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ABSTRACT

Canonical correlation analysis (CCA) is a fundamental négple in multi-view
data analysis and representation learning. Several reanlgxtensions of the clas-
sical linear CCA method have been proposed, including kemne deep neural
network methods. These approaches restrict attentionrtaicdamilies of non-
linear projections, which the user must specify (by chogsirkernel or a neural
network architecture), and are computationally demandimerestingly, the the-
ory of nonlinear CCA without any functional restrictiongshbeen studied in the
population setting by Lancaster already in the 50's. Howehese results, have
not inspired practical algorithms. In this paper, we rauisincaster’s theory, and
use it to devise a practical algorithm for nonparametric QGWKECA). Specifi-
cally, we show that the most correlated nonlinear projestiof two random vec-
tors can be expressed in terms of the singular value decatigposf a certain
operator associated with their joint density. Thus, byneating the population
density from data, NCCA reduces to solving an eigenvalutesyssuperficially
like kernel CCA but, importantly, without having to compuke inverse of any
kernel matrix. We also derive a partially linear CCA (PLCQAdriant in which
one of the views undergoes a linear projection while the rathaonparametric.
PLCCA turns out to have a similar form to the classical lin€&A, but with a
nonparametric regression term replacing the linear regmesn CCA. Using a
kernel density estimate based on a small number of nearigétotes, our NCCA
and PLCCA algorithms are memory-efficient, often run mucheg and achieve
better performance than kernel CCA and comparable perfocen deep CCA.

1 INTRODUCTION

A common task in data analysis is to reveal the common vditialin multiple views of the
same phenomenon, while suppressing view-specific noiseréacCanonical correlation analysis
(CCA) (Hotelling, 1936) is a classical statistical techrgcthat targets this goal. In CCA, linear
projections of two random vectors are sought, such thatekelting low-dimensional vectors are
maximally correlated. This tool has found widespread usaiious fields, including recent appli-
cation to natural language processing (Dhillon et al., 204deech recognition (Arora & Livescu,
2013), genomics (Witten & Tibshirani, 2009), and cross-alodtrieval (Gong et al., 2014).

One of the shortcomings of CCA is its restriction to lineampmiags, since many real-world multi-
view datasets exhibit highly nonlinear relationships. Veraome this limitation, several extensions
of CCA have been proposed for finding maximally correlatedlinearprojections. In kernel CCA
(KCCA) (Akaho, 2001; Melzer et al., 2001; Bach & Jordan, Z(l8drdoon et all, 2004), these non-
linear mappings are chosen from two reproducing kerneldtilspaces (RKHS). In deep CCA
(DCCA) (Andrew et al.| 2013), the projections are obtainexhf two deep neural networks that
are trained to output maximally correlated vectors. Noapwatric CCA-type methods, which are
not limited to specific function classes, include the aking conditional expectations (ACE) al-
gorithm (Breiman & Friedmari, 1985) and its extensions (Béshnan et al., 2012; Makur etial.,
2015). Nonlinear CCA methods are advantageous over lin€k @ a range of applications
(Hardoon et all, 2004; Melzer etlal., 2001; Wang et al., 201 5mwever, existing nonlinear CCA
approaches are very computationally demanding, and aea oftpractical to apply on large data.
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Interestingly, the problem of finding the most correlatedlim®ar projections of two random vari-
ables has been studiedlby Lancaster (1958) and Hannan (1&@&{pefore the derivation of KCCA,

DCCA and ACE. They characterized the optimal projectionth&population setting, without re-
stricting the solution to an RKHS or to have any particulaigpaetric form. However, these theo-
retical results have not inspired practical algorithms.

In this paper, we revisit Lancaster’s theory, and use it is#ea practical algorithm fanonpara-
metric CCA(NCCA). Specifically, we show that the solution to the noein CCA problem can be
expressed in terms of the singular value decomposition (3B certain operator, which is defined
via the population density. Therefore, to obtain a pratticethod, we estimate the density from
training data and use the estimate in the solution. The tieguhlgorithm reduces to solving an
eigenvalue system with a particular kernel that dependi®ioint distribution between the views.
While superficially similar to other eigenvalue methodss fundamentally different from them and
in particular has crucial advantages over KCCA. For exampitike KCCA, NCCA does not in-
volve computing the inverse of any matrix, making it compiotaally feasible on large data where
KCCA (even using approximation techniques) is impractive elucidate this and other contrasts
in Sec[B below. We show that NCCA achieves state-of-thesafopmance, while being much more
computationally efficient than KCCA and DCCA.

In certain situations, nonlinearity is needed for one viewnwot for the other. In such cases, it may
be advantageous to constrain the projection of the sec@wdtei be linear. An additional contribu-
tion of this paper is the derivation of a closed-form solatio thispartially linear CCA(PLCCA)
problem in the population setting. We show that PLCCA hasmsaly the same form as linear
CCA, but with the optimal linear predictor term in CCA repdaicby an optimal nonlinear predictor
in PLCCA. Thus, moving from the population setting to sang#éa entails simply using nonlinear
regression to estimate this predictor. The resulting @lgaris efficient and, as we demonstrate on
realistic data, sometimes matches NCCA and significantlyerforms CCA and KCCA.

