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ABSTRACT

With the greater proliferation of machine learning models, the imperative of diag-
nosing and correcting bugs in models has become increasingly clear. As a route to
better discover and fix model bugs, we propose failure scenarios: regions on the
data manifold that are incorrectly classified by a model. We propose an end-to-end
debugging framework called Defuse to use these regions for fixing faulty classifier
predictions. The Defuse framework works in three steps. First, Defuse identifies
many unrestricted adversarial examples—naturally occurring instances that are
misclassified—using a generative model. Next, the procedure distills the misclas-
sified data using clustering into failure scenarios. Last, the method corrects model
behavior on the distilled scenarios through an optimization based approach. We
illustrate the utility of our framework on a variety of image data sets. We find that
Defuse identifies and resolves concerning predictions while maintaining model
generalization.

1 INTRODUCTION

Debugging machine learning (ML) models is a critical part of the ML development life cycle. Un-
covering bugs helps ML developers make important decisions about both development and deploy-
ment. In practice, much of debugging uses aggregate test statistics (like those in leader board style
challenges [Rajpurkar et al. (2016)]) and continuous evaluation and monitoring post deployment
[Liberty et al. (2020), Simon (2019)]. However, additional issues arise with over-reliance on test
statistics. For instance, aggregate statistics like held out test accuracy are known to overestimate
generalization performance [Recht et al. (2019)]. Further, statistics offer little insight nor remedy
for specific model failures [Ribeiro et al. (2020); Wu et al. (2019)]. Last, reactive debugging of
failures as they occur in production does little to mitigate harmful user experiences [La Fors et al.
(2019)]. Several techniques exist for identifying undesirable behavior in machine learning models.
These methods include explanations [Ribeiro et al. (2016); Slack et al. (2020b); Lakkaraju et al.
(2019); Lundberg & Lee (2017)], fairness metrics [Feldman et al. (2015), Slack et al. (2020a)], data
set replication [Recht et al. (2019); Engstrom et al. (2020)], and behavioral testing tools [Ribeiro
et al. (2020)]. However, these techniques do not provide methods to remedy model bugs or require a
high level of human supervision. To enable model designers to discover and correct model bugs be-
yond aggregate test statistics, we analyze unrestricted adversarial examples: instances on the data
manifold that are misclassified [Song et al. (2018)]. We identify model bugs through diagnosing
common patterns in unrestricted adversarial examples.

In this work, we propose Defuse: a technique for debugging classifiers through distilling1

unrestricted adversarial examples. Defuse works in three steps. First, Defuse identifies unrestricted
adversarial examples by making small, semantically meaningful changes to input data using a vari-
ational autoencoder (VAE). If the classifier prediction deviates from the ground truth label on the
altered instance, it returns the data instance as a potential model failure. This method employs
similar techniques from [Zhao et al. (2018)]. Namely, small perturbations in the latent space of
generative models can produce images that are misclassified. Second, Defuse distills the changes
through clustering on the unrestricted adversarial example’s latent codes. In this way, Defuse diag-
noses regions in the latent space that are problematic for the classifier. This method produces a set of

1We mean distilling in the sense of “to extract the most important aspects of” and do not intend to invoke
the knowledge distillation literature [Hinton et al. (2014)].
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Figure 1: Running Defuse on a MNIST classifier. The (handpicked) images are examples from
three failure scenarios identified from running Defuse. The red digit in the upper right hand corner
of the image is the classifier’s prediction. Defuse initially identifies many model failures. Next,
it aggregates these failures in the distillation step for annotator labeling. Last, Defuse tunes the
classifier so that it correctly classifies the images, with minimal change in classifier performance.
Defuse serves as an end-to-end framework to diagnose and debug errors in classifiers.

clusters in the latent space where it is likely to find misclassified data. We call these localities failure
scenarios. An annotator reviews the failure scenarios and assigns the correct label— one label per
scenario. Third, Defuse corrects the model behavior on the discovered failure scenarios through
optimization. Because we use a generative clustering model to describe the failure scenarios, we
sample many unrestricted adversarial examples and finetune to fix the classifier. Critically, failure
scenarios are highly useful for model debugging because they reveal high level patterns in the way
the model fails. By understanding these consistent trends in model failures, model designers can
more effectively understand problematic deployment scenarios for their models.

To illustrate the usefulness of failure scenarios, we run Defuse on a classifier trained on MNIST and
provide an overview in figure 1. In the identification step (first pane in figure 1), Defuse generates
unrestricted adversarial examples for the model. The red number in the upper right hand corner of
the image is the classifier’s prediction. Although the classifier achieves high test set performance,
we find naturally occurring examples that are classified incorrectly. Next, the method performs the
distillation step (second pane in figure 1). The clustering model groups together similar failures
for annotator labeling. We see that similar mistakes are grouped together. For instance, Defuse
groups together a similar style of incorrectly classified eights in the first row of the second pane
in figure 1. Next, Defuse receives annotator labels for each of the clusters.2 Last, we run the
correction step using both the annotator labeled data and the original training data. We see that the
model correctly classifies the images (third pane in figure 1). Importantly, the model maintains its
predictive performance, scoring 99.1% accuracy after tuning. We see that Defuse enables model
designers to both discover and correct naturally occurring model failures.

We provide the necessary background in Defuse (§2). Next, we detail the three steps in Defuse:
identification, distillation, and correction (§3). We then demonstrate the usefulness of Defuse on
three image data sets: MNIST [LeCun et al. (2010)], the German traffic signs data set [Stallkamp
et al. (2011)], and the Street view house numbers data set [Netzer et al. (2011)], and find that Defuse
discovers and resolves critical bugs in high performance classifiers trained on these datasets (§4).

2 NOTATION AND BACKGROUND

In this section, we establish notation and background on unrestricted adversarial examples. Though
unrestricted adversarial examples can be found in many domains, we focus on Defuse applied to
image classification.

