discrepancy
between the two types of passages is relatively small in our dataset (see Table S5, where the ratio
f the variances are very closed to 1). Assumption 4 is commonly assumed in martingale central
limit theorem literature, see e.g. Bolthausen (1982); Hall & Heyde (2014). Our empirical results
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further support the validity of Assumption 4: the sample mean of the ratio remains nearly constant
as a function of L, while its variance (in parentheses) approaches zero as L → ∞ across all three
datasets (see Table S5), suggesting that this condition is practical. Furthermore, two commonly
employed hypothesis tests — the Kolmogorov–Smirnov (KS) test and the Shapiro–Wilk (SW) test —
are conducted to evaluate whether the proposed statistic follows a normal distribution. As shown in
Table S6, almost all p-values exceed 0.1 (most by a large margin), indicating that our test statistic
passes normality tests in most cases. These test results also provide strong empirical support for the
validity of MCLT regularity conditions.

Table S5: Sample mean and variance (in parentheses) of the ratio evaluated on 3 datasets as L
increases.

L 100 150 200 250 300 350

XSum 1.09(0.12) 1.07(0.09) 1.06(0.08) 1.04(0.07) 1.01(0.06) 0.99(0.05)
SQuAD 1.03(0.10) 1.02(0.07) 1.02(0.06) 1.02(0.05) 1.01(0.05) 1.03(0.04)
Writing 1.10(0.06) 1.09(0.05) 1.09(0.04) 1.08(0.03) 1.07(0.03) 1.05(0.03)

Table S6: p-values of KS and SW tests across 3 datasets and 2 source LLMs.

LLM Test XSum SQuAD Writing

GPT-Neo KS 0.72 0.54 0.18
GPT-Neo SW 0.50 0.65 0.89
GPT-2 KS 0.10 0.52 0.28
GPT-2 SW 0.37 0.026 0.14

E Proofs

E.1 Notations

Throughout the proofs we will make use of the following notation. We will denote absolute constants
by κ1, κ2, · · · . For a sequence of random variables {Xn | n ≥ 1} with distribution functions
{FXn

|n ≥ 1} and some (possibly degenerate) random variable Y with distribution function FY

we write Xn
p→ Y as n → ∞ if lim

n→∞
P(|Xn − Y | > δ) = 0 for all δ > 0, and Xn

d→ Z if

lim
n→∞

FXn
(x) = FY (x) at every continuity point of FY (·). For a vector x = (x1, . . . , xd)

⊤ ∈ Rd

we write ∥x∥p = (
∑d

j=1 x
p
j )

1/p with 0 < p <∞ for its ℓp-norm.

E.2 Preparatory results

We introduce three auxiliary results in this section. Theorem S6 presents a concentration inequality
that is critical to establishing the learning guarantees of AdaDetectGPT in Theorem 3. Theorem S7
formally states the MCLT. Finally, Lemma S1 can be viewed as a non-asymptotic version of Theorem
S7 which provides an explicit error bound on the accuracy of the normal approximation in the MCLT.
Theorem S6 (Bounded differences inequality). Let X be a measurable space. A function f : Xn → R
has the bounded difference property for some constants c1, . . . , cn, i.e., for each i = 1, . . . , n,

sup
x1,...,xn

x′
i∈X

|f (x1, . . . , xi−1, xi, xi+1, xn)− f (x1, . . . , xi−1, x
′
i, xi+1, . . . xn)| ≤ ci. (16)

Then, if X1, . . . , Xn is a sequence of identically distributed random variables and (16) holds, putting
Z = f (X1, . . . , Xn) and ν = 1

4

∑n
i=1 c

2
i for any t > 0, it holds that

P (Z − E (Z) > t) ≤ e−t2/(2ν).

Proof of Theorem S6. See Section 2 in Wainwright (2019).
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Theorem S7 (Martingale central limit theorem). Let {Mn,i | 1 ≤ i ≤ kn, n ≥ 1} be a zero mean
square integrable martingale array with respect to the filtrations {Fn,i | 1 ≤ i ≤ kn, n ≥ 1} having
increments Xn,i =Mn,i −Mn,i−1. If the following conditions hold

C1:
∑kn

i=1 E
[
Xn,i1{|Xn,i|>δ} | Fn,i−1

] p→ 0 as n→ ∞ for all δ > 0

C2:
∑kn

i=1 E
[
X2

n,i | Fn,i−1

] p→ σ2 as n→ ∞

C3: the σ-fields are nested: Fn,i ⊆ Fn+1,i for 1 ≤ i ≤ kn and n ≥ 1

then Mn,kn

d→ Z as n→ ∞, where Z ∼ N
(
0, σ2

)
.

Proof. See Corollary 3.1 in Hall & Heyde (2014) and Theorem 2 in Bolthausen (1982).

Lemma S1 (Convergence rates in MCLT). Let X = (X1, . . . Xn) be sequences of real valued
random variables satisfying for all 1 ≤ t ≤ n,

E(Xt|X<t) = 0 almost surely.

Let σ2
t = E(X2

t

∣∣X<t), σ̄2
t = E(X2

t ), s
2
n =

∑n
t=1 σ̄

2
t and V 2

n =
∑n

t=1 σ
2
t /s

2
n. Suppose |Xn| is

bounded by some constant almost surely for all n and sn/
√
n is bounded away from zero. Then

sup
z∈R

∣∣∣∣∣P
( ∑n

t=1Xt√∑n
t=1 σ

2
t

≤ z

)
− Φ(z)

∣∣∣∣∣ = O

(
log n√
n

+ (E|V 2
n − 1|)1/3

)
,

where Φ(•) is the cumulative distribution function of standard normal distribution.