In the following sections we review CCA and nonlinear exiens (Sec[P), derive NCCA and

PLCCA in the population setting and provide empirical aitjons (Sec[B), discuss related work
(Sec[#), and compare our algorithms to CCA/KCCA/DCCA eipentally on both synthetic and

real-world data (Se€] 5).

2 BACKGROUND

We start by reviewing the original CCA algorithin (Hotellint936). LetX € RP- andY € RP»
be two random vectors (views). The goal in CCA is to find a péif.edimensional projections
W/ X, WJ]Y that are maximally correlated, but where different dimensiwithin each view are
constrained to be uncorrelated. Assuming for notatiomapicity that X andY have zero mean,
the CCA problem can be written[as

T T T
Wnl%zlE{(fo) (WiY)] st E[(W]X) (W]X) |=E[(W]Y) (W]Y)'|-1 (@
where the maximization is ovdV, € RP-*L W, € RPv*L  This objective has been extensively
studied and is known to be optimal in several senses: It mag#ihe mutual information for certain
distributionsp(x,y) (Borga, 2001), maximizes the likelihood for certain lateatiable models
(Bach & Jordan, 2005), and is equivalent to the informatiottleneck method whep(x,y) is
Gaussian (Chechik etlal., 2005).

The CCA solution can be expressed ¥:, W») = (X,}/*U, 5, //*V), whereS,, = E[X X ],
2, =EYYT], 2, =EXYT],andU € RP-*L andV € RP»*L are the topL left and right
singular vectors of the matrif = ¥}/°%,, 2. !/? (see (Mardia et all, 1979)). In practice, the

joint distributionp(x, y) is rarely known, and only paired multi-view samplgi;,y;) Y, are
available, so the population covariances are replaceddiyeémpirical estimate$.

To facilitate the analogy with partially linear CCA (S&c2B.we note that the CCA solution can
also be expressed in terms of the optimal predictor (in themsguared error sense) &ffrom Y,

Here and throughout the paper, expectations are with respie joint distribution of all random variables
(capital letters) appearing within the square bracketh®kixpectation operatdr.

2Say ~ & SN xiy, and similarly fors,, and,,.
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given be = Emyz;}Y, and its covarianc®;; = Emyz;} 3,.. Specifically,U corresponds to

the eigenvectors K = TT' = X;1/?%;,5-1/2 and, by algebraic manipulation, the optimal
projections can be written as

WiX=UTS;2X, WJ]y=D iU x2X, @)
whereD is a diagonal matrix with the top eigenvalues oK on its diagonal.

Since the representation power of linear mappings is luiseveral nonlinear extensions of prob-
lem () have been proposed. These methods find two maximadiglatednonlinear projections
f:RP» - R andg : RPv — R by solving

T T T
(02X E[f(X)'g(Y)] st E[f(X)f(X)']=E[g}Y)g(y)'] =1, 3)
where. A and B are two families of (possibly nonlinear) measurable funtdi Observe that if
(f(x),g(y)) is a solution to[(B), the(Rf(x), Rg(y)) is also a solution, for any orthogonal matrix
R. This ambiguity can be removed by adding the additionaltaimssE[f;(X)g;(Y)] = 0, Vi # j
(seege.g.Hardoon et al. (2004)). Here we do not pursue this route, emglg focus on one solution
among this family of solutions.

Alternating conditional expectations (ACE): The ACE method|(Breiman & Friedman, 1985)
treats the case of a single projectidn € 1), whereB is the class of all zero-mean scalar-valued

functionsg(Y'), and.A is the class of additive model§ X) = ijl ~vede(Xe) with zero-mean
scalar-valued functions, (X,). The ACE algorithm minimizes the objecti\d (3) by iteratjveom-
puting the conditional expectation of each view given theeat Recently, Makur et al. (2015) ex-
tended ACE to multiple dimensions by whitening the vectaluedf(X) andg(Y") during each
iteration. In practice, the conditional expectations atngated from training data using nonpara-
metric regression. Since this computationally demandteg fias to be repeatedly applied until
convergence, ACE and its extensions are impractical toyapplarge data.

Kernedl CCA (KCCA): In KCCA (Lai& Fyfe, 2000; [Akahb,| 2001; Melzer etiall, 2001;
Bach & Jordan, 2002; Hardoon et al., 2004,and B are two reproducing kernel Hilbert spaces
(RKHSs) associated with user-specified kerrigl§, -) andk,(-,-). By the representer theorem,
the projections can be written in terms of the training sasglsf,(x) = Zf;l a; ok (x,%x;) and
a(y) = vazl Bi.cks(y,y:) with some coefficient§a; o} and{3; ¢}. Letting K, = [k, (x;,x;)]
andK, = [k,(yi,y;)] denote theN x N kernel matrices, the optimal coefficients can be com-
puted from the topL eigenvectors of the matrigk,, + r,I)"'K, (K, + r,I)"'K,, wherer,
andr, are positive regularization parameters. Computation efetkact solution is intractable for
large datasets due to the memory cost of storing the kernglams and the time complexity of
solving dense eigenvalue systems. Several approximat@itpes have been proposed, largely
based on low-rank kernel matrix approximations (William&&eger, 2001; Bach & Jordan, 2002;
Hardoon et all, 2004; Arora & Livescu, 2012; L opez-Paz e24l14).