2We assign label 8 to the first row in the second pane of figure 1, label 0 to the second row, and label 6 to
the third row.
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Figure 2: Providing intuition for failure scenarios through a t-SNE visualization of the latent space
of MNIST. The black diamonds correspond to the latent codes of unrestricted adversarial examples.
The blue circles are the latent codes of images from the training set. The images are three decoded
latent codes (the red dots), where the red number in the left hand corner is the classifier label. We
see that there are regions with higher densities of adversarial examples

Unrestricted adversarial examples Let f : RN ! [0, 1]C denote a classifier that accepts a data
point x 2 X , where X is the set of legitimate images. The classifier f returns the probability that
x belongs to class c 2 {1, ..., C}. Next, assume f is trained on a data set D consisting of d tuples
(x, y) containing data point x and ground truth label y using loss function L. Finally, suppose there
exists an oracle o : x 2 X ! {1, ..., C} that outputs a label for x. We define unrestricted adversarial
examples as the set AN := {x 2 X | o(x) 6= f(x)} [Song et al. (2018)].

Variational Autoencoders (VAEs) In order to discover unrestricted adversarial examples, it is
necessary to model the set of legitimate images. We use a VAE to create such a model. A VAE
is composed of an encoder and a decoder neural networks. These networks are used to model the
relationship between data x and latent factors z 2 RK . Where x is generated by some ground truth
latent factors v 2 RM , we wish to train a model such that the learned generative factors closely
resemble the true factors: p(x|v) ⇡ p(x|z). In order to train such a model, we employ the �-VAE
[Higgins et al. (2017)]. This technique produces encoder q�(z|x) that maps from the data and latent
codes and decoder p✓(x|z) that maps from codes to data.

3 METHODS

3.1 FAILURE SCENARIOS

We begin by formalizing our notion of failure scenarios. Let z 2 RK be the latent codes corre-
sponding to image x 2 X and q�(·) : x ! z be the encoder mapping the relationship between
images and latent codes.
Definition 3.1. Failure scenario. Given a constant ✏ > 0, vector norm || · ||, and point z0, a failure
scenario is a set of images AR = {x 2 X | ✏ > ||q�(x)� z0|| ^ o(x) 6= f(x)}.

Previous works that investigate unrestricted adversarial examples look for specific instances where
the oracle and the model disagree [Song et al. (2018); Zhao et al. (2018)]. We instead look for
regions in the latent space where this is the case. Because the latent space of the VAE tends to take
on Gaussian form due to the prior, we can use euclidean distance to define these regions. If we
were to define failure scenarios on the original data manifold, we may need a much more complex
distance function. Because it is likely too strict to assume the oracle and model disagree on every
instance in such a region, we also introduce a relaxation.
Definition 3.2. Relaxed failure scenario. Given a constant ✏ > 0, vector norm || · ||, point z0, and
threshold ⇢, a relaxed failure scenario is a set of images Af = {x 2 X | ✏ > ||q�(x) � z0||} such
that |{x 2 Af | o(x) 6= f(x)}| / |Af | > ⇢.

In this work, we adopt the latter definition of failure scenarios. To concretize failure scenarios and
provide evidence for their existence, we continue our MNIST example from figure 1. We plot the
t-SNE embeddings of the latent codes of 10000 images from the training set and 516 unrestricted
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adversarial examples created during the identification step in figure 2 (details of how we generate
unrestricted adversarial examples in section 3.2.1). We see that the unrestricted adversarial examples
are from similar regions in the latent space.

3.2 DEFUSE

In this section, we introduce Defuse: our procedure for identifying and correcting classifier per-
formance on failure scenarios. First, we explain how we identity unrestricted adversarial examples
using VAEs. Next, we describe our clustering approach that distills these instances into failure
scenarios. Last, we introduce our approach to correct classifier predictions on the failure scenarios.

3.2.1 IDENTIFYING UNRESTRICTED ADVERSARIAL EXAMPLES

This section describes the identification step in Defuse (first pane in figure 1). The aim of the iden-
tification step is to generate many unrestricted adversarial examples. In essence, we encode all
the images from the training data. We perturb the latent codes with a small amount of noise drawn
from a Beta distribution. We save instances that are classified differently from ground truth by f
when decoded. By perturbing the latent codes with a small amount of noise, we expect the decoded
instances to have small but semantically meaningful differences from the original instances. Thus,
if the classifier prediction deviates on the perturbation the instance is likely misclassified. We de-
note the set of unrestricted adversarial examples for a single instance  . We generate unrestricted
adversarial examples over each instance x 2 X producing a set of unrestricted adversarial  con-
taining the  produced for each instance x. Pseudo code of the algorithm for generating a single
unrestricted adversarial example is given in algorithm 1 in appendix A.

Our technique is related to the method for generating natural adversarial examples from [Zhao
et al. (2018)] — a very similar but slightly different concept from unrestricted adversarial examples.
The authors use a similar stochastic search method in the latent space of a GAN. They start with a
small amount of noise and increase magnitude of the noise until they find a unrestricted adversarial
example. Thus, they save only the unrestricted adversarial examples which are minimally distant
from a data point. They also save images that differ in prediction from the original decoded instance.
Because we iterate over the entire data set, it is simpler to keep the level of noise fixed and sample
a predetermined number of times. In addition, we save images that differ in ground truth label from
the original decoded instance because we seek to debug a classifier. Meaning, if the original instance
is misclassified we wish to save this instance as a model failure.

3.2.2 DISTILLING FAILURE SCENARIOS

This section describes the distillation step in defuse (second pane of figure 1). The goal of the
distillation step is to cluster the latent codes of the set of unrestricted adversarial examples  in
order to diagnose failure scenarios. We require our clustering method to (1) infer the correct number
of clusters from the data and (2) be capable of generating instances of each cluster. We need to infer
the number of clusters from the data because the number of failure scenarios are unknown ahead of
time. Further, we must be capable of generating many instances from each cluster so that we have
enough data to finetune on in order to correct the faulty model behavior. In addition, generating
many failure instances enables model designers to see numerous examples from the failure scenarios,
which encourages understanding of the model failure modes. Though any such clustering method
that fits this description could be used for distillation, we use a Gaussian mixture model (GMM)
with Dirichlet process prior. We use the Dirichlet process because it nicely describes the clustering
problem where the number of mixtures is unknown before hand, fulfilling our first criteria [Sudderth
(2006)]. Additionally, because the model is generative, we can sample new instances, which satisfies
our second criteria.

