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ABSTRACT

Molecular discovery is essential for advancing various scientific fields by gener-
ating novel molecules with desirable properties. This process is naturally a multi-
objective optimization problem, as it must balance multiple molecular properties
simultaneously. Although numerous methods have been developed to address this
problem, most rely on online settings that repeatedly evaluate candidate molecules
through oracle queries. However, in practical applications, online settings may not
be feasible due to the extensive time and resources required for each oracle query.
To fill this gap, we propose the Molecular Stitching (MolStitch) framework, which
utilizes a fixed offline dataset to explore and optimize molecules without the need
for repeated oracle queries. Specifically, MolStitch leverages existing molecules
from the offline dataset to generate novel ‘stitched molecules’ that combine their
desirable properties. These stitched molecules are then used as training samples to
fine-tune the generative model, enhancing its ability to produce superior molecules
beyond those in the offline dataset. Experimental results on various offline multi-
objective molecular optimization problems validate the effectiveness of MolStitch.
MolStitch has been thoroughly analyzed, and its source code is available online.1

1 INTRODUCTION

In recent years, diverse in silico generative models have been developed to tackle molecular discov-
ery, which is inherently a multi-objective optimization (MOMO) problem (Fromer & Coley, 2023).
These computational approaches have demonstrated impressive success across various benchmarks,
leading to a growing interest in integrating them into real-world applications such as drug discov-
ery. Despite this success, most existing in silico models operate under an online optimization setting,
where numerous candidate molecules are generated iteratively and those molecules are evaluated im-
mediately using an oracle function. However, in real-world molecular discovery, the oracle function
is typically represented by wet-lab experiments, which are resource-intensive and can take weeks or
even months for evaluation (Payton et al., 2023). This creates a significant bottleneck, as in silico
models cannot receive online evaluation feedback from wet-lab. Instead, these models must wait for
the wet-lab experiments to finish, resulting in prolonged delays before they can be optimized.

To address these challenges, a promising research direction is to enable the optimization and refine-
ment of in silico models without relying on online evaluation feedback from the wet-lab experiments.
To achieve this, we propose to explore offline optimization settings for real-world molecular discov-
ery. Specifically, offline optimization aims to fully leverage the information contained within a static
offline dataset, utilizing this information to improve and optimize the model, even in the absence of
online evaluation feedback. Detailed explanations for offline settings are provided in Appendix A.

One of the most promising approaches for solving the offline optimization problem is offline model-
based optimization (MBO) (Trabucco et al., 2022). In this approach, a proxy model, typically pa-
rameterized as a deep neural network f̂θ(·), is trained to approximate the oracle function by fitting it
to an offline dataset. Once trained, the proxy model serves as a surrogate to guide the optimization
of a in silico generative model. In particular, a gradient ascent (Zinkevich, 2003) can be applied to
the generative model’s parameters with respect to the proxy model’s predictions, aiming to refine
the the generative model to produce candidate molecules with increasingly desirable properties.

1https://tinyurl.com/ycbts7j2
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Figure 1: An illustration of trajectory stitching (left) and molecular stitching (right), demonstrating
how fragments from distinct trajectories or molecules can be combined to achieve better outcomes.

This offline MBO approach demonstrates a strong performance by generating synthetic data guided
by the proxy model. However, there are issues to consider: the vanilla proxy model is trained using
a supervised regression loss, which may struggle to accurately approximate the true values from the
oracle function as the problem becomes more complex (Fu & Levine, 2021). This issue is further
exacerbated when the proxy model encounters out-of-distribution (OOD) data, leading to significant
discrepancies between the true values and the proxy model’s predictions (Qi et al., 2022). To tackle
these issues, recent studies have proposed various strategies to enhance the robustness and accuracy
of the proxy model such as introducing conservative estimates (Trabucco et al., 2021), employing a
local smoothness prior (Yu et al., 2021), and adopting ensemble methods (Chen et al., 2023a).

While these advanced methods significantly enhance the proxy model, they may not fully leverage
the valuable information inherent in the offline dataset, as this data is typically used exclusively for
training the proxy. In the domain of offline reinforcement learning (RL), researchers have introduced
trajectory stitching techniques (Li et al., 2024; Kim et al., 2024b) to directly leverage the existing
offline data by creating synthetic trajectories through segment combination. As depicted in Figure 1,
consider two distinct trajectories in the offline dataset: trajectory A has a strong start but ends at the
wrong destination, whereas trajectory B starts poorly yet successfully reaches the goal destination.
By applying trajectory stitching, these trajectories can be combined to form a new stitched trajectory
that incorporates the strong start from trajectory A with the goal destination from trajectory B.

In this paper, we propose the Molecular Stitching (MolStitch) framework that effectively tackles the
offline MOMO problem. Drawing inspiration from trajectory stitching in offline RL, our framework
involves stitching molecules from the offline dataset. For instance, if molecule A possesses desirable
property 1 but lacks property 2, while molecule B has the opposite characteristics, we aim to ‘stitch’
these molecules together to produce a new stitched molecule that exhibits both desirable properties.
In other words, our framework utilizes the molecules in the offline dataset to generate novel stitched
molecules, allowing the generative model to learn from these newly synthesized data samples.

To effectively utilize stitched molecules as augmented synthetic data, it is essential to evaluate them
and provide constructive feedback to the generative model. However, this evaluation process poses a
challenge, as these molecules are unfamiliar to the proxy model. This challenge becomes even more
pronounced in the MOMO problem due to its increased complexity. To mitigate this, we reformulate
the proxy model’s task from regression to classification. Instead of directly predicting property
scores for stitched molecules, our proxy model is designed to compare pairs of stitched molecules to
determine which one is superior based on the desired properties. This transformation simplifies the
task for the proxy, thereby enabling it to provide more reliable feedback for the generative model.

In the MOMO problem, it is necessary to optimize multiple molecular objectives (properties) simul-
taneously. Hence, these objectives are often combined into a single objective through scalarization,
where the weights determine the relative importance or priority of each objective (Gunantara, 2018).
However, in offline settings, the exact importance of each objective is often unknown, and adjusting
weights based on immediate feedback is limited (Xue et al., 2024). To address this, we incorporate
priority sampling using a Dirichlet distribution (Minka, 2000) into our framework. Specifically, in-
stead of manually selecting weights, we employ priority sampling to generate a variety of weight
configurations during the molecular stitching process, resulting in a diverse set of stitched molecules.

The main contributions of our proposed framework can be summarized as follows:
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• We propose the Molecular Stitching (MolStitch) framework, which is the first offline multi-
objective optimization approach specifically designed for molecular discovery. In particular,
MolStitch includes StitchNet for leveraging existing molecules from an offline dataset to gen-
erate novel stitched molecules, a proxy model for evaluating these stitched molecules, and
preference optimization technique to fine-tune the generative model without oracle queries.

• We reformulate the proxy model’s task from property score regression to pairwise classifica-
tion. Specifically, we construct a rank-based proxy that learns the ranking relationship between
two molecules based on desired properties and classifies which molecule is more favorable.

• We introduce priority sampling using a Dirichlet distribution to efficiently generate diverse
weight configurations. This allows for effective exploration of trade-offs among objectives in
offline multi-objective optimization, where the importance of each objective is often unknown.

2 RELATED WORK

Multi-Objective Molecular Optimization (MOMO). In recent years, various generative models
have been developed to address the MOMO problem, including genetic algorithms (Jensen, 2019;
Tripp et al., 2021), sampling-based methods (Xie et al., 2021a; Fu et al., 2021), RL-based methods
(Olivecrona et al., 2017; Jin et al., 2020), and GFlowNets (Kim et al., 2024a). To manage multiple
objectives, these generative models often employ scalarization techniques, such as weighted sums
or Tchebycheff methods, which aggregate multiple objectives into a single objective function. For
example, REINVENT (Olivecrona et al., 2017) applies RL algorithms that interact with a chemical
environment to generate optimized molecules and can incorporate scalarization techniques to handle
multiple objectives. Similarly, GeneticGFN (Kim et al., 2024a) integrates GFlowNets with genetic
algorithms to generate molecules and uses scalarization to balance multiple objectives effectively.

Offline Model-based Optimization (MBO). In offline settings, optimization relies solely on a pre-
collected dataset and prohibits any real-time oracle queries. A prominent approach for this setting is
offline MBO, which performs data augmentation, evaluates synthetic data through a proxy model,
and fine-tune the generative model based on the proxy feedback. The most straightforward approach
in offline MBO is to use a vanilla proxy that directly approximates objective scores. However, recent
studies have proposed various methods to improve the robustness and accuracy of this vanilla proxy.
For instance, COMs (Trabucco et al., 2021) employs adversarial learning to encourage conservative
estimates on data, while IOM (Qi et al., 2022) leverages invariant representation learning through
domain adaptation to reduce distributional shifts. Further details on related work are in Appendix B.

3 PRELIMINARIES

Problem formulation. LetM denote the space of all possible molecules m, and let f1, f2, . . . , fk :
M→ R be k real-valued molecular objective functions, each representing a molecular property to
be optimized. The multi-objective molecular optimization (MOMO) problem can be stated as:

Maximize
m∈M

F(m) = {f1(m), f2(m), . . . , fk(m)}. (1)

In this problem, it is often challenging to identify a single molecule that simultaneously maximizes
all objective functions. This challenge arises because each objective function reflects a distinct
molecular property, and improving one molecular property may lead to the deterioration of other
properties due to inherent trade-offs between them (Fromer & Coley, 2023). Therefore, the goal of
this problem is to identify a diverse set of Pareto optimal molecules on the Pareto front.
Definition 1 (Pareto optimal). A molecule m∗ ∈M is considered to be Pareto optimal if and only
if there does not exist any other molecule m ∈M such that:

∄m ∈M : (∀i ∈ {1, . . . , k}, fi(m) ≥ fi(m∗)) ∧ (∃j ∈ {1, . . . , k}, fj(m) > fj(m
∗)). (2)

Definition 2 (Pareto front). The Pareto front, denoted as PF, is the set of all Pareto optimal solu-
tions in the objective space. Mathematically, it can be expressed as:

PF = {F(m∗) | m∗ ∈ PS}, (3)

where PS is the Pareto set, defined as:

PS = {m∗ ∈M | ∄m ∈M : F(m) ⪰ F(m∗) ∧ F(m) ̸= F(m∗)}. (4)
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Offline setting. Let D = {(mn,F(mn))}Nn=1 be the offline dataset, where mn ∈ M represents
a pre-collected molecule and F(mn) represents the corresponding true molecular objective scores.
The goal of this offline molecular optimization is to identify Pareto optimal molecules within D and
to generate new molecules that potentially outperform the best-known molecules in D. To explore
molecular space beyond the dataset D, a common strategy involves constructing a proxy model,
f̂θ(·) : M → R, to evaluate molecules. The most direct approach is the vanilla proxy, which
approximates the scores of true objective functions F(·) by training on the mean squared error loss.

Generative model. Let Gϕ be a generative model that generates molecules in an auto-regressive
manner. The generation process for a molecule m of total length T can be stated as:

Gϕ(m) =

T∏
t=1

Gϕ(m
t|mt−1,mt−2, . . . ,m1), (5)

where mt represents the t-th component (or token) in the sequence that constitutes the molecule m.
To optimize the generative model such that it produces molecules with improved objective scores,
the vanilla proxy can be employed. Specifically, the generative model can be updated by maximizing
the expected performance of the generated molecules based on the vanilla proxy’s predictions:

ϕ∗ = argmax
ϕ

Em∼G(ϕ)

[
f̂θ(m)

]
. (6)

However, this approach may face challenges as the problem’s complexity increases. The vanilla
proxy might produce unreliable predictions when encountering molecules outside its training data
distribution, leading to potentially misguided optimization. Moreover, this approach may not fully
leverage the valuable information inherent in the existing offline dataset.

4 METHOD

In this section, we present our MolStitch framework for tackling the offline MOMO problem. There
are three distinct neural networks in our framework: the generative model, StitchNet, and the proxy
model. The generative model is designed to generate molecules in textual formats, such as SMILES
(Weininger, 1988). StitchNet takes two parent molecules as input and outputs a novel stitched
molecule that combines desirable properties from both inputs. The proxy model serves as a surrogate
for evaluating molecules by classifying which molecule in a given pair has more desirable properties.

4.1 UNSUPERVISED PRE-TRAINING FOR STITCHNET AND THE GENERATIVE MODEL

Figure 2: Unsupervised pre-training for our StitchNet.

In the pre-training stage of our frame-
work, we conduct unsupervised train-
ing for both StitchNet and the gen-
erative model using the public ZINC
dataset (Sterling & Irwin, 2015). For
pre-training StitchNet, we randomly
sample two parent molecules from
the dataset and employ a rule-based
crossover operator (Jensen, 2019) to
generate an offspring molecule, as
shown in Figure 2. This operator en-
sures that the offspring molecules are
chemically valid and potentially possess desirable properties (Kamphausen et al., 2002). We then
train StitchNet using a maximum likelihood approach (Myung, 2003) to produce a stitched molecule
that closely resembles the offspring molecule. This pre-training encourages StitchNet to internalize
chemical grammar, thereby enabling it to generate stitched molecules that are chemically valid.

For pre-training the generative model, we also randomly sample molecules from the ZINC dataset
and use them as ground truth labels. The model is then trained using a maximum likelihood, wherein
it learns to predict the next component of each molecule based on the preceding sequence, as outlined
in Equation 5. Since all molecules within the ZINC dataset are chemically valid, this pre-training
process naturally guides the generative model to generate chemically valid molecules on its own.
The visualization of this pre-training process for the generative model is provided in Appendix C.
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Figure 3: Overview of the MolStitch framework. (a) Stage 1: The proxy model is trained to classify
which molecule in a given pair has desirable properties, while StitchNet undergoes self-supervised
training with chemical feedback. (b) Stage 2: StitchNet generates stitched molecules, which are
stored in a buffer. Once the buffer is full, the proxy model evaluates the pairs and selects the superior
molecule. The generative model is then fine-tuned using preference optimization techniques.

4.2 TRAINING THE PROXY AND STITCHNET FOR OFFLINE MOLECULAR OPTIMIZATION

In the first stage, we obtain the offline dataset that consists of pre-collected molecules along with
their true molecular objective scores. To facilitate the process of offline MBO, we require a proxy
model capable of evaluating each molecule effectively. In this work, rather than training the proxy
model to approximate the exact objective scores, we train it to classify which molecule in a given pair
has better objective scores. Specifically, as shown in Figure 3, we sample pairs of molecules from the
offline dataset. Since we have access to the ground truth objective scores for each molecule in this
dataset, we can establish a ranking between the molecules in each pair. We then train our rank-based
proxy model f̂θ to learn this ranking relationship using a pairwise ranking loss as follows:

Lproxy(θ) =
1

|P|
∑

(mw,ml)∈P

ℓ
(
f̂θ(mw)− f̂θ(ml),F(mw)− F(ml)

)
, (7)

where P is the set of all valid molecule pairs (mw,ml) within the offline dataset D, defined as:
P = {(mw,ml) | mw,ml ∈ D, F(mw) > F(ml)} . (8)

The loss function ℓ penalizes the proxy model when the predicted ranking does not match the true
ranking. A common choice for ℓ is the binary cross-entropy loss, which can be re-written as:

Lproxy(θ) = −
1

|P|
∑

(mw,ml)∈P

[
log σ

(
f̂θ(mw)− f̂θ(ml)

)]
, (9)

where σ(x) = 1
1+e−x is the sigmoid function. Once the proxy model has been effectively trained to

rank pairs of molecules, we proceed to the self-supervised training process for StitchNet. While the
pre-training stage focused on training StitchNet to learn chemical grammar and crossover operation,
the focus in this stage is to integrate chemical feedback into StitchNet. In particular, we leverage
the true objective scores from the offline dataset as chemical feedback to inform StitchNet about the
potential efficacy of the resulting stitched molecules. This feedback helps StitchNet to understand
how the stitched molecules are likely to exhibit objective scores when two molecules are combined.

To achieve this, we first sample the original molecule morig from the offline dataset D. Subse-
quently, we use the fragmentation function within the rule-based crossover operator to decompose
this original molecule into two smaller fragment molecules. StitchNet is then employed to recom-
bine these fragment molecules into a new stitched molecule m̄stit. If the molecular similarity (Bender
& Glen, 2004) between the original molecule and stitched molecules is above a certain threshold δ,
sim (morig, m̄stit) ≥ δ, we then train StitchNet Sψ using the following loss function:

Lstitch(ψ) =
1

|D|
∑

morig∈D
Em̄stit∼Sψ

[
(− logSψ(m̄stit) + logSref(m̄stit) +R(morig))

2
]
, (10)

5
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where Sref refers to the pre-trained StitchNet that acts as a reference model for maintaining chemical
validity throughout the molecular stitching process. TheR(morig) represents the reward score, serv-
ing as chemical feedback derived from the given objective scores of the original moleculemorig. The
Lstitch(ψ) guides StitchNet Sψ to generate stitched molecules m̄stit with desirable objective scores,
while not deviating too far from Sref. Note that since we are addressing the offline MOMO problem,
we cannot query the oracle to directly measure the objective scores of m̄stit for computingR(m̄stit).
Instead, we utilize the given objective scores ofmorig as a form of chemical feedback to approximate
the objective scores of m̄stit. This approximation is reasonable because StitchNet generates m̄stit by
recombining fragment molecules that are derived directly frommorig. Moreover, we ensure that m̄stit
is sufficiently similar to morig through the similarity threshold δ. This allows us to assume that the
objective scores of m̄stit are also similar to the objective scores ofmorig, as it is widely acknowledged
that structurally similar molecules often exhibit similar properties and biological activities (Barbosa
& Horvath, 2004; Alvesalo et al., 2006). Detailed visualization of this process is in Appendix E.