Proof. It follows from Corollary 1 of Bolthausen (1982) and the condition sn/
√
n is bounded away

from zero that

sup
z∈R

∣∣∣∣P(∑n
t=1Xt

sn
≤ z

)
− Φ(z)

∣∣∣∣ = O

(
n log n

s3n
+ (E|V 2

n − 1|)1/3
)

= O

(
log n√
n

+ (E|V 2
n − 1|)1/3

)
.

It follows that

sup
z∈R

∣∣∣∣∣P
( ∑n

t=1Xt√∑n
t=1 σ

2
t

≤ z

)
− Φ(z)

∣∣∣∣∣
= sup

z∈R

∣∣∣∣∣P
(∑n

t=1Xt

sn
≤ z +

( ∑n
t=1Xt√∑n
t=1 σ

2
t

)
(Vn − 1)

)
− Φ(z)

∣∣∣∣∣
≤ sup

z∈R
E

∣∣∣∣∣P
(∑n

t=1Xt

sn
≤ z +

( ∑n
t=1Xt√∑n
t=1 σ

2
t

)
(Vn − 1)

)
− Φ

(
z +

( ∑n
t=1Xt√∑n
t=1 σ

2
t

)
(Vn − 1)

)∣∣∣∣∣
+sup

z∈R
E

∣∣∣∣∣Φ
(
z +

( ∑n
t=1Xt√∑n
t=1 σ

2
t

)
(Vn − 1)

)
− Φ(z)

∣∣∣∣∣
≤ O

(
log n√
n

+ (E|V 2
n − 1|)1/3

)
+ sup

z∈R
|Φ′(z)| × E

∣∣∣∣∣
( ∑n

t=1Xt√∑n
t=1 σ

2
t

)
(Vn − 1)

∣∣∣∣∣ . (17)

By the definition Φ(z), we have that

sup
z∈R

|Φ′(z)| = sup
z∈R

1√
2π

exp(−z2/2) ≤ 1√
2π
. (18)
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Leveraging the facts that supt |Xt| are upper bounded and sn/
√
n is lower bounded, we obtain that

E

∣∣∣∣∣
( ∑n

t=1Xt√∑n
t=1 σ

2
t

)
(Vn − 1)

∣∣∣∣∣ = E
∣∣∣∣(∑n

t=1Xt

sn

)
Vn(Vn − 1)

∣∣∣∣
≤

(
E

{
(
∑n

t=1Xt)
3/2

s
3/2
n

V 3/2
n

})2/3 (
E
{
(Vn − 1)3

})1/3
= O

({
E|Vn − 1|2

}1/3)
= O

({
E|V 2

n − 1|
}1/3)

, (19)

where the third-to-last line is derived from Hölder inequality, and the second-to-last equality holds
due to the boundedness of Vn. Combining equations (17), (18) and (19), we obtain

sup
z∈R

∣∣∣∣∣P
( ∑n

t=1Xt√∑n
t=1 σ

2
t

≤ z

)
− Φ(z)

∣∣∣∣∣ ≤ O

(
log n√
n

+ (E|V 2
n − 1|)1/3

)
, (20)

which finishes the proof.

Lemma S2. Let Φ(•) be the cumulative distribution function of standard normal distribution and
Φ′(•) be its derivative. Then for any random variable X ,

EΦ(zα +X) ≥ min{1− α, α+Φ′(zα)EX},

where 0 < α < 1/2, zα is the α-th quantile of standard normal distribution.

Proof of Lemma S2. Since Φ′(x) = (
√
2π)−1 exp

(
−x2/2

)
, we noted that Φ′(x) ≥ Φ′(zα) holds if

and only if zα ≤ x ≤ z1−α. Therefore, if 0 ≤ X < z1−α − zα, then by the mean value theorem,

Φ(zα +X) = Φ(zα) + Φ′(ξ)X ≥ α+Φ′(zα)X,

where ξ lies between zα and z1−α. If X ≤ 0, then

Φ(zα +X) = Φ(zα) + Φ′(η)X ≥ α+Φ′(zα)X,

where η lies between X and zα. Moreover, if X ≥ z1−α − zα, then zα +X ≥ z1−α, It follows that
Φ(zα +X) ≥ Φ(z1−α) = 1− α. Therefore,

EΦ(zα +X) ≥ Emin {α+Φ′(zα)X, 1− α}
≥ min {α+Φ′(zα)EX, 1− α} ,

where the last inequality follows from Jensen’s inequality. This finishes the proof.