In pratice, we use the truncated stick breaking construction of the dirchlet process, where K is
the upper bound of the number of mixtures. The truncated stick breaking construction simplifies
inference making computation more efficient [Sudderth (2006)]. The method outputs a set of clusters
✓j = (µj ,�j ,⇡j) where j 2 {1, ...,K}. The parameters µ and � describe the mean and variance
of a multivariate normal distribution and ⇡ indicates the cluster weight. To perform inference on
the model, we employ expectation maximization (EM) described in [Bishop (2006)] and use the
implementation provided in [Pedregosa et al. (2011)]. Once we run EM and determine the parameter
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Figure 3: Samples from three failure scenarios from each dataset. First row: The MNIST failure
scenarios. These scenarios were labeled 4, 2, 6 in order from left to right. Second row: The
SVHN failure scenarios labeled 5, 8, and 5 from left to right. Third row: The German signs failure
scenarios. The label 1 corresponds to 30km/h, 2 to 50km/h, and 5 to 80km/h. The first and second
were labeled 2 while the third was labeled 1. Defuse finds significant bugs in the classifiers.

values, we throw away cluster components that are not used by the model. We fix some small ✏ and
define the set of failure scenarios ⇤ generated at the distillation step as: ⇤ := {(µj ,⌃j ,⇡j)|⇡j > ✏}.

3.2.3 CORRECTING FAILURE SCENARIOS

Labeling First, an annotator assigns the correct label to the failure scenarios. For each failure
scenario identified in ⇤, we sample Q latent codes from z ⇠ N (µj , ⌧ · �j). Here, ⌧ 2 R is a
hyperparameter that controls the diversity of samples from the failure scenario. Because it could be
possible for multiple ground truth classes to be present in a failure scenario, we set this parameter
tight enough such that the sampled instances are from the same class to make labeling easier. We
reconstruct the latent codes using the decoder p✓(x|z). Next, an annotator reviews the reconstructed
instances from the scenario and decides whether the scenario constitutes a model failure. If so, the
annotator assigns the correct label to all of the instances. The correct label constitutes a single label
for all of the instances generated from the scenario. We repeat this process for each of the scenarios
identified in ⇤ and produce a dataset of failure instances Df . Pseudo code for the procedure is given
in algorithm 2 in appendix A.

Finetuning We finetune on the training data with an additional regularization term to fix the clas-
sifier performance on the failure scenarios. The regularization term is the cross entropy loss between
the identified failure scenarios and the annotator label. Where CE is the cross entropy loss applied
to the failure instances Df and � is the hyperparameter for the regularization term, we optimize
the following objective using gradient descent: F(D,Df ) = L(D) + � · CE(Df ). This objective
encourages the model to maintain its predictive performance on the original training data while en-
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couraging the model to predict the failure instances correctly. The regularization term � controls the
pressure applied to the model to classify the failure instances correctly.

4 EXPERIMENTS

4.1 SETUP

Datasets We evaluate Defuse on three datasets: MNIST [LeCun et al. (2010)], the German Traffic
Signs dataset [Stallkamp et al. (2011)], and the Street view house numbers dataset (SVHN) [Netzer
et al. (2011)]. MNIST consists of 60, 000 32X32 handwritten digits for training and 10, 000 digits
for testing. The images are labeled corresponding to the digits 0� 9. The German traffic signs data
set includes 26, 640 training and 12, 630 testing images of size 128X128. We randomly split the
testing data in half to produce a validation and testing set. The images are labeled from 43 different
classes to indicate the type of traffic signs. The SVHN data set consists of 73, 257 training and
26, 032 testing images of size 32X32. The images include digits of house numbers from Google
streetview with labels 0� 9. We split the testing set in half to produce a validation and testing set.

Models On MNIST, we train a CNN scoring 98.3% test set accuracy following the architecture from
[Paszke et al. (2019)]. On German traffic signs and SVHN, we finetune a Resnet18 model pretrained
on ImageNet [He et al. (2016)]. The German signs and SVHM models score 98.7% and 93.2% test
accuracy respectively. We train a �-VAE on all available data from each data set to model the set
of legitimate images in Defuse. We use an Amazon EC2 P3 instance with a single NVIDIA Tesla
V100 GPU for training. We follow similar architectures to [Higgins et al. (2017)]. We set the size
of the latent dimension z to 10 for MNIST/SVHN and 15 for German signs. We provide our �-VAE
architectures in appendix B.

Defuse In the identification step, we fix the parameters of the Beta distribution noise a and b to
a = b = 50.0 for MNIST and a = b = 75.0 for SVHN and German signs. We found these
parameters were good choices because they produce a very small amount of perturbation noise
making the decoded instance only slightly different than the original instance. During distillation,
we set the upper bound on the number of components K to 100. We generally found the actual
number of clusters to be much lower than this level. Thus, this serves as an appropriate upper
bound. We also fixed the weight threshold for clusters ✏ to 0.01 during distillation in order to
remove clusters with very low weighting. We additionally randomly down sample the number of
unrestricted adversarial examples to 50, 000 to make inference of the GMM more efficient. For
correction, we sample finetuning and testing sets consisting of 256 images each from every failure
scenario. This number of samples captures the breadth of possible images in the scenario, so it is
appropriate for tuning and evaluation. We use the finetuning set as the set of failure instances Df .
We use the test set as held out data for evaluating classifier performance on the failure scenarios after
correction. During sampling, we fix the sample diversity ⌧ to 0.5 for MNIST and 0.01 for SVHN
and German signs because the samples from each of the failure scenarios appear to be in the same
class using these values. We finetune over a range of �’s in order to find the best balance between
training and failure scenario data. We use 3 epochs for MNIST and 5 for both SVHN and German
Signs because training converged within both these time frames. During finetuning, we select the
model for each � according to the highest training set accuracy for MNIST or validation set accuracy
for SVHM and German traffic signs at the end of each finetuning epoch. We select the best model
overall as the highest training or validation performance over all �’s.