4.3 OFFLINE MOLECULAR OPTIMIZATION VIA MOLECULAR STITCHING

In the second stage of our framework, we address the offline MOMO problem by utilizing the trained
proxy model and StitchNet. The main goal of this stage is to train the generative model to generate
novel molecules that potentially surpass the best-known molecule inD. In the context of the MOMO
problem, the scalarization approach is widely adopted, where a weighted sum of multiple objectives
is combined into a single scalar objective, expressed as F (m) =

∑k
i=1 λifi(m). Here, k denotes

the number of objectives, and λi represents the weight assigned to each objective, reflecting its
relative importance or priority. However, in offline settings, the exact importance is often unknown,
making it challenging to select appropriate weights. In addition, the goal of StitchNet is to combine
molecules with different characteristics to generate novel stitched molecules that integrate desirable
properties from both inputs. Hence, it is essential to provide StitchNet with diverse molecule pairs.

To address these challenges, we introduce priority sampling using the Dirichlet distribution. This
sampling approach generates a diverse set of weight configurations, allowing StitchNet to work with
a wide variety of molecule pairs, each focusing on a different balance among multiple objectives.
Our choice of the Dirichlet distribution is due to its capability to sample directly from the simplex,
naturally providing valid weight combinations that are non-negative and sum to 1. The probability
density function of the Dirichlet distribution can be expressed by:

p(λ1, λ2, . . . , λk | λ ∼ Dir(α1, α2, . . . , αk)), (11)

where Dir(·) refers to the Dirichlet distribution, and α denotes the concentration parameters. As
illustrated in Figure 3, we use priority sampling λ ∼ Dir(α1, α2, . . . , αk) to sample molecule pairs
from the offline dataset. These sampled molecules are then fed into StitchNet, which outputs a novel
stitched molecule m̄. This newly generated stitched molecule is subsequently stored in a buffer B
and utilized as a training sample for the fine-tuning training process of the generative model. Please
refer to Appendix F for a detailed visualization and the rationale behind priority sampling.

Once the buffer B is populated with a pre-defined number of stitched molecules, we can proceed to
train the generative model. Specifically, we sample pairs of stitched molecules (m̄i, m̄j) from B and
use our trained proxy model to determine which molecule in each pair is more favorable such as:

(m̄w, m̄l) =
{
(m̄i, m̄j), if f̂θ(m̄i) > f̂θ(m̄j) (12)

where the more favorable molecule is denoted as m̄w (the winning molecule) and the less favorable
molecule is m̄l (the losing molecule). Then, we can update the generative model Gϕ by increasing
the log-likelihood of generating the winning molecule and decreasing the log-likelihood of generat-
ing the losing molecule. The loss function for the generative model can be formulated as:

Lgen(ϕ) = −E(m̄w,m̄l)∼B [logGϕ(m̄w)− logGϕ(m̄l)] + β · DKL(Gϕ∥Gref), (13)

where Gref represents the pre-trained generative model serving as a reference model. The KL di-
vergence term DKL encourages Gϕ not to deviate significantly from Gref, ensuring that it maintains
adherence to chemical validity. After formulating the initial loss function for the generative model,
we can draw an intriguing parallel to preference optimization for language models (Rafailov et al.,
2023; Tang et al., 2024). In this analogy, our generative model Gϕ can be thought of as the language
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model and the favorable molecule m̄w as the preferred response. This conceptual alignment allows
us to incorporate various preference optimization techniques into our training process. Inspired by
Direct Preference Optimization (DPO) (Rafailov et al., 2023), we can reformulate the Equation 13
into a DPO-like loss by employing the Bradley-Terry model (Bradley & Terry, 1952) such as follow:

Lgen-dpo(ϕ) = −E(m̄w,m̄l)∼B

[
log σ

(
β log

Gϕ(m̄w)

Gref(m̄w)
− β log Gϕ(m̄l)

Gref(m̄l)

)]
. (14)

This DPO-like loss integrates the separate KL divergence into a single term by utilizing the sigmoid
of log odds ratios, simplifying the optimization process. In addition, the sigmoid function mitigates
extreme values and provides more stable gradients during training. However, despite its effective-
ness, DPO is known to be prone to overfitting the preference dataset, particularly in scenarios where
there is a deterministic preference between two samples (Hu et al., 2024a). To address this, Identity
Preference Optimization (IPO) (Azar et al., 2024) introduces a regularization term that penalizes the
model when its confidence in the preference margin becomes excessively high. Building upon the
concepts of IPO, we can modify the Equation 14 to adopt an IPO-like loss formulation as follows:

Lgen-ipo(ϕ) = −E(m̄w,m̄l)∼B

[(
log

(
Gϕ(m̄w)

Gϕ(m̄l)
· Gref(m̄l)

Gref(m̄w)

)
− 1

2β

)2
]
. (15)

Using the Equation 15, we fine-tune the generative model, which is REINVENT (Olivecrona et al.,
2017), chosen for its widespread use and robust performance. Details of the generative model’s loss
function are in Appendix D, and the pseudo-code for our MolStitch framework is in Appendix G.

5 EXPERIMENTS

5.1 EXPERIMENTAL DESIGN AND RESULTS

Experimental setup. We conducted two main offline MOMO experiments to evaluate the efficacy
of our MolStitch framework. The first benchmark focused on the Practical Molecular Optimization
(PMO) task (Gao et al., 2022), while the second addressed the docking score optimization task (Lee
et al., 2023). Both experiments were designed to simulate real-world constraints by restricting the
number of oracle calls. In the first experiment, we closely followed prior studies (Xie et al., 2021b;
Shin et al., 2024) and adopted four widely used molecular objectives. The objectives include JNK3
and GSK3β, which evaluate inhibition against target proteins associated with Alzheimer’s disease,
along with QED and SA, which measure drug-likeness and synthesizability. For the second exper-
iment, we also closely followed recent work (Guo & Schwaller, 2024b) and targeted the docking
score optimization of five proteins—parp1, fa7, jak2, braf, and 5ht1b—alongside QED and SA.
Note that all experiments were conducted under offline settings, and each experiment was repeated
with 10 different seeds to ensure reliability. Further experimental details are in Appendix H.

Competing methods. We compared our framework against two main categories of methods: molec-
ular optimization and offline optimization. For molecular optimization, we included REINVENT
(Olivecrona et al., 2017), REINVENT-BO (Tripp et al., 2021), AugMem (Guo & Schwaller, 2024a),
GraphGA (Jensen, 2019), DST (Fu et al., 2022), GeneticGFN (Kim et al., 2024a), and Saturn (Guo
& Schwaller, 2024b). For offline optimization, we considered various offline MBO methods, in-
cluding Gradient ascent (Grad) (Zinkevich, 2003), COMs (Trabucco et al., 2021), IOM (Qi et al.,
2022), RoMA (Yu et al., 2021), Ensemble Proxy (Trabucco et al., 2022), ICT (Yuan et al., 2023),
and Tri-Mentoring (Chen et al., 2023a). We included BIB (Chen et al., 2023b) and BootGen (Kim
et al., 2023), which are current state-of-the-art models for offline optimization in biological sequence
design. Note that we used REINVENT as the backbone generative model for all offline optimization
methods, not only because it is one of the most robust models for diverse molecular optimization
tasks, but also to ensure fairness and consistency, as REINVENT serves as the main backbone model
in our framework. Detailed descriptions of each competing method are in Appendix I.

Evaluation metrics. The performance of each method was evaluated using two evaluation metrics:
the hypervolume indicator (HV) (Zitzler et al., 2003) and the R2 indicator (Brockhoff et al., 2012).
The HV quantifies the volume of the space dominated by a set of solutions on the Pareto front, where
higher values reflect better performance. On the other hand, the R2 assesses the quality of a solution
set by measuring the projection onto pre-defined reference points, with lower values indicating better
performance. A more detailed explanation of these evaluation metrics is presented in Appendix J.
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Table 1: Experimental results on molecular property optimization tasks under the full-offline setting.
The evaluation metrics are the hypervolume (HV) and R2 indicators, with the best values in bold.

Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Method HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

REINVENT 0.462±0.133 0.921±0.259 0.196±0.083 2.646±0.327 0.168±0.046 3.969±0.664
AugMem 0.489±0.077 0.845±0.148 0.272±0.083 2.118±0.280 0.185±0.043 4.101±0.346
GraphGA 0.367±0.090 1.116±0.189 0.212±0.063 2.482±0.240 0.200±0.070 3.973±0.504
DST 0.327±0.070 1.211±0.141 0.244±0.072 2.341±0.321 0.228±0.065 3.748±0.473
Saturn 0.531±0.087 0.785±0.159 0.293±0.058 1.977±0.280 0.281±0.058 3.339±0.280
GeneticGFN 0.482±0.073 0.869±0.117 0.309±0.087 1.990±0.365 0.237±0.066 3.630±0.453
REINVENT-BO 0.472±0.107 0.909±0.216 0.232±0.086 2.385±0.393 0.205±0.105 3.974±0.895
Grad 0.494±0.058 0.857±0.126 0.205±0.045 2.502±0.231 0.171±0.026 4.176±0.319
COMs 0.479±0.063 0.877±0.109 0.205±0.072 2.496±0.288 0.171±0.062 4.219±0.628
IOM 0.506±0.070 0.807±0.138 0.215±0.060 2.380±0.336 0.195±0.065 4.042±0.529
RoMA 0.492±0.091 0.843±0.177 0.198±0.052 2.537±0.269 0.169±0.071 4.207±0.617
Ensemble Proxy 0.500±0.033 0.835±0.055 0.218±0.039 2.462±0.160 0.213±0.057 3.888±0.529
BIB 0.486±0.070 0.874±0.120 0.203±0.049 2.503±0.245 0.172±0.027 4.080±0.387
BootGen 0.540±0.113 0.741±0.167 0.225±0.067 2.452±0.319 0.201±0.074 4.092±0.560
ICT 0.514±0.049 0.827±0.104 0.213±0.080 2.429±0.385 0.180±0.060 4.197±0.593
Tri-Mentoring 0.510±0.042 0.824±0.079 0.216±0.071 2.458±0.363 0.195±0.057 4.067±0.467
MolStitch (Ours) 0.579±0.070 0.698±0.128 0.403±0.065 1.649±0.259 0.352±0.080 2.953±0.571

Table 2: Experimental results on docking score optimization tasks under the full-offline setting.

Target protein parp1 jak2 braf fa7 5ht1b

Method HV(↑) HV(↑) HV(↑) HV(↑) HV(↑)

REINVENT 0.515±0.016 0.477±0.009 0.500±0.008 0.414±0.006 0.509±0.011
AugMem 0.532±0.039 0.499±0.053 0.511±0.008 0.430±0.038 0.521±0.014
Saturn 0.528±0.009 0.498±0.030 0.523±0.046 0.431±0.034 0.537±0.033
GeneticGFN 0.539±0.033 0.476±0.008 0.508±0.005 0.441±0.054 0.523±0.011
REINVENT-BO 0.518±0.009 0.480±0.007 0.505±0.012 0.421±0.067 0.518±0.012
Grad 0.513±0.007 0.481±0.014 0.510±0.007 0.445±0.053 0.525±0.033
COMs 0.510±0.010 0.478±0.014 0.505±0.022 0.411±0.007 0.509±0.008
IOM 0.520±0.009 0.474±0.008 0.500±0.013 0.411±0.005 0.519±0.042
RoMA 0.512±0.010 0.470±0.009 0.512±0.032 0.429±0.053 0.512±0.013
Ensemble Proxy 0.517±0.008 0.479±0.010 0.501±0.010 0.414±0.006 0.507±0.008
BIB 0.514±0.010 0.476±0.007 0.497±0.006 0.414±0.006 0.505±0.009
BootGen 0.544±0.032 0.496±0.007 0.524±0.007 0.436±0.030 0.545±0.063
ICT 0.516±0.005 0.476±0.006 0.504±0.021 0.410±0.005 0.506±0.010
Tri-Mentoring 0.529±0.038 0.482±0.017 0.511±0.019 0.416±0.008 0.513±0.009
MolStitch (Ours) 0.560±0.037 0.515±0.041 0.554±0.042 0.451±0.061 0.575±0.051

Main results. As shown in Table 1, we present the mean HV and R2 performance along with their
standard deviations for the PMO task under the full-offline setting. We observed that our MolStitch
framework consistently demonstrated superior performance across all scenarios with varying num-
bers of molecular objectives. This underscores the efficacy of our StitchNet in addressing the offline
MOMO problem, as it leverages existing molecules to create novel stitched molecules, which serve
as valuable training samples for fine-tuning the generative model. Among the competing methods,
Saturn and GeneticGFN exhibited strong performance, both of which are recent methods that em-
ploy genetic algorithms, while BootGen demonstrated its effectiveness by utilizing a bootstrapping
technique for iterative self-training. Furthermore, we validated the effectiveness of our framework
on an additional protein docking score optimization task. As presented in Table 2, MolStitch consis-
tently outperformed all competing methods across all five proteins in terms of the HV performance,
highlighting the robustness and generalizability of our framework in tackling diverse offline MOMO.

Additional results. In recent years, semi-offline optimization, also known as batch hybrid learning,
has gained significant attention in the field of large language models (Xiong et al., 2024). Specifi-
cally, this semi-offline setting allows for a limited number of online human feedback cycles and en-
ables the model to be fine-tuned on new data through large batches. Inspired by this, we conducted
additional experiments for the semi-offline setting, starting with an offline dataset and periodically
querying oracle functions to evaluate molecules in large batches. Due to page constraints, the results
are in Appendix K.3, where our framework maintained its superior performance. We also explored
the impact of different backbone generative models in our framework, as detailed in Appendix K.4.
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Table 3: An ablation study for Rank-based Proxy (RP), StitchNet (SN), and Priority Sampling (PS).

Ablation GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

RP SN PS HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

- - - 0.494±0.058 0.857±0.126 0.205±0.045 2.502±0.231 0.171±0.026 4.176±0.319
- ✔ - 0.513±0.073 0.780±0.106 0.269±0.081 2.183±0.318 0.193±0.053 4.134±0.502
- ✔ ✔ 0.505±0.049 0.824±0.084 0.277±0.083 2.195±0.357 0.220±0.054 3.835±0.483
✔ - - 0.545±0.063 0.773±0.120 0.319±0.059 1.928±0.314 0.251±0.084 3.504±0.634
✔ ✔ - 0.573±0.078 0.688±0.138 0.337±0.068 1.967±0.311 0.289±0.096 3.317±0.713
✔ ✔ ✔ 0.579±0.070 0.698±0.128 0.403±0.065 1.649±0.259 0.352±0.080 2.953±0.571

Table 4: Performance comparison of different data augmentation techniques in offline MOMO.

Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Augmentation HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

Baseline (REINVENT) 0.462±0.133 0.921±0.259 0.196±0.083 2.646±0.327 0.168±0.046 3.969±0.664
+ Stochastic sampling 0.545±0.063 0.773±0.120 0.319±0.059 1.928±0.314 0.251±0.084 3.504±0.634
+ Crossover operator 0.540±0.088 0.790±0.181 0.367±0.062 1.793±0.245 0.302±0.072 3.110±0.479
+ StitchNet (Ours) 0.579±0.070 0.698±0.128 0.403±0.065 1.649±0.259 0.352±0.080 2.953±0.571

5.2 ABLATION STUDY

To investigate the impact of each key component in our framework—Rank-based Proxy (RP), Stitch-
Net (SN), and Priority Sampling (PS)—we conducted an ablation study, as presented in Table 3.

Effects of rank-based proxy. When RP was ablated and replaced with a score-based proxy, which
is similar to the vanilla proxy that directly approximates objective scores, we observed a noticeable
drop in performance. This performance drop became more pronounced as the number of objectives
increased. Detailed investigations of score- and rank-based proxies are provided in Appendix L. In
addition, we extended RP by employing multiple proxies, with the results presented in Appendix M.

Benefits of StitchNet. The ablation study highlighted the significant impact of SN in the offline op-
timization process. By generating novel stitched molecules, SN provides valuable training samples
for fine-tuning the generative model. Importantly, SN incorporates a crossover mechanism similar
to that in genetic algorithms but with the added capability of receiving chemical feedback. The ef-
ficacy of this crossover operation was validated in our main results, where genetic algorithm-based
methods like GeneticGFN and Saturn also demonstrated strong performance. These findings sug-
gest that incorporating the crossover operation, as SN does, is beneficial for offline MOMO because
it naturally promotes diversity by exploring novel combinations derived from existing molecules.

Benefits of priority sampling. PS played a crucial role in generating diverse weight configurations,
which enabled SN to operate with a wide variety of molecule pairs. In the ablation study, PS had a
minimal impact on performance in the two-objective scenario. This is likely because, with only two
objectives, the trade-offs are simpler, and the Pareto front can be adequately explored using basic
weight configurations. However, as the number of objectives increased to three and four, the benefits
of PS became more pronounced. PS significantly improved performance by enabling our framework
to efficiently navigate more complex Pareto front through diverse weight configurations.

5.3 EXPERIMENTAL ANALYSIS AND DISCUSSION

Data augmentation. In our main results, we observed that employing StitchNet as a data augmen-
tation technique significantly enhanced performance in offline MOMO. To investigate its effective-
ness, we compared StitchNet with other data augmentation techniques. One technique is stochastic
sampling, where new molecules are stochastically drawn from the generative model’s learned distri-
bution. To put it simply, this process can be represented in code-level terms as model.sample().
Another technique is the crossover operator, used in GeneticGFN and Saturn, which generates new
offspring molecules by combining features from parent molecules in a rule-based manner. As shown
in Table 4, all data augmentation techniques outperformed the baseline, underscoring their effective-
ness in offline MOMO. Notably, the crossover operator generally demonstrated comparable or better
performance than stochastic sampling due to its ability to combine existing high-quality molecules to
create diverse and unique offspring. Importantly, StitchNet achieved the best performance across all
scenarios, showing its effectiveness by leveraging a neural network to integrate chemical feedback.
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Table 5: Performance comparison of various preference optimization techniques in offline MOMO.

Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Method HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

Baseline (REINVENT) 0.462±0.133 0.921±0.259 0.196±0.083 2.646±0.327 0.168±0.046 3.969±0.664
+ StitchNet & RLHF 0.561±0.055 0.742±0.098 0.303±0.087 2.012±0.318 0.232±0.071 3.715±0.611
+ StitchNet & DPO 0.557±0.094 0.747±0.174 0.363±0.069 1.843±0.271 0.327±0.081 3.015±0.493
+ StitchNet & IPO 0.552±0.056 0.746±0.106 0.385±0.062 1.755±0.232 0.344±0.082 2.955±0.533
+ MolStitch (Ours) 0.579±0.070 0.698±0.128 0.403±0.065 1.649±0.259 0.352±0.080 2.953±0.571

Figure 4: Visualizations of (a-b) the Pareto front, and (c-d) the diversity analysis for StitchNet.
Preference optimization. In our MolStitch framework, we fine-tuned the generative model using
a process analogous to the preference optimization techniques employed in large language models.
To evaluate different preference optimization techniques in offline MOMO, we explored alternatives
such as RLHF (Ouyang et al., 2022), where the proxy model serves as a reward model to generate
rewards that are directly optimized. Other approaches involved removing the proxy by allowing the
generative model to act as a judge to directly classify winning and losing molecules and update itself
using DPO or IPO loss functions. As illustrated in Table 5, our MolStitch consistently outperformed
other techniques in all scenarios by constructing the separate proxy model for molecule evaluation
and updating the generative model separately based on proxy feedback. This separation has shown to
be effective, as supported by recent studies (Singhal et al., 2024; Liu et al., 2024), where maintaining
a separate reward-ranking model helps to mitigate distributional shifts and enhance performance.

Pareto front visualization. To evaluate the impact of MolStitch on solution quality, we visualized
the Pareto front in both 2D and 3D objective spaces. As depicted in Figure 4 (a-b), the Pareto front
obtained from MolStitch dominated the baseline without MolStitch, indicating superior performance
across all objectives. Notably, the solutions generated by MolStitch were concentrated in the upper
right region of the Pareto front, signifying the effectiveness of molecular stitching in offline MOMO.

Diversity analysis. In offline MOMO, promoting molecular diversity is crucial for identifying can-
didates with desirable properties while avoiding over-exploration of similar structures. To assess the
diversity of augmented molecules generated by StitchNet in comparison to stochastic sampling, we
visualized their objective score distributions using violin plots. As shown in Figure 4 (c), StitchNet
exhibited a broader and more varied score distribution, demonstrating its capacity to provide a di-
verse range of augmented molecules for the generative model. We also evaluated the final molecules
produced by the generative model fine-tuned with StitchNet against those from stochastic sampling,
using diversity metrics that measure the number of unique substructures, specifically Bemis-Murcko
(BM) scaffolds and carbon skeletons (Bemis & Murcko, 1996). As depicted in 4 (d), the generative
model fine-tuned with StitchNet exhibited greater diversity compared to stochastic sampling across
both BM scaffolds and carbon skeletons. Additional diversity analysis is provided in Appendix N.

6 CONCLUSION

In this study, we propose the Molecular Stitching (MolStitch) framework to tackle the offline multi-
objective molecular optimization (MOMO) problem. MolStitch generates novel stitched molecules
by combining the desirable properties of both parent molecules in the offline dataset. These stitched
molecules serve as valuable training samples for fine-tuning the generative model, thereby enhancing
its ability to produce superior molecules beyond the offline dataset. Through extensive experiments,
we validate the efficacy of MolStitch in offline MOMO. Future work can be found in Appendix O.
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ETHICS STATEMENT

In this study, we address the offline multi-objective molecular optimization problem, which has po-
tential applications in drug discovery. We emphasize the responsible application of our methodolo-
gies, with a strong focus on safety considerations. Although our framework enhances the efficiency
of molecular optimization, it is crucial that all identified molecules must undergo experimental val-
idation, safety assessments, and regulatory approval before being considered for real-world deploy-
ment. We caution against relying solely on computationally generated molecules without proper
testing, as it could lead to unintended health or environmental risks. Furthermore, all datasets used
in this study are publicly available, and meet ethical standards, ensuring transparency and integrity.

REPRODUCIBILITY STATEMENT

We provide comprehensive information on the experimental settings, workflow, hyperparameters,
and implementation details in Appendix H. Additionally, the source code for our proposed frame-
work is available online at https://tinyurl.com/ycbts7j2.
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APPENDIX

A ONLINE AND OFFLINE SETTINGS FOR MOLECULAR DISCOVERY

Figure 5: An illustration of online and offline settings for drug discovery. (a) Online setting: poten-
tial drug candidates from the generative model are evaluated directly through wet lab experiments
(oracle function). (b) Offline setting: a proxy model approximates the oracle function using offline
dataset, guiding the generative model to produce better drug candidates through iterative updates.

In this section, we delve into the detailed pipeline for online and offline settings in molecular discov-
ery, using the specific case of in silico drug discovery combined with real-world wet lab experiments
as an illustrative example. We further highlight the advantages of implementing the offline setting.

Online setting. Traditionally, many in silico drug discovery methods have been based on the as-
sumptions of the online setting (Jiménez-Luna et al., 2021). As depicted in Figure 5 (a), the online
setting begins in the computational or ‘dry’ lab, where a generative model produces potential drug
candidates that are predicted to be potent. Researchers then select the topK drug candidates or apply
specific filters to choose which drug candidates to advance. These selected drugs are sent to the wet
lab, where they undergo physical biological experiments to validate their efficacy. Note that these
wet lab experiments serve as a true oracle function, which provides accurate assessments of drug
potency and properties based on real-world testing. Once the wet lab experiments are complete, the
results—true score assessments—are sent back to the dry lab as chemical feedback. This feedback
is then used to update the generative model, enabling it to produce more desirable and potential drug
candidates in the next iteration. This iterative process continues until successful drug candidates are
identified or predefined criteria, such as reaching a certain optimization score, are met.

Why offline setting? The main advantage of the online setting is its ability to continuously refine
the generative model using feedback from the true oracle function. However, this feedback relies on
real-world wet lab experiments, which are typically time-consuming and costly. Therefore, query-
ing the true oracle function for every drug candidate is often impractical, and safety concerns can
further limit its use (Loiodice et al., 2019; Yusuf, 2023). Even if we assume these challenges are
mitigated and resources are available to query the true oracle function as needed, there still remains
the challenge of a significant time mismatch between the dry lab and the wet lab. The dry lab can
generate new drug candidates within hours, but the wet lab evaluation—including chemical synthe-
sis, purification, and biological testing—can take weeks or even months (Payton et al., 2023). This
significant lag means that while the wet lab is engaged in lengthy experiments, the dry lab may be
left idle, which is inefficient. To address these limitations, the offline setting has gained considerable
attention in recent years (Xue et al., 2024). In the offline setting, the generative model can be trained
using existing offline datasets without relying on continuous feedback from wet lab experiments.
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Offline setting. One of the most prevalent and widely adopted approaches for handling the offline
setting is offline model-based optimization (MBO). As illustrated in Figure 5 (b), the process begins
by training a proxy model on the given offline dataset. This proxy model serves as a surrogate for
evaluating drug candidates, as access to the true oracle function is not available in the offline setting.
Once the proxy model is trained, the offline MBO process is initiated to enable the training of the
generative model without relying on real-world wet lab feedback. Specifically, the generative model
produces new drug candidates, which are evaluated by the proxy model instead of being sent to the
wet lab. The proxy model provides estimated proxy scores for these candidates, and these pairs of
drug candidates and their proxy scores are stored in a buffer to create an augmented dataset. This
augmented dataset is then utilized to update the generative model via gradient ascent, leveraging the
proxy model’s predictions. This iterative cycle continues until predefined criteria are met.

B RELATED WORK

B.1 GENERATIVE MODELS FOR MOLECULAR DISCOVERY

The rapid advancement of generative models has profoundly impacted various fields, including com-
puter vision (Croitoru et al., 2023), natural language processing (Chang et al., 2024), and audio sig-
nal processing (Deshmukh et al., 2023). This progress has extended to molecular discovery (Anstine
& Isayev, 2023; Son et al., 2024), where generative models have demonstrated their capacity to gen-
erate and optimize molecules towards promising regions of the chemical search space. Several types
of generative models have been employed in molecular discovery.

Genetic algorithms (GAs). Inspired by natural evolution, GAs maintain a population of candidate
solutions and iteratively improve them based on a predefined fitness function. In particular, GAs
employ selection, crossover, mutation, and replacement operations to improve the overall quality of
the population. In the context of molecular discovery, GraphGA (Jensen, 2019) has demonstrated
notable success in generating promising molecules by navigating the chemical space effectively.

Sampling-based methods. These methods leverage advanced sampling techniques to draw samples
from distributions that are likely to yield desirable molecular properties. MARS (Xie et al., 2021a) is
a notable example that employs Markov Chain Monte Carlo (MCMC) sampling to efficiently search
for high-quality molecules. By focusing on probabilistic sampling, these methods can explore the
chemical space more efficiently than deterministic approaches.

Reinforcement learning (RL). RL-based methods formulate the molecule generation process as a
Markov decision process, allowing an RL agent to interact with a chemical environment to construct
molecular structures in an autoregressive manner. A prominent example is REINVENT (Olive-
crona et al., 2017), which utilizes a GRU model (Chung et al., 2014) as its RL agent to generate
molecules in SMILES format. REINVENT has been acknowledged as one of the best models for
various molecular property optimization tasks, showcasing the effectiveness of RL-based methods.
Following its success, several variants have been proposed to enhance its capabilities. One line of
research focuses on improving the underlying neural architecture by replacing the GRU with either
a transformer (He et al., 2022) or Mamba (Gu & Dao, 2023). Another approach incorporates data
augmentation techniques to boost sample efficiency, leading to methods like Augmented Memory
(AugMem) (Guo & Schwaller, 2024a), which achieved new state-of-the-art performance. Additon-
ally, Jin et al. (2020) applies RL algorithms to substructure-based techniques for molecule genera-
tion, focusing on prioritizing molecular fragments based on their contributions to desired properties.
This approach aligns conceptually with our proposed stitching process. However, in this work, we
adapt the stitching process specifically to the offline setting, where oracle queries are unavailable.

GFlowNets. While RL-based methods have shown effectiveness, they often struggle with main-
taining diversity in the generated molecules due to a tendency to exploit a single promising direc-
tion. GFlowNets (Jain et al., 2022; Zhu et al., 2023) aims to address this limitation by emphasizing
probabilistic sampling over reward maximization, inherently promoting diversity in the generated
molecules. As a result, GFlowNets have gained popularity in multi-objective molecular optimiza-
tion tasks, where generating a diverse set of high-quality molecules across multiple objectives is
crucial.
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B.2 MULTI-OBJECTIVE MOLECULAR OPTIMIZATION

The multi-objective molecular optimization (MOMO) problem differs from single-objective opti-
mization by requiring the simultaneous optimization of multiple molecular properties, which often
conflict with one another. In the context of the MOMO problem, identifying a single solution that
optimally satisfies all objectives is generally infeasible. Instead, the goal shifts to discovering a
diverse set of Pareto optimal molecules, where improving one objective may lead to trade-offs in
others. To tackle multiple objectives, several studies have integrated Bayesian optimization (BO)
within their molecular optimization frameworks. For instance, GPBO and REINVENT-BO (Tripp
et al., 2021) incorporate BO into GraphGA and REINVENT, respectively, resulting in enhanced
sample efficiency. In a similar approach, LamBO (Stanton et al., 2022) applies BO alongside denois-
ing autoencoders to address the multi-objective biological sequence design problem. Other studies
have employed scalarization, which simplifies the multi-objective problem by converting multiple
objectives into a single scalar objective function (Gunantara, 2018). This scalarization is typically
achieved by combining the objectives using a weighted sum or other aggregation techniques (Mar-
ler & Arora, 2010; Deb et al., 2016). Scalarization offers simplicity and ease of implementation,
making it a popular choice for its scalability and computational efficiency (Cho et al., 2017). In
the context of the MOMO problem, MIMOSA (Fu et al., 2021) utilizes linear scalarization to ef-
ficiently manage the complexity of multiple objectives, while demonstrating strong performance
and scalability. Similarly, MARS (Xie et al., 2021a) applies scalarization to effectively handle up
to four molecular objectives, further showcasing the potential of scalarization in the MOMO prob-
lem. However, scalarization presents challenges in selecting appropriate weights. Users must assign
weights to each objective to reflect its relative importance, a process that is often sensitive and sub-
jective (Royer et al., 2023). Incorrect or biased weight selection may fail to accurately represent true
preferences, potentially resulting in suboptimal solutions (Zhang & Golovin, 2020). In our study,
we also employ the scalarization approach due to its widespread adoption and practical advantages
(Fromer & Coley, 2023). However, to mitigate the limitations associated with subjective weight
selection, we introduce priority sampling using the Dirichlet distribution to generate a diverse set of
weight configurations. This enables our StitchNet to operate on a wide variety of molecular pairs,
each representing a different balance of multiple objectives.

B.3 OFFLINE MODEL-BASED OPTIMIZATION

As mentioned earlier in the main manuscript, one of the most promising approaches for addressing
the offline MOMO problem is offline model-based optimization (MBO) (Trabucco et al., 2022).
The goal of offline MBO is to optimize the objective function using a pre-collected offline dataset,
without the ability to acquire new data during the optimization process. In this approach, the proxy
(surrogate) model—such as Gaussian processes, random forests, or neural networks—is trained
on the offline dataset to approximate the objective function. This proxy model is then used to
predict objective scores for new inputs, guiding the optimization algorithm in finding inputs that
maximize the predicted objective scores. The most straightforward approach in offline MBO is to
use a differentiable vanilla proxy model and apply gradient ascent to find optimal inputs. However,
this approach may face limitations, such as increased inaccuracies as problem complexity grows and
a higher risk of overfitting. To address these limitations, various recent studies have been proposed.

Improving the proxy model. One line of research focuses on enhancing the accuracy and robust-
ness of the proxy model to better handle high-dimensional and complex objective functions. Some
studies (Trabucco et al., 2021; Qi et al., 2022) enforce constraints to mitigate overfitting and address
distributional shifts caused by out-of-distribution (OOD) inputs, while another study (Yu et al., 2021)
enhances the generalization capabilities of the proxy model by employing a local smoothness prior.

Improving optimization algorithms. Another line of research concentrates on improving the opti-
mization algorithms used within the offline MBO framework. For example, the bidirectional learn-
ing technique (Chen et al., 2022; 2023b) has been introduced to utilize both forward and backward
mappings to generate input configurations that are likely to produce optimal outputs while adhering
to the data distribution of the offline dataset. Additionally, the bootstrapping technique (Kim et al.,
2023) has been developed to enhance the optimization process by iteratively augmenting the offline
dataset with self-generated data, using the proxy model as a pseudo-labeler.
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Ensemble learning. To leverage the benefits of ensemble learning, several studies (Trabucco et al.,
2022; Yuan et al., 2023; Chen et al., 2023a) have proposed to utilize multiple proxy models to com-
bine their predictions, thereby enhancing the robustness and reliability of the optimization process.
Notably, Tri-Mentoring (Chen et al., 2023a) not only employs ensemble learning but also shifts its
focus to generating pairwise comparison labels rather than directly approximating objective scores.
Our proposed proxy model is similar to Tri-Mentoring, as it reformulates the task from direct prop-
erty score regression to pairwise classification.

B.4 PREFERENCE OPTIMIZATION IN GENERATIVE MODELS

In recent years, preference optimization has gained significant attention, particularly with the rise of
large language models and generative models (Tang et al., 2024). As these models grow more pow-
erful and are deployed into real-world applications, the need to align their outputs with human ex-
pectations becomes increasingly important. Preference optimization enables models to better align
with human standards in subjective areas such as sentiment, creativity, and ethical considerations.

Reinforcement Learning from Human Feedback (RLHF). A leading and widely adopted method
for incorporating human preferences into model training is RLHF (Ouyang et al., 2022). By em-
bedding human feedback within an RL framework, RLHF allows models to generate higher-quality
content that aligns more closely with human judgments. Notable implementations like OpenAI’s
ChatGPT (Achiam et al., 2023) have demonstrated significant performance improvements through
RLHF, highlighting its potential in fine-tuning models. This success has driven further research into
more streamlined approaches that aim to simplify the incorporation of human preferences.

Direct Preference Optimization (DPO). DPO (Rafailov et al., 2023) is a recent method that moves
away from RL and focuses directly on optimizing for human preferences without the need for reward
modeling. It operates by directly training on human preference pairs, enabling the model to gener-
ate outputs that are consistently favored over less preferred alternatives. This approach is considered
more straightforward and potentially more stable than RLHF, as it bypasses the complexities associ-
ated with RL training. However, DPO has exhibited limitations, particularly in scenarios involving
deterministic preferences, due to its relatively weak regularization mechanisms.

Identity Preference Optimization (IPO). IPO (Azar et al., 2024) is a more recent method that
builds on DPO by introducing enhancements to address its limitations and offering a more theo-
retically sound framework. Specifically, IPO incorporates a stronger regularization term that pe-
nalizes models for excessive confidence in preference margins. This is achieved by replacing the
log-sigmoid function used in DPO with a squared loss function. The stronger regularization term in
IPO aims to balance adaptation to the preference dataset while maintaining generalization capabil-
ities, which is crucial for model performance on out-of-distribution (OOD) data. While IPO offers
theoretical improvements over DPO, empirical results have been mixed. Some studies report IPO
performing on par with or slightly better than DPO (Pal et al., 2024; Calandriello et al., 2024), while
others observe diminished performance in certain settings (Hu et al., 2024b).

