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Abstract
Deep steganography is a technique that imperceptibly hides se-
cret information into image by neural networks. Existing networks
consist of two components, including a hiding component for infor-
mation hiding and an adversary component for countering against
steganalyzers. However, these two components are two ends of the
seesaw, and it is difficult to balance the tradeoff between message
extraction accuracy and security performance by joint optimiza-
tion. To address the issues, this paper proposes a steganographic
method called AHDeS (Adversary-Hiding-Decoupled Steganogra-
phy) under the Dig-and-Fill paradigm, wherein the adversary and
hiding components can be decoupled into an optimization-based
adversary module in the digging process and an INN-based hiding
network in the filling process. Specfically in the training stage, the
INN is first trained for acquiring the ability of message embedding.
In the deployment stage, given the well-trained and fixed INN, the
cover image is first iteratively optimized for enhancing the security
performance against steganalyzers, followed by the actual message
embedding by the INN. Owing to the reversibility of the INN, se-
curity performance can be enhanced without sacrificing message
extraction accuracy. Experimental results show that AHDeS can
achieve the state-of-the-art security performance and visual quality
while maintaining satisfied message extraction accuracy.

CCS Concepts
• Information systems→Multimedia information systems; •
Security and privacy→ Security services.
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(a) A smooth beach surface (b) Directly transport the sand

(c) Transport the sand under the Dig-and-Fill paradigm

Figure 1: Illustration of the Dig-and-Fill Paradigm.

1 Introduction
Multimedia steganography is the art and science of concealing se-
cret messages within multimedia carriers, where digital images are
the commonly used carriers. Traditional steganographic methods
were designed under the distortion minimization framework [10],
which can be formulated as minimizing distortion function under
payload constraint. In the past decades, different distortion func-
tions have been proposed, which were based on heuristic principles
[15, 19] or statistical models [11, 13]. To further improve the security
performance, deep learning techniques have been introduced, and
the distortion functions could be automatically learned by GAN

https://doi.org/10.1145/3664647.3681330
https://doi.org/10.1145/3664647.3681330


MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Weixuan Tang, Haoyu Yang, Yuan Rao, Zhili Zhou, and Fei Peng

(Generative Adversarial Networks) [27, 33], RL (Reinforcement
Learning) [23, 24], or AE (Adversarial Examples) [2, 26]. Practical
steganographic codes, such as STC (Syndrome Trellis Code) [9],
can be applied for message embedding according to the defined
distortion functions.

However, due to the constraint of distortion minimization frame-
work, the hiding capacities of the above steganographic methods
were relatively low. To obtain higher capacities, deep steganog-
raphy has been proposed, which utilized neural networks to im-
plement message embedding and extraction, instead of practical
steganographic codes. These neural networks consist of a hiding
component for message embedding and an adversary component
for countering against steganalyzers. Baluja [1] proposed the first
deep image hiding method. Hayes et al. [14] introduced adversar-
ial training into deep steganography. Zhu et al. [37] introduced
noise layer into HiDDeN for robust steganography. Zhang et al.
[36] proposed SteganoGAN with residual and dense architecture.
Considering that the reversibility of INN (Invertible Neural Net-
works) is suitable for steganography task, Jing et al. [16] and Lu
et al. [21] respectively proposed steganographic method based on
INN, which implemented message hiding and extraction by the
forward calculation and reverse calculation of INN. Lan et al. [18]
utilized INN to hide secret information in the DCT domain to resist
JPEG compression. In the above deep steganographic methods, the
hiding component and adversary component are jointly trained.
However, higher payload information hiding would lead to more
modification artifacts, which can increase the risk of being detected
by steganalyzers. Therefore, these two components are two ends
of the seesaw, and it is difficult to balance the tradeoff between
message extraction accuracy and security performance by joint
optimization with multiple loss functions.

To address the above limitations, this paper first proposes the
Dig-and-Fill paradigm, as shown in Fig. 1. The key idea is inspired
from the case of imperceptible sand transportation. If the porter
has some prior knowledge of the sand to be transported, such
as the sand’s volume, then the porter can dig a hole with equal
volume in advance, and then subsequently fill the hole with sand.
By this manner, the beach surface can still be kept unchanged,
and the transportation behaviour can be well hidden. In the case
of steganography, the adversary and hiding components can be
decoupled into the digging and filling processes. Specifically, if the
steganographer is aware of the hiding pattern in the filling process,
then the steganographer can optimize the cover image in advance
in the digging process, so that the optimized cover image embedded
with secret messages can obtain satisfied security performance.