Annotator Labeling Because Defuse requires human supervision, we use Amazon Sagemaker
Ground Truth to both determine whether clusters generated in the distillation step are failure scenar-
ios and to generate their correct label. In order to determine whether clusters are failure scenarios,
we sample 10 instances from each cluster in the distillation step. It is usually apparent the classifier
disagrees with many of the ground truth labels within 10 instances, and thus it is appropriate to label
the cluster as a failure scenario. For example, in figure 3 it is generally clear the classifier incor-
rectly predicts the data within only a few examples. As such, 10 instances is a reasonable choice.
To reduce noise in the annotation process, we assign the same image to 5 different workers and take
the majority annotated label as ground truth. The workers label the images using an interface that
includes a single image and the possible labels for that task. We additionally instruct workers to
select “None of the above” if the image does not belong to any class and discard these labels. For
instance, the MNIST interface includes a single image and buttons for the digits 0� 9 along with a
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Dataset # Scenarios Validation Test Failure Scenario

Before Finetuning
MNIST - - 98.3 29.1
SVHN - 93.6 93.2 31.2
German Signs - 98.8 98.7 27.8

Unrestricted MNIST - - 99.1 58.3
Adversarial Examples SVHN - 93.1 92.9 65.4

German Signs - - - -

Defuse
MNIST 19 - 99.1 96.4
SVHN 6 93.0 92.8 99.9
German Signs 8 98.1 97.7 85.6

Figure 4: Results from the best models before finetuning, finetuning only on the unrestricted adver-
sarial examples, and finetuning using Defuse. The numbers presented are accuracy on the validation,
test set, and failure scenario test set and the absolute number of failure scenarios generated using
Defuse. We do not include finetuning on the unrestricted adversarial examples for German Signs
because we, the authors, assigned failure scenarios for this data set and thus do not have ground
truth labels for individual examples. Critically, the test accuracy on the failure scenarios is high for
Defuse indicating that the method successfully corrects the faulty behavior.

“None of the above” button. We provide a screen shot of this interface in figure 14. If more than half
(i.e. setting ⇢ = 0.5) of worker labeled instances disagree with the classifier predictions on the 10
instances, we call the cluster a failure scenario. We chose ⇢ = 0.5 because clusters are highly dense
with incorrect predictions at this level, making them useful for both understanding model failures
and worthwhile for correction. We take the majority prediction over each of the 10 ground truth
labels as the label for the failure scenario. As an exception, annotating the German traffic signs data
requires specific knowledge of traffic signs. The German traffic signs data ranges across 43 different
types of traffic signs. It is not reasonable to assume annotators have enough familiarity with this
data and can label it accurately. For this data set, we, the authors, reviewed the distilled clusters and
determined which clusters constituted failure scenarios. We labeled the cluster a failure scenario if
half the instances appeared to be misclassified.

4.2 ILLUSTRATIVE FAILURE SCENARIO EXAMPLES

We demonstrate the potential of Defuse for identifying critical model bugs. We review failure sce-
narios produced in the three datasets we consider. All together, Defuse produces 19 failure scenarios
for MNIST, 6 for SVHN, and 8 for German signs. For each dataset, we provide samples from three
failure scenarios in figure 3. The failure scenarios include numerous mislabeled examples. Each
failure scenario is composed of mislabeled examples of a similar style. For example, in MNIST,
the failure scenario in the upper left hand corner of figure 3 includes a similar style of 4’s that are
generally predicted incorrectly. The same is true for the failure scenarios in the center and right
column where a certain style of 2’s and 6’s are mistaken. The failure scenarios generally include
images which seem difficult to classify. For instance, the misclassified 6’s are quite thin making
them appear like 1’s in some cases. There are similar trends in SVHN and German Signs. In SVHN,
particular types of 5’s and 8’s are misclassified. The same is true in German signs where styles of
50km/h and 30km/h signs are predicted incorrectly. Generally, these methods reveal important bugs
in each of the classifiers. It is clear from the MNIST example for instance that very skinny 6’s are
challenging for the classifier to predict correctly. Further, the German signs classifier has a difficult
time with 50km/h signs and tends to frequently mistake them as 80km/h. We provide further sam-
ples from other failure scenarios in appendix D. These results clearly demonstrate Defuse reveals
insightful model bugs which are useful for model designers to understand.

4.3 CORRECTING FAILURE SCENARIOS

We show that Defuse resolves the failure scenarios while maintaining model generalization on the
test set. To perform this analysis, we assess accuracy on both the failure scenario test data and test set
after correction. It is important for classifier accuracy to improve on the failure scenario data in order
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(a) MNIST (b) SVHN (c) German Signs

Figure 5: The tradeoff between test set and failure scenario accuracy running correction. We
assess both test set accuracy and accuracy on the test failure scenario data finetuning over a range of
�’s and plot the trade off. There is an optimal � for each classifier where test set and failure scenario
accuracy are both high. This result confirms that the correction step in Defuse adequately balances
both generalization and accuracy on the failure scenarios .

to correct the bugs discovered while running Defuse. At the same time, the classifier accuracy on the
test set should stay at a similar level or improve indicating that model generalization according to
the test set is still strong. We compare Defuse against finetuning only on the unrestricted adversarial
examples labeled by annotators. We expect this baseline to be reasonable because related works
which focus on robustness to classic adversarial attacks demonstrate that tuning directly on the
adversarial examples is effective [Zhang et al. (2019)]. We finetune on the unrestricted adversarial
examples sweeping over a range of different �’s in the same way as Defuse described in section 4.1.
We use this baseline for MNIST and SVHN and not German signs because we, the authors, assigned
the failure scenarios for this data set. Thus, we do not have ground truth labels for unrestricted
adversarial examples.