Preference optimization in molecular discovery. In large language models, preference typically
reflects human sentiments, opinions, or judgments about what constitutes a desirable output. On
the other hand, in the field of molecular discovery, preference represents the relative importance
of each objective within the optimization process. When the generative model is tasked with opti-
mizing several conflicting objectives, preference guides the optimization process by specifying how
much weight or priority each objective should be given. For example, if a researcher wants to pri-
oritize potency over safety, their preferences would assign more importance to optimizing potency.
Conversely, if safety is more critical, the preference would shift toward that objective. Recently,
preference optimization has been widely adopted in structure-based drug design to align the pre-
trained generative model with preferred functional properties (Park et al., 2023; Cheng et al., 2024;
Gu et al., 2024). Our work also focuses on optimizing molecules with desired properties. However,
unlike recent studies (Park et al., 2023; Cheng et al., 2024; Gu et al., 2024) that primarily use DPO
and rely on existing preference datasets, our approach differs in several key ways. We explore a
variety of preference optimization techniques—including RLHF, DPO, and IPO—and apply them
to the offline multi-objective molecular optimization problem. More importantly, we generate a new
preference dataset using our StitchNet model, which creates novel stitched molecules with desirable
properties from pairs of existing molecules. In other words, rather than depending solely on existing
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datasets for preferences, we construct a separate proxy model and use StitchNet to build a tailored
preference dataset, leveraging existing molecules to further enhance the optimization process. Ad-
ditionally, we extend our approach to a semi-offline setting—a direction that recent studies have not
explored yet. In this setting, we utilize a limited number of online evaluations by periodically query-
ing an oracle function to assess molecules in large batches. This extension allows us to explore ways
of further enhancing the optimization process by integrating new evaluation data into our model.

C PRE-TRAINING PROCESS FOR THE GENERATIVE MODEL

Figure 6: (a) The generative model produces molecules in SMILES format using an auto-regressive
approach. (b) During the pre-training stage, molecules from the ZINC dataset are used as ground
truth labels. The generative model is then updated through maximum likelihood approach to maxi-
mize the probability of the correct next molecular token (component) given the preceding sequence.

In this section, we present an illustration of the molecule generation process and describe the pre-
training process for the generative model. As depicted in Figure 6 (a), which exemplifies the genera-
tion of a benzene molecule, the generative model produces molecules in an auto-regressive manner,
similar to how language models generate sentences sequentially. Specifically, the generative model
produces molecules in SMILES format, where each token corresponds to an atom or bond. The gen-
eration process begins with an initial token, and the model predicts the subsequent token based on
the previously generated sequence, continuing this process until the complete molecule is formed.

Moving on to the pre-training process for the generative model, we employ an approach analogous
to the next-token prediction loss used in language model training, as shown in Figure 6 (b). Specifi-
cally, the model is trained using the maximum likelihood approach, where molecules sampled from
the ZINC dataset serve as ground truth labels. The objective of this pre-training process is to max-
imize the likelihood of accurately predicting the next molecular token (component) based on the
preceding sequence. The cross-entropy loss is employed to measure the difference between the pre-
dicted probability distribution and the true distribution of the next token, guiding the model to learn
the correct sequence of molecular components and generate chemically valid molecules.

Building upon the pre-training of our generative model using the ZINC dataset, we now detail the
specific generative model employed in our framework. As mentioned in the main manuscript, REIN-
VENT was selected as our main generative model due to its widespread adoption and proven effec-
tiveness in various molecular optimization tasks. In REINVENT, the molecule optimization process
is formulated as a Markov decision process, utilizing the RL algorithm to generate molecules based
on a given scoring (reward) function. The training architecture of REINVENT comprises two dis-
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tinct policy models: the prior model and the agent model. The prior model, denoted as Gref, is a
pre-trained reference model that encodes chemical grammar to ensure the chemical validity of the
generated molecules, as depicted in Figure 6 (b). The agent model Gϕ is initialized from the prior
model and serves as the main policy that aims to maximize the reward score associated with the de-
sired molecular properties, while not deviating too far from the prior model. The training objective
for the agent model can be defined as:

Lagent(ϕ) = Em∼D

[
(− logGϕ(m) + logGref(m) +R(m))

2
]
,

where R(m) represents the reward score for molecule m within the offline dataset D. Note that this
work addresses the offline MOMO problem, where the offline dataset comprises pairs of molecules
and their corresponding property (objective) scores. Therefore, these property scores can be used as
reward scores for training the agent model. To sum up, this loss function Lagent(ϕ) guides Gϕ(m) to
maximize the reward R(m) while aligning with Gref(m). For a detailed derivation and background
of this REINVENT loss function, please refer to prior studies (Olivecrona et al., 2017; Guo &
Schwaller, 2024a). After completing the initial training phase on the offline dataset, the agent model
is fine-tuned to further enhance its performance beyond the constraints of the offline dataset. This
fine-tuning process involves optimizing the agent model with stitched molecules using preference
optimization techniques, as described in Equation 15 of the main manuscript.

D PREFERENCE OPTIMIZATION TECHNIQUES FOR THE GENERATIVE MODEL

D.1 FROM INITIAL LOSS FORMULATION TO DPO-LIKE LOSS FORMULATION

As mentioned in Subsection 4.3, the initial loss formulation for the generative model is as follows:

Lgen(ϕ) = −E(m̄w,m̄l)∼B [logGϕ(m̄w)− logGϕ(m̄l)] + β · DKL(Gϕ∥Gref).

This loss equation consists of two key components: the first term represents the difference in log-
likelihoods between generating the winning molecule Gϕ(m̄w) and the losing molecule Gϕ(m̄l),
while the second part introduces a KL divergence between the current generative model Gϕ and the
reference model Gref. Following Tang et al. (2024), the KL divergence term can be defined as:

DKL(Gϕ∥Gref) := E(m̄)∼B

[
log

Gϕ(m̄)

Gref(m̄)

]
.

Since we are focusing on a pairwise comparison between winning and losing molecules, (m̄w, m̄l),
it is possible to apply the KL divergence to each component and simply the loss function as follows:

Lgen(ϕ) := −E(m̄w,m̄l)∼B

[
β

(
log

Gϕ(m̄w)

Gref(m̄w)
− log

Gϕ(m̄l)

Gref(m̄l)

)]
.

At this point, we can leverage the notion of the Bradley-Terry model that the log odds of one item
winning over another (in our case, mw over ml) can also be written as:

log
Gϕ(m̄w)

Gϕ(m̄l)
,

and this log-odds can be converted into a probability using the sigmoid function σ(·), defined as:

σ(x) =
1

1 + e−x
.

To incorporate the probabilistic nature of the comparison, we can now apply the sigmoid function to
a combination of the two log-odds from Gϕ and Gref as follows:

σ

[
β

(
log

Gϕ(m̄w)

Gref(m̄w)
− log

Gϕ(m̄l)

Gref(m̄l)

)]
.

Finally, the initial formulation can be re-organized into the following compact DPO-like form:

Lgen-dpo(ϕ) = −E(m̄w,m̄l)∼B

[
log σ

(
β log

Gϕ(m̄w)

Gref(m̄w)
− β log Gϕ(m̄l)

Gref(m̄l)

)]
.
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D.2 IPO-LIKE LOSS FORMULATION

Building on the methodology presented in Tang et al. (2024), we can represent the DPO-like loss
formulation in a more generalized form as follows:

Lgen-dpo(ϕ) = −E(m̄w,m̄l)∼B

[
F
(
β

(
log

Gϕ(m̄w)

Gref(m̄w)
− log

Gϕ(m̄l)

Gref(m̄l)

))]
,

where F is a scalar function F : R→ R that map input values to scalar outputs. In the case of DPO,
F is typically chosen to be the log-sigmoid function. However, DPO can encounter difficulties when
preferences are deterministic. For example, if the probability of mw defeating ml is exactly 1, in-
dicating deterministic preference, the difference between them becomes unbounded and approaches
toward infinity such as follows:(

Gϕ(m̄w)

Gref(m̄w)
≫ Gϕ(m̄l)

Gref(m̄l)

)
=⇒

(
log

Gϕ(m̄w)

Gref(m̄w)
− log

Gϕ(m̄l)

Gref(m̄l)

)
→ +∞.

Assuming that β is a positive real number, the term inside the log-sigmoid function becomes infinite,
leading to:

log σ

(
β

(
log

Gϕ(m̄w)

Gref(m̄w)
− log

Gϕ(m̄l)

Gref(m̄l)

))
→ log σ(+∞).

Since σ(+∞) = 1, it follows that:

log σ(+∞) = log(1) = 0.

Therefore, when preferences are deterministic, the loss function converges to 0 for any value of β. In
other words, the regularization term β becomes irrelevant and does not play any role in such cases.

To address these challenges, IPO introduces a stronger regularization term that penalizes models for
exhibiting excessive confidence in preference margins. Specifically, IPO replaces the log-sigmoid
function used in DPO with a squared loss function (Tang et al., 2024). The quadratic nature of the
squared loss penalizes large deviations more heavily, discouraging the model from generating ex-
treme outputs (Rosasco et al., 2004). In deterministic preference cases, the squared loss establishes
the boundary to prevent the loss function from converging to 0 for any value of β (Azar et al., 2024).

Recall that we can express the IPO-like loss formulation as follows:

Lgen-ipo(ϕ) = −E(m̄w,m̄l)∼B

[(
log

(
Gϕ(m̄w)

Gϕ(m̄l)
· Gref(m̄l)

Gref(m̄w)

)
− 1

2β

)2
]
.

As shown, the squared loss function is implemented and β is explicitly positioned outside the loga-
rithm term. Let us examine the behavior of this IPO-like loss for different values of β. In the case
of β →∞, the term 1

2β → 0, simplifying the loss function to:

Lgen-ipo(ϕ) = −E

[(
log

(
Gϕ(m̄w)

Gϕ(m̄l)
· Gref(m̄l)

Gref(m̄w)

))2
]
.

To minimize this loss, the following conditions should ideally be met:

Gϕ(m̄w)

Gϕ(m̄l)
≈ Gref(m̄w)

Gref(m̄l)
.

Thus, as β →∞, our current modelGϕ converges to the reference modelGref. In contrast, as β → 0,
the term 1

2β →∞ begins to dominate the loss function, causing the IPO-like loss to converge toward
the DPO-like formulation. This suggests that the IPO-like loss exhibits distinct behavior depending
on the value of β, even in deterministic preference scenarios. In contrast, the DPO-like loss renders
β irrelevant in such scenarios, meaning the loss remains unaffected by changes in β.
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E SELF-SUPERVISED TRAINING PROCESS FOR STITCHNET

Figure 7: An illustration of the self-supervised training process for StitchNet. An original molecule
is sampled from the offline dataset and decomposed into two fragment molecules using a fragmenta-
tion function. These pairs of fragment molecules are then fed into StitchNet to generate new stitched
molecules. The molecular similarity between the stitched molecule and the original molecule is
measured, and if it exceeds a pre-defined threshold, the objective score of the original molecule is
leveraged as chemical feedback for StitchNet.

In this section, we provide a detailed explanation of the self-supervised training process for Stitch-
Net, which is a key differentiating factor from traditional rule-based crossover operators. The im-
portance of this process lies in its ability to leverage chemical feedback, allowing StitchNet to better
understand how stitched molecules are likely to exhibit objective scores when two molecules are
combined. Unlike rule-based crossover operators, StitchNet is built using a neural network archi-
tecture that enables it to learn from such chemical feedback.

As shown in Figure 7, we begin by sampling an original molecule from the offline dataset, each with
corresponding known objective scores. We then apply a fragmentation function within the crossover
operator (Jensen, 2019) to decompose the original molecule into two smaller fragment molecules.
There are multiple possible pairings of these fragment molecules, and we consider all viable pairs as
inputs to StitchNet. Subsequently, StitchNet takes these pairs of fragment molecules and generates
corresponding offspring stitched molecules. We then measure the molecular similarity between each
stitched molecule and the original molecule. If the similarity exceeds a certain threshold (e.g., 0.9),
we consider the stitched molecule sufficiently similar to the original molecule. This high similarity
allows us to leverage the known objective scores of the original molecule as an approximation for
the stitched molecule’s objective scores, effectively providing chemical feedback to StitchNet. We
use this feedback to train StitchNet with the loss function specified in Equation 10. We think that
this approach is reasonable based on two key assumptions. First, since the fragment molecules are
derived from the original molecule, the stitched molecule is expected to share similar characteristics.
Second, because structurally similar molecules often exhibit similar properties (Barbosa & Horvath,
2004; Alvesalo et al., 2006; Maggiora et al., 2014), we assume that the stitched molecule will likely
exhibit objective scores comparable to the original molecule. By ensuring that the stitched molecule
is sufficiently similar to the original, we can reasonably use the original molecule’s objective scores
as an approximation for the stitched molecule’s scores.

The rationale for this self-supervised training process arises from the inherent nature of the offline
MOMO problem. In an online setting, it would be possible to sample two molecules from the offline
dataset, input them into StitchNet, generate a stitched molecule, and then query an oracle to obtain
its true objective scores for chemical feedback. However, in an offline setting, additional oracle
queries are not possible. Therefore, rather than simply using two random molecules from the offline
dataset, we decompose a single molecule into two fragment molecules, which are then input into
StitchNet. Since the true objective scores of the stitched molecules cannot be obtained due to the
unavailability of additional oracle queries, we instead leverage the objective scores of the original
molecule as a form of chemical feedback. This allows us to approximate the likely performance of
the stitched molecule, ensuring that the training process remains effective even in the offline setting.
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F PRIORITY SAMPLING PROCESS FOR STITCHNET

Figure 8: An illustration of the priority sampling process for StitchNet. The figure demonstrates
how different weight configurations λ are sampled from the Dirichlet distribution Dir(α), guiding
the selection of molecular pairs from the offline dataset. For instance, λ1 focuses more on property
1, while λ2 emphasizes property 2, resulting in the selection of molecules A and B, respectively.
These molecules are then fed into StitchNet, which generates a novel stitched molecule with the aim
of combining the desirable properties of both parent molecules. This priority sampling promotes
diversity and balance in the stitched molecules, enhancing the convergence towards the Pareto front.

In this section, we visualize the priority sampling process and explain why it is beneficial for the
molecular stitching process in StitchNet. Consider a scenario where we are optimizing two molec-
ular properties: property 1 and property 2, as shown in Figure 8. Our goal is to sample a diverse set
of molecular pairs from the offline dataset; for instance, one molecule (Molecule A) exhibits char-
acteristics more aligned with property 1, and the other molecule (Molecule B) emphasizes property
2. This diversity is crucial because StitchNet seeks to combine these molecules to create a novel
stitched molecule that inherits the desirable properties of each parent molecule. If we sample pairs
of molecules that have similar characteristics or properties, the benefit of the molecular stitching
process diminishes due to the lack of diversity. To address this, we propose using priority sampling
with a Dirichlet distribution to automatically generate diverse weight configurations, denoted as λ.
Different weight configurations indicate varying levels of importance or priority for each property,
allowing us to sample molecules from the offline dataset using different perspectives or priorities.

As depicted in Figure 8, λ1 represents a weight configuration that focuses more on property 1,
while λ2 emphasizes property 2. It is important to note that these weight configurations are sampled
from the Dirichlet distribution Dir(α). Based on these configurations, corresponding molecules are
sampled from the offline dataset and fed into StitchNet as molecule A and molecule B. StitchNet
then generates a novel stitched molecule with the aim of possessing both favorable property 1 and
property 2. In terms of the Pareto front, sampling molecules based on λ1 corresponds to selecting
molecules near the y-axis (emphasizing property 1), whereas λ2 corresponds to molecules near
the x-axis (emphasizing property 2). By performing molecular stitching via StitchNet, we aim to
generate molecules that balance both properties, thereby improving convergence towards the Pareto
front. Please note that weight configurations for focusing on property 1 and property 2 is merely an
example for better understanding. In practice, we can sample diverse molecular pairs using priority
sampling, as the Dirichlet distribution allows us to automatically generate diverse combinations of
weight configurations.
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G PSEUDO-CODE

Algorithm 1: StitchNet
Input: StitchNet Sψ , Unlabelled dataset Du, Offline dataset D, Crossover operation Crossover,

Dirichlet distribution Dir, Concentration constant α, Fragmentation function Cut,
Similarity threshold δ, Similarity function sim

Output: Generated stitched molecules m̄

▷ Pre-training for StitchNet
Sample parent molecules from unlabelled chemical dataset; mi ∼ Du and mj ∼ Du
Generate offspring molecule with crossover operation; mo ← Crossover(mi,mj)
Train StitchNet Sψ to resemble crossover operation; ψ ← argmaxψ P(mo | Sψ(mi,mj))
Set pretrained StitchNet as a reference model; Sref ← Sψ

▷ Self-supervised training for StitchNet
Sample objective preference; λ ∼ Dir(α)

Sample molecule and its score from offline dataset with preference; (ms, rs)
λ∼ D

Cut ms into all possible Z fragment molecule sets; {(mai,mbi)}Zi=1 ← Cut(ms)
Find the most similar offspring and its fragment set with original molecule ms;
(ma,mb)← argmax

(mai,mbi)

sim(ms,Crossover(mai,mbi)) subject to sim(·) ≥ δ

Provide chemical feedback to StitchNet while maintaining the chemical validity;
Lstitch(ψ)← (− logSψ(m̄stit) + logSref(m̄stit) +R(morig))

2

▷ Molecular Stitching
Sample two objective priorities; λ1 ∼ Dir(α) and λ2 ∼ Dir(α)

Sample parent molecules of different objective priorities; m1
λ1∼ D and m2

λ2∼ D
Generate a novel stitched molecule using fine-tuned StitchNet; m̄ ∼ Sψ(m1,m2)
Return m̄

Algorithm 2: MolStitch

Input: Pretrained Generator Gref Pretrained StitchNet Sref, Offline dataset D, Proxy model f̂θ,
Dirichlet distribution Dir, Concentration constant α,

Output: Final molecules for evaluations mfinal

Initialize Generative model; Gϕ ← Gref
Initialize StitchNet; Sψ ← Sref
Update Generative model Gϕ with offline dataset D;
Train proxy model f̂θ with pairwise ranking loss in eq.9;
Sample objective preference; λ ∼ Dir(α)
Finetuning StitchNet Sψ with preference λ ;
Sample objective preferences; λ1, λ2 ∼ Dir(α)
Sample stitched molecule m̄ by molecular stitching; m̄ ∼ Sψ(m1,m2)

Determine winning and losing molecules using proxy model f̂θ by eq.12; (mw,ml)← f̂θ(m̄)
Fine-tuning Generative model with IPO-like loss in eq.15;
Sample final molecules for evaluations; mfinal ∼ Gϕ
Return mfinal

H EXPERIMENTAL DETAILS

In this section, we present detailed information on the experimental setups used in our study, includ-
ing experimental settings, descriptions of the molecular objectives, and implementation details.
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H.1 EXPERIMENTAL SETTINGS AND CONFIGURATIONS

Oracle calls. In this work, we conducted two main experiments: 1) Practical Molecular Optimiza-
tion (PMO) task (Gao et al., 2022) and 2) docking score optimization task (Lee et al., 2023). Recall
that both experiments were designed to simulate real-world constraints by restricting the number of
oracle calls, which represent expensive evaluations of molecular properties. For the PMO task, the
total number of oracle calls was limited to 10,000 (Gao et al., 2022). Following this guideline, we
allocated 5,000 calls to construct the offline dataset and reserved the remaining 5,000 for evaluation.
Specifically, we used the initial 5,000 oracle calls to build the offline dataset, which served as the
training data for developing and fine-tuning the generative model during the offline optimization
process. After completing offline optimization, the performance of the fine-tuned generative model
was evaluated using the remaining 5,000 oracle calls on the molecules it newly generated. For the
docking score optimization task, the total number of oracle calls was restricted to 3,000 (Lee et al.,
2023). This lower allocation might be due to the longer time required for evaluating docking scores.
Similar to the PMO task in concept, we allocated 1,500 oracle calls to construct the offline dataset
and the remaining 1,500 to evaluate the performance of the fine-tuned generative model.