Deep CCA (DCCA): In the more recently proposed DCCA approach (Andrew et 8039 A
and B are the families of functions that can be implemented usivig deep neural networks of
predefined architecture. As a parametric method, DCCA sdmd#er than approximate KCCA for
large datasets (Wang et al., 2015b).

Population solutions: |Lancaster|(1958) studied a variant of probléin (3), whdrandB are the
families of all measurable functions. This setting may seem too unragéricHowever, it turns
out that in the population setting, the optimal projectians well-defined even without imposing
smoothness in any way. Lancaster characterized the opfposasibly nonlinear) mappings and

g; for one-dimensionaX andY (D, = D, = 1). In particular, he showed that X, Y are jointly
Gaussian, then the optimal projections are Hermite polyatsm Eaglesan[ (1964) extended this
analysis to the Gamma, Poisson, binomial, negative binpmia hypergeometric distributions.
Hannah|(19€61) gave Lancaster’s characterization a fumatianalysis interpretation, which con-
firmed its validity also for multi-dimensional views.
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Our approach: Lancaster’s population solution has never been used fasidgva practical CCA
algorithm that works with sample data. Here, we revisit laster’s result, extend it to a semi-
parametric setting, and devise practical algorithms thatkwwith sample data. Clearly, in the
finite-sample setting, it is necessary to impose smoothn€sg approach to imposing smooth-
ness is different from KCCA, which formulates the problenpas of finding the optimal smooth
solution (in an RKHS) and then approximates it from sampldere, we first derive the optimal
solution among all (not necessarily smooth) measurabletims, and then approximate it by using
smoothed versions of the true densities, which we estintata flata. As we show, the resulting
algorithm has significant advantages over KCCA.

3 THE NONPARAMETRIC AND PARTIALLY LINEAR CCA ALGORITHMS

We treat the following two variants of the nonlinear CCA piah (3): (i) Nonparametric CCAn
which both.A andB are the sets of all (nonparametric) measurable functioijsPdrtially linear
CCA (PLCCA), in whichA is the set of all linear functionf(x) = W”x, andB is the set of
all (nonparametric) measurable functiagis/). We start by deriving closed-form solutions in the
population setting, and then plug in an estimatg(sf, y) obtained from training data.

3.1 NONPARAMETRICCCA (NCCA)

Let.A andB be the sets of all (nonparametric) measurable functiod ahdY’, respectively. Note
that the coordinates dfx) andg(y) are constrained to satisB]f?(X)] = E[¢g?(Y)] = 1, so that
we may write[[8) as an optimization problem over the Hilbgaaes

He={q:R”" 5 R| E[*(X)]<oo} and H,={u:RP" >R |EW*(Y) <oco}, (4)

which are endowed with the inner produgjsr)+, = Elg(X)r(X)] and(u,v)y, = Efu(Y)v(Y)].
To do so, we express the objectivelih (3) as

L
fi(x)gi(y)p(x,y)dxd i s(x d X)dx = i SYi)Ha s
Z/ )g:(y)p(x, y)dxcly = /f (/ (y)(y).w/)p() > 45 o
(5)
wheré
s(x,y) = 253 ®)

p(x)p(y)

andS : H, — H, is the operator defined BySu)(x) = [ u(y)s(x,y)p(y)dy. Thus, probleni(3)
can be wr|tten as

L
max Sgis )2 ,
Firfi) s =5i; Z;< Gis fi)n @
(9:.97) 1y =67 "=

whered;; is Kronecker’s delta function.

WhensS is a compact operator, the solution to probl€in (7) can bessged in terms of its SVD (see
e.g.,(Bollg,[2013, Proposition A.2.8)). Specifically, in thisses possesses a discrete set of singular
valuess; > o9 > ... and corresponding left and right singular functiahse H,, ¢; € H,, and
the maximal value of the objective inl(7) is precisely+ ... + o1 and is attained with

fi(x) = ¥i(x), gi(y) = ¢i(y)- (8)

That is, the optimal projections are the singular functiohS and the canonical correlations are its
singular valuesE[f;(X)g;(Y)] = o;.

*More formally,s(x, y) is the Radon-Nikodym derivative of the joint probability aseire w.r.t. the product
of the marginal measures, assuming the former is absolatelynuous w.r.t. the latter.

“To see thaSu € H, for everyu € H,, note that(Su)(x) = E[u(Y)|X = x|. Therefore, due to the
properties of the conditional expectatidi§ul3,, = E[(E[u(Y)|X])*] < E[u*(Y)] = HuHHy < o0.