We provide an overview of the models before finetuning, finetuning with the unrestricted adversar-
ial examples, and using Defuse in figure 4. Defuse scores highly on the failure scenario data after
correction compared to before finetuning. There is only marginal improvement finetuning on the un-
restricted adversarial examples. These results indicate Defuse corrects the faulty model performance
on the identified failure scenarios. Further, we see the clustering step in Defuse is critical to its suc-
cess because of the technique’s superior performance compared to finetuning on the unrestricted
adversarial examples. In addition, there are minor effects on test set performance during finetuning.
The test set accuracy increases slightly for MNIST and decreases marginally for SVHN and German
Signs for both tuning on the unrestricted adversarial examples and using Defuse. Though the test set
performance changes marginally, the increased performance on the failure scenarios demonstrates
Defuse’s capacity to correct important model errors. Further, we plot the relationship between test
set accuracy and failure scenario test accuracy in figure 5. We generally see there is an appropriate �
for each model where there is both high test set performance and accuracy on the failure scenarios.
All in all, these results indicate Defuse serves as an effective method for correcting specific cases of
faulty classifier performance while maintaining model generalization.

4.4 ANNOTATOR AGREEMENT

Because we rely on annotators to provide the ground truth labels for the unrestricted adversarial
examples, we investigate the agreement between the annotators during labeling. It is important
for the annotators to agree on the labels for the unrestricted adversarial examples so that we can
have high confidence our evaluation is based on accurately labeled data. We evaluate the annotator
agreement through assessing the percent of annotators that voted for the majority label prediction
in an unrestricted adversarial example across all the annotated examples. This metric will be high
when the annotators are in consensus and low when only a few annotators constitute the majority
vote. We provide the annotator agreement on MNIST and SVHN in figure 6 broken down into
failure scenario data, non-failure scenario data, and their combination. Interestingly, the failure
scenario data has slightly lower annotator agreement indicating these tend to be more ambiguous
examples. Further, there is lower agreement on SVHN than MNIST, likely because this data is more
complex. All in all, there is generally high annotator agreement across all the data.
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Dataset Failure Scenario Non-Failure Scenario Combined

MNIST 78.9.3± 5.4 87.2± 3.2 85.2± 0.1
SVHN 66.6± 8.4 83.2± 4.1 82.1± 1.3

Figure 6: Annotator agreement on the unrestricted adversarial examples. We plot the mean and
standard error of the percent of annotators that voted for the majority label in an unresricted adver-
sarial example across all the annotated examples. We break this down into the failure scenario and
non-failure scenario unrestricted adversarial examples and the combination between the two. The
annotators are generally in agreement though less so for the failure scenario data, indicating these
tend to be more ambiguous examples.

5 RELATED WORK

A number of related approaches for improving classifier performance use data created from gener-
ative models — mostly generative adversarial networks (GANs) [Sandfort et al. (2019); Milz et al.
(2018); Antoniou et al. (2017)]. These methods use GANs to generate instances from classes that
are underrepresented in the training data to improve generalization performance. Additional meth-
ods use generative models for semi-supervised learning [Kingma et al. (2014); Varma et al. (2016);
Kumar et al. (2017); Dumoulin et al. (2016)]. Though these methods are similar in nature to the
correction step of our work, a key difference is Defuse focuses on summarizing and presenting high
level model failures. Also, [Varma et al. (2017)] provide a system to debug data generated from
a GAN when the training set may be inaccurate. Though similar, we ultimately use a generative
model to debug a classifier and do not focus on the generative model itself. Last, similar to [Song
et al. (2018), Zhao et al. (2018)], [Booth et al. (2020)] provide a method to generate highly confident
misclassified instances.

Related to debugging models, [Kang et al. (2018)] focus on model assertions that flag failures during
production. Also, [Zhang et al. (2018)] investigate debugging the training set for incorrectly labeled
instances. We focus on preemptively identifying model bugs and do not focus on incorrectly labeled
test set instances. Additionally, [Ribeiro et al. (2020)] propose a set of behavioral testing tools that
help model designers find bugs in NLP models. This technique requires a high level of supervision
and thus might not be appropraite in some settings. Last, [Odena et al. (2019)] provide a technique
to debug neural networks through perturbing data inputs with various types of noise. By leveraging
unrestricted adversarial examples, we distill high level patterns in critical and naturally occurring
model bugs. This technique requires minimal human supervision while presenting important types
of model errors to designers.

6 CONCLUSION

In this paper, we present Defuse: a method that generates and aggregates unrestricted adversarial
examples to debug classifiers. Though unrestricted adversarial examples have been proposed in pre-
vious works, we harness such examples for the purpose of debugging classifiers. We accomplish
this task through identifying failure scenarios: regions in the latent space of a VAE with many unre-
stricted adversarial examples. On a variety of data sets, we find that samples from failure scenarios
are useful in a number of ways. First, failure scenarios are informative for understanding the ways
certain models fail. Second, the generative aspect of failure scenarios is very useful for correcting
failure scenarios. In our experimental results, we show that these failure scenarios include critical
model issues for classifiers with real world impacts — i.e. traffic sign classification — and verify our
results using ground truth annotator labels. We demonstrate that Defuse successfully resolves these
issues. Although Defuse identifies important errors in classifiers, the technique requires a minimal
level of human supervision. Namely, the failure scenarios must be reviewed before correction. In
the future, it will be crucial to investigate automatic ways of reviewing failure scenarios.

REFERENCES

Antreas Antoniou, Amos Storkey, and Harrison Edwards. Data augmentation generative adversarial
networks. International Conference on Artificial Neural Networks and Machine Learning, 2017.

9



Under review as a conference paper at ICLR 2021

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statis-
tics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

Serena Booth, Yilun Zhou, Ankit Shah, and Julie Shah. Bayes-trex: Model transparency by example.
arXiv, 2020.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Ar-
jovsky, and Aaron Courville. Adversarially learned inference. ICLR, 2016.