Offline dataset collection. To construct the offline datasets for both experiments, we utilized the
ZINC dataset (Sterling & Irwin, 2015), which is a publicly available chemical database that pro-
vides a collection of commercially available compounds. The ZINC dataset offers a wide variety of
molecular structures, providing a large chemical space to explore for potential drug candidates. Its
compounds are also available in formats suitable for molecular docking, making it a good resource
for identifying potential compounds that may bind to biological targets. Therefore, we considered
the ZINC dataset to be well-suited for both the PMO task and the docking score optimization task.
It is worth noting that we also used the ZINC dataset during the pre-training stage; however, at that
stage, we only utilized the molecular structures without any associated objective scores or additional
information. When aiming to optimize specific molecular objectives, we needed to query the oracle
to obtain the objective scores of molecules within the ZINC dataset. For the PMO task, we randomly
sampled 5,000 molecules from the ZINC dataset and executed 5,000 oracle calls to evaluate their
corresponding molecular objective scores, such as JNK3, GSK3β, QED, and SA. We collected this
data in the form of (molecule, objective scores) pairs. Similarly, for the docking score op-
timization task, we randomly sampled 1,500 molecules from the ZINC dataset and performed 1,500
oracle calls to evaluate their corresponding docking scores for five proteins alongside QED and SA.
These constructed offline datasets were subsequently used for offline optimization in our proposed
framework as well as across all competing methods to ensure a fair comparison.

H.2 EXPERIMENTAL WORKFLOW FOR OFFLINE MOLECULAR OPTIMIZATION

Overall workflow. In this subsection, we aim to conduct an in-depth exploration and comparison of
key components in offline MOMO. Specifically, our goal is to outline the critical components that
should be considered for solving the offline MOMO problem, discuss the available options for each
component, and explain the rationale behind our choices. Figure 9 provides a visual representation
of the overall workflow for addressing the offline MOMO problem. The primary objective of offline
MOMO is to enhance the generative model’s capability to generate molecules that surpass the best-
known molecules in the offline dataset. To achieve this, the predominant approach is offline MBO,
which involves training a proxy model, performing data augmentation, generating synthetic data,
and subsequently training the generative model with this synthetic data under the guidance of the
proxy model. Consequently, data augmentation is a pivotal aspect of the offline MOMO problem,
and we begin our discussion with this component.

Data augmentation. As highlighted in the main manuscript, we propose StitchNet as a neural
network model designed for data augmentation, and demonstrate its effectiveness. However, we
acknowledge that StitchNet is not the only viable option. Alternative approaches include stochastic
sampling, where new molecules are randomly drawn from the generative model’s learned distri-
bution. Additionally, rule-based crossover operators from genetic algorithms can be employed to
generate new offspring molecules by combining features from parent molecules.

Proxy training and evaluation. After augmenting the synthetic data, the next step involves training
a proxy model to evaluate this augmented dataset. The most straightforward approach is the score-
based proxy (vanilla proxy), which directly approximates the scores of the true objective function.
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Figure 9: An illustration of the overall workflow for the offline molecular optimization process.

However, we anticipate that as the problem complexity increases, the vanilla proxy may encounter
challenges and yield unreliable predictions. To mitigate this, we propose a rank-based proxy that
learns the ranking relationships between pairs of molecules based on desired properties, thereby clas-
sifying which molecule is more favorable. This transformation from a regression task to a classifica-
tion task simplifies the proxy’s role, enhancing its reliability in providing feedback to the generative
model. It is worth noting that a proxy model is not always necessary; in some cases, the generative
model itself can evaluate new synthetic data, a mechanism referred to as the "model-as-a-judge".

Generative model selection. Several generative models are available for molecular optimization.
In this work, we employ REINVENT as our main generative model due to its widespread use and
recognition in various molecular optimization tasks. Nonetheless, recent advancements have intro-
duced new generative models such as Mamba and GFlowNets. To ensure the robustness and versa-
tility of our MolStitch, we also evaluate various backbone generative models within this framework.

Fine-tuning the generative model. With synthetic data, a trained proxy model, and a trained gener-
ative model in place, the final step involves fine-tuning the generative model using the synthetic data
guided by the proxy model. This fine-tuning process can be considered analogous to the preference
optimization process used in large language models. Therefore, we explore various preference opti-
mization techniques within the context of offline MOMO. The first option is RLHF, where the proxy
model serves as a reward model to generate rewards that are directly optimized. Another option
is DPO, which bypasses reward modeling and focuses on optimizing preferences directly. Lastly,
IPO can be applied as an extension of DPO, providing a more theoretically sound and principled
approach to preference optimization.

Overview of MolStitch components. Table 6 presents a detailed summary of the components con-
stituting the MolStitch framework, including its variants and the methods examined in our ablation
studies. We hope that this table helps to understand the function of each component in our frame-
work and facilitates a clearer understanding of the structure of MolStitch and its variants.
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Table 6: Summary of our MolStitch framework components, its variants, and the methods utilized
in our ablation studies.

Experiment
Data

Augmentation
Proxy

Training
Generative

Model
Proxy

Evaluation
Fine-tuning

MolStitch
(Table 1)

StitchNet Rank-based
proxy REINVENT

Rank-based
classification

IPO

Score-based proxy
(Table 3)

Stochastic
sampling

Score-based
proxy REINVENT

Score-based
regression

RLHF

Stochastic sampling
(Table 4)

Stochastic
sampling

Rank-based
proxy REINVENT

Rank-based
classification

IPO

Crossover operator
(Table 4)

Crossover
operator

Rank-based
proxy REINVENT

Rank-based
classification

IPO

StitchNet & RLHF
(Table 5)

StitchNet Rank-based
proxy REINVENT

Score-based
regression

RLHF

StitchNet & DPO
(Table 5)

StitchNet No proxy REINVENT
Generative

model-as-a-judge
DPO

StitchNet & IPO
(Table 5)

StitchNet No proxy REINVENT
Generative

model-as-a-judge
IPO

Mamba + MolStitch
(Table 13)

StitchNet Rank-based
proxy Mamba

Rank-based
classification

IPO

GFlowNets + MolStitch
(Table 13)

StitchNet Rank-based
proxy GFlowNets

Rank-based
classification

IPO

H.3 DESCRIPTIONS OF THE MOLECULAR OBJECTIVES

In this work, we adopted four commonly used molecular objectives—JNK3, GSK3β, QED, and
SA—for the PMO task. For the docking score optimization task, we targeted the docking scores of
five proteins—parp1, fa7, jak2, braf, and 5ht1b—alongside QED and SA. The docking scores were
calculated following the experimental protocol of prior work (Guo & Schwaller, 2024b), using the
normalized QuickVina2 docking score (Alhossary et al., 2015). Specifically, the normalized docking
score (DS) is calculated using the given equation:

Normalized DS = −DS
20
.

where DS represents the original docking score. Detailed descriptions of each molecular objective
and protein are provided below.

JNK3. JNK3 is a member of the c-Jun N-terminal kinases (JNKs) family, which belongs to the
mitogen-activated protein kinase (MAPK) pathway and is primarily expressed in the central ner-
vous system (Bogoyevitch & Kobe, 2006). It plays a crucial role in mediating cellular responses
to stress, including apoptosis, inflammation, and neuronal damage (Bogoyevitch & Kobe, 2006).
Targeting JNK3 inhibition is one of the key molecular objectives in drug discovery because it may
prevent or reduce neuronal cell death and inflammation, making it a promising therapeutic target for
neurodegenerative diseases such as Alzheimer’s disease (Resnick & Fennell, 2004).

GSK3β. Glycogen synthase kinase 3 beta (GSK3β) is a serine/threonine protein kinase involved
in various cellular processes, including glycogen metabolism, cell proliferation, differentiation, and
apoptosis (Beurel et al., 2015). It has gained significant attention in neurodegenerative disease re-
search due to its role in regulating tau protein phosphorylation, amyloid precursor protein process-
ing, and neuronal survival (Jope et al., 2007). Inhibiting GSK3β is considered a vital molecular
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objective in drug discovery, as it could modulate these pathological processes and potentially slow
or prevent the progression of neurodegenerative diseases (Jope et al., 2007).

QED. Quantitative Estimate of Drug-likeness (QED) is a metric widely used in molecular opti-
mization to evaluate the drug-likeness of a molecule (Bickerton et al., 2012). It consists of several
physicochemical properties, including molecular weight, lipophilicity (logP), topological polar sur-
face area (TPSA), the number of hydrogen bond donors and acceptors, and the count of aromatic
rings and rotatable bonds (Guan et al., 2019). It provides a score ranging from 0 to 1, with higher
scores indicating molecules that are more likely to have favorable drug-like properties.

SA. Synthetic Accessibility (SA) is a metric used in molecular optimization to assess the ease with
which a molecule can be synthesized in a laboratory setting (Ertl & Schuffenhauer, 2009). It consid-
ers various structural features that influence synthesis complexity, such as the presence of complex
ring systems, functional groups, stereocenters, and the overall size and branching of the molecule
(Ertl & Schuffenhauer, 2009). The SA score ranges from 1 to 10, with lower scores indicating
higher synthetic feasibility. In this work, we transform the SA score into the normalized SA score,
following prior studies (Lee et al., 2023; Guo & Schwaller, 2024b), to formulate it as a maximization
objective. Specifically, the normalized SA score is given by the following equation:

Normalized SA =
10− SA

9
.

This adjustment ensures that higher normalized SA scores correspond to molecules that are easier
to synthesize, within the score range of 0 to 1.

parp1. Poly (ADP-ribose) polymerase 1 (parp1) is a protein enzyme that plays a crucial role in
DNA damage detection and repair (Rouleau et al., 2010). It is involved in various cellular processes,
including chromatin remodeling, transcriptional regulation, and cell death signaling (Ray Chaudhuri
& Nussenzweig, 2017). In recent years, dysregulation of parp1 activity has been linked to several
neurodegenerative diseases, such as Parkinson’s disease, where excessive activation of parp1 can
lead to neuronal death through a process known as parthanatos (Liu et al., 2022). Consequently, tar-
geting parp1 has become a key molecular objective in drug discovery, not only for cancer treatment
but also for developing neurotherapeutics aimed at preventing neuronal loss (Zhang et al., 2023).

fa7. Coagulation factor VII (fa7), also known as proconvertin, is a vital protein in the blood co-
agulation pathway (Hall et al., 1964). It plays a crucial role in initiating the clotting process by
activating factor X in the presence of tissue factor (TF), leading to the conversion of prothrombin to
thrombin and ultimately forming a blood clot (Eigenbrot, 2002). Targeting fa7 represents another
key molecular objective in drug discovery, particularly for managing thrombotic and cardiovascular
diseases. Specifically, inhibitors of fa7 are being explored as potential anticoagulants to prevent and
treat conditions such as deep vein thrombosis, embolism, and stroke (Robinson et al., 2010).

jak2. Janus kinase 2 (jak2) is a non-receptor tyrosine kinase that plays a critical role in the signaling
pathways of various cytokines (Yamaoka et al., 2004). It is involved in various cellular processes,
including cell growth, differentiation, and immune function (Seavey & Dobrzanski, 2012). In drug
discovery, jak2 has gained attention due to its association with myeloproliferative neoplasms and
other hematological malignancies (Senkevitch & Durum, 2017). Inhibiting jak2 is considered a key
molecular objective, as it can potentially provide therapeutic benefits in inflammatory and autoim-
mune disorders (Seavey & Dobrzanski, 2012).

braf. B-Raf proto-oncogene (braf) encodes a serine/threonine kinase that is part of the MAPK/ERK
signaling pathway, which plays a crucial role in regulating cell growth and migration during various
cellular processes (González-González et al., 2020). Mutations in the braf gene are commonly found
in various cancers, including melanoma, colorectal cancer, and thyroid cancer (Atiqur Rahman et al.,
2014). Therefore, targeting the braf can be a critical therapeutic objective in oncology to target these
cancer-specific mutations and halt the progression of the disease (Sanz-Garcia et al., 2017).

5ht1b. 5-Hydroxytryptamine receptor 1B (5ht1b) is a G protein-coupled receptor that binds sero-
tonin (Launay et al., 2002). It is widely expressed in the central nervous system and plays important
roles in regulating neurotransmitter release, neuronal firing, mood, and appetite (Fink & Göthert,
2007). 5ht1b has emerged as an important molecular target in drug discovery for neurological and
psychiatric disorders, particularly in the treatment of migraine and depression (Giniatullin, 2022).
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H.4 HYPERPARAMETERS AND IMPLEMENTATION DETAILS

Implementation of the generative model. We closely followed the architecture settings for REIN-
VENT as described in the PMO benchmark (Gao et al., 2022), while the settings for GFlowNet
were based on GeneticGFN (Kim et al., 2024a), and those for Mamba were taken from Saturn (Guo
& Schwaller, 2024b). Since all of these generative models were originally designed for an online
setting, we made necessary adjustments to the number of molecule updates and the experience re-
play to adapt them for our offline settings. The final hyperparameters for the generative models
were primarily determined based on the performance of REINVENT, which served as our backbone
generative model, and are detailed in Table 7.

Stabilizing GFlowNets. During the training of GFlowNets, we encountered instability with the
original setting of the logZ parameter, which plays a crucial role in trajectory balancing and needs
to be adjusted according to specific settings (Malkin et al., 2022). To be more specific, it was
initially set to a high value (logZ = 5.0) with a learning rate of 0.1, as specified in GeneticGFN. To
stabilize the training process, we reduced the logZ value to 0.001 and aligned the learning rate with
that of the generative model (from 0.1 to 0.0005). This adjustment resulted in more stable training
and significantly improved performance. Additionally, during preference optimization, while both
REINVENT and Mamba require only the generative model’s likelihood as input, we recommend
using the sum of likelihood and logZ for GFlowNets in order to further improve performance.

Hyperparameters for StitchNet. Recall that StitchNet combines two parent molecules as input and
generates stitched molecules in an auto-regressive manner. Therefore, it operates by computing the
hidden dimensions h1 and h2 of two parent molecules m1 and m2, respectively, and then averaging
these hidden dimensions as h1+h2

2 . StitchNet is built upon the REINVENT architecture. During the
self-supervised training process for StitchNet, we applied a similarity threshold δ = 0.8 between
the original molecules and the stitched molecules. During the molecular stitching process, StitchNet
combines two parent molecules, each sampled with different weight configurations through priority
sampling. The resulting stitched molecules are stored in a buffer. Once the buffer is full, two
molecules are randomly sampled to create non-overlapping pairs. These pairs are then evaluated by
the proxy model to identify the winning and losing molecules. Subsequently, the IPO-like loss is
applied to increase the likelihood of generating winning molecules while reducing the likelihood of
generating losing molecules. The hyperparameter settings for Stitchnet are summarized in Table 8.

Table 7: The hyperparameter settings for generative models in MolStitch framework.

REINVENT GFlowNets Mamba

Batch size 200 Batch size 200 Batch size 200
Embedding dimension 128 Embedding dimension 128 Embedding dimension 256
Hidden dimension 512 Hidden dimension 512 Hidden dimension 256
Number of layers 3 Number of layers 3 Number of layers 12
Sigma 500 Sigma 500 Sigma 500
Experience replay size 300 Experience replay size 300 Experience replay size 300
Augmentation round 8 Augmentation round 8 Augmentation round 8
Batch update 2 Batch update 2 Batch update 2
Learning rate 5e-04 Learning rate 5e-04 Learning rate 5e-04

logZ 0.001

Table 8: The hyperparameter settings for StitchNet.

