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ABSTRACT

Materials that exhibit high strength-to-weight ratio, a desirable property for
aerospace applications, often present unique inspection challenges. Nondestruc-
tive evaluation (NDE) addresses these challenges by utilizing methods, such as
x-ray computed tomography (CT), that can capture the internal structure of a ma-
terial without causing changes to the material. Analyzing the data captured by
these methods requires a significant amount of expertise and is costly. Since the
data captured by NDE techniques often is structured as images, deep learning can
be used to automate initial analysis. This work looks to automate part of this ini-
tial analysis by applying the efficient encoder-decoder convolutional network at
multiple scales to perform identification and segmentation of defects for NDE.

1 INTRODUCTION

Balancing the strength-to-weight ratio of materials used in aerospace applications is crucial as re-
ductions in weight can lead directly to a reduction in cost to operate a vehicle in which a material is
used. However, the complexity of materials that exhibit a high strength-to-weight ratio often present
unique inspection challenges. Nondestructive evaluation (NDE) addresses these challenges by uti-
lizing methods, such as x-ray computed tomography (CT), that can capture the internal structure of
a material without causing changes to the material. Analyzing the data captured by these methods
requires a significant amount of expertise and is costly. Therefore, reducing the time required to
perform this analysis would have a significant impact.

For this work, we look to automate part of the NDE analysis process, namely, the identification and
segmentation of defects. In particular, we look at automating the initial analysis of carbon fiber
reinforced polymer (CFRP) by segmenting a type of defect known as a delamination. We build
upon previous work that showed initial success utilizing convolutional networks for dealmination
segmentation in CFRP (Sammons et al., 2016). The improvements described in this work result in a
significant reduction of processing time and better generalization performance.

2 RELATED WORK

Recently, there has been significant interest in deep learning for image segmentation (Badri-
narayanan et al., 2015; Chen et al., 2015; Long et al., 2015; Visin et al., 2015). Of particular interest
to this work are applications of deep learning to medical image segmentation.

For example, Ciresan et al. (2012) trained a convolutional network to classify the center pixel of
small patches sampled from images of neuronal membrane. More recently, Wang et al. (2015)
utilized an encoder-decoder approach for wound segmentation that allowed for end-to-end training
from the raw input to the segmentation.
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Figure 1: Encoder-decoder convolutional network architecture utilized in this work. Each of the
encoder layers also includes an ReLU and max-pooling layer after the convolutional layer. Decoder
layers each include a nearest-neighbor upsampling layer before the convolutional layer and an ReLU
after. There is no pooling/upsampling in the layer between the encoder/decoder. The final layer of
the decoder does not include upsampling/ReLU.

3 METHODS

3.1 ENCODER-DECODER CONVOLUTIONAL NETWORK

Inspired by previous work in wound segmentation by Wang et al. (2015), we decided to utilize con-
volutional networks in an encoder-decoder architecture as an efficient method to perform segmen-
tation. An encoder-decoder convolutional network functions much like a convolutional autoencoder
except that it is trained to produce a segmentation instead of a reconstruction of the input. In partic-
ular, the encoder maps the input to a representation which captures information about the structure
in the image. That representation is then mapped back to the original resolution of the image by the
decoder, producing a pixel-by-pixel segmentation of the image.

The architecture used in this work (Figure 1) is identical to the architecture utilized by Wang et al.
(2015) except that we used nearest-neighbor upsampling instead of unpooling as nearest-neighbor
upsampling lead to significantly faster model convergence during training.

3.2 ENCODING MULTIPLE SCALES

An interesting challenge of utilizing convolutional networks for segmentation is balancing the fine-
grained detail required for precise segmentation with the position of the pixel within the larger
context of the image. As described by Sammons et al. (2016), this problem manifests itself when
using convolutional networks for delamination segmentation in CFRP when pixels located in the
center of delaminated regions are labeled as background.

In order to obtain more context to make a prediction for each pixel, we used the pretrained encoder
network to encode images at decreasing resolutions. These encodings were then resized to the size of
the encoding for the highest resolution image and fed into the decoder as feature maps. The decoder
was then trained to combine the information from the different resolution encodings to produce the
final segmentation.

3.3 REGULARIZATION WITH RECONSTRUCTION

Previous work has determined that pretraining a network using autoencoding acts as a form of regu-
larization on a deep neural network (Erhan et al., 2010). Recently, Zhao et al. (2015) suggested that
the regularization effect of pretraining with an autoencoder is limited. Instead, they suggested that
better regularization could be provided by training a classifier from the encoded representation of an
autoencoder while concurrently training the autoencoder.

Inspired by this approach, we decided to experiment with regularizing encoder-decoder convolu-
tional networks by simultaneously training two decoders to decode the same representation, training
one decoder for segmentation and training the other decoder to reconstruct the original input. This
joint training forced the encoder network to encode a more robust representation of the data, pre-
venting the segmentation encoder-decoder from developing a trivial solution. We found this method
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Table 1: Results from testing the encoder-decoder models on simulated datasets.

Network Pixel Error Pixel Precision Pixel Recall Mean IoU

Single-scale 98.8% 73.3% 70.9% 56.4%
Multi-scale 98.9% 89.0% 61.5% 58.3%

Raw	Data	

Results	from	applying	
encoder-decoder	at	

single	scale	

Results	from	applying	
encoder-decoder	at	

mul7ple	scales	

Figure 2: Results from classifying real data with models trained on simulated data.

of regularization crucial for training the encoder-decoder network with entire images as training
without it would result in severe overfitting of the training set.

4 TRAINING

Labeling data of real samples of NDE data is extremely expensive because of the expertise required
to perform the labeling. As such, we did not have a significant set of real data to use for training.
Instead, we chose to train on a set of simulated data that was designed to mimic many of the key
characteristics of delaminations in CFRP.

Training was accomplished using stochastic gradient descent. When reconstruction regularization
was employed, training was accomplished by performing a step of stochastic gradient descent on the
same input with each decoder. Challenges with training stemming from the severe class imbalance
which was present in the high-resolution images of CFRP were addressed using the “snowball”
training method (Wang & Jean, 1993).

5 RESULTS AND ANALYSIS

Table 1 provides quantitative results from segmenting a test set of simulated data. Since we did not
have a labeled real dataset, we only provided qualitative results for real images in Figure 2.

The multi-scale encoder-decoder convolutional network provides the most consistent results on the
real data. Further, the results are quite remarkable considering the models were only trained with
simulated data. We are not sure whether to attribute this success to the ability of the simulated data
to reflect the characteristics of the real data or to the generalization abilities of the models.

6 CONCLUSIONS AND FUTURE WORK

In this work, we showed that applying an encoder-decoder convolutional network at multiple scales
is an effective method for performing segmentation of delaminations in CFRP. In the future, we hope
to perform better quantitative analysis on real datasets and would like to compare our results with
other methods for image segmentation.
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