L. Engstrom, Andrew Ilyas, Shibani Santurkar, D. Tsipras, J. Steinhardt, and A. Madry. Identifying
statistical bias in dataset replication. ICML, 2020.

Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasub-
ramanian. Certifying and removing disparate impact. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’15, pp. 259–268,
New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450336642. doi:
10.1145/2783258.2783311. URL https://doi.org/10.1145/2783258.2783311.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

Irina Higgins, Loı̈c Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew M Botvinick,
Shakir Mohamed, and Alexander Lerchner. �-VAE: Learning basic visual concepts with a con-
strained variational framework. In ICLR, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network. In
NeurIPS Deep Learning and Representation Learning Workshop, 2014. URL http://arxiv.
org/abs/1503.02531.

Daniel Kang, D. Raghavan, Peter Bailis, and M. Zaharia. Model assertions for debugging machine
learning. Debugging Machine Learning Models, 2018.

Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 27, pp. 3581–
3589. Curran Associates, Inc., 2014.

Abhishek Kumar, Prasanna Sattigeri, and Tom Fletcher. Semi-supervised learning with gans: Man-
ifold invariance with improved inference. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing
Systems 30, pp. 5534–5544. Curran Associates, Inc., 2017.

Karolina La Fors, Bart Custers, and Esther Keymolen. Reassessing values for emerging big data
technologies: integrating design-based and application-based approaches. Ethics and Information
Technology, 21(3):209–226, Sep 2019. ISSN 1572-8439. doi: 10.1007/s10676-019-09503-4.
URL https://doi.org/10.1007/s10676-019-09503-4.

Himabindu Lakkaraju, Ece Kamar, Rich Caruana, and Jure Leskovec. Faithful and customizable
explanations of black box models. In Proceedings of the 2019 AAAI/ACM Conference on AI,
Ethics, and Society, pp. 131–138. ACM, 2019.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Edo Liberty, Zohar Karnin, Bing Xiang, Laurence Rouesnel, Baris Coskun, Ramesh Nallapati,
Julio Delgado, Amir Sadoughi, Yury Astashonok, Piali Das, Can Balioglu, Saswata Chakravarty,
Madhav Jha, Philip Gautier, David Arpin, Tim Januschowski, Valentin Flunkert, Yuyang Wang,
Jan Gasthaus, Lorenzo Stella, Syama Rangapuram, David Salinas, Sebastian Schelter, and Alex
Smola. Elastic machine learning algorithms in amazon sagemaker. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, SIGMOD ’20, pp. 731–737,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450367356. doi:
10.1145/3318464.3386126. URL https://doi.org/10.1145/3318464.3386126.

10

https://doi.org/10.1145/2783258.2783311
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://doi.org/10.1007/s10676-019-09503-4
https://doi.org/10.1145/3318464.3386126


Under review as a conference paper at ICLR 2021

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predic-
tions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems 30, pp.
4765–4774. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.pdf.

Stefan Milz, Tobias Rudiger, and Sebastian Suss. Aerial ganeration: Towards realistic data augmen-
tation using conditional gans. In Proceedings of the European Conference on Computer Vision
(ECCV) Workshops, September 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. TensorFuzz: Debugging
neural networks with coverage-guided fuzzing. volume 97 of Proceedings of Machine Learning
Research, pp. 4901–4911, Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL http:
//proceedings.mlr.press/v97/odena19a.html.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Mnist example pytorch. 2019.
URL https://github.com/pytorch/examples.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 2383–2392, Austin, Texas, November 2016. Association
for Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https://www.aclweb.
org/anthology/D16-1264.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet classifiers
generalize to ImageNet? volume 97 of Proceedings of Machine Learning Research, pp. 5389–
5400, Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL http://proceedings.
mlr.press/v97/recht19a.html.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond accuracy:
Behavioral testing of NLP models with CheckList. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp. 4902–4912, Online, July 2020. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.442. URL https:
//www.aclweb.org/anthology/2020.acl-main.442.

Veit Sandfort, Ke Yan, Perry J. Pickhardt, and Ronald M. Summers. Data augmentation using
generative adversarial networks (cyclegan) to improve generalizability in ct segmentation tasks.
Scientific Reports, 9(1):16884, Nov 2019. ISSN 2045-2322. doi: 10.1038/s41598-019-52737-x.
URL https://doi.org/10.1038/s41598-019-52737-x.

Julien Simon. Amazon sagemaker model monitor – fully managed automatic monitoring for your
machine learning models. AWS News Blog, dec 2019.

Dylan Slack, Sorelle A. Friedler, and Emile Givental. Fairness warnings and fair-maml: Learn-
ing fairly with minimal data. Proceedings of the Conference on Fairness, Accountability, and
Transparency (FAT*), 2020a.

Dylan Slack, Sophie Hilgard, Sameer Singh, and Himabindu Lakkaraju. How much should i trust
you? modeling uncertainty of black box explanations. AIES, 2020b.

11

http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://proceedings.mlr.press/v97/odena19a.html
http://proceedings.mlr.press/v97/odena19a.html
https://github.com/pytorch/examples
https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/D16-1264
http://proceedings.mlr.press/v97/recht19a.html
http://proceedings.mlr.press/v97/recht19a.html
https://www.aclweb.org/anthology/2020.acl-main.442
https://www.aclweb.org/anthology/2020.acl-main.442
https://doi.org/10.1038/s41598-019-52737-x


Under review as a conference paper at ICLR 2021

Yang Song, Rui Shu, Nate Kushman, and Stefano Ermon. Constructing unrestricted adversarial
examples with generative models. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems 31, pp. 8312–
8323. Curran Associates, Inc., 2018.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The German Traffic Sign
Recognition Benchmark: A multi-class classification competition. In IEEE International Joint
Conference on Neural Networks, pp. 1453–1460, 2011.

Erik B. Sudderth. Graphical models for visual object recognition and tracking. 2006.