Molecular stitching

α for priority sampling 1.0
Number of stitch rounds 16
Stitched molecules per stitch round 250
Population pool 1000
Temperature β for IPO 0.2
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I COMPETING METHODS DETAILS

In this section, we present a comprehensive review of the competing methods, highlighting their
core principles, methodologies, and their comparative position relative to our proposed framework.
Before delving into the details, we first aim to explain how molecular optimization methods, such
as REINVENT (Olivecrona et al., 2017), are adapted to offline settings. While we use REINVENT
as an example, this approach applies to all competing molecular optimization methods. In online
settings, REINVENT actively generates molecules, queries the oracle to obtain objective scores as
rewards, and updates the log-likelihood of generating those molecules based on the feedback. In con-
trast, in offline settings, it relies on a pre-existing offline dataset containing pairs of molecules and
their corresponding objective scores, rather than actively generating and evaluating new molecules
through oracle queries. This offline dataset becomes the sole source of information for training
and optimizing the generative model. In this context, REINVENT computes the log-likelihood of a
molecule and utilizes the corresponding objective scores from the offline dataset as rewards, updat-
ing itself in a supervised manner. This adaptation enables REINVENT to operate in offline settings,
leveraging the available offline data to refine its generative capabilities.

• REINVENT (Olivecrona et al., 2017) is a reinforcement learning (RL) approach designed
for molecular generation, where an agent interacts with its environment to create molecules.
This approach autoregressively generates molecules as SMILES strings, with each new el-
ement (token) in the sequence building upon the previously generated elements. Note that
this generation process is guided by a pre-trained model that enforces chemical grammar
rules, ensuring the validity of the generated molecules. REINVENT has demonstrated su-
perior performance in molecular optimization tasks, as highlighted by the PMO benchmark.
This remarkable performance has led numerous follow-up studies to adopt REINVENT as
their backbone generative model. Following this established trend, we have also integrated
REINVENT as our backbone model to take advantage of its proven effectiveness in various
molecular optimization tasks. As a competing method in our study, REINVENT serves as
a baseline, as it is trained exclusively on the offline dataset without applying further of-
fline MBO techniques. This straightforward approach positions it as a reference point for
evaluating the effectiveness of various MBO techniques, which leverage proxy models to
fine-tune the generative model beyond the constraints of the offline dataset.

• REINVENT-BO (Tripp et al., 2021) integrates an RL-based method with the Bayesian
optimization (BO) framework. To construct REINVENT-BO, we adopt the same mech-
anism and framework as GPBO (Tripp et al., 2021) but use REINVENT as the backbone
model instead of GraphGA (Jensen, 2019). This adaptation leverages the BO process to en-
hance the molecular generation capabilities of REINVENT, enabling efficient exploration
of the optimization landscape. In our study, REINVENT-BO is designed to demonstrate
the potential performance enhancements that the BO framework can achieve in the offline
MOMO problem, positioning it as a reference point for assessing the impact of BO.

• Augmented Memory (AugMem) (Guo & Schwaller, 2024a) builds upon the REINVENT
method by incorporating molecular data augmentation techniques and experience replay to
enhance performance. The authors report that AugMem has achieved state-of-the-art re-
sults on the PMO benchmark, showcasing its effectiveness in molecular optimization tasks.
In the context of offline optimization, offline MBO techniques typically use proxy mod-
els to guide the generation of synthetic data. This process involves the generative model
producing new data points, which are then evaluated by the proxy model. The resulting
augmented dataset allows the generative model to explore beyond the initial offline dataset.
AugMem, in contrast, introduces a different approach to data augmentation specifically de-
signed for molecular generation. By implementing AugMem in our study, we establish a
valuable reference point for comparing specialized molecular data augmentation techniques
against the proxy model-guided approaches used in conventional offline MBO.

• DST (Fu et al., 2022) is a gradient-based optimization method that utilizes a graph neural
network (GNN) to edit molecular structures represented as chemical graphs. Specifically,
DST backpropagates derivatives from the target molecular properties to optimize and re-
fine the graph representation. In our study, DST serves as a valuable reference point for
employing a GNN proxy model to guide the molecular optimization process.
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• GraphGA (Jensen, 2019) is a method based on genetic algorithms that generates molecules
by evolving a population through repeated cycles of selection, crossover, and mutation, all
driven by a fitness function. GraphGA utilizes domain knowledge from the chemical ex-
perts to develop effective mutation and crossover strategies that facilitate an efficient explo-
ration of molecular space. In our study, GraphGA serves as a key reference for implement-
ing rule-based crossover operations, which we have also incorporated into our framework.

• GeneticGFN (Kim et al., 2024a) integrates genetic algorithms into the GFlowNets model
for molecular generation. Specifically, this method leverages domain-specific genetic oper-
ators to efficiently explore the chemical space, enabling the generative model to implicitly
acquire relevant domain knowledge. Consequently, the generative model’s performance is
enhanced through the strategic guidance provided by the genetic algorithm. The authors
also highlight a complementary relationship between the two components: the genetic algo-
rithm enhances GFlowNets’ capacity for effective exploitation, while GFlowNets, in turn,
increases the population diversity for the genetic algorithm. In our study, GeneticGFN
serves as a crucial reference point for evaluating the effectiveness of genetic algorithms in
the offline MOMO problem. Specifically, it allows us to assess the advantages gained from
incorporating domain-specific knowledge through genetic operators in this context.

• Saturn (Guo & Schwaller, 2024b) builds upon the core mechanism of REINVENT while
introducing significant architectural improvements. While REINVENT employs a GRU
architecture, Saturn replaces it with the more powerful Mamba architecture. This substitu-
tion is motivated by Mamba’s potentially greater capacity for modeling complex molecular
structures more effectively. Furthermore, Saturn incorporates genetic algorithms into its
Mamba-based model, drawing parallels to GeneticGFN’s approach. This integration al-
lows Saturn to leverage domain-specific genetic operators, potentially enhancing its ability
to navigate the chemical space effectively. In our study, Saturn serves as a valuable refer-
ence point for two key aspects: first, it demonstrates the application of the Mamba archi-
tecture in molecular optimization tasks, and second, it provides insights into the benefits of
incorporating domain-specific genetic operators in the context of offline MOMO.

• Grad (Zinkevich, 2003) represents the most straightforward offline MBO approach for
tackling the offline MOMO problem. In particular, it employs a vanilla proxy model that
directly approximates the true objective scores, training this proxy on the offline dataset. To
address the generative aspect of the offline MOMO problem, Grad utilizes REINVENT as
its backbone generative model, the same approach used in our proposed framework. This
choice is consistently applied across all offline MBO-based competing methods to ensure
a fair comparison. After training the vanilla proxy model, Grad fine-tunes the generative
model using gradient ascent with respect to the trained vanilla proxy model’s predictions.
In our study, Grad serves as a crucial reference point as it demonstrates the basic application
of offline MBO in the context of offline MOMO. Specifically, Grad enables us to investigate
whether a vanilla proxy model is sufficient for this task, or if more sophisticated approaches
are necessary for meaningful improvements in the offline MOMO problem.

• COMs (Trabucco et al., 2021) represents a more sophisticated offline MBO approach. Un-
like Grad’s vanilla proxy model, COMs employs adversarial learning to encourage the
proxy model to provide conservative estimates of the true objective functions. This method
establishes lower bounds on the objective estimates, which are then used during the offline
optimization process. By doing so, COMs aims to prevent erroneous overestimation caused
by distributional shift, a common challenge in various offline optimization scenarios. In our
study, COMs enables us to investigate whether these sophisticated methods offer significant
improvements in the context of offline MOMO.

• IOM (Qi et al., 2022) considers offline MBO from a domain adaptation perspective. This
method aims to train a proxy model that can accurately predict true objective scores (‘target
domain’) when trained solely on the given offline dataset (‘source domain’). To achieve
this, IOM introduces invariant representation learning, which enforces alignment between
the learned distribution of the offline dataset and the distribution of optimized decisions.
In our study, IOM serves as a reference point similar to COMs, enabling us to evaluate
the effectiveness of invariant representation learning in addressing distributional shifts and
enhancing performance in the offline MOMO problem.
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• RoMA (Yu et al., 2021) also addresses the challenge of overestimation issues when ap-
proximating true objective scores. To mitigate this issue, RoMA proposes robust model
adaptation by incorporating a local smoothness prior as a regularizer. This regularizer aims
to enforce a flat loss landscape, thereby enhancing the proxy model’s generalization ca-
pabilities and ensuring stable training. In our study, RoMA serves as a reference point,
similar to COMs and IOM, allowing us to assess the effectiveness of using regularization
techniques to improve robustness and performance in the offline MOMO problem.

• Ensemble proxy (Trabucco et al., 2022) takes a different offline MBO approach by lever-
aging multiple proxy models through ensemble learning. This approach addresses the lim-
itations of a single proxy model, which can be prone to overfitting issues. Ensemble proxy
uses multiple proxies with different initializations and averages their predictions to ap-
proximate true objective scores. In our study, Ensemble proxy serves as a reference point,
enabling us to evaluate the effectiveness of ensemble learning in the offline MOMO prob-
lem and assess whether the potential performance gains justify the increased computational
cost associated with using multiple proxy models.

• ICT (Yuan et al., 2023) utilizes multiple proxies, similar to Ensemble proxy, but enhances
the approach through a co-teaching process. This process facilitates information exchange
between proxies and encourages knowledge transfer. Additionally, ICT incorporates a
meta-learning-based sample reweighting mechanism that iteratively updates the importance
weights of samples to mitigate potential inaccuracies in pseudo-labels. In our study, ICT
serves as a reference point, enabling us to evaluate the effectiveness of advanced ensemble
techniques, such as co-teaching and meta-learning, in the offline MOMO problem.

• Tri-Mentoring (Chen et al., 2023a) is closely related to ICT, utilizing multiple proxies and
facilitating learning between them through a mentoring process. However, Tri-Mentoring
shifts its focus to generating pairwise comparison labels rather than directly approximating
objective scores. Instead of averaging predictions, it employs majority voting to combine
decisions from each proxy model. In our study, Tri-Mentoring serves as a crucial reference
point, enabling us to evaluate the effectiveness of using the rank-based proxy over the
score-based proxy, aligning closely with the approach of our proxy model.

• BIB (Chen et al., 2023b) employs a bidirectional learning approach that utilizes both for-
ward and backward mappings to generate input configurations likely to produce optimal
outputs, while conforming to the data distribution of the offline dataset. BIB constructs its
proxy model using a pre-trained language model and applies a deep linearization scheme
to derive a closed-form loss function. It is recognized as one of the best models for tackling
the offline biological sequence design problem. In our study, BIB serves as a reference
point to evaluate how well a high-performing method designed for offline biological se-
quence design performs in the offline MOMO problem.

• BootGen (Kim et al., 2023) employs a bootstrapping technique to enhance the optimization
process by iteratively augmenting the offline dataset with self-generated data, using the
proxy model as a pseudo-labeler. The goal is to align and refine the generative model
through iterative training, where high-quality samples are added to the augmented dataset
based on the proxy model’s guidance. BootGen is also recognized as one of the best models
for offline biological sequence design. In our study, BootGen serves as a reference point
to evaluate the effectiveness of the bootstrapping technique in offline optimization, and,
similar to BIB, to assess how well a high-performing method designed for offline biological
sequence design can be adapted to tackle the offline MOMO problem.

To facilitate easier understanding, we provide the summary again, highlighting a comparative
overview of various offline optimization frameworks alongside our proposed framework.

• Grad: REINVENT + score-based proxy model.
• COMs: REINVENT + proxy model providing conservative estimates for robustness.
• IOM: REINVENT + proxy model leveraging invariant representation learning.
• RoMA: REINVENT + proxy model incorporating a local smoothness prior as a regularizer.
• Ensemble Proxy: REINVENT + multiple proxy models.
• ICT: REINVENT + multiple proxy models with a co-teaching mechanism.
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• Tri-Mentoring: REINVENT + multiple proxy models with mutual learning via mentoring
processes.

• BIB: REINVENT + proxy model with a bi-directional learning mechanism.

• BootGen: REINVENT + proxy model with a bootstrapping technique.

• MolStitch (Ours): REINVENT + rank-based proxy model with priority sampling and
preference optimization technique.

J DETAILS ON EVALUATION METRICS

This section provides an overview of the evaluation metrics used in this study: the hypervolume
(HV) indicator (Zitzler et al., 2003) and the R2 indicator (Brockhoff et al., 2012). Both metrics are
widely employed in multi-objective optimization due to their effectiveness in evaluating solution
quality across conflicting objectives. The HV indicator quantifies the volume of the objective space
dominated by the Pareto front relative to a reference point, reflecting convergence and diversity. In
contrast, the R2 indicator measures how well the Pareto front aligns with a set of reference directions,
assessing solution distribution. Using both metrics together provides complementary insights into
the performance of optimization algorithms and the exploration of trade-offs among objectives.

J.1 HYPERVOLUME INDICATOR

The HV indicator denoted as IH , measures the volume in the objective space that is dominated by
the Pareto front derived from the optimization algorithm. To be more specific, the HV indicator is
defined as the volume in the objective space that is dominated by a set of solutions X relative to a
reference point zr. Of note, the reference point zr is chosen such that it is dominated by all solutions
in X , representing the worst acceptable value for each objective. Mathematically, the HV can be
expressed using the Lebesgue integral as follows:

IH(X , zr) =
∫
Rn

I{zr|zr≤x for some x∈X}(z
r) dzr,

where I is the indicator function that equals to 1 if the reference point zr ∈ Rn is dominated by at
least one solution x ∈ X , i.e., zr ≤ x for some x ∈ X , and 0 otherwise. This formulation essentially
measures the volume of the region in the objective space that is dominated by the solutions in X and
bounded above by the reference point zr. Alternatively, the HV can be calculated more practically
as follows:

IH(X , zr) = Vol

(⋃
x∈X

[x, zr]

)
,

where [x, zr] denotes the hyperrectangle with lower corner x and upper corner zr. This represen-
tation provides a more intuitive understanding of the HV indicator as it directly corresponds to the
union of hyperrectangles formed by each solution in X with respect to zr. In a nutshell, the HV
indicator quantifies the size of the objective space that is simultaneously dominated by all solutions
in X and is within the bounds defined by zr. A larger HV value indicates a more preferable set of
solutions, as it implies that a greater portion of the objective space is covered by the set X .

To provide a clear understanding, we visualized HV as shown in Figure 10, where the blue points
represent a Pareto front composed of non-dominated solutions. Then the HV is defined as a measure
of the region in the objective space that is dominated by the Pareto front and bounded by a reference
point. In this study, as we have normalized all objective values between 0 and 1, we set the reference
point as the origin (e.g., (0, 0) for two-dimensional space, (0, 0, 0) for three-dimensional space, and
so on) in each respective dimensional space.

J.2 R2 INDICATOR

The R2 indicator (Brockhoff et al., 2012) is a set-based performance metric used in multi-objective
optimization to evaluate the quality of a set of solutions X in approximating the true Pareto front.
Unlike the HV indicator, which measures the volume of the dominated region, the R2 indicator uses
a set of predefined weight vectors to assess how well the solutions in X represent various trade-offs

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Figure 10: Visualization of the hypervolume (HV) indicator in a two-dimensional space, where the
HV corresponds to the volume of the shaded region.

among objectives. It is defined as the maximum of the worst-case weighted distances between the
solutions in X and an ideal or utopian point. A lower R2 value indicates better performance, as it
signifies that the solutions in X are closer to the ideal point for all considered weight vectors.

Mathematically, let W be a set of weight vectors w = (w1, w2, . . . , wm), where wi ≥ 0 and∑m
i=1 wi = 1, representing different priorities for the objectives. The R2 indicator, denoted as

R2(X ,W), can be defined as:

R2(X ,W) = max
w∈W

min
x∈X

{
m∑
i=1

wi · [f∗i (x)− fi(x)]

}
,

where fi(x) is the value of the i-th objective for the solution x, and f∗i (x) is the value of the i-th
objective for the ideal or utopian point (typically the maximum achievable value for maximization
problems). This formulation calculates the deviation of the solution set X from the ideal point for
each weight vector w and then takes the maximum of these deviations across all weight vectors
in W . The use of the maximum operator ensures that the R2 indicator focuses on the worst-case
scenario for any given weight vector, reflecting the least favorable trade-off among objectives that
the solution set X can achieve. A lower R2 value means that X is closer to the ideal point across all
weight vectors, indicating a better approximation of the Pareto front.

In summary, the R2 indicator quantifies the worst-case performance of a set of solutions X in terms
of their proximity to an ideal point for a given set of weight vectorsW . A lower R2 value is better
as it indicates a closer approximation to the ideal performance across all weight vectors.

K ADDITIONAL RESULTS

K.1 EVALUATING MOLECULAR OPTIMIZATION METHODS USING AVERAGE PROPERTY
SCORE (APS) OF TOP 10 AND TOP 100 MOLECULES

In our main results, we presented performance using the Hypervolume (HV) and R2 indicator met-
rics, which are widely regarded as the most appropriate evaluation metrics for multi-objective opti-
mization tasks. However, within the molecular optimization community, the average property score
(APS) is another commonly used metric, specifically tailored for assessing molecular optimization
methods. To provide a more comprehensive assessment, we conducted additional experiments to re-
port APS for various molecular optimization methods. The methods we evaluated include GraphGA
(Jensen, 2019), which generates molecules by using rule-based crossover operations to combine fea-
tures from parent molecules; LigGPT (Bagal et al., 2021), which is suitable for offline settings as
it does not require oracle calls during molecule generation; DST (Fu et al., 2022), which leverages
a proxy model to facilitate precise functional group editing; and REINVENT (Olivecrona et al.,
2017), our backbone generative model, known for its robust performance in molecular optimiza-
tion tasks. Additionally, we also considered AugMem (Guo & Schwaller, 2024a), a leading model
in the PMO benchmark, Saturn (Guo & Schwaller, 2024b), which enhances sample efficiency in
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molecular design, and GeneticGFN (Kim et al., 2024a), which integrates GFlowNets with genetic
algorithms to achieve state-of-the-art performance across various molecular optimization tasks. In
this experiment, we calculated the APS of the top 10 and top 100 molecules generated by each
method and reported the mean APS. As shown in Table 9, our MolStitch framework consistently
outperformed all competing methods, even when evaluated with the molecule-specific metric. This
result demonstrates the robustness and superiority of MolStitch across diverse evaluation criteria.