4
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Before discussing the properties of the NCCA so- View 1 View 2
lution (8), let us mention several interesting inter-

pretations. First, note thabg s(x,y) is the point-

wise mutual informatiofPMI) betweenX andY, Li

which is a common measure of statistical depen- (y|a:)

dence. Since the optimal projections are the top sin- 4 py(—)l p(ylz;)
gular functions ofs(x,y), the NCCA solution may Lj P\ Ty)]

be interpreted as an embedding which preserves as

much of the (exponentiation of the) PMI betwee

X andY as possible. Second, note that the operaduré 1: In NCCA, the similarity:(x, x')
between p0|nts< andx’ in the domain of

tor S corresponds to theptimal predictor(in mean
S P op P ( ?Wl is given by the inner product between

square error sense) of one view based on the ot
as(Sg:)(x) = E[g:(Y)|X = x] and(S* f;)(y @%é functiong(y[x)/p(y) andp(y[x’)/p(y)

E[f:(X)|Y = y]. Therefore, the NCCA prOJect|0n gover the domain of view 2.

can also be thought of as approximating the best pre-

dictors of each view based on the other. Finally, note thilerahan using SVD, the NCCA solu-
tion can be also expressed in terms of gigen-decompositioof a certain operator. Specifically,
the optimal viewl projections are the eigenfunctions/6f= SS* (and the vievvz projections are

eigenfunctions of5*S), which is the operator defined B¥Cq)(x) = [ ¢(x) )p(x)dx, with
the kernel
N / . p(X, Y) p(X/, Y)
o) = Blse V50 = (L5550 ) (e ) ©

This shows that NCCA resembles other spectral dimensiyn&duction algorithms, in that the
projections are the eigenfunctions of some kernel. Howav&CCA, the kernel is not specified by
the user. Fronf{9), we see thatx, x’) corresponds to the inner product betwaéx, -) ands(x’, -)
(which can also be expressedidy|x)/p(y) andp(y|x’)/p(y)). Therefore, as visualized in Fig. 1,
in NCCA x is considered similar t&’ if the conditional distribution ot” given X = x is similar to
that of Y givenX = x'.

A sufficient condition forS to be compact is that it be a Hilbert-Schmidt operaiae,, that
ff| x,y)|?p(x)dx p(y)dy < oo. Substituting[(B), this condition can be equivalently venit as
s(X, Y)] < oo. This can be thought of as a requirement that the statisteéndence between
X andY should not be too strong. In this case, the singular vatydend to zero as tends to
oo. Furthermore, the largest singular valueSfs alwayses; = 1 and is associated with the con-
stant functiong);(x) = ¢1(y) = 1. To see this, note that for any pair of unit-norm functions
Y € Hy, ¢ € Hy, we have thatSe, v)y, = E[p(X)o(Y)] < E[W2(X)|E[#2(Y)] = 1 and this
bound is clearly attained with(x) = ¢(y) = 1. Thus, we see that the first nonlinear CCA projec-
tions are always constant functiofigx) = ¢1(y) = 1. These projections are perfectly correlated,
but carry no useful information on the common variabilityXnandY . Therefore, in practice, we
discard them. The rest of the projections are orthogondieditst and therefore have zero mean:

E[fe(X)] = E[ge(Y)] = 0for £ > 2.

3.2 FRARTIALLY LINEAR CCA (PLCCA)

The above derivation of NCCA can be easily adapted to casegich A and B are different
families of functions. As an example, we next derive PLCQOAwiich A is the set of allinear
functions of X while B is still the set of all (nonparametric) measurable funciofy”.

Let f(x) = W 'x, whereW e R”-*%. In this case, the constraint thB{f(X)f(X)'] = I
corresponds to the restriction th&{ ' ,, W = I. By changing variables t&% = 21/2W and

denoting theith column of W by w;, the constraint simplifies tér, W, = &;;. Furthermore, we
can write the objectivé (3) as

ZL:E[WZT z:;jxgi(y)} -

i=1 %

'M“

1
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whereSp : H, — RP= is the operator defined h§piu = X..1/% [E[X|Y = y] u(y)p(y)dy.
Therefore, Problen[(3) now takes the form

L
=T
max g w,; SpLgi, (11)
Wi W =6y
(9i,95) 1y =0ij

which is very similar to[(I7). Note that here the domain of tipem@torSp, is infinite dimensional
(the spacet,), but its range is finite-dimensional (the Euclidian sp&). Therefore Sp is
guaranteed to be compact without any restrictions on thme bbabilityp(x, y). The optimakv;s
are thus the tofd singular vectors ofp. and the optimay;s are the tof. right singular functions
of SpL.

The PLCCA solution can be expressed in more convenient fgrmoking that the optimadv;s are
also the topl eigenvectors of the matriKp, = Sp.Sp| , which is given by

Kp = E[(E;EE[XM) (E;EE[XM)T] D S0 > il (12)

Here,X;; = E[E[X|Y]E[X|Y]T] denotes the covariance &f = E[X|Y], the optimal predictor
of X fromY . Denoting the top. eigenvectors oKp, by U, and reverting the change of variables,
we get thatW = = 1/2U.

