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Abstract: Recent works have shown how the reasoning capabilities of Large Language
Models (LLMs) can be applied to domains beyond natural language processing, such
as planning and interaction for robots. These embodied problems require an agent to
understand many semantic aspects of the world: the repertoire of skills available, how
these skills influence the world, and how changes to the world map back to the language.
LLMs planning in embodied environments need to consider not just what skills to do,
but also how and when to do them - answers that change over time in response to
the agent’s own choices. In this work, we investigate to what extent LLMs used in
such embodied contexts can reason over sources of feedback provided through natural
language, without any additional training. We propose that by leveraging environment
feedback, LLMs are able to form an inner monologue that allows them to more richly
process and plan in robotic control scenarios. We investigate a variety of sources of
feedback, such as success detection, scene description, and human interaction. We
find that closed-loop language feedback significantly improves high-level instruction
completion on three domains, including simulated and real table top rearrangement tasks
and long-horizon mobile manipulation tasks in a kitchen environment in the real world.

1 Introduction

Intelligent and flexible embodied interaction requires robots to be able to deploy large repertoires of
basic behaviors in appropriate ways, sequence these behaviors as needed for long horizon tasks, and also
recognize when to switch to a different approach if a particular behavior or plan is unsuccessful. High-level
planning, perceptual feedback, and low-level control are just a few of the sub-tasks that would need to
be seamlessly combined together to perform the sort of reasoning required for an embodied agent, such as
a robot, to intelligently act in the world. While conventionally these challenges have been approached from
the perspective of planning (e.g., TAMP [1]) or hierarchical learning (e.g., HRL [2]), effective high-level
reasoning about complex tasks also requires semantic knowledge and understanding of the world.

One of the remarkable observations in recent machine learning research is that large language models
(LLMs) can not only generate fluent textual descriptions, but also appear to have rich internalized
knowledge about the world [3, 4, 5, 6, 7]. When appropriately conditioned (e.g., prompted), they can
even carry out some degree of deduction and respond to questions that appear to require reasoning and
inference [8, 9, 10, 11, 12, 13]. This raises an intriguing possibility: beyond their ability to interpret natural
language instructions, can language models further serve as reasoning models that combine multiple sources
of feedback and become interactive problem solvers for embodied tasks, such as robotic manipulation?

Prior studies show that language helps humans internalize our knowledge and perform complex relational
reasoning through thinking in language [14, 15, 16, 17, 18]. Imagine the “inner monologue” that happens
when a person tries to solve some task: “I have to unlock the door; let me try to pick up the key and put it in
the lock... no, wait, it doesn’t fit, I’ll try another one... that one worked, now I can turn the key.” The thought
process in this case involves choices about the best immediate action to solve the high-level task (“pick up
the key”), observations about the outcomes of attempted actions (“it doesn’t fit”), and corrective actions that
are taken in response to these observations (“I’ll try another one”). Inspired by the human thought process,
we propose that such an inner monologue is a natural framework for incorporating feedback for LLMs.
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Figure 1: Inner Monologue enables grounded closed-loop feedback for robot planning with large language models
by leveraging a collection of perception models (e.g., scene descriptors and success detectors) in tandem with pretrained
language-conditioned robot skills. Experiments show our system can reason and replan to accomplish complex
long-horizon tasks for (a) mobile manipulation and (b,c) tabletop manipulation in both simulated and real settings.
Our work studies these questions by combining LLMs with various sources of textual feedback, only
utilizing few-shot prompting without any additional training. We observe that similarly to recent
work [19], natural language provides a universal and interpretable interface for such grounding of model
communication and allows them to incorporate their conclusions in an overarching inner monologue
driven by a language model. While prior work has investigated using language models as planners [20, 21]
or incorporating multimodal-informed perception through language [19], to the best of our knowledge
no work has studied the critical link of not only planning with language, but also informing embodied
feedback with language, which we investigate in this work.