Table 9: Experimental results on molecular property optimization tasks under the full-offline setting.
The evaluation metric is the average property score (APS) of the top 10 and 100 molecules.

Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Method top10 (↑) top100 (↑) top10 (↑) top100 (↑) top10 (↑) top100 (↑)

REINVENT 0.515±0.076 0.312±0.036 0.464±0.018 0.383±0.005 0.564±0.018 0.491±0.003
AugMem 0.558±0.066 0.374±0.036 0.515±0.041 0.407±0.010 0.579±0.015 0.505±0.005
LigGPT 0.335±0.027 0.199±0.005 0.461±0.027 0.380±0.005 0.548±0.014 0.485±0.002
GraphGA 0.466±0.079 0.313±0.058 0.512±0.048 0.415±0.012 0.593±0.038 0.507±0.010
DST 0.456±0.058 0.315±0.037 0.531±0.059 0.451±0.039 0.601±0.027 0.539±0.029
Saturn 0.559±0.074 0.358±0.037 0.546±0.032 0.443±0.041 0.608±0.043 0.513±0.041
GeneticGFN 0.540±0.077 0.379±0.078 0.548±0.058 0.451±0.051 0.599±0.027 0.524±0.029
REINVENT-BO 0.539±0.055 0.346±0.025 0.485±0.021 0.392±0.007 0.572±0.024 0.498±0.005
MolStitch (Ours) 0.627±0.056 0.432±0.039 0.591±0.040 0.468±0.016 0.671±0.041 0.564±0.024

K.2 R2 PERFORMANCE FOR THE DOCKING SCORE OPTIMIZATION TASK

Results for R2 performance. We present additional R2 performance results for the docking score
optimization task in Table 10. Consistent with the findings in Table 2 of the main manuscript, our
MolStitch framework demonstrated superior performance by achieving the lowest R2 indicator score
compared to all competing methods.

Table 10: Experimental results on docking score optimization tasks under the full-offline setting.
The evaluation metric is the R2 indicator, with the best values highlighted in bold.

Target protein parp1 jak2 braf fa7 5ht1b

Method R2(↓) R2(↓) R2(↓) R2(↓) R2(↓)

REINVENT 1.426±0.090 1.589±0.042 1.497±0.044 1.791±0.033 1.454±0.054
AugMem 1.374±0.163 1.523±0.159 1.471±0.044 1.729±0.220 1.421±0.064
Saturn 1.376±0.053 1.501±0.155 1.420±0.176 1.726±0.201 1.350±0.139
GeneticGFN 1.326±0.148 1.589±0.039 1.484±0.025 1.701±0.228 1.410±0.057
REINVENT-BO 1.421±0.061 1.569±0.036 1.483±0.049 1.800±0.062 1.410±0.063
Grad 1.422±0.032 1.555±0.079 1.461±0.036 1.750±0.184 1.401±0.134
COMs 1.448±0.041 1.568±0.089 1.467±0.109 1.816±0.031 1.459±0.045
IOM 1.402±0.041 1.597±0.045 1.488±0.070 1.806±0.034 1.421±0.160
RoMA 1.431±0.053 1.604±0.044 1.434±0.153 1.738±0.241 1.449±0.058
Ensemble Proxy 1.415±0.035 1.568±0.062 1.491±0.036 1.800±0.028 1.470±0.038
BIB 1.425±0.045 1.573±0.029 1.500±0.034 1.801±0.028 1.478±0.043
BootGen 1.320±0.136 1.521±0.037 1.420±0.030 1.712±0.142 1.336±0.184
ICT 1.428±0.024 1.591±0.029 1.473±0.100 1.810±0.028 1.472±0.045
Tri-Mentoring 1.373±0.155 1.553±0.083 1.428±0.098 1.793±0.033 1.443±0.045
MolStitch (Ours) 1.276±0.153 1.445±0.177 1.312±0.174 1.674±0.261 1.231±0.165

K.3 SEMI-OFFLINE OPTIMIZATION

Definition of semi-offline optimization. Semi-offline optimization, also referred to as batch hybrid
learning (Xiong et al., 2024), is an optimization approach that bridges the gap between offline and
online optimization. In this semi-offline setting, models are trained on a combination of pre-existing
offline datasets and periodically collected new data, enabling periodic updates without the need for
continuous or real-time oracle queries. Unlike the full-offline setting, where the model is trained
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exclusively on a static offline dataset, the semi-offline setting allows for the periodic incorporation
of new data in large batches, facilitating a more dynamic learning process. This semi-offline opti-
mization is particularly useful in scenarios where obtaining new data in real-time is either too costly
or logistically challenging, yet some level of interaction or adaptation to new data is beneficial.

Semi-offline optimization in LLMs. Semi-offline optimization has gained considerable attention
in the field of large language models (LLMs). Several studies (Bai et al., 2022; Touvron et al.,
2023) have implemented a strategy of iteratively applying the RLHF process on a weekly cadence.
This involves periodically deploying updated RLHF models to interact with users or crowdworkers
to collect new preference data. The models are then fine-tuned with this feedback on a regular
schedule. Recently, Xiong et al. (2024) further extended this approach by formulating it as a batch
hybrid framework, establishing a more general setting for the hybrid learning process.

Experimetal setup for semi-offline optimization. Motivated by these practical applications, we
conducted additional experiments on PMO tasks under the semi-offline setting. We began by con-
structing an initial offline dataset using 5,000 oracle calls. In contrast to the full-offline setting,
where all remaining 5,000 oracle calls were used for evaluation, the semi-offline setting employed a
different allocation strategy. Specifically, we allocated 2,500 oracle calls for the periodic integration
of new molecular data in large batches. This allocation enabled the generative model to iteratively
update and adapt based on the newly acquired data. The remaining 2,500 oracle calls were reserved
for the final evaluation, allowing us to assess the model’s performance under the semi-offline setting.

Results for semi-offline optimization. As illustrated in Table 11, our MolStitch framework con-
sistently outperformed all competing methods under the semi-offline setting. Notably, we observed
a general improvement in performance compared to the full-offline setting, as shown in Table 1 of
the main manuscript. This finding highlights the benefits of incorporating periodic new data, as it
enables the generative model to be fine-tuned and trained on newly acquired samples, thereby fur-
ther enhancing its optimization capabilities. Consistent with the trends observed in the full-offline
setting, Saturn and GeneticGFN maintained strong performance among competing methods, high-
lighting the effectiveness of genetic algorithms in offline MOMO. Their success could be attributed
to the inherent strengths of genetic algorithms in maintaining population diversity and effectively
exploring the Pareto front through crossover operations. This finding aligns with our framework,
which employs a mechanism analogous to crossover, but with the added advantage of incorporating
chemical feedback. Additionally, we conducted experiments for preference optimization techniques
under the semi-offline setting, as depicted in Table 12. The trends observed were similar to those
in the full-offline setting, our MolStitch consistently achieved the highest performance among all
competing methods. While RLHF performed well on the two-objective scenario, its performance
declined significantly as the number of objectives increased. Both DPO and IPO demonstrated
strong performance, with IPO showing a slight edge over DPO.

K.4 EVALUATING MAMBA AND GFLOWNETS AS ADDITIONAL BACKBONE MODELS

Various backbone models. In this work, we chose REINVENT as our backbone generative model
due to its widespread use and reputation as one of the top-performing models for various molecular
optimization tasks. However, as previously mentioned, Saturn and GeneticGFN demonstrated strong
performance in numerous offline MOMO experiments. Since these methods utilized Mamba and
GFlowNets as their respective backbone models, we conducted additional experiments using Mamba
and GFlowNets as the backbone generative model for our MolStitch framework.

Results for backbone models. As shown in Table 13, we report the performance of each backbone
generative model—REINVENT, Mamba, and GFlowNets—on PMO tasks under the full-offline set-
ting, alongside the performance of integrating either our rank-baesd proxy or MolStitch framework
with each backbone model (e.g., REINVENT + MolStitch). Similarly, Table 14 presents the perfor-
mance of the backbone generative models and their respective integrations with MolStitch under the
semi-offline setting. As shown in Table 13, both the rank-based proxy and the MolStitch framework
provide performance improvements across various generative models. However, the integration
with the rank-based proxy still falls short compared to the full MolStitch framework, emphasizing
the additional benefits brought by StitchNet and priority sampling. Notably, Mamba + MolStitch
and GFlowNets + MolStitch outperformed REINVENT + MolStitch in both three-objective and
four-objective scenarios. This superior performance could be attributed to the greater capacity of
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Table 11: Experimental results on molecular property optimization tasks for the semi-offline setting.
The evaluation metrics are the hypervolume (HV) and R2 indicators, with the best values in bold.

Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Method HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

REINVENT 0.581±0.057 0.694±0.109 0.208±0.065 2.372±0.300 0.175±0.064 4.053±0.747
AugMem 0.636±0.063 0.602±0.113 0.348±0.075 1.888±0.237 0.292±0.087 3.225±0.650
GraphGA 0.521±0.084 0.819±0.136 0.392±0.102 1.623±0.277 0.265±0.080 3.493±0.537
DST 0.493±0.049 0.867±0.090 0.313±0.051 2.065±0.194 0.297±0.064 3.274±0.396
Saturn 0.623±0.049 0.621±0.086 0.428±0.040 1.581±0.160 0.382±0.088 2.686±0.510
GeneticGFN 0.642±0.065 0.592±0.107 0.414±0.123 1.660±0.425 0.361±0.086 2.879±0.569
REINVENT-BO 0.662±0.109 0.556±0.203 0.350±0.083 2.885±0.470 0.268±0.115 2.131±0.401
Grad 0.584±0.075 0.708±0.136 0.216±0.086 2.458±0.371 0.180±0.037 4.109±0.455
COMs 0.571±0.058 0.717±0.105 0.219±0.073 2.505±0.351 0.186±0.046 3.956±0.505
IOM 0.603±0.061 0.647±0.081 0.221±0.077 2.349±0.395 0.205±0.065 3.899±0.621
RoMA 0.588±0.067 0.680±0.109 0.215±0.070 2.414±0.258 0.180±0.036 4.105±0.414
Ensemble Proxy 0.602±0.084 0.648±0.146 0.227±0.071 2.435±0.332 0.216±0.069 3.730±0.573
BIB 0.563±0.066 0.713±0.122 0.215±0.078 2.440±0.388 0.189±0.070 4.062±0.735
BootGen 0.608±0.057 0.646±0.098 0.233±0.093 2.399±0.462 0.219±0.090 3.924±0.651
ICT 0.601±0.078 0.662±0.143 0.216±0.089 2.455±0.389 0.185±0.048 4.094±0.454
Tri-Mentoring 0.592±0.078 0.678±0.144 0.219±0.054 2.467±0.241 0.206±0.073 3.966±0.603
MolStitch (Ours) 0.689±0.041 0.514±0.073 0.539±0.045 1.238±0.157 0.493±0.050 2.014±0.202

Table 12: Performance of various preference optimization techniques for the semi-offline setting.

Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Method HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

Baseline (REINVENT) 0.462±0.133 0.921±0.259 0.196±0.083 2.646±0.327 0.168±0.046 3.969±0.664
+ StitchNet & RLHF 0.675±0.059 0.526±0.091 0.448±0.066 1.540±0.221 0.383±0.082 2.647±0.463
+ StitchNet & DPO 0.685±0.047 0.520±0.083 0.507±0.078 1.342±0.221 0.447±0.060 2.320±0.331
+ StitchNet & IPO 0.681±0.042 0.521±0.069 0.527±0.055 1.256±0.133 0.462±0.055 2.187±0.299
+ MolStitch (Ours) 0.689±0.041 0.514±0.073 0.539±0.045 1.238±0.157 0.493±0.050 2.014±0.202

Mamba and GFlowNets to manage the increased complexity associated with optimizing multiple
objectives beyond two. Overall, the consistent performance improvements across different back-
bone generative models under both full-offline and semi-offline settings demonstrate the robustness
and versatility of our MolStitch. Moreover, these additional results highlight the MolStitch’s ability
to seamlessly integrate with a range of backbone models, demonstrating its adaptability beyond a
single model architecture.

Table 13: Performance comparison of different generative models on molecular property optimiza-
tion tasks under the full-offline setting.

Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Method HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

REINVENT 0.462±0.133 0.921±0.259 0.196±0.083 2.646±0.327 0.168±0.046 3.969±0.664
+ Rank-based Proxy 0.545±0.063 0.773±0.120 0.319±0.059 1.928±0.314 0.251±0.084 3.504±0.634
+ MolStitch (Ours) 0.579±0.070 0.698±0.128 0.403±0.065 1.649±0.259 0.352±0.080 2.953±0.571

Mamba 0.531±0.087 0.785±0.159 0.293±0.058 1.977±0.280 0.281±0.058 3.339±0.280
+ Rank-based Proxy 0.538±0.068 0.758±0.105 0.327±0.100 1.946±0.404 0.281±0.072 3.317±0.486
+ MolStitch (Ours) 0.544±0.071 0.761±0.128 0.407±0.077 1.617±0.199 0.361±0.063 2.893±0.424

GFlowNets 0.482±0.073 0.869±0.117 0.309±0.087 1.990±0.365 0.237±0.066 3.630±0.453
+ Rank-based Proxy 0.522±0.040 0.805±0.085 0.364±0.070 1.809±0.305 0.323±0.054 2.953±0.304
+ MolStitch (Ours) 0.525±0.063 0.770±0.111 0.415±0.087 1.685±0.343 0.366±0.088 2.708±0.652
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Table 14: Performance comparison of different generative models on molecular property optimiza-
tion tasks under the semi-offline setting.

Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Method HV(↑) R2(↓) HV(↑) R2(↓) HV(↑) R2(↓)

REINVENT 0.581±0.057 0.694±0.109 0.208±0.065 2.372±0.300 0.175±0.064 4.053±0.747
+ MolStitch (Ours) 0.689±0.041 0.514±0.073 0.539±0.045 1.238±0.157 0.493±0.050 2.014±0.202

Mamba 0.623±0.049 0.621±0.086 0.428±0.040 1.581±0.160 0.382±0.088 2.686±0.510
+ MolStitch (Ours) 0.653±0.046 0.580±0.090 0.485±0.054 1.430±0.196 0.434±0.044 2.385±0.176

GFlowNets 0.642±0.065 0.592±0.107 0.414±0.123 1.660±0.425 0.361±0.086 2.879±0.569
+ MolStitch (Ours) 0.658±0.068 0.563±0.108 0.579±0.041 1.137±0.130 0.482±0.076 2.181±0.438

L DETAILED ANALYSIS OF RANK-BASED PROXY

In this section, we provide an in-depth analysis of both rank-based and score-based proxies. Our
study suggests that the formulation of rank-based proxy simplifies the proxy’s task, thereby enabling
it to deliver more reliable feedback to the generative model. To further explore this, we delve deeper
into the performance of each proxy type, examining whether the rank-based proxy truly surpasses
the score-based proxy in handling complex multi-objective molecular optimization tasks.

Proxy models. In the context of utilizing proxy models, they offer distinct advantages, but they
also present notable challenges. Specifically, Grad is built upon REINVENT and incorporates a
vanilla score-based proxy that directly approximates objective scores. As shown in Table 1 of our
main manuscript, while Grad outperforms the baseline REINVENT, its performance gains gradually
diminish as the number of objectives increases from two to four. This suggests that with the rise in
the number of objectives, the problem complexity increases, causing the vanilla proxy to struggle to
accurately approximate the objective scores. In contrast, our framework demonstrates particularly
strong performance in the three and four objective scenarios, which highlights the effectiveness of
reformulating the proxy model’s task from direct property score regression to pairwise classification.

(a) GSK3β+JNK3
(2 objectives)

(b) GSK3β+JNK3+QED
(3 objectives)

(c) GSK3β+JNK3+QED+SA
(4 objectives)

Figure 11: Distribution comparison of true objective scores (red) and score-based proxy model
predictions (blue) for stitched molecules across varying numbers of objectives: (a) 2 objectives, (b)
3 objectives, and (c) 4 objectives. As the number of objectives increases, the score-based proxy
model’s predictions show less variability and exhibit a sharper central peak, failing to accurately
represent the true score distribution.

Score-based proxy. As shown in Figure 11, we visualize the distribution of the true scores for the
stitched molecules alongside the predicted scores from the score-based proxy model. Compared to
the distribution of true objective scores, the predictions made by the score-based proxy model are
significantly more confined to a narrow range. This issue becomes more pronounced as the number
of objectives increases, with the score-based proxy model’s predictions showing even less variability
and a stronger central peak, failing to represent the true score distribution accurately. Therefore,
this result indicates that the score-based proxy model fails to provide meaningful feedback to the
generative model, potentially leading to suboptimal optimization. To address these limitations, we
propose a rank-based proxy model that learns the relative ranking between pairs of molecules based
on desired properties, determining which molecule is more favorable. This approach bypasses the
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direct approximation of true objective scores and instead focuses on ranking relationships, providing
more reliable feedback signals for the generative model.

(a) GSK3β+JNK3
(2 objectives)

(b) GSK3β+JNK3+QED
(3 objectives)

(c) GSK3β+JNK3+QED+SA
(4 objectives)

Figure 12: Accuracy comparison of score-based and rank-based proxy models in predicting the
ranking of randomly selected molecule pairs across varying numbers of objectives: (a) 2 objectives,
(b) 3 objectives, and (c) 4 objectives.