In Lemma S3 below, we provide an upper bound for the parameter estimation error. Before doing so,
we define

Q∗ (β) =
{
β⊤Σβ

}− 1
2 β⊤µ (21)

Q̂n (β) =
{
β⊤Σ̂nβ

}− 1
2

β⊤µ̂n, n ∈ N (22)

where µ̂n = L−1
∑L

t=1 µ̂
(1)
t − µ̂

(2)
t , µ = L−1

∑L
t=1 µ

(1)
t − µ

(2)
t and

µ̂
(1)
t =

1

n

n∑
i=1

EX̃t∼qt
ϕ
(
log qt

(
X̃t | X(i)

<t

))
µ̂
(2)
t =

1

n

n∑
i=1

ϕ
(
log qt

(
X

(i)
t | X(i)

<t

))
µ
(1)
t = EX<t∼pEXt∼qtϕ (log qt (Xt | X<t))

µ
(2)
t = EX<t∼pEXt∼pt

ϕ (log qt (Xt | X<t))
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for each t = 1, . . . , L. Similarly, define Σ̂n = L−1
∑L

t=1 Σ̂t and Σ = L−1
∑L

t=1 Σt where

Σ̂t =
1

n

n∑
t=1

EX̃t∼qt

[
ϕ
(
log qt

(
X̃t | X(i)

<t

))
ϕ
(
log qt

(
X̃t | X(i)

<t

))⊤]
− µ̂

(1)
t

(
µ̂
(1)
t

)⊤
for each t = 1, . . . , L.
Lemma S3. Grant the assumptions in Section D hold. Let β∗ be the maximizer of the function
(21) over all β’s with ℓ2 norm equal to 1 and let β̂ be the maximizer of the empirical counter-
part (22). There are absolute constants κ1 and κ2 depending only on the constants stated in
the assumptions such that for any z > 0 it holds that ∥β̂ − β∗∥2 ≤ z with probability at least
1− κ1 exp

(
−κ2d−5γn(min{z, 1})2

)
.

Proof. Observing the β̂ ∈ argmax
β

Q̂n(β) and β∗ ∈ argmax
β

Q∗(β) for any z > 0

P
(∥∥∥β̂ − β∗

∥∥∥
2
> z
)
=P

(
sup

β:∥β−β∗∥2>z

Qn (β)−Qn (β
∗) > 0

)
(23)

≤P

(
sup

β:∥β−β∗∥2>z

|Qn (β)−Q∗ (β)| >
1

2
inf

β:∥β−β∗∥2>z
[Q∗ (β

∗)−Q∗ (β)]

)

+ P
(
|Qn (β

∗)−Q∗ (β
∗)| > 1

2
inf

β:∥β−β∗∥2>z
[Q∗ (β

∗)−Q∗ (β)]

)
.

For β such that ∥β − β∗∥2 > z, due to Assumption 2 with some absolute κ1 we must have that

Q∗ (β
∗)−Q∗ (β) ≥ κ1d

−γ ∥β − β∗∥2 ≥ κ1zd
−γ . (24)

For any β ∈ Rd with ∥β∥2 = 1 it holds that

|Qn (β)−Q∗ (β)|

≤
(
β⊤Σβ

)− 1
2
∣∣β⊤ (µ̂n − µ)

∣∣+ ∣∣β⊤µ̂n

∣∣ ∣∣∣∣(β⊤Σ̂nβ
)− 1

2 −
(
β⊤Σβ

)− 1
2

∣∣∣∣
≤
(
β⊤Σβ

)− 1
2
∣∣β⊤ (µ̂n − µ)

∣∣
+

1

2

{
min

(
β⊤Σ̂nβ, β

⊤Σβ
)}− 3

2 ∣∣β⊤µ̂n

∣∣ ∣∣∣β⊤Σ̂nβ − β⊤Σβ
∣∣∣ (25a)

≤{λmin(Σ)}−
1
2
∣∣β⊤ (µ̂n − µ)

∣∣ (25b)

+
1

2

{
min

(
λmin(Σ̂n), λmin(Σ)

)}− 3
2 ∣∣β⊤µ̂n

∣∣ ∣∣∣β⊤Σ̂nβ − β⊤Σβ
∣∣∣ , (25c)

where in particular (25a) holds due to the inequality∣∣∣∣ 1√
x
− 1

√
y

∣∣∣∣ = ∣∣∣∣ x− y
√
xy(

√
x+

√
y)

∣∣∣∣ ≤ 1

2 (min(x, y))
3
2

|x− y| (26)

for x, y > 0. For (25b) note that due to the boundedness of ϕ(•) for any β with ∥β∥2 = 1 it holds that
β⊤ (µ̂n − µ) is the average of n i.i.d. random variables each bounded in absolute value by a constant
which does not depend on β. Therefore lower bounding λmin(Σ) ≥ κ2d

−γ for some absolute κ2
using again the boundedness of ϕ(•) and applying Hoeffding’s inequality, for any z > 0

P
(

(25b) >
1

2
κ1zd

−γ

)
≤ P

(∣∣β⊤ (µ̂n − µ)
∣∣ > κ3zd

− 3γ
2

)
≤ 2 exp

(
−κ4nz

2

d3γ

)
(27)

for certain absolute κ3, κ4. The following argument will be valid on the event

λmin(Σ̂n) ≥
1

2
λmin(Σ). (28)

For (25c) notice first that with ∥β∥2 = 1 the quantity |β⊤µ̂n| is almost surely bounded from above by
some absolute constant independent of β and d. Moreover due to the boundedness of ϕ(•) it is easy
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to see that the statistic |β⊤Σ̂nβ − β⊤Σβ| is a self-bounding function of n random variables with
constants (see equation (16)) ci ∝ 1

n for i = 1, . . . , n which again do not depend on β. Therefore, on
the event (28) applying Theorem S6 we obtain that

P
(

(25c) >
1

2
κ1d

−γ

)
≤ P

(∣∣∣β⊤Σ̂nβ − β⊤Σβ
∣∣∣ > κ5zd

− 5γ
2

)
≤ exp

(
−κ6nz

2

d5γ

)
(29)

for certain absolute κ5, κ6. Finally, note that

λmin(Σ̂) = min
β:∥β∥2=1

β⊤Σ̂nβ ≥ λmin(Σ)− max
β:∥β∥2=1

β⊤(Σ̂n − Σ)β (30)

and arguing as in (29), the final term (30) is no larger than 1
2κ2d

−γ with probability at least

1− 2 exp
(
−κ7n
d2γ

)
.