Specifically, we study methods and sources of feedback for closing the agent-environment loop via an
inner monologue and their impact on downstream execution success and new capabilities arising from
such interaction. In particular, we combine multiple perception models that perform various tasks such as
language-conditioned semantic classification or language-based scene description, together with feedback
provided by a human user that the robot is cooperating with. To execute the commands given by a user,
the actions are chosen from a set of pre-trained robotic manipulation skills together with their textual
descriptions that can be invoked by a language model. Our proposed system Inner Monologue chains
together these various components (perception models, robotic skills, and human feedback) in a shared
language prompt, enabling it to successfully perform user instructions.

Finally, we show that Inner Monologue, without requiring additional training beyond a frozen language
model and pre-trained robotic skills, can accomplish complex, long-horizon, and unseen tasks in simulation
as well as on two real-world robotic platforms. Notably, we show that it can efficiently retry under
observed stochastic failure, replan under systematic infeasibility, or request human feedback for ambiguous
queries, resulting in significantly improved performance in dynamical environments. As a demonstration
of the versatility of LLMs and grounded closed-loop feedback, we additionally show several surprising
capabilities emerging from the inner monologue formulation, including continued adaptation to new
instructions, self-proposed goals, interactive scene understanding, multilingual interactions, and more.

2 Related Work
Task and Motion Planning. Task and motion planning [22, 23] requires simultaneously solving a
high-level, discrete task planning problem [24, 25, 26], and a low-level, continuous motion planning
problem [27]. Traditionally, this problem has been solved through optimization [28, 29] or symbolic
reasoning [24, 26], but more recently machine learning has been applied to aspects of the problem via
learned representations, learned task-primitives, and more [30, 31, 32, 33, 34, 35, 36, 37, 38]. Some works
utilize language for planning and grounding [39, 40, 41, 42, 43, 44]. Others have approached the problem
through hierarchical learning [45, 46, 34, 47, 48, 49, 50]. In this work, we leverage pre-trained LLMs
and their semantic knowledge, along with trained low-level skills, to find feasible plans.

Task Planning with Language Models. Various prior works have explored using language as a space
for planning [51, 52, 53, 20, 54, 21]. Some methods use prompt structure, self-talk, or discussion between
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Figure 2: Various types of textual feedback. Success Detection gives task-specific task completion information,
Passive Scene Description gives structured semantic scene information at every planning step, and Active Scene
Description gives unstructured semantic information only when queried by the LLM planner.

experts to reason about plans or semantic concepts [55, 19, 10, 11]. Similar to ours are recent task
planning approaches that leverage pre-trained autoregressive LLMs to decompose abstract, high-level
instructions into a sequence of low-level steps executable by an agent [20, 21] in a zero-shot manner.
Specifically, Huang et al. [20] prompt GPT-3 [9] and Codex [56] to generate action plans for embodied
agents, where each action step is semantically translated to an admissible action with a Sentence-RoBERTa
model [57, 58]. SayCan [21] instead grounds the actions by multiplying each candidate action’s probability
under FLAN [59] with the action’s value function, which serves as a proxy for affordance [34]. However,
both approaches effectively produce the plan while assuming that each proposed step is executed
successfully by the agent. As a result, these approaches may not be robust in handling intermediate failures
in dynamic environments or with poor lower level policies. We explore in Inner Monologue ways to
incorporate grounded feedback from the environment into the LLM as we produce each step in the plan.

Fusing Vision, Language, and Control in Robotics. Various works have investigated strategies for the
challenging problem of fusing vision, language, and control [60, 61, 62, 63, 64, 65, 66]. Some works have
been trained directly for language-based interaction in robotic tasks [67, 68, 69, 70]. Recent large visual-
language models (e.g., CLIP [71]) have been trained on joint image(s) and corresponding text captions
via variants of a masked language modeling objective [72, 73, 74, 75], a contrastive loss [76, 77, 71] or
other supervised objectives[78, 79]. CLIP has been employed in several robotics and embodied settings
in zero-shot manner [80], or combined with Transporter networks [81] as in CLIPort [82]. Finally, Socratic
Models [19] proposes the combination of different foundation models (e.g., GPT-3 [9], ViLD [83]) and
language-conditioned policies, using language as the common interface. While Socratic Models has been
demonstrated on a tabletop object manipulation task, Inner Monologue examines additional challenges
for robots operating in dynamic environments, which require closed-loop feedback to the planner.