Under such paradigm, a steganographic method called AHDeS
(Adversary-Hiding-Decoupled Steganography) is proposed. AHDeS
is an optimization-based and model-based hybrid method, wherein
the adversary component and hiding component are implemented
as an optimization-based adversary module and an INN-based hid-
ing network, respectively. Specifically, the INN is first trained for
obtaining the ability of message embedding. Afterwards, given the
well-trained and fixed INN, the cover image is iteratively optimized
for enhancing the security performance against steganalyzers in the
filling process, followed by actual information hiding by INN in the
digging process. As long as the INN is fixed, owing to the reversibil-
ity and the dual branch structure of INN, security performance can

be enhanced without sacrificing message extraction accuracy. The
contributions of this work are summarized as follows:

• A Dig-and-Fill paradigm is designed, wherein the adversary
and hiding components of steganographic methods can be
decoupled into the digging and filling processes and inde-
pendently optimized.
• A steganographic method called AHDeS is proposed, which
can take advantage of the reversibility and the dual branch
structure of INN, and iteratively optimize the cover image
for enhancing the security performance without sacrificing
message extraction accuracy.
• A frequency compensation mechanism is deigned, wherein
the optimization-based adversary module strives to preserve
the high-frequency components neglected by the INN-based
hiding network.
• Experimental results show that AHDeS can significantly im-
prove the security performance while maintaining satisfied
message extraction accuracy.

2 Related work
2.1 Image Steganography
With the rapid development of deep learning technique, image
steganographic methods based on deep learning have received great
attention. Baluja [1] proposed the first deep image hiding method,
wherein the secret image and cover image were concatenated and
fed into the encoder to generate the stego image, and then stego
image was fed into the decoder to reveal the secret image. Hayes et
al. [14] introduced adversarial training into deep steganography,
wherein the generator was utilized to generate stego image, and the
discriminator was utilized to distinguish between cover and stego
images. Zhu et al. [37] proposed HiDDeN, wherein the noise layer
was introduced in the training stage to enhance the robustness of
steganographic method. Zhang et al. [36] proposed SteganoGAN,
wherein the residual and dense architecture was applied to improve
the payload of steganographic method. Yu [34] proposed ABDH,
wherein the attention mechanism was applied to find the incon-
spicuous areas of cover images. Zhang et al. [35] proposed UDH,
wherein the secret image was projected as universal adversarial
perturbation, and was embedded into the cover image in a cover-
agnostic manner. Tan et al. [25] proposed CHAT-GAN, where the
channel attention mechanism was applied to improve the quality
of stego image and the error-correcting algorithm was applied to
improve the message extraction accuracy.

The above methods are modification-based methods. Another
type are generative methods, which generate stego according to
latent noise by generative models, such as [5]. It maps secret mes-
sage into latent noise without changing its distribution, and thus
the distribution of stego and cover image (generated image without
secret message) could be the same. Despite this, image quality for
cover and stego images depends on the generative models, and
poor image quality would raise suspicion. This paper focuses on
modification-based methods.
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Figure 2: Illustration of the proposed AHDeS.

2.2 Invertible Neural Network
Dinh et al. proposed the concept of INN [7], and designed the cou-
pling layers to improve its representation ability [8]. Kingma et al.
[17] proposed Glow, which utilized invertible 1 × 1 convolution
to reverse the ordering of channels. Ouderaa et al. [28] proposed
INN with low memory complexity in image-to-image translation
task. Wang et al. [29] applied INN in digital image compression
task, which reduced information loss. Xiao et al. [31] proposed to
model the rescaling process as invertible transformation between
high-resolution and low-resolution images. Ma et al. [22] incorpo-
rated INN into blind watermarking to learn the joint representation
between watermark embedding and extraction.

In recent years, INN has also been applied in the field of image
steganography. Jing et al. [16] proposed HiNet, which implemented
message hiding and extraction by the forward calculation and re-
verse calculation of INN. Lu et al. [21] also applied INN to the field
of steganography. Guan et al. [12] proposed DeepMIH, which can
sequentially hide multiple secret images under the guidance of
importance map module. Lan et al. [18] proposed to hide secret

information in the DCT domain of cover image and designed a
mutual information loss to constrain the flow of information.