Since by Assumption 2 we must have that κ2d−γ ≤ λmin(Σ) the event (28) must hold with the above
probability. Since the above arguments hold for any β with ∥β∥2 = 1, plugging (27) and (29) back
into (23) and accounting for the event (30) the stated result follows.

E.3 Proof of Theorem 1

According to the decomposition Tw(X) = T
(1)
w (X)− T

(2)
w (X) with T (1)

w (X), T
(2)
w (X) defined by

T (1)
w (X) =

∑
t[w(log qt(Xt|X<t))− EX̃t∼pt

w(log qt(X̃t|X<t))]√∑
t VarX̃t∼qt

(w(log qt(X̃t|X<t)))

T (2)
w (X) =

∑
t[EX̃t∼qt

w(log qt(X̃t|X<t))− EX̃t∼pt
w(log qt(X̃t|X<t)))]√∑

t VarX̃t∼qt
(w(log qt(X̃t|X<t)))

, (31)

we obtain that the TNR can be represented as

PX∼p (Tw(X) ≤ zα) = PX∼p

(
T (1)
w (X) ≤ zα + T (2)

w (X)
)

(32)

It is easy to verify that when X ∼ p, T (1)
w (X)σq,L/σp,L converges to standard normal distribution.

Specifically, using Lemma S1, we obtain that

PX∼p (Tw(X) ≤ zα) = PX∼p

(
T (1)
w (X)

σq,L
σp,L

≤ (zα + T (2)
w (X))

σq,L
σp,L

)
≥ Φ(zα + T (2)

w (X)) +

(
Φ

(
(zα + T (2)

w (X))
σq,L
σp,L

)
− Φ(zα + T (2)

w (X))

)
+O

(
logL/

√
L
)
+ op(1)

≥ Φ(zα + T (2)
w (X))− sup

z∈R
Φ′(z)×

∣∣∣zα + T (2)
w (X)

∣∣∣× ∣∣∣∣σq,Lσp,L
− 1

∣∣∣∣
+O

(
logL/

√
L
)
+ op(1),

where the little-op term arises due to the asymptotic equivalence between σp,L and σ̄p,L in Assumption
4.

Take expectation on both sides, we have by Assumption 3 that

PX∼p (Tw(X) ≤ zα) ≥ EΦ(zα + T (2)
w (X)) + o(1) +O(logL/

√
L).

Next, define σ̃2
q,L = EX∼pσ

2
q,L. It follows that T (2∗)

w (X) = E
{
T

(2)
w (X)

σq,L

σ̃q,L

}
. Under the equal

variance assumption in Assumption 3, we also have σq,L − σ̃q,L → 0 in probability. It follows that
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for any ϵ > 0,

EΦ(zα + T (2)
w (X)) = EΦ(zα + T (2)

w (X))I{|σq,L − σ̃q,L| ≤ ϵ}
+EΦ(zα + T (2)

w (X))I{|σq,L − σ̃q,L| > ϵ}
≥ EΦ(zα + T (2)

w (X))I{|σq,L − σ̃q,L| ≤ ϵ}

≥ EΦ

(
zα + T (2)

w (X)
σq,L

σ̃q,L + sgn(T (2)
w )ϵ

)
I{|σq,L − σ̃q,L| ≤ ϵ}

≥ EΦ

(
zα + T (2)

w (X)
σq,L

σ̃q,L + sgn(T (2)
w )ϵ

)

−EΦ

(
(zα + T (2)

w (X))
σq,L

σ̃q,L + sgn(T (2)
w )ϵ

)
I{|σq,L − σ̃q,L| > ϵ}

≥ EΦ

(
(zα + T (2)

w (X))
σq,L

σ̃q,L + sgn(T (2)
w )ϵ

)
− P(|σq,L − σ̃q,L| > ϵ),

where the first inequality is obtained due to Φ is non-negative and the second inequality holds due to
the monotonicity and boundedness of Φ. Together with Lemma S2 and Assumption 3, we obtain

PX∼p (Tw(X) ≤ zα)

≥min

{
1− α, α+ ϕ(zα)E

{
T (2)
w (X)

σq,L
σ̃q,L

}}
σ̃q,L

σ̃q,L + sgn(T (2)
w )ϵ

− P{|σq,L − σ̃q,L| ≥ ϵ}+O
(
logL/

√
L
)
+ o(1).

(33)

Let L→ ∞ and using the fact that E
{
T

(2)
w (X)

σq,L

σ̃q,L

}
= T

(2∗)
w (X), we obtain that TNR is asymp-

totically lower bounded by min{1− α, α+ ϕ(zα)T
(2∗)
w (X)} σ̃q,L

σ̃q,L+sgn(T (2)
w )ϵ

. By taking ϵ→ 0, then

the conclusion of Theorem 1 follows.

Remark 1. In fact, the equal variance condition (Assumption 3) can be relaxed. Specifically, it
is not necessary for the two variance σ2

q,L and σ2
p,L to be asymptotically equivalent in probability.

Rather, it suffices to require their ratio to converge to some positive constant in probability, i.e.,

σq,L
σp,L

P→ K0.