3 Leveraging Embodied Language Feedback with Inner Monologue
We consider the setting where an embodied robotic agent attempts to perform a high-level natural
language instruction i. This robotic agent is only capable of executing short-horizon skills from a library
of previously trained policies πk ∈ Π with short language descriptions `k, which may be trained with
reinforcement learning or behavioral cloning. The “planner,” which is a pretrained LLM [20, 21], attempts
to find a sequence of skills to accomplish the instruction. To observe the environment, the planner has
access to textual feedback o from the environment that can be appended to the instruction or requested
by the planner. Our work studies to what extent the LLM planner is able to reason over and utilize such
feedback to “close the loop” with the environment and improve planning.

3.1 Inner Monologue

We formulate an “inner monologue” by continually injecting information from the various sources of feed-
back into the LLM planning language prompts as the robot interacts with the environment. While LLMs
have demonstrated exceptional planning capabilities for embodied control tasks [20], prior works have found
it crucial to ground LLM predictions with external components such as affordance functions [21] in order
to produce useful plans that are executable by robots. However, LLMs used in this context have thus far
remained one-directional – providing a list of skills, without making corrections or leveraging opportunities
to replan accordingly. In contrast, Inner Monologue studies settings where grounded environment feedback
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Figure 3: Different instantiations of Inner Monologue in three distinct domains – simulated tabletop rearrangement
(top), real-world tabletop rearrangement (middle), and real-world kitchen mobile manipulation (bottom). Each domain
uses different prompts and different feedback models. Sharing across the domains is the same Inner Monologue formu-
lation that uses a pre-trained langauge model to take in a human instruction and decompose it into a sequence of ac-
tionable steps by the agent, while accounting for injected embodied feedback from different models, such as object rec-
ognizers and success detectors. In real-world kitchen mobile manipulation domain (bottom), we additionally ground
the actions using pre-trained affordance functions built in [21], which do not communicate back to the language model.

is provided directly to the LLM in a closed-loop fashion. This promotes improved LLM reasoning in
complex long-horizon settings, even before any external affordance-based grounding methods are applied.

Our analysis assumes textual feedback is provided to the planner, but does not assume a single specific
method of fusing LLM planning with low-level robotic control or a specific method of extracting
environment feedback into language. Rather than focusing on a particular algorithmic implementation,
our aim is to provide a case study on the value of incorporating different types of feedback into closed-loop
LLM-based planning. Thus, Inner Monologue in Sec 4 utilizes language feedback within separate systems
that incorporate different LLMs, different methods of fusing planning with control, different environments
and tasks, and different methods of acquiring control policies. We note that in our specific implementations
of Inner Monologue, we use pre-trained LLMs for planning that are not finetuned, but rather evaluated
solely with few-shot prompting; the full prompts can be found in the Appendix.

3.2 Sources of Feedback

In theory any type of environment feedback can inform the LLM planner, as long as it can be expressed
through language. We focus on the specific forms of feedback shown in Fig 2: (1) task-specific feedback,
such as success detection, and (2) scene-specific feedback (either “passive” or “active”), which describes
the scene. Specific instantiations and implementation details of each type of feedback can be found in
Sec 4.1, Sec 4.2, and Sec 4.3 respectively for each domain.

Success Detection. The Success feedback gives binary “yes” or “no” response in language form, specifying
whether the low-level skill πk has succeeded. Engineered success detectors can operate on ground-truth
state in simulation, while learned success detectors can be trained on real examples of successes and
failures in the real world [84, 85, 86, 87, 88].

Passive Scene Description. We refer broadly to any sources of scene feedback that are consistently and
automatically injected into the LLM prompt as Passive Scene Description, which also typically follow some
structure. One common type of such feedback is object recognition [89, 90, 91, 92] that returns a list of
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present objects, to which we refer as Object feedback. We also demonstrate the use of a task-progress scene
description in the simulated tabletop rearrangement environment, to which we refer as Scene feedback.