3 Dig-and-Fill Paradigm
Existing deep steganographic methods consist of two essential com-
ponents, including an adversary component for countering against
steganalyzers and a hiding component for message embedding. In
previous methods, the adversary and hiding components are jointly
trained, which increase the optimization difficulties. To overcome
the above limitation, the Dig-and-Fill paradigm is proposed, which
can decouple these two components for independent optimization.

Suppose that the task is to transport a specific volume of sand
from the bucket to the beach while avoiding leaving obvious trans-
portation traces on the beach. If the porter directly transports the
sand, the beach surface would be severely changed and arouse sus-
picion, as shown in Fig. 1 (b). However, if the porter has some prior
knowledge of the sand to be transported, it is possible to transport
the sand in an imperceptible manner. For example, if the porter
knows the sand’s volume, then the porter can dig a hole with equal
volume in advance. Afterwards, the sand can be transported into
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such hole, and then the beach surface can be kept unchanged, as
shown in Fig. 1 (c). The key idea of such Dig-and-Fill paradigm
is that if the filling process can be pre-determined, then the dig-
ging process can be settled according to the filling process, and the
transportation behavior can be well hidden.

In the field of image steganography, the task is to hide secret in-
formation into the cover image while maintaining the stego image
undetected by steganalyzer. Under the Dig-and-Fill paradigm, the
steganographer can first optimize the cover image in the digging
process and then embed secret messages into the optimized cover
image in the filling process. If the steganographer is fully aware of
the hiding pattern in the filling process, then the steganographer
can optimize the cover image in advance in the digging process, so
that the optimized cover image embedded with secret messages can
obtain satisfied security performance. By this means, the adversary
and hiding components can be effectively decoupled into the dig-
ging and filling processes. The remaining challenge is to design a
network via which can optimize the digging process while keeping
the effect of filling process unchanged.

4 Proposed Method
4.1 Method Overview
Following the Dig-and-Fill paradigm, a steganographic method
called AHDeS (Adversary-Hiding-Decoupled Steganography) is
proposed, as shown in Fig. 2. In AHDeS, the INN-based hiding net-
work is first trained to acquiring the ability of message embedding,
and then based on the well trained INN, the optimization-based
adversary module is utilized to optimize the cover image for en-
hancing security performance in the digging process, followed by
the actual message embedding by INN the filling process.

Specifically, the INN is first trained to obtaining the ability of in-
formation hiding and extraction via forward calculation and reverse
calculation, respectively. Such an INN is of dual-branch structure.
In the forward calculation, it takes in the cover image C and the
secret message M, and outputs the stego image S and the latent
noise Z. In the reverse calculation, it takes in S and the randomly
sampled latent noise Z̃, and outputs the reconstructed cover im-
age C̃ and the extracted secret message M̃. Benefiting from the
reversible properties of INN, M̃ is of great message extraction accu-
racy. Given the well-trained and fixed INN, the adversary module
iteratively optimizes the perturbation P, which is added on the
original cover image C𝑜𝑟𝑖 to obtain the optimized cover image C𝑜𝑝𝑡 .
Such C𝑜𝑝𝑡 is further fed into the fixed INN to obtain the stego
image S. The perturbation P is iteratively optimized according to
the frequency compensation mechanism, which tries to preserve
the high-frequency components neglected by the fixed INN. The
iteration ends until the stego image S can be classified as cover im-
age with high confidence by a pre-trained CNN-based steganalyzer.
Owing to the dual-branch structure and reversible properties of
INN, perturbing the original cover image C𝑜𝑟𝑖 can contribute to
generating stego image Swith higher anti-steganalysis ability in the
forward calculation, and barely affect extracting secret messages
M̃ extremely close toM in the reverse calculation. Therefore, the
optimization-based adversary module can enhance security perfor-
mance against steganalyzers without sacrificing message extraction
accuracy.