Having determined the optim#é{x) = W " x, we can compute the optimg(y) with the aid of the
following lemma.

Lemma 3.1. The functiorg optimizing(3) for a fixedf is given by

g(Y) = (E[EEX)YIEEX)Y]]) * EE(X)|Y], (13)
assuming that the matriR[E[f(X)|Y]E[f(X)|Y]T] is non-singular.
Substitutingf (x) = W x = UTE;j/Qx into (I3), we obtain that the partially linear CCA projec-
tions are given by

WIX=U'S;2X, gY)=D iU S 2X, (14)
whereD is the diagonall x L matrix that has the top eigenvalues oKp,_ on its diagonal.

Comparing[(I¥) with[{(R), we see that PLCCA has the exact same &s CCA. The only difference
is that hereX is the optimahonlinear predictorof X from Y (a nonlinear function ot’), whereas
in CCA, X corresponded to the best linear predicto’ofrom Y (a linear function ofY").

3.3 PRACTICAL IMPLEMENTATIONS

The NCCA and PLCCA solutions require knowing the joint proiity density p(x,y) of the
views. Given a set of training datdx;,y:)}~ ,; drawn independently from(x,y), we can es-
timatep(x,y) and plug it into our formulas. There are many ways of estingathis density. We
next present the algorithms resulting from using one paleicchoice, namely the kernel density
estimates (KDES)

—NZ w(lx—xl?/02) . ) =% wlly —yil*/s2).
—NZ w(|x —xil2/0? + [ly — yill?/02) (15)

wherew(t) o« e~*/2 is the Gaussian kernel, aad ando,, are the kernel widths of the two views.

We note that, theoretically, KDEs suffer from the curse ofieinsionality, and use of other density
estimation methods is certainly possible. However, we nhakeémportant observations. First, real-
world data sets often have low-dimensional manifold strrestand the accuracy of the KDE is af-
fected only by the intrinsic dimensionality. As shownlin gBin & Gray, 2009), if the data lies on an

°A simpler version of this lemma, in which(x) = y andg is linear, appeared in_Eldar & Oppenhkim
(2003). The proof of Lemmia_3.1 is provided in the Appendix &oitbws closely that of Eldar & Oppenheim
(2003, Theorem 1).
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r-dimensional manifold, then the KDE converges to the truesig at a rate @‘O(n‘ﬁ ). Indeed,
KDEs have been shown to work well in practice in relativelgthdimensions (Georgescu et al.,
2003), as is also confirmed in our experiments. Second, théAN&gorithm resulting from work-
ing with KDEs involves the same matrices used in KCCW{, WY in Alg. Il are K*, KY of
KCCA). Thus, at least intuitively, the amount of smoothnesgiired for obtaining accurate results
in high dimensions should be similar for NCCA and KCCA. HoegWCCA has a clear advantage
over KCCA in terms of both performance and computation.

PLCCA Using the above KDEs, the conditional expectatidy) = E[X|Y = y| needed for the
PLCCA solution [[1#) reduces to the Nadaraya-Watson nonpetric regression (Nadaraya, 1964;
Watson| 1964)

S w (ly - yill?/o2) x
SY L w(ly - yill2/02)

The population momentX;; = E[XXT] andX,, = E[XX ] can then be replaced by the
empirical moments ofx(y;)} and{x;}.

x(y) =

(16)

NCCA The quadratic formSy;, fi)#, is given byE[(Sg;)(X)f;(X)] and thus can be approxi-
mated by~ Zé\]:l(sgi)(Xg)f(Xg). Furthermore(Sg;)(x¢) is equal toE[s(x¢, Y)g:(Y)] and thus

can be approximated by Zfi:l (%0, Ym)9(¥m), Wheres(xs, ym) = %. Therefore,

defining theN x N matrix S = [s(x¢,ym)], and stacking the projections of the data points into
the N x 1 vectorsf; = —- T (fi(x1),. - Jilxn)) T andg; = \/Lﬁ(gi(YI)a---vgi(YN))T’ the

NCCA objectlve can be apprOX|mated l?}yzl £,"Sg;. Similarly, the NCCA constraints be-

comef, f; = g/ g = d;;. This implies that the optimd}, andg; are the topL singular vectors
of S. RecaII that in the continuous formulation, the first pairsofgular functions are constant
functions. Therefore, in practice, we compute the fog 1 singular vectors o8 and discard the
first one. To construct the matr& we use the kernel density estimates] (15) for joint and matgin
probability distributions ovefx, y).