Since K0 need not be 1, this proportionality condition is considerably weaker than the equal variance
assumption and is more likely to hold in practice. Under this relaxed condition, following nearly
identical arguments to those in Theorem 3, we can show that TNR is asymptotically lower bounded
by:

min
{
1− Φ(K0zα),Φ(K0zα) + ϕ(K0zα)K0T

(2∗)
w

}
.

This lower bound differs from the one in Theorem 3 due to the change in assumptions. However, since
ϕ(K0zα) depends solely on α (not on the witness function w), our core conclusion – maximizing the
lower bound is equivalent to maximizing T (2∗)

w – remains valid. Thus, our proposed methodology
remains theoretically sound.

E.4 Proof of Theorem 2

Proof. Denote Zt = ŵ (log qt(Xt|X<t))− EX̃t∼qt(•|X<t)
ŵ (log qt(Xt|X<t)). Then if X ∼ q, we

have E {Zt|X<t} = 0 almost surely. Without loss of generality, assume ŵ is bounded. Otherwise, we
can define ŵ = ϕ⊤β̂/∥β̂∥2 to make it bounded. Under the lower bound assumption in Assumption 3,
it is easy to verify that Zt satisfies all conditions of Lemma S1. Therefore, by invoking Lemma S1,
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we obtain for any α ∈ (0, 1),

FNRŵ − α = PX∼q(Tŵ(X) ≤ zα)− Φ(zα)

= PX∼q

( ∑L
t=1 Zt∑L

t=1 E{Z2
t |X<t}

≤ zα

)
− Φ(zα)

= O

(
logL√
L

)
+O

(
(E
∣∣VL − 1

∣∣)1/3).
Taking expectation on both sides, we obtain

E(FNRŵ) = α+O

(
logL√
L

)
+O

(
(E
∣∣VL − 1

∣∣)1/3).
This completes the proof.

E.5 Proof of Theorem 3

Proof. Since E(TNRŵ) ≥ TNRw∗ − E(|TNRŵ − TNRw∗ |), it is enough to upper bound the second
term in the last expression. Denote by T̂n(•) and T̂ ∗(•) respectively the classifier (4) using witness
functions ŵ(•) = ϕ(•)⊤β̂ and w∗(•) = ϕ(•)⊤β∗ (see the definition of β̂ and β∗ in Lemma S3).
Write ∆̂n(x) = |T̂n(x)− T ∗(x)| and ∆̂n = supx ∆n(x). For any zα > 0 we have that

|TNRŵ − TNRw∗ | =
∣∣∣PX∼p

(
T̂n (X) ≤ zα

)
− PX∼p (T

∗ (X) ≤ zα)
∣∣∣

=

∣∣∣∣∫ 1{T̂n(x)≤zα} − 1{T∗(x)>zα}dp (x)

∣∣∣∣
≤
∫ ∣∣∣1{T̂n(x)≤zα} − 1{T∗(x)>zα}

∣∣∣dp (x)
=

∫
1{T̂n(x)≤zα,T∗(x)>zα} + 1{T̂n(x)>zα,T∗(x)≤zα}dp (x)

≤2

∫
1{|T∗(x)−zα|≤∆̂n}dp (x)

=2PX∼p

(
|T ∗(X)− zα| ≤ ∆̂n

)
. (34)

Due to Assumption 1 on the event {
∆̂n ≤ δ0

}
(35)

we will have that |TNRŵ − TNRw∗ | ≤ κ3∆̂n for some absolute κ3. We therefore focus on bounding
the quantity ∆̂n. For each w ∈ Ω and each j = 1, . . . , L, we introduce the quantities:

Y
(w)
j = w (log qj (Xj | X<j)) ,

µ
(w)
j = EX̃j∼qj

w
(
log qj

(
X̃j | X<j

))
,

(σ
(w)
j )2 = VarX̃j∼qj

w
(
log qj

(
X̃j | X<j

))
.

With this notation in place we have that for any x

∆̂n(x) ≤
1√
L

∣∣∣∣∣∣
L∑

j=1

y
(ŵ)
j − µ

(ŵ)
j

∣∣∣∣∣∣
∣∣∣∣∣∣∣
L−1

L∑
j=1

(
σ
(ŵ)
j

)2−1/2

−

L−1
L∑

j=1

(
σ
(w∗)
j

)2−1/2
∣∣∣∣∣∣∣ (36a)

+

 1

L

L∑
j=1

(
σ
(w∗)
j

)2
− 1

2

1√
L

∣∣∣∣∣∣
L∑

j=1

(
Y

(ŵ)
j − Y

(w∗)
j

)
−
(
µ
(ŵ)
j − µ

(w∗)
j

)∣∣∣∣∣∣ , (36b)
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where for clarity we have suppressed dependence on x above. For ease of notation put
Zt = log qt(Xt | X<t) and Z̃t = log qt(X̃t | X<t) where X̃t ∼ qt. Write also ϕ(•) =
(B1(•), . . . , Bd(•))⊤. Recalling that w(•) = ϕ(•)⊤β for arbitrary j = 1, . . . , L we have∣∣∣∣(σ(ŵ)

j

)2
−
(
σ
(w∗)
j

)2∣∣∣∣ ≤ E

[
d∑

l1=1

d∑
l2=1

∣∣∣β̂l1 β̂l2 − β∗
l1β

∗
l2

∣∣∣ (|Bl1(Zj)Bl2(zj)|

+
∣∣∣E [Bl1(Z̃j)

]
E
[
Bl2(Z̃j)