4.2 INN-based Hiding Network
The reversibility of INN is suitable for steganography task. It takes
in the cover image C and the secret message M and outputs the
stego image S and the latent noise Z as

S,Z = ℎ𝜃 (C,M) . (1)

In the reverse calculation, it takes in S and the randomly sampled
latent noise Z̃, and outputs the reconstructed cover image C̃ and
extracted secret message M̃ as

C̃, M̃ = ℎ−1
𝜃

(
S, Z̃

)
. (2)

Such an INN consists of 16 invertible blocks. Specifically, the 𝑘-th
block’s affine transformation in forward calculation can be formu-
lated as

C(𝑘+1) = C(𝑘 ) + 𝜙
(
M(𝑘 )

)
, (3)

M(𝑘+1) = M(𝑘 ) ⊙ exp
(
𝜆 · 𝜌

(
C(𝑘+1)

))
+ 𝜂

(
C(𝑘+1)

)
, (4)

where C(1) = C, M(1) = M, C(17) = S, M(17) = Z. And the
𝑘-th block’s affine transformation in reverse calculation can be
formulated as

Z̃(k) =
(
Z̃(𝑘+1) − 𝜂

(
S(𝑘+1)

))
⊘ exp

(
𝜆 · 𝜌

(
S(𝑘+1)

))
, (5)

S(𝑘 ) = S(𝑘+1) − 𝜙
(
Z̃(k)

)
, (6)

where S(17) = S, Z̃(17) = Z̃, S(1) = C̃, Z̃(1) = M̃. Note that 𝜙 , 𝜌 ,
and 𝜂 denote 3 CNNs with same structure but different parameters.
Cover image is denoted as C ∈ {0, ..., 255}𝐻,𝑊 ,𝑁 . Binary bitstream
is converted into three-dimensional format asM ∈ {0, 1}𝐻,𝑊 ,𝑁 ′ . As
for 1.0 bpp (bit per pixel), 𝑁 is equal to 𝑁 ′. C and M are processed
by DWT (Discrete Wavelet Transform) into size (𝐻/2,𝑊 /2, 4𝑁 ),
and further fed into the INN.

The loss function of INN is formulated as

𝐿INN = 𝜆𝑐𝐿𝑐𝑜𝑛 + 𝜆𝑟𝐿𝑟𝑒𝑣 + 𝜆𝑙𝐿𝑙𝑝 𝑓 . (7)

𝐿𝑐𝑜𝑛 is the concealing loss that makes the stego image similar to
the original cover image, and is formulated as

𝐿𝑐𝑜𝑛 =
1

𝐻 ×𝑊 × 𝑁 | |C
𝑜𝑟𝑖 − S| |2 . (8)

𝐿𝑟𝑒𝑣 is the revealing loss for successful message extraction, and is
formulated as

𝐿𝑟𝑒𝑣 =
1

𝐻 ×𝑊 × 𝑁 | |M − M̃| |
2 . (9)

𝐿𝑙𝑝 𝑓 is the low-pass-filter loss that tries to preserve the low fre-
quency sub-band unchanged, and is formulated as

𝐿𝑙𝑝 𝑓 =
1

𝐻/2 ×𝑊 /2 × 𝑁 | |C𝐿𝐿 − S𝐿𝐿 | |2, (10)

whereC𝐿𝐿 and S𝐿𝐿 denote the low frequency sub-band afterwavelet
decomposition for C𝑜𝑟𝑖 and S, respectively.
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4.3 Adversary Module
Benefitting from the dual branch structure and the reversibility of
INN, from Eq. (1) and Eq. (2), it can be observed that given a fixed
INN and in the ideal situation that Z̃ and Z are the same, no matter
what perturbation is added on the cover image, the extracted secret
message M̃ and the original secret message M would still be the
same. Inspired by such property, the optimization-based adversary
module is designed to enhance the anti-steganalysis ability without
sacrificing message extraction accuracy.

The key idea of the adversary module is that given a well-trained
and fixed INN, the perturbation P is optimized and then added on
the original cover image C𝑜𝑟𝑖 , so that the optimized cover image
embedded with secret messages can obtain better security per-
formance against steganalyzer. Note that according to 𝐿𝑙𝑝 𝑓 in Eq.
(10), the INN strives to preserve the low frequency components
unchanged, and tends to modify the high frequency components
for information hiding. Although high frequency components are
more suitable to hide secret information than low frequency com-
ponents, inappropriate and extensive modifications would still lead
to poor anti-steganalysis performance. Therefore, a frequency com-
pensation mechanism is deigned in the adversary module, which
strives to preserve the high frequency components neglected by
the INN-based hiding network. Specifically, given the well-trained
and fixed INN, the adversary module aims to preserve the high
frequency components between the original cover image C𝑜𝑟𝑖 and
the stego image S, and the loss function is formulated as

𝐿ℎ𝑝𝑓 =
1

𝐻 ×𝑊 × 𝑁 | |F (C
𝑜𝑟𝑖 ) − F (S) | |2, (11)

where F denotes the operation of obtaining the high frequency
components via DFT (Discrete Fourier Transform).