The NCCA implementation, with the specific choice of Gaus#{#®Es, is given in Algorithni L.
If the input dimensionality is too high, we first perform PCA the inputs for more robust density
estimates. To make our algorithm computationally effigier truncate the Gaussian affinitiéé;;

to zero ifx; is not within thek-nearest neighbors of; (similarly for view 2). This leads to a sparse
matrix S, whose SVD can be computed eff|C|entIy

Note that the view 1 projections for training samples areivadently the eigenvectors dK =

SST ¢ RY*N which is a positive-definite kernel matrix. For a new teshpke x, in view of (3),

we can compute the kernel function betweesnd the training samples as (notice the corresponding
view 2 input ofx is not needed)

N
k(X)) = Y 5(%, ym)s(Xi Ym)- (17)
m=1

Therefore, to obtain the out-of-sample mapping for view 1le wan apply the Nystrom
method |(Williams & Seeger, 2001) to the ker#€land obtain

filx) =

Zk X Xn fz(xn) -

7,+l n=1 O-H”l

whereo; is theith singular value o8. The second equality follows from substitutingl(17) andhgsi
the fact thatf; andg; are singular vectors dé. Similarly, we apply the Nystrom method to the
kernelS TS to obtain the view 2 out-of-sample mapping. Note again timatesthe affinity matrices
are sparse, the mappings are computed via fast sparse maidtiglication.

®This requires normalizing the KDE differently, but the seglcancels outin(x,y) = p(x,y)/p(x)p(y).
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Algorithm 1 Nonparametric CCA with Gaussian KDE

Input: Multi-view training data{ (x;, y;)} ¥ ;, test samplex.
1: Construct affinity matrices for each view

p ll3ci —; || y lly: =yl
Wi« exp {— 557 , Wi < expq— 202 .

2: NormalizeW*¥ to be right stochastic an&?¥ to be left stochastid,e.,
N N
Wi« W5/ Wi, W, <—W§’j/zl:1W§’j.
3: Form the matrixS < W*WV,

4: ComputeU e RN*(I+1) v ¢ RVx(L+D) the firstL + 1 left and right singular vectors &.
Output: At train time, compute the projections of the training sa@s@s

fl(Xn)(— VNUn,i+17 gz(yn) $— VNVn7i+1, 7 = 1,...,L.
At test time, calculate a new row &V?® for x
llx—x;1° N
Wi, ¢ exp {_ xzfgj } ) Wit < Wi,/ 22 Wi

and a new row o8 asSy 1 + W, ; WY, and compute the projectionsefas

1

Oi+1

fi(x)

N
Z SNt1n 9i(yn), i=1,...,L,

n=1

whereg; is theith singular value of the original\| x N matrix) S.

Relationship with KCCA  Notice that NCCA is not equivalent to KCCA with any kernel. K&
requires two kernels, each of which only sees one view; th€NRernel [9) depends on both
views through their joint distribution. In terms of pra@iémplementation, our KDE-based NCCA
solves a different eigenproblem and does not involve arlynfiakrix inverses. Indeed, both meth-
ods compute the SVD of the matr@, ' W*WvQ,'. However, in NCCAQ., Q, are diagonal
matrices containing the sums of rows/columnd¥f /WY, whereas in KCCAQ, = W* + r,1,
Q, = W¥ 4+ r I, for some positive regularization parametegsr,. Moreover, in NCCA this
factorization gives the projections, whereas in KCCA itggithe coefficients in the RKHS.

An additional key distinction is that NCCA does not requiegularization in order to be well de-
fined. In contrast, KCCA must use regularization, as othewle matrix it factorizes collapses to
the identity matrix, and the resulting projections are niegless. This is due to the fact that KCCA
attempts to estimate covariances in the infinite-dimeradifeature space, whereas NCCA is based
on estimating probability densities in the primal space.

The resulting computational differences are striking. amber of training sample¥ is often such
that theN x N matrices in either NCCA or KCCA cannot even be stored in memtdowever, these
matrices are sparse, with oV entries if we retairk neighbors. Therefore, in NCCA the storage
problem is alleviated and matrix multiplication and eigeadmposition aré)(kN?) operations
instead ofO(N?). In KCCA, one cannot take advantage of truncated kernelitdfin because
of the need to compute the inverses of kernel matrices, wdnielin general not sparse, so direct
computation is often infeasible in terms of both memory amet Low-rank KCCA approximations
(as used in our experiments below) with ralkhave a time complexit@)(M? + M?N), which is
still challenging with typical ranks in the thousands ord@fithousands.

4 RELATED WORK

Several recent multi-view learning algorithms use prosluetsums of single-view affinity matri-
ces, diffusion matrices, or Markov transition matriceseTombined kernels constructed in these
methods resemble our mat&« = W*W?Y. Such an approach has been used, for example, for
multi-view spectral clustering (deSa, 2005; Zhou & Burg@307; Kumar et all, 2011), metric fu-
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(a) View 1 (b) View 2 (c) NKCCA (d) DCCA (e) PLCCA (fy NCCA

S

)
Figure 2: Dimensionality reduction obtained by nonline@AS on a synthetic dataset.

Table 1: Total canonical correlation on the XRMB 'JW11-sstteset and run time of each al-

gorithm. The maximum possible canonical correlation is {th2 view 2 input dimensionality).

PLCCA/NCCA run time is given as neighbor search time + opation time.