P. Varma, Bryan He, Dan Iter, Peng Xu, R. Yu, C. D. Sa, and Christopher Ré. Socratic learning:
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A DEFUSE PSUEDO CODE

In algorithm 2, Correct(·) and Label(·) are the steps where the annotator decides if the scenario
warrants correction and the annotator label for the failure scenario.

Algorithm 1 Identification Step
1: procedure IDENTIFY(f, p, q, x, y, a, b)
2:  := {}
3: µ,� := q�(x)
4: for i 2 {1, ..., Q} do
5: ✏ := [Beta(a, b)1,
6: ...,Beta(a, b)M ]
7: xdecoded := p✓(µ+ ✏)
8: if y 6= f(xdecoded) then
9:  :=  [ xdecoded

10: end if
11: end for
12: Return  
13: end procedure

Algorithm 2 Labeling Step
1: procedure LABEL SCENARIOS(Q,⇤, p, q, ⌧ )
2: Df := {}
3: for (µ,�,⇡) 2 ⇤ do
4: Xd := {}
5: for i 2 {1, .., Q} do
6: Xd := Xd [ q (N (µ, ⌧ · �))
7: end for
8: if Correct(Xd) then
9: Df := Df [ {Xd,Label(Xd)}

10: end if
11: end for
12: Return

S
Df

13: end procedure

B TRAINING DETAILS

B.1 GMM DETAILS

In all experiments, we use the implementation of Gaussian mixture model with dirichlet process
prior from [Pedregosa et al. (2011)]. We run our experiments with the default parameters and full
component covariance.

B.2 MNIST DETAILS

Model details We train a CNN on the MNIST data set using the architecture in figure 7. We used
the Adadelta optimizer with the learning rate set to 1. We trained for 5 epochs with a batch size of
64.

Architecture
4x4 conv., 64 ReLU stride 2
4x4 conv., 64 ReLU stride 2
4x4 conv., 64 ReLU stride 2
4x4 conv., 64 ReLU stride 2
Fully connected 256, ReLU
Fully connected 256, ReLU
Fully connected 10 ⇥ 2

Figure 7: MNIST CNN Architecture

�-VAE training details We train a �-VAE on MNIST using the architectures in figure 8 and 9.
We set � to 4. We trained for 800 epochs using the Adam optimizer with a learning rate of 0.001,
a minibatch size of 2048, and � set to 0.4. We also applied a linear annealing schedule on the
KL-Divergence for 500 optimization steps. We set z to have 10 dimensions.

Identification We performed identification with Q set to 500. We set a and b both to 50. We ran
identification over the entire training set. Last, we limited the max allowable size of  to 100.

Distillation We ran the distillation step setting K, the upper bound on the number of mixtures, to
100. We fixed ✏ to 0.01 and discarded clusters with mixing proportions less than this value. This left
44 possible scenarios. We set ⌧ to 0.5 during review. We used Amazon Sagemaker Ground Truth

13



Under review as a conference paper at ICLR 2021

Architecture
4x4 conv., 32 ReLU stride 2
4x4 conv., 32 ReLU stride 2
4x4 conv., 32 ReLU stride 2
Fully connected 256, ReLU
Fully connected 256, ReLU
Fully connected 15 ⇥ 2

Figure 8: MNIST data set encoder architecture.

Architecture
Fully connected 256, ReLU
Fully connected 256, ReLU
Fully connected 256, ReLU
4x4 transpose conv., 32 ReLU stride 2
4x4 transpose conv., 32 ReLU stride 2
4x4 transpose conv., 32 ReLU stride 2
4x4 transpose conv., 32 Sigmoid stride 2

Figure 9: MNIST data set decoder architecture.

to determine failure scenarios and labels. The labeling procedure is described in section 4.1. This
produced 19 failure scenarios.

Correction We sampled 256 images from each of the failure scenarios for both finetuning and
testing. We finetuned with minibatch size of 256, the Adam optimizer, and learning rate set to
0.001. We swept over a range of correction regularization �’s consisting of [1e � 10, 1e � 9, 1e �
8, 1e� 7, 1e� 6, 1e� 5, 1e� 4, 1e� 3, 1e� 2, 1e� 1, 1, 2, 5, 10, 20, 100, 1000] and finetuned for
3 epochs on each.

B.3 GERMAN SIGNS DATASET DETAILS

Dataset The data consists of 26640 training images and 12630 testing images consisting of 43
different types of traffic signs. We randomly split the testing data in half to produce 6315 testing and
validation images. Additionally, we resize the images to 128x128 pixels.

Classifier f We fine-tuned the ResNet18 model for 20 epochs using Adam with the cross entropy
loss, learning rate of 0.001, batch size of 256 on the training data set, and assessed the validation
accuracy at the end of each epoch. We saved the model with the highest validation accuracy.

�-VAE training details We trained for 800 epochs using the Adam optimizer with a learning rate
of 0.001, a minibatch size of 2048, and � set to 4. We also applied a linear annealing schedule on
the KL-Divergence for 500 optimization steps. We set z to have 15 dimensions.

Architecture
4x4 conv., 64 ReLU stride 2
4x4 conv., 64 ReLU stride 2
4x4 conv., 64 ReLU stride 2
4x4 conv., 64 ReLU stride 2
Fully connected 256, ReLU
Fully connected 256, ReLU
Fully connected 15 ⇥ 2

Figure 10: German signs data set encoder architecture.

Identification We performed identification with Q set to 100. We set a and b both to 75.
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Architecture
Fully connected 256, ReLU
Fully connected 256, ReLU
Fully connected 256, ReLU
4x4 transpose conv., 64 ReLU stride 2
4x4 transpose conv., 64 ReLU stride 2
4x4 transpose conv., 64 ReLU stride 2
4x4 transpose conv., 64 ReLU stride 2
4x4 transpose conv., 64 Sigmoid stride 2

Figure 11: German signs data set decoder architecture.

Distillation We ran the distillation step setting K to 100. We fixed ✏ to 0.01 and discarded clusters
with mixing proportions less than this value. This left 38 possible scenarios. We set ⌧ to 0.01 during
review. We determined 8 of these scenarios were particularly concerning.