Note that the perturbation P is added on the original cover image
C𝑜𝑟𝑖 to obtain the optimized cover image C𝑜𝑝𝑡 , which is further
fed into the INN-based hiding network to obtain the stego image
S. Such P is iteratively optimized by means of minimizing Eq. (11).
Specifically, in each iteration, the gradients G of the loss function
𝐿ℎ𝑝𝑓 with respect to P is calculated, and P is updated by subtract-
ing G. The iterations are terminated until the stego image can
obtain satisfied security performance. To evaluate the security per-
formance, a CNN-based steganalyzer is first trained and then fixed.
The termination condition is that the stego image is judged as cover
image with confidence higher than a specific threshold or iteration
number exceeds a certain value.

4.4 Training and Deployment Strategy
The proposed AHDeS is a model-based and optimization-based
hybrid method. The training strategy is given in Algorithm 1. In
general, in the training stage, the INN is trained to obtain the ability
of message embedding and extraction. The deployment strategy
is given in Algorithm 2. In the deployment stage, the well-trained
INN is fixed, and perturbation optimization for cover image in dig-
ging process occurs before message embedding in filling process.
Therefore, the only network that needs to be trained is the INN.
To sufficiently train the INN in AHDeS, a perturbation adaptive
training strategy is proposed. Such strategy contains two phases.
The first phase aims to make the INN acquire the basic function of
message embedding. It takes the original cover image C𝑜𝑟𝑖 as input,

and its parameters are updated by minimizing Eq. (7). Afterwards,
the second phase aims to adapt the INN to the Dig-and-Fill para-
digm, and let the INN learn to process the optimized cover image
C𝑜𝑝𝑡 . Specifically, in each training iteration, the adversary module
is first applied to iteratively add P on C𝑜𝑟𝑖 . And then the INN takes
C𝑜𝑝𝑡 as input, and its parameters are updated by minimizing Eq.
(7). By this means, the well-trained and fixed INN is adaptive to the
Dig-and-Fill paradigm and can be regarded as the prior knowledge
for the adversary module.

Algorithm 1 Training Strategy
1: Require: CNN-based steganalyzer 𝐷 , confidence threshold 𝑄 ,

iteration number 𝑁1, 𝑁2;
2: Input: Original cover image C𝑜𝑟𝑖 , secret message M;
3: Output: INN with parameters 𝜃 ;
4: Initialize 𝜃 ;
5: for 𝑛 = 0 to 𝑁1 do // First phase.
6: (S,Z) ← ℎ𝜃 (C𝑜𝑟𝑖 ,M) // Forward calculation.
7: (C̃, M̃) ← ℎ−1

𝜃
(S, Z̃) // Reverse calculation.

8: Update 𝜃 with loss function 𝐿INN;
9: Initialize the perturbation P;
10: for 𝑛 = 0 to 𝑁2 do // Second phase.
11: C𝑜𝑝𝑡 = C𝑜𝑟𝑖 + P
12: (S,Z) ← ℎ𝜃 (C𝑜𝑝𝑡 ,M) // Forward calculation.
13: (C̃, M̃) ← ℎ−1

𝜃
(S, Z̃) // Reverse calculation.

14: 𝑞 ← 𝐷 (S) //Obtain confidence of judging S as C𝑜𝑟𝑖 .
15: if 𝑞 ≥ 𝑄 or 𝑛 == 𝑁2 then
16: break
17: Update 𝜃 with loss function 𝐿INN;
18: Update P with loss function 𝐿ℎ𝑝𝑓 ;

Algorithm 2 Deployment Strategy
1: Require: CNN-based steganalyzer 𝐷 , confidence threshold 𝑄 ,

iteration number 𝑁 , well-trained INN with parameters 𝜃 ;
2: Input: Original cover image C𝑜𝑟𝑖 , secret message M;
3: Output: Stego image S;
4: Initialize the perturbation P;
5: for 𝑛 = 0 to 𝑁 do
6: C𝑜𝑝𝑡 = C𝑜𝑟𝑖 + P // Digging process.
7: (S,Z) ← ℎ𝜃 (C𝑜𝑝𝑡 ,M) // Filling process.
8: (C̃, M̃) ← ℎ−1

𝜃
(S, Z̃)

