
Workshop track - ICLR 2016

NEURAL ENQUIRER: LEARNING TO QUERY TABLES IN
NATURAL LANGUAGE

Pengcheng Yin1, Zhengdong Lu2, Hang Li2 & Ben Kao1

1Department of Computer Science, The University of Hong Kong
{pcyin,kao}@cs.hku.hk
2Noahs Ark Lab, Huawei Technologies
{Lu.Zhengdong,HangLi.HL}@huawei.com

ABSTRACT

We propose NEURAL ENQUIRER — a neural network architecture for answering
natural language (NL) questions given a knowledge base (KB) table. Unlike pre-
vious work on end-to-end training of semantic parsers, NEURAL ENQUIRER is
fully “neuralized”: it gives distributed representations of queries and KB tables,
and executes queries through a series of differentiable operations. The model can
be trained with gradient descent using both end-to-end and step-by-step supervi-
sion. During training the representations of queries and the KB table are jointly
optimized with the query execution logic. Our experiments show that the model
can learn to execute complex NL queries on KB tables with rich structures.

1 INTRODUCTION

Natural language dialogue and question answering often involve querying a knowledge base (Wen
et al., 2015; Berant et al., 2013). The traditional approach involves two steps: First, a given query
Q̃ is semantically parsed into an “executable” representation, which is often expressed in certain
logical form Z̃ (e.g., SQL-like queries). Second, the representation is executed against a KB from
which an answer is obtained. For queries that involve complex semantics and logic (e.g., “Which
city hosted the longest Olympic game before the game in Beijing?”), semantic parsing and query
execution become extremely complex. For example, carefully hand-crafted features and rules are
needed to correctly parse a complex query into its logical form (see example in the lower-left corner
of Figure 1). To partially overcome this complexity, recent works (Clarke et al., 2010; Liang et al.,
2011; Pasupat & Liang, 2015) attempt to “backpropagate” query execution results to revise the
semantic representation of a query. This approach, however, is greatly hindered by the fact that
traditional semantic parsing mostly involves rule-based features and symbolic manipulation, leaving
only a handful of tunable parameters to cater to the great flexibility of natural language.

In this paper we propose NEURAL ENQUIRER — a neural network system that learns to understand
NL queries and execute them on a KB table from examples of queries and answers. Unlike similar
efforts along this line of research (Neelakantan et al., 2015), NEURAL ENQUIRER is a fully neural-
ized, end-to-end differentiable network that jointly models semantic parsing and query execution. It
encodes queries and KB tables into distributed representations, and executes compositional queries
against the KB through a series of differentiable operations. The model is trained using query-
answer pairs, where the distributed representations of queries and the KB are optimized together
with the query execution logic in an end-to-end fashion. We demonstrate using a synthetic QA task
that NEURAL ENQUIRER is capable of learning to execute complex compositional NL questions.

2 MODEL

Given an NL query Q and a KB table T , NEURAL ENQUIRER executes Q against T and outputs a
ranked list of answers. The execution is done by first using Encoders to encode the query and table
into distributed representations, which are then sent to a cascaded pipeline of Executors to derive
the answer. Figure 1 gives an illustrative example. It consists of the following components:

Query Encoder abstracts the semantics of an NL queryQ and encodes it into a query embedding q.
Let {x1,x2, . . . ,xT } be the embeddings of the words in Q, where xt ∈ RdW is from an embedding
matrix L. We employ a bidirectional GRU to summarize the sequence of word embeddings in
forward and reverse orders. q is formed by concatenating the last hidden states in the two directions.

1

Workshop track - ICLR 2016

Which city hosted the longest Olympic game before the game in Beijing?

query 𝑄
Query Encoder

Executor-1 Memory Layer-1

Executor-2 Memory Layer-2

Executor-3 Memory Layer-3

Executor-4 Memory Layer-4

Executor-5

Athens (probability distribution over table entries)

year host_city #_duration #_medals

2000 Sydney 20 2,000

2004 Athens 35 1,500

2008 Beijing 30 2,500

2012 London 40 2,300

query embedding

table embedding

Tab
le En

co
d

er

where year < (select year, where host_city = Beijing),
argmax(host_city, #_duration)

Find row r1 where host_city=Beijing

Select year of r1 as a

Find row sets R where year < a

Find r2 in R with max(#_duration)