CCA | FKCCA | NKCCA | DCCA | PLCCA NCCA
Canon. Corr. 21.7 99.2 105.6 107.6 79.4 107.9

Run time (seconds) 2.3 510.7 1449.8 | 10044.0] 40.7 +0.8] 69.4+79.0

sion (Wang et all, 2012), common manifold learning (Leder&aalmon, 2014), and multi-view
nonlinear system identification (Boots & Gordon, 2012). &dtowever, that in NCCA the matrix
S corresponds to the produ®¥*W? only when using a separable Gaussian keffoglestimating
the joint densityp(x,y). If a non-separable density estimate is used, then the itamo longer
resembles the previously proposed multi-view kernelstHaumore, although algorithmically simi-
lar, NCCA arises from a completely different motivationniximizes the correlation between the
views, whereas these other methods do not.

5 EXPERIMENTS

In the following experiments, we compare PLCCA/NCCA withdar CCA, two kernel CCA
approximations using random Fourier features (denoted GXClLopez-Paz et al!, 2014)) and
Nystrom approximation (denoted NKCCA, (Williams & See@®01)) as described in (Wang et al.,
2015b), and deep CCA (Andrew et al., 2013) on several tasks.

[llustrative example We begin with the 2D synthetic dataset0(0 training samples) in
Fig.[2(a,b), where samples of the two input manifolds arereal according to their common degree
of freedom. Clearly, a linear mapping in view 1 cannot unfiblel manifold to align the two views,
and linear CCA indeed fails (results not shown). We extramt@-dimensional projection for each
view using different nonlinear CCAs, and plot the projeetjix) vs. g(y) of test data (a different
set 0f1000 random samples from the same distribution) in Elg. 2(c-f)c&the second view is es-
sentially a linear manifold (plus noise), for NKCCA we uséreehr kernel in view 2 and a Gaussian
kernel in view 1, and for DCCA we use a linear network for viewrd two hidden layers Gf12
ReLU units for view 1. Overall, NCCA achieves better aligmtef the views while compressing
the noise (variations not described by the common degreeedidm). While DCCA also succeeds
in unfolding the view 1 manifold, it fails to compress the i

X-Ray Microbeam Speech Data The University of Wisconsin X-Ray Micro-Beam (XRMB) cor-
pus (Westbury, 1994) consists of simultaneously recorgegch and articulatory measurements.
FollowinglAndrew et al.[(2013) and Lopez-Paz etlal. (20149,dcoustic view inputs are 39D Mel-
frequencey cepstral coefficients and the articulatory \wwgts are horizontal/vertical displacement
of 8 pellets attached to different parts of the vocal traathethen concatenated over a 7-frame con-
text window, for speaker 'JW11'. As in (Lopez-Paz et al., 2Dwe randomly shuffle the frames
and generate splits 80K /10K /11K frames for training/tuning/testing, and we refer to theutes
as the "JW11-s’ setup (random splits better satisfy thé.i@assumption of train/tune/test data than
splits by utterances as in (Andrew et al., 2013)). We extra2{) projections with each algorithm
and measure the total correlation between the two viewseofdaht set, after an additional2D
linear CCA. As in prior work, for both FKCCA and NKCCA we usenka6000 approximations
for the kernel matrices; for DCCA we use two RellU (Nair & Hint@010) hidden layers of width
1800/1200 for view 1/2 respectively and run stochastic optimizatiathvminibatch sizer50 as in
(Wang et al.| 2015a) fot00 epochs. Kernel widths for FKCCA/NKCCA, learning rate and-mo
mentum for DCCA, kernel widths and neighborhood sizes foQA@PLCCA are selected by grid
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Table 2: Clustering accuracy and SVM error rate on the noidif ST projected test set, and corre-
sponding run times. PLCCA/NCCA run time is given as kNN skdime + optimization time.
Baseline| CCA | FKCCA | NKCCA | DCCA | PLCCA | NCCA
Clust. Acc. (%) 47.1 72.3 95.6 96.7 99.1 98.4 99.2
Error Rate (%) 13.3 18.9 3.9 3.1 0.9 1.3 0.7

Runtime (sec)| 0 | 161.9| 1270.1 | 58903 | 16212.7| Yot | 9020

search based on total tuning set correlation. Sensitigityéir values is mild over a large range;
e.g.,setting the kernel widths to 30-60% of the samplenorm gives similarly good results. For
NCCA/PLCCA, input dimensionalities are first reduced by P@AR0% of the original ones (except
that PLCCA does not apply PCA for view 2 in order to extragfidD projection). The total corre-
lation achieved by each algorithm is given in Tale 1. We adgmmrt the running time (in seconds)
of the algorithms (measured with a single thread on a woatikstavith a 3.2GHz CPU and 56G
main memory), each using its optimal hyperparameters,meidding the time for exadt5-nearest
neighbor search for NCCA/PLCCA. Overall, NCCA achievesligst canonical correlation while
being much faster than the other nonlinear methods.