9: 𝑞 ← 𝐷 (S) //Obtain confidence of judging S as C𝑜𝑟𝑖 .
10: if 𝑞 ≥ 𝑄 or 𝑛 == 𝑁 then
11: break
12: Update P with loss function 𝐿ℎ𝑝𝑓 ;

5 Experiments
5.1 Experimental Setup
Dataset. The COCO dataset [20] is utilized in the experiments.
Specifically, 5,000 images are utilized to train the deep-learning-
based steganographic models in the training stage and 10,000 im-
ages are utilized to generate stego images in the deployment stage.
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These 10,000 images are split into training, validation, and testing
set for security performance evaluation by steganalyzers according
to the proportion of 5:1:4. As for the steganalyzer applied in the
adversary module, 10,000 images are utilized to train such stegana-
lyzer. All images are central cropped into 256 × 256.

Implementation details. The Adam optimizer with default set-
tings is utilized to to optimize the proposed AHDeS. For the INN-
based hiding network, the initial learning rate is set to 1 × 10−5.2,
and the batch size is set to 16. For the optimization-based adversary
module, the learning rate is set to 1 × 10−4, and the batch size is
set to 1. 𝜆𝑐 , 𝜆𝑟 , and 𝜆𝑓 in Eq. (7) are all set to 1.0. The first and
second phases of training process of INN consist of 1, 000 and 200
epochs, respectively. In the termination condition of perturbation
optimization, the threshold for steganalyzer’s confidence and it-
eration number is set to 90% and 200, respectively. Note that we
simulate real-world scenarios of secret information transmission,
wherein digital images in integer type are applied as carrier. In the
deep-learning-based steganographic methods, the neural networks
receives original images in integer type and outputs temporal im-
ages in floating type, which are further rounded into stego image
in integer type. This rounding process leads to a certain degree of
information loss and may further result in performance degrada-
tion of secret message extraction accuracy. Such stego images are
evaluated from different aspects, including security performance,
decoding performance, and visual quality. The experiments are
implemented by PyTorch and executed on Tesla V100 GPU card.

Steganographic methods and steganalyzers. Five steganographic
methods are compared, including HiDDeN [37], SteganoGAN [36],
CHAT-GAN [25], HiNet [16], and the proposed AHDeS. Noted
that network with specific structure can hide both bitstream and
image. For example, HiNet is originally used to hide image, while
[18], which has similar structure as HiNet, is used to hide bitstream.
Therefore, as long as the hidden content is the same, the comparison
would be fair. Five steganalyzers are utilized to evaluate the security
performance of steganographic methods, including XuNet [32],
SRNet [4], LWENet [30], CovNet [6], and StegExpose [3].

5.2 Performance Evaluation
In this part, the performance of steganographic methods are evalu-
ated from two aspects, including security performance and decod-
ing performance.

Four steganalyzers are adopted to evaluate the security perfor-
mance of steganographic methods. Specifically, CovNet is utilized
to evaluate the security performance of the generated stego images
in the adversary module in the proposed AHDeS. Therefore, from
the perspective of steganographer of AHDeS, CovNet is regarded
as the known steganalyzer, while XuNet, SRNet, and LWENet are
regarded as the unknown steganalyzers. The experimental results
are shown in Table 1. It can be observed that the proposed AHDeS
achieves the best security performance against both known and
unknown steganalyzers in all cases. Compared with HiNet, AHDeS
can obtain improvement of 16.80%, 5.57%, 6.62%, and 6.83% against
XuNet, SRNet, LWENet, and CovNet, respectively. The traditional
handcrafted steganalyzer is also adopt for performance evaluation.
AUC is 0.509 for AHDeS, and 0.592, 0.567, 0.581, 0.573 for the rest.
Noted that lower AUC indicates better security performance.

Table 1: Detection error rate of steganographic methods and
bit error rate between the original message and the extracted
message (%).

Methods CovNet XuNet SRNet LWENet BER

HiDDeN 0.25 0.53 0.24 0.03 40.70
SteganoGAN 0.32 1.07 0.44 0.07 1.47
CHAT-GAN 0.30 0.89 0.35 0.03 1.18

HiNet 2.16 17.05 7.53 0.75 0.26
AHDeS 8.99 33.85 13.10 7.37 0.85

Table 2: Objective evaluation of visual quality for stegano-
graphic methods.