Select host_city of r2

logical form 𝑍

Figure 1: An overview of NEURAL ENQUIRER with five executors

Table Encoder derives a table embedding by encoding entries in the table T into distributed vectors.
Suppose T has M rows and N columns. In our model, the n-th column is associated with a field
name (e.g., host city). Each cell value is a word (e.g., Beijing) in the vocabulary. We use wmn to
denote the cell value in rowm column n, and wmn to denote its embedding. Let fn be the embedding
of the field name for column n. For each entry (cell) wmn, Table Encoder computes a 〈field, value〉
composite embedding emn ∈ RdE by fusing fn and wmn using a Deep Neural Network (DNN):

emn = DNN0(fn,wmn) = tanh(W · [fn;wmn] + b),

where [·; ·] denotes vector concatenation.

Reader

table embedding
read vectors

pooling

Annotator

row annotations

table annotation
Memory Layer-(ℓ-1)

query embedding Memory Layer-ℓ

Figure 2: Overview of an Executor-`

Executor executes a query against
the table and outputs annotations
that encode intermediate execution
results. Each executor models a spe-
cific type of operation conditioned on
the query. Figure 1 illustrates the op-
eration each executor is assumed to
perform in answering Q̃. The query
is executed sequentially through a
stack of executors. Such a cascaded architecture enables the model to answer complex composi-
tional queries. An executor at Layer-` (denoted as Executor-`) consists of two major neural network
components: a Reader and an Annotator. The executor processes a table row-by-row. For the m-th
row with N 〈field, value〉 composite embeddingsRm = {em1, em2, . . . , emN}, the Reader fetches
a read vector r`m fromRm via an attentive reading operation. The read vector is then sent to the An-
notator to perform the actual execution. The output of the Annotator is a row annotation a`m, which
captures the row-wise local computation result. Once all row annotations are obtained, Executor-`
generates a table annotation g` to summarize the global computation result on the whole table by
pooling all row annotations. All the row and table annotations are saved in the memory Layer-`:
M` = {a`1,a`2, . . . ,a`M ,g`}, which is accessible to Executor-(`+1). Specifically:

Read Vector: r`m = f `R(FT ,q,M`−1,Rm) =
∑N

n=1 ω̃(fn,q,g
`−1)emn (1)

Row Annotation: a`m = f `A(r
`
m,q,M`−1) = DNN(`)

1 ([r`m;q;a`−1m ;g`−1]) (2)

Table Annotation: g` = fMAXPOOLING(a
`
1,a

`
2, . . . ,a

`
M) (3)

where ω̃(·) is the attention weight. Intuitively, row annotations handle operations that require only
row-wise, local information (e.g., select, where), while table annotations model superlative oper-
ations (e.g., max, min) by aggregating table-wise, global execution results. A combination of row
and table annotations enables the model to perform a wide variety of real-world query operations.

Instead of computing annotations based on read vectors, the last executor in NEURAL ENQUIRER
directly outputs the probability of an entry wmn in table T being the answer a:

p(a = wmn|Q, T) =
exp(DNN(`)

2 ([emn,q,a
`−1
m ,g`−1]))∑M,N

m′=1,n′=1 exp(DNN(`)
2 ([em′n′ ,q,a`−1

m′ ,g`−1]))
(4)

2

Workshop track - ICLR 2016

1© SELECT WHERE [select Fa, where Fb = wb] 3©WHERE SUPERLATIVE [where Fa >|< wa, argmax/min(Fb, Fc)]
. How many people participated in the game in Beijing? . How long was the game with the most medals that had fewer than 3,000 participants?
. In which city was the game hosted in 2012? . How many medals were in the first game after 2008?
2© SUPERLATIVE [argmax/min(Fa, Fb)] 4© NEST [where Fa >|< (select Fa,where Fb=wb), argmax/min(Fc, Fd)]
. When was the latest game hosted? . Which country hosted the longest game before the game in Athens?
. How big is the country which hosted the shortest game? . How many people watched the earliest game that lasts for more days than the game in 1956?