]∣∣∣+ 2
∣∣∣Bl1(zj)E

[
Bl2(Z̃j)

]∣∣∣ )]
≤ κ4

2

d∑
l1=1

d∑
l2=1

∣∣∣β̂l1 β̂l2 − β∗
l1β

∗
l2

∣∣∣
=
κ4
2

d∑
l1=1

d∑
l2=1

∣∣∣β̂l1 (β̂l2 − β∗
l2

)
− β∗

l2

(
β∗
l1 − β̂l1

)∣∣∣
≤ κ4

2

d∑
l1=1

d∑
l2=1

∣∣∣β̂l1∣∣∣ ∣∣∣β̂l2 − β∗
l2

∣∣∣+ κ4
2

d∑
l1=1

d∑
l2=1

∣∣β∗
l2

∣∣ ∣∣∣β̂l1 − β∗
l1

∣∣∣
= κ5

√
d
∥∥∥β̂ − β∗

∥∥∥
1
κ5

≤ d
∥∥∥β̂ − β∗

∥∥∥
2
,

for absolute κ4, κ5. Consequently, using inequality (26) and Assumption 2, on the event (30) we
obtain that with absolute κ6:

(36a) ≤ κ6d
3 1√

L

∣∣∣∣∣∣
L∑

j=1

y
(ŵ)
j − µ

(ŵ)
j

∣∣∣∣∣∣
∥∥∥β̂ − β∗

∥∥∥
2
. (37)

Observe that conditional on β̂ the term
∑L

j=1(y
(ŵ)
j − µ

(ŵ)
j ) is a martingale with increments bounded

from above almost surely by a constant independent on β̂; by the Azuma–Hoeffding inequality the
normalized sum in (37) has sub-Gaussian tails. By Lemma S3 the term ∥β̂ − β∗∥2 likewise has
sub-Gaussian tails. Therefore on the relevant events we obtain that (37) has sub-exponential tails,
and consequently for any z > 0

P (37 > z) ≤ κ7 exp

(
−κ8 min

{
z2

n

d5γ+6
, z

√
n

d5γ+6

})
(38)

for certain absolute κ7, κ8. Similar arguments show that the normalized sum in (36b) has the same
tail behavior as (38). Since the above augments do not depend on x we obtain that (38) likewise
described the tail behavior of ∆̂n. Consequently, on the relevant events we obtain that

E |TNRŵ − TNRw∗ | =
∫ ∞

0

P (|TNRŵ − TNRw∗ | > z) dz

≤
∫ ∞

0

P
(
κ3∆̂n > z

)
dz

≤ κ9

∫ ∞

0

exp

(
−κ10 min

{
z2

n

d5γ+6
, z

√
n

d5γ+6

})
dz

≤ κ11

√
d5γ+6

n
(39)

for certain absolute κ9, κ10, κ11. When the events (35) and (26) do not hold from (34) we have
the conservative bound E |TNRŵ − TNRw∗ | ≤ 1. However, the probability of these events not
holding is smaller than (39) up to constants. Therefore, the stated result follows by the law of total
expectation.
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E.6 Smooth witness functions

An important quality of spline estimators, which in part motivated our choice of estimator for the
witness function, is their ability to learn smooth regression functions at optimal rates. Following the
proof of Theorem 2.1 in Chen & Christensen (2015) one can show that when the optimal witness
(that is, the function minimizing the functional (21) among all functions with bounded ℓ2 norm) is
β-Hölder smooth, the estimated witness function attains the rate

sup
z

|ŵ(z)− w∗(z)| = OP

(√
d log(n)

n

)
+O(d−β).

Consequently, choosing the number of spline bases as d = Θ((n/ log(n))
1

2β+1 ) the sup norm loss
will be of the order OP

(
(log(n)/n)

β
2β+1

)
. This rate was shown to be optimal by Stone (1982). One

can therefore show that choosing the number of spline bases in this way the expected true negative
rate will be lower bounded as

E(TNRŵ) ≥ TNRw∗ −O
(
(log(n)/n)

β
2β+1

)
.

In this section we provide a sketch of this result.

We argue along the same lines as the proof of Theorem 3. Since E(TNRŵ) ≥ TNRw∗ −E(|TNRŵ −
TNRw∗ |) is enough to upper bound E(|TNRŵ−TNRw∗ |). Define the quantity ∆̂n = supx |T̂n(x)−
T ∗(x)|, and introduce the event

A(κ1) =
{
∆̂n ≤ κ1 × (d−β + (log(n)/n)

β
2β+1 )

}
(40)

Therefore, with arbitrary κ1 for some absolute κ2 we have that

E(|TNRŵ − TNRw∗ |) = E(|TNRŵ − TNRw∗ | × 1{A(κ1)}) + E(|TNRŵ − TNRw∗ | × 1{¬A(κ1)})

≤ 2E(PX∼p(|T ∗(X)− zα| ≤ ∆̂n)× 1{A(κ1)}) + P(¬A(κ1)) (41a)

≤ κ1E(∆̂n | A(κ1)) + P(¬A(κ1)) (41b)

where (41a) follows from the arguments leading up to (34) and (41b) holds on the event (35).
Using the mean value theorem and Assumption 3 one can show that up to constants ∆̂n is smaller
than supz |ŵ(z)− w∗(z)|, therefore by (40) the first term in (41b) will be of the order O(d−β +

(log(n)/n)
β

2β+1 ). Examining the proof of Theorem 2.1 in Chen & Christensen (2015) it can be seen
that for any κ3 > 0 on may choose κ1 so that P(¬A(κ1)) < n−κ3 . Therefore, we can choose κ1
appropriately so that the second term in (41b) will be of the order o((log(n)/n)

β
2β+1 ). Finally letting

d = Θ((n/ log(n))
1

2β+1 ) yields the desired result.