Methods PSNR SSIM

HiDDeN 37.29 0.9822
SteganoGAN 42.61 0.9904
CHAT-GAN 43.34 0.9909

HiNet 42.95 0.9893
AHDeS 45.07 0.9938

BER (Bit Error Rate) between the original message and the ex-
tracted message is utilized to evaluate the decoding performance of
steganographic methods. The results are shown in Table 1. It can
be observed that the BER of HiNet and AHDeS is close to 0 and is
superior to the other methods, indicating that the proposed AHDeS
can transmit secret messages in a nearly lossless manner.

We also analyze the relationship between payload, security per-
formance, and decoding performance. Specifically, in the case of
1 bpp, the detection error rate of CovNet is 8.99% and the BER is
0.85%. While in the case of 2 bpp, the detection error rate is 7.27%
and the BER is 0.95%. It can be observed that the higher the payload,
the lower the security performance and the decoding performance.
Noted that although INN has the inverse property, its BER is affected
by the rounding operation for the forward calculation’s output. To
hide larger payload of messages, a cover image’s pixel has to carry
more bits in average, and thus given a specific modification range
for such pixel, the modification range for each bit would be smaller
and thus could be more easily erased by the rounding operation.
Besides, higher payload would introduce more artifacts and thus
decrease security performance.

5.3 Visual Quality Evaluation
In this part, the visual quality of the stego image is evaluated from
the objective evaluation and the subjective evaluation.

For subjective evaluation, we visualize the difference between the
cover and stego images. The cover image in AHDeS is the original
cover image. The results are given in Fig. 3. It can be observed
that the difference for proposed AHDeS are nearly invisible. Such
phenomenon indicates that AHDeS can generate stego images in
an imperceptible manner.
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Figure 3: Subjective evaluation of visual quality for steganographic methods. The difference is magnified by 20 times.

For objective evaluation, we evaluate the visual quality by PSNR
(peak-signal-to-noise-ratio) and SSIM (structural similarity) be-
tween the cover and stego images. The cover image in AHDeS
is the original cover image. The results are given in Table 2. It
can be observed that the visual quality of the stego images for
AHDeS significantly outperforms the other methods. For exam-
ple, the PSNR of AHDeS, HiDDeN, SteganoGAN, CHAT-GAN, and
HiNet are 45.07, 37.29, 42.61, 43.34 and 42.95, respectively.

5.4 Ablation Study
In this part, ablation studies are conducted from different aspects.

• Variant I. The adversary module is disabled in Variant I. Such
variant degenerates into HiNet.
• Variant II. 𝐿ℎ𝑝𝑓 in the adversary module is replaced with 𝐿2
loss in Variant II.
• Variant III. 𝐿ℎ𝑝𝑓 in the adversary module is replaced with
the cross-entropy loss of CovNet in Variant III.
• Variant IV. The second phase of network training, i.e., alter-
nately training the INN and optimizing the perturbations, is
not adopted in the training stage.
• Variant V. CovNet is replaced with XuNet in termination
condition for perturbation optimization.

The experimental results are given in Table 3 and the following
conclusions can be obtained.

• Via comparing AHDeS and Variant I, it can be observed that
AHDeS significantly outperforms Variant I, i.e., the original
HiNet. Such results verify the effectiveness of the Dig-and-
Fill paradigm.
• Via comparing AHDeS with Variant II and Variant III, it
can be observed that 𝐿ℎ𝑝𝑓 is most suitable for the adversary
module. Such results verify the effectiveness of the frequency
compensation mechanism.
• Via comparing AHDeS and Variant IV, it can be observed
that disabling the second phase of INN training would lead
to obvious performance degradation. Such results verify the
effectiveness of the perturbation adaptive training strategy.
• Via comparing AHDeS and Variant V, it can be observed that
applying a more advanced steganalyzer in the termination
condition of perturbation optimization would bring benefits.

Table 3: Detection error rate (%), bit error rate (%), and visual
quality of AHDeS and its variants.

Methods CovNet LWENet BER PSNR SSIM

Variant I 2.16 0.75 0.26 42.95 0.9893
Variant II 1.90 0.35 0.70 44.26 0.9932
Variant III 1.62 0.15 0.43 43.09 0.9898
Variant IV 2.20 1.20 0.40 41.09 0.9876
Variant V 4.99 2.45 1.27 44.07 0.9919
AHDeS 8.99 7.37 0.85 45.07 0.9938

5.5 Frequency Analysis
In this part, the embedding patterns of the proposed AHDeS are
analyzed in the frequency domain. DWT is first applied to process
the cover and stego images. And then, components on four sub-
bands can be obtained, including HH, HL, LH, and LL, where H
and L denote high frequency and low frequency along a specific
direction, respectively. For a specific steganographic method and a
specific sub-band, the difference between the components of cover
and stego images can be calculated. The frequency characteristics
is analyzed by visualization and statistics as follows.