Active Scene Description. As the proactive counterpart, Active Scene Description encompasses sources
of feedback that are provided directly in response to active queries by the LLM planner, which are answered
either by a person, or by another pretrained model, such as a Visual Question Answering (VQA) model [93,
94, 95, 96]. Unlike the passive counterpart which are strictly structured and narrow in their scope, this feed-
back allows the planner to actively gather information relevant to the scene, the task, or even preferences of
the user. The combined output we send to the LLM planner includes both the LLM-generated question along
with the response. As we aim to investigate whether and how a LLM planner can incorporate such feedback
and wish to study both structured VQA-style human feedback as well as unstructured human preferences
feedback, we only consider human-provided response in this work, which we refer to as Human feedback.

4 Experimental Results
In order to study how different sources of environment feedback can support a rich inner monologue
that enables complex robotic control, we study different Inner Monologue implementations in three
environments, each with different LLM and different sources of feedback from the environment: 1)
simulated tabletop manipulation (Sec 4.1), 2) real-world tabletop manipulation (Sec 4.2), and 3) real-world
mobile manipulation in an office kitchen (Sec 4.3). For more details about the experiment setup and results,
please refer to the Appendix.

4.1 Simulated Tabletop Rearrangement

We experiment with Ravens-based [81] environment, where a robotic arm with a gripper is tasked with
rearranging blocks and bowls in some desired configuration, specified by natural language. We evaluate
each method on four seen tasks and four unseen tasks, where seen tasks may be used for training (in the
case of supervised baseline) or used as few-shot prompting.

This instantiation of Inner Monologue uses (i) InstructGPT [9, 97] for planning [20, 21], (ii) scripted
modules to provide language feedback in the form of object recognition (Object), success detection
(Success), and task-progress scene description (Scene), and (iii) a pre-trained language-conditioned
pick-and-place primitive (similar to CLIPort [82] and Transporter Nets [81]). Object feedback informs
the list of present objects and Success feedback informs the success/failure of the most recent action.
However, consider the task of stacking multiple blocks, because the unfinished tower of blocks may be
knocked over by the robot, it is also critical to reason about overall task progress. Therefore, task-progress
scene description (Scene) describes the semantic sub-goals inferred by the LLM towards completing the
high-level instruction that are achieved by the agent so far.

We additionally compare to a multi-task CLIPort directly trained on long-horizon task instructions. Because
CLIPort is a single-step policy and does not terminate spontaneously during policy rollout, we report CLI-
Port evaluations with oracle termination (i.e., repeat until oracle indicates task completion) and fixed-step ter-
mination (i.e., repeat for 15 steps). To simulate real-world disturbances and evaluate the system’s robustness
to disturbances, we add Gaussian noise to multiple levels of the system at test time: N (0,3) for pixel ob-
servation, N (0,2.5) for policy primitive (i.e., pick-place pixel heatmaps), N (0,0.02m) for place locations.

+LLM +Inner Monologue

Tasks CLIPort +oracle Object Object + Success Object + Scene

“Pick and place” 24.0% 74.0% 80.0% 90.0% 94.0%
“Stack all the blocks” 2.0% 32.0% 4.0% 10.0% 26.0%

Seen Tasks “Put all the blocks on the [x] corner/side” 2.0% 32.0% 30.0% 28.0% 30.0%
“Put all the blocks in the [x] bowl” 32.0% 94.0% 52.0% 46.0% 56.0%

“Put all the blocks in different corners” 0.0% 0.0% 20.0% 20.0% 26.0%
“Put the blocks in their matching bowls” 0.0% 0.0% 56.0% 70.0% 82.0%

Unseen Tasks “Put the blocks on mismatched bowls” 0.0% 0.0% 62.0% 76.0% 86.0%
“Stack all the blocks on the [x] corner/side” 0.0% 0.0% 0.0% 4.0% 6.0%

Table 1: Success rates averaged across 50 episodes in simulated pick-and-place. CLIPort + oracle indicates that
CLIPort was provided a “termination” oracle. LLM-informed feedback effectively enable retrying/replanning in the
presence of test-time disturbances, while enjoying the generalization benefits of LLMs to unseen tasks.
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Analysis. As shown in Table 1, Inner Monologue effectively enables retrying and replanning in the
face of test-time disturbances, where Object + Scene performs the best because of its ability to keep track
of sub-goal conditions. Furthermore, this performance directly translates to unseen tasks by leveraging
rich semantic knowledge of LLM. Finally, we observe that non-hierarchical and solitary systems such
as CLIPort (i) struggle at generalizing to unseen long-horizon tasks under test-time disturbances, and (ii)
on training tasks, an oracle is also often required to indicate task completion for good performance.