As mentioned in the main text, when the optimal witness function is believed to be smooth but the
order of the smoothness is not known the number of spline bases can be chosen in a data driven way
via Lepski’s method (Lepski & Spokoiny, 1997).
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F Additional numerical results

F.1 Results on additional open-source models

Table S7: Performance on three open-source LLMs (Qwen2.5, Mistral, LLaMA3) across five datasets.

Model Method XSum Writing Essay SQuAD Yelp

Qwen2.5

Likelihood 0.6175 0.7041 0.6755 0.5183 0.6793
Entropy 0.5403 0.5043 0.5073 0.5232 0.5236
LogRank 0.6325 0.7150 0.6958 0.5166 0.6943
Binoculars 0.6297 0.7578 0.8018 0.6164 0.7199
TextFluoroscopy 0.5778 0.5110 0.5638 0.5383 0.5060
RADAR 0.6469 0.6190 0.6061 0.6262 0.6276
ImBD 0.6653 0.6584 0.7874 0.5168 0.7392
BiScope 0.6320 0.6610 0.6625 0.6250 0.7050
Fast-DetectGPT 0.7523 0.8513 0.8347 0.5016 0.8465
AdaDetectGPT 0.7963 0.8965 0.8799 0.6044 0.8915
Relative 17.7682 30.3912 27.3167 0.6431 29.3165

Mistral

Likelihood 0.7409 0.8643 0.8667 0.7068 0.7598
Entropy 0.5290 0.5420 0.6052 0.5070 0.5103
LogRank 0.7270 0.8446 0.8467 0.7041 0.7499
Binoculars 0.7218 0.8440 0.8314 0.7258 0.7502
TextFluoroscopy 0.6210 0.5555 0.5127 0.5772 0.5109
RADAR 0.6518 0.6537 0.6292 0.6055 0.6018
ImBD 0.7683 0.8391 0.8631 0.8073 0.7440
BiScope 0.7320 0.8740 0.9000 0.7283 0.7840
Fast-DetectGPT 0.8922 0.8151 0.9052 0.8812 0.8902
AdaDetectGPT 0.8944 0.8275 0.9069 0.8851 0.9026
Relative 2.0423 6.6718 1.8332 3.3051 11.2763

LLaMA3

Likelihood 0.8236 0.8929 0.9115 0.7071 0.8915
Entropy 0.5545 0.5732 0.5626 0.5047 0.5010
LogRank 0.8634 0.9122 0.9351 0.7422 0.9146
Binoculars 0.9546 0.9845 0.9949 0.9469 0.9854
TextFluoroscopy 0.5479 0.5274 0.5478 0.5535 0.5362
RADAR 0.7154 0.7285 0.7835 0.6619 0.7875
ImBD 0.8643 0.8837 0.8928 0.7596 0.8677
BiScope 0.9450 0.9830 0.9900 0.8783 0.9860
Fast-DetectGPT 0.9734 0.9879 0.9901 0.9488 0.9882
AdaDetectGPT 0.9782 0.9893 0.9924 0.9553 0.9900
Relative 18.0119 11.6202 22.7215 12.6288 15.7610

F.2 Additional results on black-box setting

Table S8: AUC scores of various detectors to detect text generated by Gemini-2.5 across datasets.

Method XSum Writing Yelp Essay Avg.

RoBERTaBase 0.5311 0.5202 0.5624 0.7279 0.5854
RoBERTaLarge 0.6583 0.5888 0.6029 0.8180 0.6845
Likelihood 0.7127 0.7547 0.6566 0.7565 0.7201
Entropy 0.5754 0.5088 0.6023 0.6038 0.5726
LogRank 0.6084 0.5743 0.6896 0.7504 0.6557
LRR 0.5960 0.5382 0.5580 0.6703 0.5906
Binoculars 0.8500 0.9453 0.9698 0.9908 0.9390
RADAR 0.8184 0.5152 0.6300 0.5891 0.6382
BiScope 0.7633 0.6800 0.7097 0.8167 0.7642
Fast-DetectGPT 0.8404 0.9443 0.9695 0.9914 0.9364
AdaDetectGPT 0.8432 0.9484 0.9644 0.9947 0.9377
Relative ( ) 1.7544 7.4163 — 37.8238 1.9916
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F.3 Computational analysis

In this part, we study the runtime for learning the witness function. From Table S9, the runtime of
AdaDetectGPT is around 44 seconds and changes marginally with respect to d. This is because we
can use a closed-form expression to learn a witness function. This time is nearly negligible compared
with the time required to compute logits, which involves feeding tokens from multiple passages into
LLMs. Furthermore, the training time when n increases is shown in Table S10, and we can see that
the runtime for training is typically no more than one minute.

Table S9: Runtime scale with d.

d 4 8 12 16 20

Runtime 44.48 44.62 44.73 44.92 45.00

Table S10: Runtime (memory in parenthesis) scale with n. The runtime is measured in seconds and
the memory is measured in GB.

n 100 150 200 250 300 350

Runtime (Memory) 9.28(0.36) 23.45(0.37) 40.19(0.37) 44.25(0.37) 59.57(0.60) 69.56(0.37)

F.4 Sensitivity analysis

Since AdaDetectGPT requires training a witness function, we examine three factors influencing its
performance: (1) the size of the training set; (ii) tuning parameters for generating B-spline basis and
(iii) distribution shift between training and test data.