Result for proxy models. To demonstrate the effectiveness of the rank-based proxy, we compare
the performance of score-based and rank-based proxy models in predicting the rank of randomly
selected pairs of molecules. As shown in Figure 12, the rank-based model consistently outperforms
the score-based model across all scenarios with varying objectives. This performance gap widens
as the number of objectives increases, with the rank-based model maintaining relatively high accu-
racy even with four objectives, while the score-based model’s accuracy drops significantly. These
findings validate the superiority of the rank-based proxy over the score-based proxy in effectively
addressing the complexities of offline MOMO tasks.

M ADDITIONAL EXPERIMENTS ON MULTIPLE PROXIES

Figure 13: An illustration of the impact of employing multiple proxies with priority sampling in our
framework. The evaluation metric is the mean hypervolume across all numbers of objectives for the
MPO task under the full-offline setting. The results demonstrate that the optimal configuration for
our framework is four proxies, achieving the best performance before a decline due to redundancy.

Motivation for multiple proxies. In this section, we provide a detailed process and analysis of
employing multiple proxy models within our framework. The motivation for experimenting with
multiple proxies arises from observations in both offline MBO and LLM research. In offline MBO,
methods employing multiple proxies—such as Ensemble Proxy, ICT, and Tri-Mentoring—generally
outperform single proxy methods like Grad. This finding aligns with a recent study in large language
models (LLMs) (Chakraborty et al., 2024), which highlights the drawbacks of using a single reward
model to represent human preferences. Researchers note that human preferences are inherently
diverse, and a single model often fails to reflect this variability, leading to biased or suboptimal
outcomes. To address this, they propose using multiple reward models to capture a broader spectrum
of preference distributions, thereby enhancing alignment with diverse human judgments.
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Setup for multiple proxies. Inspired by these insights, we enhance our proxy model by incorpo-
rating ensemble learning through the use of multiple proxies. In the context of LLMs, preferences
reflect human sentiments, opinions, or judgments about desirable outputs. In molecular optimiza-
tion, however, preference represents the relative importance or priority of each objective within the
optimization process. To effectively capture this diversity of priorities, we employ priority sampling
for each proxy model, allowing them to prioritize objectives differently according to their assigned
importance. Specifically, each proxy receives weight configurations sampled from a Dirichlet dis-
tribution, enabling it to focus more on certain objectives than others. As a result, each proxy can
determine which molecule in a given pair is superior from its unique perspective. These individual
assessments are then combined using a majority voting strategy, providing a comprehensive evalua-
tion of molecules from multiple viewpoints to determine the overall superior molecule.

Results for multiple proxies. As demonstrated in Figure 13, the performance of our framework
increases with the number of proxies, peaking at four before gradually declining thereafter. The
observed decline in performance beyond four proxies can be attributed to the balance between en-
semble diversity and redundancy. For an ensemble to be effective, the individual proxy models
should be diverse, each providing unique insights into molecule evaluation. While adding proxy
models up to a certain point enhances performance by capturing a wider range of priorities, adding
too many proxies can introduce redundancy. Beyond the optimal number, additional proxies may
become similar to existing ones, offering little new information and potentially amplifying common
errors. In addition, with a large number of proxies, majority voting can overlook minority opin-
ions, reducing ensemble diversity and neglecting smaller yet significant priorities. Lastly, note that
all configuration settings—whether employing a single proxy or multiple proxies—outperform all
competing methods, underscoring the effectiveness of our framework.

Analysis for multiple proxies. One might question how majority voting works with an even num-
ber of proxies, as it could lead to a tie. In such cases where the proxies are evenly split in their
assessments (e.g., two proxies favor a molecule while two do not), we interpret this as an indication
of uncertainty or difficulty in evaluating the molecule. Rather than making a hasty decision that
could misguide the optimization process, we choose to pass and skip these uncertain molecules.
This approach ensures that only molecules with a higher degree of consensus among the proxies in-
fluence the optimization, enhancing the reliability of the feedback signals. The results also validate
that employing four proxies surpasses the performance of using three proxies. In the four-proxy
setup, a molecule must receive at least three favorable votes to be considered superior, raising the
confidence threshold compared to the two-out-of-three votes required in the three-proxy setup. The
stricter criterion in the four-proxy setup leads to more reliable and accurate feedback, contributing
to improved optimization performance.

N ADDITIONAL ANALYSIS ON MOLECULAR DIVERSITY OF STITCHNET

Additional diversity metrics. In the manuscript, we compared the diversity achieved by StitchNet
with that of its data augmentation counterpart, stochastic sampling. We found that StitchNet exhibits
greater diversity, which we attribute to its crossover-like mechanism that enables the generation of
considerably more diverse molecules than stochastic sampling. To further investigate the diversity
achieved by StitchNet, we propose the use of additional diversity metrics to provide a more compre-
hensive analysis from multiple perspectives. To quantify the diversity of the augmented molecules,
we employed the inverse of the Tanimoto similarity (Bender & Glen, 2004). Specifically, we cal-
culated the maximum Tanimoto similarity for each augmented molecule with respect to all other
augmented molecules, then averaged these values and subtracted the result from 1, which we term
the ‘Within augmented’ diversity metric. In addition, we computed the maximum Tanimoto
similarity between each augmented molecule and the molecules in the offline dataset, similarly sub-
tracting this value from 1 to derive the ‘Against offline dataset’ diversity metric.

Additional diversity results. The results in Figure 14 (a-b) demonstrate that StitchNet produces
a much broader and more varied score distribution compared to stochastic sampling. This broader
distribution highlights the StitchNet’s capability to generate augmented molecules with higher di-
versity, thereby enriching the fine-tuning process for the generative model. Moreover, the additional
diversity metrics further emphasize the advantages of StitchNet over stochastic sampling. As shown
in Figure 14 (c), StitchNet consistently achieves higher values in both the Within augmented
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(a) Score distribution (b) Score distribution (c) Diversity comparison

Figure 14: Diversity analysis of augmented molecules generated by StitchNet and its data augmen-
tation counterpart, stochastic sampling. The results demonstrate the superior capability of StitchNet
in generating a diverse and novel set of augmented molecules.

(a) Score distribution (b) Diversity comparison (c) Substructure comparison

Figure 15: Diversity analysis of final molecules produced by the generative model fine-tuned with
StitchNet and with stochastic sampling. The results demonstrate that the generative model fine-tuned
with StitchNet consistently achieves higher diversity and performance across all diversity metrics.
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and Against offline dataset diversity metrics. This indicates that augmented molecules
generated by StitchNet not only show greater diversity among themselves but also display more
novelty in comparison to the molecules present in the offline dataset. Additionally, we evaluated the
final molecules produced by the generative model fine-tuned with StitchNet against those fine-tuned
with stochastic sampling, as shown in Figure 15. The generative model fine-tuned with StitchNet
outperforms its counterpart in every aspect: (a) score distribution of final molecules, (b) diversity
metrics for both Within augmented and Against offline dataset, and (c) diversity
based on Bemis-Murcko (BM) scaffolds and Carbon Skeletons (CS) (Bemis & Murcko, 1996).

BM scaffolds & Carbon Skeletons. BM scaffolds are an essential tool for breaking down organic
molecules to identify their core chemical substructures. As shown in Figure 16 (a), BM scaffolds
simplify molecules by removing side chains while preserving the core substructures—such as ring
systems and connecting linkers—representing the molecular backbone. This approach allows for
a more effective quantitative assessment of structural diversity by comparing the backbones of dif-
ferent molecules. Another method for assessing structural diversity is through CS, which describe
various configurations of carbon atoms, including straightline, branching, and ring, as depicted in 16
(b). In particular, straightline skeletons consist of carbon atoms connected in a linear arrangement,
while branching skeletons contain side chains that extend from the main carbon chain that potentially
affects the molecule’s reactivity and interactions with biological targets. Ring skeletons are closed
loops of carbon atoms, commonly found in biologically active compounds. Both BM scaffolds and
CS serve as complementary methods for simplifying and categorizing molecular structures to better
understand their properties and interactions. While BM scaffolds focus on the core substructures by
removing side chains and functional groups, CS emphasizes the basic carbon framework of a given
molecule. By incorporating both approaches in our analysis, we believe we can conduct a more
comprehensive evaluation of structural diversity across the generated molecules.

(a) Bemis-Murcko (BM) scaffolds (b) Carbon Skeletons (CS)

Figure 16: Visual representations of (a) the Bemis-Murcko scaffolds and (b) the Carbon Skeletons.
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O FUTURE WORK AND LIMITATIONS

In this study, we focused on optimizing the properties of small molecules and docking scores for
five specific proteins. A natural extension of this work would be to apply our framework to mate-
rial discovery, particularly for optimizing inorganic molecules, thereby broadening its applicability
beyond small molecules. Additionally, while we investigated both full-offline and semi-offline op-
timization settings, there remains considerable potential to enhance the semi-offline optimization.
One promising direction is the use of a behavior policy to improve exploration of chemical space
when periodically incorporating new molecule data. This strategy would enable the inclusion of
molecules that were not present in the initial offline dataset, leading to more effective integration of
newly obtained data. Even in cases where the initial offline dataset contains lower-quality molecules,
a behavior policy could progressively improve the quality of the data over time. Moreover, our re-
sults suggest that employing multiple proxies yields valuable insights and substantial performance
gains in specific cases. As such, future work will focus on further developing and optimizing mul-
tiple proxy methods to fully realize their potential in molecular discovery. In addition, during the
molecular stitching process, our StitchNet learns from rule-based crossover operator, which is pre-
defined by domain experts using chemical knowledge. Another promising avenue for future work is
to incorporate additional domain-specific knowledge into the molecular stitching process, particu-
larly focusing on fundamental chemical relationships between molecular structure and functionality,
such as stereoisomerism, reactivity patterns, and steric effects.

P QUANTITATIVE ASSESSMENT OF STITCHNET’S ABILITY TO LEARN
CROSSOVER OPERATIONS

High Scoring Middle Scoring Low Scoring Similarity

Assigned Score 43% 31% 26% 0.644

Table 15: Assigned Scores and overall similarity between StitchNet and Crossover operator

In this section, we present the quantitative results evaluating how effectively StitchNet learns
the crossover operation. To assess this, we generated 300 offspring molecules using rule-based
crossover operations, and 100 molecules using StitchNet with the same parent molecule pairs. Then,
the 300 molecules from rule-based crossover were categorized into three groups based on their mean
target objective scores (GSK3β+JNK3+QED+SA): high-scoring, middle-scoring, and low-scoring.
For each group, we calculated the mean Tanimoto similarity score with the 100 molecules gener-
ated by StitchNet. Each StitchNet-generated molecule was then assigned to the group with which it
exhibited the highest similarity score. The results, presented in Table 15, demonstrate that the over-
all similarity scores are reasonable, suggesting that StitchNet effectively learns crossover operations
through its unsupervised pretraining process. Importantly, StitchNet-generated molecules were most
frequently assigned to the top-scoring group, with the lowest assignment to the low-scoring group.
This outcome highlights the advantages of StitchNet’s self-supervised training process, which ef-
fectively integrates chemical feedback. As a result, StitchNet can perform crossover operations in a
way that preferentially generates offspring molecules with higher objective scores.

Q EFFECTIVENESS AND CONTRIBUTION OF STITCHNET WITHIN OUR
FRAMEWORK

QED SA JNK3 GSK3β

Improvement -5.79% -3.15% +16.10% +42.18%

Table 16: Overall improvement in objective scores when comparing stitched molecules against ex-
isting molecules in the offline dataset.
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To assess the quality of the newly generated molecules from StitchNet, we measured the improve-
ment and non-improvement in objective scores (GSK3β, JNK3, QED, SA) between the stitched
molecules and the existing molecules in the offline dataset. Table 16 presents the results, show-
ing the percentage of improvement and non-improvement. Compared to the existing molecules in
the offline dataset, the newly generated molecules from StitchNet exhibited significant increases
in challenging objectives such as GSK3β and JNK3, while showing slight decreases in easier-to-
optimize objectives like QED and SA. This suggests that StitchNet effectively provides diversity
beyond the offline dataset and enhances performance in challenging objectives with only a minor re-
duction in easier objectives. Consequently, the generative model can learn from this enriched set of
high-quality molecules generated by StitchNet, leading to an overall improvement in performance.

R REWARD HACKING PROBLEM IN MULTI-OBJECTIVE OPTIMIZATION

In our study, we address the multi-objective molecular optimization problem, which involves simul-
taneously optimizing multiple objectives. However, during this process, we observed that certain
molecular objectives conflicted with each other. To investigate further, we conducted an in-depth
analysis of each property score within a four-objective scenario (GSK3β, JNK3, QED, and SA).

We found that models often prioritized easier objectives, such as QED and SA, over more chal-
lenging ones like GSK3β and JNK3. As noted by Gao et al. (2022), QED is often considered too
trivial, allowing most models to achieve high scores on this objective with minimal effort. This
suggests that increasing and optimizing the QED score is much simpler compared to tackling more
challenging objectives. For instance, models like REINVENT, which receive rewards based on the
average property score, may focus on easily attainable objectives to maximize the overall reward.
Consequently, this creates the reward hacking problem, where the model overfits to easier objec-
tives while neglecting the more challenging ones. This behavior highlights the inherent difficulty in
multi-objective optimization, particularly when some objectives are easier to optimize than others.

One possible approach to address this issue could be adjusting the weights assigned to each objective
to balance their influence—placing more emphasis on the challenging objectives and less on the
easier ones. However, this approach relies on having prior domain knowledge about the difficulty of
each objective, which is not always available. Moreover, in offline settings, immediate feedback to
refine weights is limited, making this approach impractical.

To overcome these challenges, we introduced priority sampling using a Dirichlet distribution within
our MolStitch framework for Pareto optimization. This approach efficiently generates diverse weight
configurations, ensuring a balanced exploration of all objectives. By using priority sampling within
our framework, we promote the generation of a diverse set of stitched molecules that do not dispro-
portionately favor easier objectives, thereby mitigating the risk of reward hacking.

QED SA JNK3 GSK3β

w/o MolStitch 0.843 0.889 0.128 0.397

MolStitch (Ours) 0.709 0.802 0.485 0.688

Table 17: Property scores for each objective in a four-objective scenario (GSK3β, JNK3, QED, SA).

To validate the effectiveness of our MolStitch framework, we compared the property scores for each
objective in a four-objective scenario (GSK3β, JNK3, QED, and SA) before and after applying our
MolStitch framework that incorporates priority sampling. The results, presented in Table 17, clearly
indicate that without MolStitch, the models suffer from the reward hacking problem, achieving
disproportionately high scores on easier objectives like QED and SA while exhibiting extremely
low scores on more challenging objectives such as JNK3 and GSK3β. In contrast, applying our
MolStitch framework results in a more balanced optimization, with relatively improved and well-
distributed scores across all objectives.
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Table 18: Performance comparison with the application of an advanced Bayesian Optimization
techniques.

Molecular objectives GSK3β+JNK3 GSK3β+JNK3+QED GSK3β+JNK3+QED+SA

Method HV(↑) HV(↑) HV(↑)

Vanilla REINVENT-BO 0.472±0.107 0.232±0.086 0.205±0.105
Advanced REINVENT-BO 0.502±0.083 0.275±0.069 0.234±0.084

Vanilla MolStitch 0.579±0.070 0.403±0.065 0.352±0.080
Advanced MolStitch-BO 0.585±0.070 0.417±0.045 0.371±0.082

S EXPLORING THE POTENTIAL OF BO TECHNIQUES IN MOLECULAR
DISCOVERY

To enhance the performance of the original REINVENT-BO, we conducted additional experiments
to establish a more advanced and robust baseline. Specifically, we replaced the Gaussian process
in the original REINVENT-BO with BootGen, an advanced proxy model known for its robust per-
formance in offline optimization settings. Additionally, we applied the enhanced post-filtration pro-
cess. As shown in Table 18, the experimental results demonstrate that the enhanced REINVENT-BO
pipeline significantly outperforms the original REINVENT-BO, highlighting the importance of ro-
bust proxy models and the post-filtration process.

Building on the effectiveness of the post-filtration process demonstrated in the enhanced
REINVENT-BO pipeline, we extended this approach to our MolStitch framework. By incorporating
the post-filtration step into MolStitch, we refined the molecule selection process further, ensuring
that the generated molecules undergo an additional evaluation stage to improve their overall quality.
This enhanced version of our framework is referred to as Advanced MolStitch-BO, emphasizing the
integration of BO techniques with the strengths of our original MolStitch framework. The results
demonstrate that the advanced MolStitch-BO framework achieves superior performance, highlight-
ing the effectiveness of integrating post-filtration BO techniques in offline multi-objective molecular
optimization. These findings highlight the substantial potential of BO strategies to further enhance
performance, paving the way for more efficient and effective approaches in molecular discovery.

T MOLECULE EXAMPLES

In this section, we first present visual examples of molecules generated by StitchNet, which
combines parent molecules to produce stitched molecules. These stitched molecules serve as
valuable training samples for fine-tuning the generative model. We then provide visual exam-
ples of molecules generated by the fine-tuned generative model, which aims to produce novel
molecules that surpass the best-known molecules in the offline dataset. Specifically, we present
representative molecules sampled from the Pareto front in the four-objective optimization scenario
(QED+SA+JNK3+GSK3β). Each molecule illustrates a distinct trade-off among these objectives,
demonstrating the diverse range of solutions on the Pareto front. These examples emphasize the
ability of our framework to explore diverse molecules that effectively balance multiple objectives.
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Figure 17: Examples of parent molecules and their corresponding stitched molecules generated by
StitchNet. The parent molecules are shown on the left, while the stitched molecules—produced by
combining structural fragments from the parent molecules—are displayed on the right.
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Figure 18: Representative molecules sampled from the Pareto front in the four-objective optimiza-
tion scenario (QED+SA+JNK3+GSK3β). The numerical scores for each objective are displayed
below the respective molecular structures. Each molecule reflects a distinct trade-off among these
objectives, highlighting the diverse range of solutions on the Pareto front.
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