4.2 Real-World Tabletop Rearrangement

We evaluate Inner Monologue on a real-world robot platform designed to resemble the simulation
experiments. This instantiation uses (i) InstructGPT [9, 97] for planning, (ii) MDETR [98] for open-vocab
object recognition (Object) (iii) heuristics on the object bounding box predictions from MDETR for
Success Detection (Success), and (iv) a suction-based pick-and-place motion primitive that uses an LLM
to parse target objects from a language command (e.g., given by the planner).

We investigate two tasks: (i) a 3-block stacking task where 2 blocks are already pre-stacked, and (ii) a
long-horizon sorting task to place food in one plate and condiments in another (where categorizing food
versus condiments is autonomously done by the LLM planner). In additional to additional challenges
of real-world perception and clutter, we artificially inject Gaussian noise into the policy actions (i.e.,
add standard deviation σ=4mm clipped at 2σ) to stress test recovery from failures via replanning with
grounded closed-loop feedback. Results are presented in Table 2.

LLM +Inner Monologue

Task Family Object Object Success Object + Success

Finish 3-block stacking 20% 40% 40% 100%
Sort fruits from bottles 20% 50% 40% 80%
Total 20% 45% 40% 90%

Table 2: Success rates averaged across 10 runs in real-world pick-and-place. We observe significant improvement
in Inner Monologue with Object and Success feedback, with the two feedback being complementary to each other.

Analysis. We compare to variants with only Object or Success feedback, as well as an open-loop variant
(“LLM Object”) that only runs object recognition once at the beginning of the task (similar to the system
demonstrated in [19]). The partial 3-block stacking task highlights an immediate failure mode of the
open-loop baseline, where the initial scene description struggles to capture a complete representation
of the scene (due to clutter and occlusion) to provide as input to the multi-step planner. As a result, the
system only executes one pick-and-place action – and cannot recover from mistakes. To address these
shortcomings, Inner Monologue (Object + Success) leverages closed-loop scene description and success
detection after each step, which allows it to successfully replan and recover from policy mistakes.

4.3 Real-World Mobile Manipulator in a Kitchen Setting

We implement Inner Monologue in a robotic system using the kitchen environment and task definitions de-
scribed in SayCan [21]. The Everyday Robots robot, a mobile manipulator with RGB observations, is placed
in an office kitchen to interact with common objects using concurrent [99] continuous closed-loop control.

The baseline, SayCan [21], is a method that plans and acts in diverse real world scenarios by combining
an LLM with value functions of control policies. While SayCan creates plans that are grounded by the
affordances of value functions, the LLM predictions in isolation are never given any closed-loop feedback.

We use an instantiation of Inner Monologue that uses (i) PALM [8] for planning, (ii) value functions from
pre-trained control policies for affordance grounding [21], (iii) a learned visual classification model for
Success feedback, (iv) human-provided Object feedback, and (v) pre-trained control policies for relevant
skills in the scene. We also perform a case study where we allow the agent to ask questions and source
Human feedback directly; results are shown in Fig 5a and the Appendix.

We evaluate on 120 runs over three task families: (1) four manipulation tasks, (2) two dexterous
manipulation tasks utilizing drawers, and (3) two long-horizon combined manipulation and navigation
tasks. We consider both cases with and without manually-added adversarial disturbances during control
policy executions that cause skill policy rollouts to fail. While these failures occur naturally even without
perturbances, the adversarial disturbances creates a consistent comparison between methods that requires
retrying or replanning to accomplish the original instruction.
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+Inner Monologue

Task Family SayCan Success Object + Success

No Disturbances
Manipulation 50.0% 62.5% 75.0%
Mobile Manipulation 50.0% 50.0% 75.0%
Drawers 83.3% 83.3% 100.0%

With Disturbances
Manipulation 12.5% 25.0% 33.3%
Mobile Manipulation 0.0% 25.0% 75.0%
Drawers 0.0% 44.4% 44.4%

Total 30.8% 48.7% 60.4%

Table 3: Averaged success rate across 120 evaluations on several
task families in our real-world mobile manipulation environment.
We consider a standard setting and adversarial setting with exter-
nal human disturbances. In all cases, LLM-informed embodied
feedback is shown to be effective in improving robustness of the
system, especially when low-level policies are prone to failures.