From the perspective of visualization, we show the absolute
difference of high frequency components and low frequency com-
ponents, where the high frequency components are the summation
of HH, HL, and LH sub-bands, while the low frequency compo-
nents are the LL sub-band. AHDeS and HiNet is compared, and the
results are given in Fig. 4. From the third and fifth columns, it can
be observed that both of the AHDeS and HiNet can well preserve
the low frequency components. However, from the second and
fourth columns, it can be observed that HiNet leaves more obvious
artifacts on high frequency components than AHDeS.

From the perspective of statistics, the values of the absolute dif-
ference on a specific sub-band are summed up. Five steganographic
methods are compared, and the results averaged on 10,000 images
from COCO dataset are given in Fig. 5. Comparing with HiDDeN,
SteganoGAN, and CHAT-GAN, the proposed AHDeS can better
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Figure 4: Visualization of difference between cover and stego
images for high frequency and low frequency components.
The difference is magnified by 20 times.
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Figure 5: Statistics of components’ difference between cover
and stego images on four sub-bands.

preserve the LL sub-band unchanged. Comparing with HiNet, al-
though the effect on LL sub-band is quite similar, AHDeS can obtain
much better preserving performance on high frequency sub-bands
of HH, HL, and LH.

5.6 Offset Effect Visualization
In this part, the offset effects of the digging and filling processes
in AHDeS are visualized. Note that in the proposed AHDeS, in the
deployment stage, the adversary module receives the original cover
image C𝑜𝑟𝑖 and outputs the optimized cover image C𝑜𝑝𝑡 , and then
the INN takes in C𝑜𝑝𝑡 and secret message M and outputs the stego
image S. Specifically, the difference between C𝑜𝑝𝑡 and C𝑜𝑟𝑖 in the
digging process is denoted as D𝑑𝑖𝑔 , and the difference between S
and C𝑜𝑝𝑡 in the filling process is denoted as D𝑓 𝑖𝑙 . The offset effect
for the digging and filling processes are visualized in Fig. 6, where
the red and blue points represent elements in D𝑑𝑖𝑔 and D𝑓 𝑖𝑙 having

E
m

b
ed

d
in

g
 p

at
te

rn
 i

n

d
ig

g
in

g
 a

n
d

 f
il

li
n
g

 p
ro

ce
ss

C
o

v
er

Figure 6: Visualization of offset effect. The red and blue
points represent elements in D𝑑𝑖𝑔 and D𝑓 𝑖𝑙 having the op-
posite signs and same signs, respectively.

the opposite signs and the same signs, respectively. From Fig. 6, it
can be observed that the red points are far more than the blue points.
Such phenomenon indicates that the modification direction in the
digging and filling processes have the offset effect, and thus the
stego image is closer to the original cover image. In such manner,
the stego image is of better anti-steganalysis performance.

5.7 Robustness to JPEG compression
In this part, INN’s forward calculation outputs spatial stego image,
which is transformed by DCT, divided by quantization step, and
processed by simulated rounding function to approximate JPEG
compression. The output is decompressed as spatial image, and
fed into reverse calculation for message extraction. BERs are 0.99%,
0.52% and 0.24% for quality factor of 70, 80 and 90.

6 Conclusions
In this paper, the steganographic method called AHDeS is proposed
under the Dig-and-Fill paradigm, wherein the adversary component
for countering against steganalyzers and the hiding component for
information hiding can be decoupled. Extensive experiments have
been conducted, and the following conclusions can be made. Firstly,
AHDeS can obtain the state-of-the-art security performance and
visual quality, while maintaining satisfied message extraction accu-
racy. Secondly, owing to the frequency compensation mechanism,
AHDeS can well preserve the high frequency components without
disturbing the low frequency components. Thirdly, the digging and
filling processes in AHDeS have the offset effect of modification
direction, which is beneficial to generating more secure stego image
during information hiding. In the future, we hope to extend the
Dig-and-Fill paradigm to information hiding in other multimedia
carriers, such as audio and video.
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