Noisy MNIST handwritten dig-
its dataset We now demonstrate NKCCA DCCA PLCCA NCCA

the algorithms on a noisy MNIST
dataset, generated identically to tha : W . _

%
of Wang et al. [(2015b) but with a
larger training set. View 1 inputs are
randomly rotated image2§ x 28,
gray scale) from the original MNIST [« o0
dataset/(LeCun et al., 1998), and the
corresponding view 2 inputs are rangigure 3: 2D visualization by t-SNE of projections of the
domly chosen images with the samggjsy MNIST test set.
identity plus additive uniform pixel
noise. We generattb0K/10K/10K
pairs of images for training/tuning/testing (Wang etla012b) uses &0 K -pair training set). This
dataset satisfies the multi-view assumption that givendhel| the views are uncorrelated, so that
the most correlated subspaces should retain class infaimand exclude the noise. Following
Wang et al.|(2015b), we extract a low-dimensional projectibthe view 1 images with each algo-
rithm, run spectral clustering to partition the splits intoclasses (with clustering parameters tuned
as in (Wang et al., 2015b)), and compare the clustering withind-truth labels and report the clus-
tering accuracy. We also train a one-vs.-one linear SVM (Qk&aLin, 2011) on the projections
with highest cluster accuracy for each algorithm (we revalaéls of 10% of the training set for
fast SVM training) and report the classification error raf€se tuning procedure is as for XRMB
except that we now select the projection dimensionalitynf{d 0, 20, 30}. For NCCA/PLCCA we
first reduce dimensionality tt00 by PCA for density estimation and exact nearest neighbackea
and use a randomized algorithm (Halko etlal., 2011) to comthg SVD of thed50K x 450K
matrix S; for RKCCA/NKCCA we use an approximation rank §00; for DCCA we use3 ReLU
hidden layers ofi500 units in each view and train with stochastic optimizatiom@hibatch size
4500. Clustering and classification results on the original 78&w 1 inputs are recorded as the
baseline. Tablel2 shows the clustering accuracy and clzetifin error rates on the test set, as well
as training run times, and Figuré 3 shows t-SNE embeddiraysder Maaten & Hinton, 2008) of
several algorithms with their optimal hyper-parameterCA and DCCA achieve near perfect
class separation.

1
2|
3|
4|
5|
6|
7|
8|
9

Discussion Several points are worth noting regarding the experimerfgrst, the computa-
tion for NCCA and PLCCA is dominated by the exact nearest lm®dg search; approximate
search|(Arya et all, 1998; Andoni & Indyk, 2006) should makeé¥/PLCCA much more effi-
cient. Second, we have not explored the space of choice®fity estimates; alternative choices,
such as adaptive kernel density estimates (Terrell & St882), could also further improve perfor-
mance. Our current choice of KDE would seem to require largeaihg sets for high-dimensional
problems. Indeed, with less training data we do observe p r@erformance, but NCCA still

10
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outperforms KCCA; for example, using a 50K subset of the MNI&ining set—an order of
magnitude less data—the classification error rates whery EKCCA/NKCCA/DCCA/NCCA are
5.9/5.2/2.9/4.7%.

6 CONCLUSION

We have presented closed-form solutions to the nonparan@@A (NCCA) and partially linear
CCA (PLCCA) problems. As opposed to kernel CCA, which restrihe nonparametric projections
to lie in a predefined RKHS, we have addressed the unconstfaietting. We have shown that
the optimal nonparametric projections can be obtained fiteenSVD of a kernel defined via the
pointwise mutual information between the views. This lei@ds simple algorithm that outperforms
KCCA and matches deep CCA on multiple datasets, while bemg@womputationally efficient than
either for moderate-sized data sets. Future work inclugleraging approximate nearest neighbor
search and alternative density estimates.
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A PROOF OoFLEMMA 3.1

Let the eigen-decomposition of the second-order moment E{f(X)Dj be
E[E[f(X)|Y]E[f(X)|[Y]"] = ADAT and definell = ATE[f(X)|Y] andg(Y) = ATg(Y).
Then the objective in[{3) can be written &f(X)'g(Y)] = E[E[f(X)|Y] gY) =
E[(ATE[f(X)|Y])T(ATg(Y))] = E[UTg(Y)]. Similarly, the constrainl = E[g(Y)g(Y)"]
can be expressed ds= ATA = E[(ATg(Y))(ATg(Y))"] = E[g(Y)g(Y)"]. Therefore, the
optimization problem(3) can be written in termsgs

max E[UTg(Y)] st Elg¥)gY)'| =L (18)

Our objective is the sum of correlations in élldimensions. Let us consider the correlation in the
jth dimension. From the Cauchy-Schwartz inequality, we have

E[U;3; (V)] < \/E[UZ] B3, )?] = \/E[U2]

with equality if and only ifg; (Y') = ¢;U; for some scalae; with probability 1. Note that choos-
ing eachg;(Y") to be proportional tdJ; is valid, since the dimensions &f are uncorrelated (as

E[UUT] = ATE[E[f(X)|Y]E[f(X)|Y]"] A = D). In order for eacty;(Y") to have unit second
order moment, we must have = 1/, /E[U?] = 1//D;;. Thereforeg(Y) = D~'/2U so that
g(Y)=AD 2 ATU = (E[E[f(X)|Y]E[f(X)|Y]T])~Y/2E[f(X)|Y], proving the lemma.
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