Table 1: Example queries for each query type, with annotated SQL-like logical form templates

MIXTURED-25K MIXTURED-100K
SEMPRE N2N SbS N2N SbS

SELECT WHERE 93.8% 96.2% 99.7% 99.3% 100.0%
SUPERLATIVE 97.8% 98.9% 99.5% 99.9% 100.0%
WHERE SUPERLATIVE 34.8% 80.4% 94.3% 98.5% 99.8%
NEST 34.4% 60.5% 92.1% 64.7% 99.7%
Overall Accuracy 65.2% 84.0% 96.4% 90.6% 99.9%

Table 2: Accuracies on MIXTURED datasets
Learning NEURAL ENQUIRER can be trained in an end-to-end (N2N) fashion. Given a set of ND
query-table-answer triples D = {(Q(i), T (i), y(i))}, the model is optimized by maximizing the log-
likelihood of gold-standard answers:

LN2N(D) =
∑ND

i=1
log p(a = y(i)|Q(i), T (i)) (5)

The training can also be carried out with stronger guidance, i.e., step-by-step (SbS) supervision,
by softly guiding the learning process via controlling the attention weights w̃(·) in Eq. (1). As
an example, for Executor-1 in Figure 1, by biasing the attention weight of the host city field
towards 1.0, only the value of host city will be fetched and sent to the Annotator. In this way we
can “force” the executor to learn the where operation to find the row whose host city is Beijing.
Formally, this is done by introducing additional supervision signal to Eq. (5):

LSbS(D) =
∑ND

i=1
[log p(a = y(i)|Q(i), T (i)) + α

∑L−1

`=1
log w̃(f?i,`, ·, ·)] (6)

where α is a tuning weight, and L is the number of executors. f?i,` is the embedding of the field
known a priori to be used by Executor-` in answering the i-th example.

3 A SYNTHETIC QA TASK

We present a synthetic QA task with a large number of QA examples at various levels of complexity.
We generate two synthetic datasets, MIXTURED-25K and MIXTURED-100K. Each dataset consists
of query-table-answer triples {(Q(i), T (i), y(i))}. Tables are in size 10×10, and are sampled from a
synthetic schema of Olympic Games. We generate four types of NL queries at various compositional
depths (see Table 1), ranging from simple SELECT WHERE queries to more complex NEST ones.

We compare the performance of NEURAL ENQUIRER under N2N and SbS training settings with a
state-of-the-art semantic parser, SEMPRE (Pasupat & Liang, 2015). Results are listed in Table 2. On
MIXTURED-25K, the relatively low performance of SEMPRE indicates that our QA task, although
synthetic, is highly nontrivial. Under N2N setting, NEURAL ENQUIRER outperforms SEMPRE on all
types of queries, with significant gain on complex queries like WHERE SUPERLATIVE and NEST.
Under SbS setting, with stronger supervision, our model achieves nearly perfect accuracy.

To better understand the query execution process, we study the attention weights w̃(·) of Readers
(Eq. 1) for intermediate executors, and the answer probability (Eq. 4) given by the last executor.
Figure 3 visualizes the values for an example query Q1 in N2N setting. The reference logical form
Z1 indicates that Q1 involves five steps of execution. Each executor focuses on a specific type
of operation, similar as the example in Figure 1. However, the attention weights for the first two
executors are a bit obscure. We then investigate their corresponding values in SbS setting, and find
that they are perfectly centered on the ideal fields as highlighted in red dashed rectangles.

Q1: Which country hosted the longest game before the game in Athens?
Z1: where year < (select year,where host city=Athens), argmax(host country,# duration)

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0
0.2
0.4
0.6
0.8
1.0

Executor-1

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0
0.2
0.4
0.6
0.8
1.0

Executor-2

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0
0.2
0.4
0.6
0.8
1.0

Executor-3

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0
0.2
0.4
0.6
0.8
1.0

Executor-4

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n

Executor-5

Figure 3: Weights visualization of query Q1

3

Workshop track - ICLR 2016

REFERENCES

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase from
question-answer pairs. In EMNLP, pp. 1533–1544, 2013.

James Clarke, Dan Goldwasser, Ming-Wei Chang, and Dan Roth. Driving semantic parsing from
the world’s response. In CoNLL, pp. 18–27, 2010.

Percy Liang, Michael I. Jordan, and Dan Klein. Learning dependency-based compositional seman-
tics. In ACL (1), pp. 590–599, 2011.

Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. Neural programmer: Inducing latent programs
with gradient descent. CoRR, abs/1511.04834, 2015.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. In
ACL (1), pp. 1470–1480, 2015.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei hao Su, David Vandyke, and Steve J. Young.
Semantically conditioned lstm-based natural language generation for spoken dialogue systems.
In EMNLP, pp. 1711–1721, 2015.

4

	Introduction
	Model
	A Synthetic QA task