Robust to training data sizes. We evaluate AdaDetectGPT across varying dataset sizes by setting
n1 = n2 ∈ {100, 200, 300, 400, 500, 600} for both human- and machine-generated texts. Figure S5
demonstrates that AdaDetectGPT clearly outperforms FastDetectGPT when sample size is large.
This is expected because a larger sample size leads to a more accurate estimation of w. Notably, even
with limited data n1 = n2 = 100, AdaDetectGPT maintains superior accuracy compared to baseline
methods, though the performance gap decreases. These results highlight our method’s effectiveness
on learning the witness function.

Insensitivity to tuning parameters. B-spline relies on two critical tuning parameters: (i) the number
of basis functions (n_base) and (ii) the maximum polynomial order. Our experiments fix one
parameter while varying the other (with n_base=16 or order=2 as defaults). As shown in Figure S6
in Appendix, AdaDetectGPT achieves the highest AUC scores so long as n_base ≥ 4. Besides,
enlarging n_base improves the AUC of AdaDetectGPT although the improvement becomes marginal
when n_base ≥ 16. Figure S6 also shows that increasing the polynomial order from linear to
quadratic visibly improve the performance; while increasing order from quadratic to cubic/quartic
has a limited gain. Finally, even when the B-spline basis is set to a piecewise linear function, our
method still outperform all baselines.

Robust against distribution shift. We create training datasets with different distributions from the
test data by varying the number of human prompt tokens in machine-generated text. In contrast, for
the test data, the number of human prompt tokens are fixed. As shown in Figure S7, AdaDetectGPT
demonstrates high robustness to the distributional discrepancy between training and test data. It
achieves the highest AUC across all experimental setup.
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Figure S5: Classification accuracy versus the sample size for training w. We omit DetectGPT, NPR,
and DNA in this experiments as they are time-consuming.
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Figure S6: The classification accuracy of AdaDetectGPT and baseline methods. AdaDetect-
GPT(n_base) present the AUC when the number of basis in B-spline increases as 4, 8, 16, 32,
64 (bottom x-axis); while AdaDetectGPT(order) shows the AUC when the maximum order of basis
in B-spline increases from 1 to 4 (top x-axis). The AUC of baseline methods are presented by dash
lines.
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Figure S7: The classification accuracy of AdaDetectGPT when the number of human prompts
changes. The AUC of baseline methods are presented by dash lines.

F.5 Detecting open-source models in black-box setting

Table S11: Zero-shot detection accuracy on five source models under the black-box setting. †: use
two surrogate models for sampling and scoring, where the sampling model is GPT-J while the scoring
model is GPT-Neo.

Dataset Method Source Model
GPT-2 OPT-2.7 GPT-Neo GPT-NeoX Avg.

SQuAD

FastDetectGPT 0.6181 0.6495 0.6230 0.6910 0.6813
AdaDetectGPT 0.6920 0.7195 0.7382 0.7338 0.7460
Relative 19.3570 19.9651 30.5609 13.8495 20.2957
FastDetectGPT† 0.8145 0.8166 0.9220 0.7519 0.8188
AdaDetectGPT† 0.8249 0.8308 0.9273 0.7609 0.8300
Relative 5.6301 7.7245 6.7968 3.6121 6.2106

Writing

FastDetectGPT 0.7662 0.7918 0.7685 0.8022 0.8028
AdaDetectGPT 0.8306 0.8529 0.8555 0.8587 0.8636
Relative 27.5699 29.3365 37.6112 28.5350 30.8124
FastDetectGPT† 0.8565 0.8497 0.9215 0.8182 0.8582
AdaDetectGPT† 0.8780 0.8737 0.9386 0.8567 0.8849
Relative 14.9666 15.9741 21.7742 21.1856 18.8023

XSum

FastDetectGPT 0.5919 0.6445 0.5718 0.6389 0.6468
AdaDetectGPT 0.6795 0.7238 0.6879 0.7045 0.7261
Relative 21.4569 22.2991 27.1129 18.1580 22.4439
FastDetectGPT† 0.8145 0.8166 0.9220 0.7519 0.8188
AdaDetectGPT† 0.8249 0.8308 0.9273 0.7609 0.8300
Relative 9.8060 10.5637 10.2543 8.1057 11.1574
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G Broader impact and limitation

AdaDetectGPT is a computationally and statistically efficient detector for machine-generated text,
thus safeguarding AI systems against fake news, disinformation, and academic plagiarism.

Despite AdaDetectGPT’s strong empirical performance in the black-box setting, its theoretical
guarantees are mainly established in the white-box setting. Even when restricting to the white-box
setting, LLM text generation often involves sampling parameters (e.g., temperature and top_k).
Using different parameter values can cause the sampling distribution to deviate from that of the target
model we aim to detect. This mismatch invalidates MCLT in practice. Fortunately, we observe that
the shape of our statistic remains similar, but shifts toward a positive mean (see Figure S8), implying
that FNR control under MCLT remains valid, although being more conservative.
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Figure S8: Histogram of our statistics in three datasets. Each panel visualizes the histogram in one
dataset. The yellow histogram corresponds to the case when the sampled texts exactly follow the
conditional probability of the source model, while purple histogram corresponds to text drawn with
from a distribution with different sampling temperatures.
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