Correction We finetuned with minibatch size of 256, the Adam optimizer, and learning rate set to
0.001. We swept over a range of correction regularization �’s consisting of [1e � 10, 1e � 9, 1e �
8, 1e� 7, 1e� 6, 1e� 5, 1e� 4, 1e� 3, 1e� 2, 1e� 1, 1, 2, 5, 10, 20, 100, 1000] and finetuned for
5 epochs on each.

B.4 SVHN DETAILS

Dataset The data set consists of 73257 training and 26032 testing images. We also randomly split
the testing data to create a validation data set. Thus, the final validation and testing set correspond
to 13016 images each.

Classifier f We fine tuned for 10 epochs using the Adam optimizer, learning rate set to 0.001, and
a batch size of 2048. We chose the model which scored the best validation accuracy when measured
at the end of each epoch.

�-VAE training details We trained the �-VAE for 400 epochs using the Adam optimizer, learning
rate 0.001, and minibatch size of 2048. We set � to 4 and applied a linear annealing schedule on the
Kl-Divergence for 5000 optimization steps. We set z to have 10 dimensions.

Architecture
4x4 conv., 64 ReLU stride 2
4x4 conv., 64 ReLU stride 2
4x4 conv., 64 ReLU stride 2
Fully connected 256, ReLU
Fully connected 256, ReLU
Fully connected 10 ⇥ 2

Figure 12: SVHN data set encoder architecture.

Architecture
Fully connected 256, ReLU
Fully connected 256, ReLU
Fully connected 256, ReLU
4x4 transpose conv., 64 ReLU stride 2
4x4 transpose conv., 64 ReLU stride 2
4x4 transpose conv., 64 ReLU stride 2
4x4 transpose conv., 64 Sigmoid stride 2

Figure 13: SVHN data set decoder architecture.
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Figure 14: Annotation interface.

Identification We set Q to 100. We also set the maximum size of  to 10. We set a and b to 75.

Distillation We set K to 100. We fixed ✏ to 0.01. The distillation step identified 32 plausible
failure scenarios. The annotators deemed 6 of these to be failure scenarios. We set ⌧ to 0.01 during
review.

Correction We set the minibatch size of 2048, the Adam optimizer, and learning rate set to 0.001.
We considered a range of �’s: [1e� 10, 1e� 9, 1e� 8, 1e� 7, 1e� 6, 1e� 5, 1e� 4, 1e� 3, 1e�
2, 1e� 1, 1, 2, 5, 10, 20, 100, 1000]. We finetuned for 5 epochs.

B.5 T-SNE EXAMPLE DETAILS

We run t-SNE on 10, 000 examples from the training data and 516 unrestricted adversarial examples
setting perplexity to 30. For the sake of clarity, we do not include outliers from the unrestricted
adversarial examples. Namely, we only include unrestricted adversarial examples with > 1% prob-
ability of being in one of the MNIST failure scenario clusters.

C ANNOTATOR INTERFACE

We provide a screenshot of the annotator interface in figure 14.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ADDITIONAL SAMPLES FROM MNIST FAILURE SCENARIOS

We provide additional examples from 10 randomly selected (no cherry picking) MNIST failure
scenarios. We include the annotator consensus label for each failure scenario.
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Figure 15: Annotator label 6.

Figure 16: Annotator label 3.
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Figure 17: Annotator label 4.

Figure 18: Annotator label 4.
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Figure 19: Annotator label 6.

Figure 20: Annotator label 8.
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Figure 21: Annotator label 6.

Figure 22: Annotator label 0.
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Figure 23: Annotator label 6.

Figure 24: Annotator label 6.
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D.2 ADDITIONAL SAMPLES FROM GERMAN SIGNS FAILURE SCENARIOS

We provide samples from all of the German signs failure scenarios. We provide the names of the
class labels in figure 25. For each failure scenario, we indicate our assigned class label in the caption
and the classifier predictions in the upper right hand corner of the image.

ClassId SignName
0 Speed limit (20km/h)
1 Speed limit (30km/h)
2 Speed limit (50km/h)
3 Speed limit (60km/h)
4 Speed limit (70km/h)
5 Speed limit (80km/h)
6 End of speed limit (80km/h)
7 Speed limit (100km/h)
8 Speed limit (120km/h)
9 No passing
10 No passing for vehicles over 3.5 metric tons
11 Right-of-way at the next intersection
12 Priority road
13 Yield
14 Stop
15 No vehicles
16 Vehicles over 3.5 metric tons prohibited
17 No entry
18 General caution
19 Dangerous curve to the left
20 Dangerous curve to the right
21 Double curve
22 Bumpy road
23 Slippery road
24 Road narrows on the right
25 Road work
26 Traffic signals
27 Pedestrians
28 Children crossing
29 Bicycles crossing
30 Beware of ice/snow
31 Wild animals crossing
32 End of all speed and passing limits
33 Turn right ahead
34 Turn left ahead
35 Ahead only
36 Go straight or right
37 Go straight or left
38 Keep right
39 Keep left
40 Roundabout mandatory
41 End of no passing
42 End of no passing by vehicles over 3.5 metric tons

Figure 25: German signs class labels.
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Figure 26: Annotator label 7.

Figure 27: Annotator label 2.
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Figure 28: Annotator label 7.

Figure 29: Annotator label 41.
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Figure 30: Annotator label 1.

Figure 31: Annotator label 2.
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Figure 32: Annotator label 2.

Figure 33: Annotator label 1.
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Figure 34: Annotator label 2.
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D.3 ADDITIONAL SAMPLES FROM SVHN FAILURE SCENARIOS

We provide additional samples from each of the SVHN failure scenarios. The digit in the upper left
hand corner is the classifier predicted label. The caption includes the Ground Truth worker labels.

Figure 35: Annotator label 1.

Figure 36: Annotator label 5.
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Figure 37: Annotator label 8.

Figure 38: Annotator label 0.
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Figure 39: Annotator label 3.

Figure 40: Annotator label 5.
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