Disturbance

SayCan

IM 
w/ Success

IM 
w/ Success

+ Object

SayCan

IM 
w/ Success

IM 
w/ Success

+ Object

Figure 4: Failure causes on 120 evaluations.
When disturbances are added (red), only the Inner
Monologue variants consistently complete the
instructions.

Analysis. Without adversarial disturbances, the baseline SayCan performs reasonably on all tasks, yet
incorporating LLM-informed feedback in Inner Monologue allows further improvement by effectively
retrying or replanning under natural failures. The most notable difference is in the cases with adversarial
disturbances. Without any LLM-informed feedback SayCan has success rate close to 0% since LLM
always assume successful execution of previous skills. Inner Monologue significantly outperforms SayCan
because of its ability to invoke appropriate recovery modes depending on the environment feedback.
Analysis on the failure causes indicates that Success and Object feedback can reduce LLM planning
failures and thus overall failure rate, albeit at the cost of introducing new failure modes to the system.

4.4 Plan Generalization Capabilities

Although LLMs can generate fluent continuation from the prompted examples, we surprisingly find
that, Inner Monologue demonstrates many impressive reasoning and replanning behaviors beyond the
examples given in the prompt. Using a pre-trained LLM as the backbone, the method also inherits many of
the appealing properties from its versatility and general-purpose language understanding. In this section, we
demonstrate a few of these capabilities; additional capabilities are shown in Appendix (Fig ?? and Fig ??).

Continued Adaptation to New Instructions. Although not explicitly prompted, the LLM planner can
react to human interaction that changes the high-level goal mid-task. Fig 5a demonstrates a challenging case,
where Human feedback changes the goal during the plan execution, and then changes the goal yet again
by saying “finish the previous task”. In another instance, despite not being explicitly prompted to terminate
after a human says “please stop”, the LLM planner generalizes to this scenario and predicts a “done” action.

Self-Proposing Goals under Infeasibility. Instead of mindlessly following human-given instructions, In-
ner Monologue can also propose alternative goals to achieve when the previous goal becomes infeasible.
In Fig 5b, to solve the task “put any two blocks inside the purple bowl”, while the first attempted block
is intentionally made too heavy for the robot, Inner Monologue proposes to “find a lighter block” and
successfully solves the task.

Multilingual Interaction. Pre-trained LLMs are known to be able to translate from one language to
another, without any finetuning. We observe that such multilingual understanding also transfers to the
embodied settings. Fig 5c shows a case when an instruction is in Chinese, the LLM planner can still
correctly interpret it, re-narrate it as a concrete goal to execute in English, and accordingly replan its future
actions. Occasionally, we find that this capability even extends to symbols and emojis.

Retrospective Scene Understanding. We also observe that Inner Monologue demonstrates retrospective
scene understanding based on past actions and environment feedback, which requires temporal and
embodied reasoning. In Fig 5d, after series of actions, we can turn to ask questions about the resulting
scene, again a structure that has not appeared in the prompt.
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bowl."]
Robot thought: I'm done.

Current Color Scheme (feel free to change it):
scene descriptor, unimportant prompt, success detector, 
human, chain-of-thought/robot-question, robot action

(b) Self-Proposing Goals under Infeasibility

Scene: There is a yellow bowl, yellow block, blue block, blue 
bowl.
Human: Put the blocks in the bowls with mismatching colors.
Robot thought: Goal state is ["Yellow block is in the blue 
bowl.", "Blue block is in the yellow bowl."]
Robot action: Pick the yellow block and place it in the blue 
bowl.
Scene: Completed ["Yellow block is in the blue bowl."]
Robot thought: Blue block is not in the yellow bowl.
Human: 我改变主意了，请把蓝色方块也放到蓝色的碗里面。
Robot thought: Goal state is ["Yellow block is in the blue 
bowl.", "Blue block is in the blue bowl."]
Robot action: Pick the blue block and place it in the blue 
bowl.
Scene: Completed ["Yellow block is in the blue bowl.", "Blue 
block is in the blue bowl."]
Robot thought: I'm done.

Current Color Scheme (feel 
free to change it):
scene descriptor, unimportant 
prompt, success detector, 
human, 
chain-of-thought/robot-questio
n, robot action

*Translation: “I changed my plan. Please also put the blue block inside the blue bowl.”

(c) Multilingual Interaction

Scene: There is a purple bowl, red block, purple block, blue 
block, orange bowl, orange block.
Human: Put any two blocks inside the purple bowl.
…
Robot action: Pick the red block and place it inside the 
purple bowl.
…
Robot action: Pick the purple block and place it inside the 
purple bowl.
Scene: The purple block is too heavy to be picked up. What's 
your new plan?
Robot thought: I need to find a lighter block.
Robot action: Pick the blue block and place it inside the 
purple bowl.
…
Human: What objects are in the purple bowl?
Robot thought: The purple bowl contains the red block and 
the blue block.
Human: Where is the purple block?
Robot thought: The purple block is on the table.
Human: Any objects in the orange bowl?
Robot thought: The orange bowl is empty.

Current Color Scheme (feel 
free to change it):
scene descriptor, unimportant 
prompt, success detector, 
human, 
chain-of-thought/robot-questio
n, robot action

(d) Interactive Scene Understanding

Figure 5: Informing LLM with embodied feedback enables many generalization capabilities, all of which are achieved
without similar prompted examples. For instance, Inner Monologue can continually adapt to new instructions given
by humans, propose new goals to achieve when faced with infeasibility for the previous plan, interact with humans
in different natural languages, and answer questions about the current scene given past actions and feedback.
Despite the appealing findings about these generalization capabilities, we observe that they are of varying
levels of consistency when no similar examples have been provided in the prompt, likely limited by the
current capabilities of the language models. However, we believe that further investigations into these
behaviors and addressing their limitations would each lead to exciting future directions.

5 Conclusions, Limitations & Future Works
In this work, we investigated the role that environment feedback plays for LLMs reasoning in tasks
involving embodied robotic planning and interaction. We presented a general formulation Inner Monologue
that combines different sources of environment feedback with methods fusing LLM planning with robotic
control policies and studied its instantiations in three distinct domains. We found that environment
feedback significantly improves high-level instruction completion, especially in challenging scenarios
with adversarial disturbances. Finally, we analyze generalization capabilities of Inner Monologue that
highlight how closed-loop language feedback enables replanning even in complex unseen settings.

Limitations. In Sec 4.1 and Sec 4.3, we assume access to oracle scene descriptors in the form of
human observers or scripted systems to provide textual description back to the LLM planner. We study
the viability of learned systems scene description and object recognition in Appendix Table ??. As for
failure modes, Inner Monologue may fail due to several sources of errors: (1) success detections, (2)
LLM planning errors, and (3) control errors. False negative predictions from the success detector lead
to additional retry attempts, while false positive predictions add adversarial partial observability to the
environment. In some instances, we found that the LLM planners ignored the environment feedback and
still proposed policy skills involving objects not present in the scene. Additionally, the performance of
low-level control policies limits not only overall high-level instruction completion performance, but also
limits the scope of tasks that the LLM is able to plan actions for.

Future Works. Several fronts can be improved by future works. First, with advances in image/video
captioning and visual-question answering, a fully automated system of Inner Monologue can be
implemented without a human in the loop as an oracle. Second, improvements can be made on how to
aggregate potentially inaccurate sources of information, such as using text to describe the uncertainty of
the feedback modules, or including additional feedback modules for safety and ethics for the proposed
plans. Finally, enabling low-level control policies to take as input the textual feedback by LLM also leads
to exciting future directions.
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