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Abstract

Histopathology whole slide image (WSI) analysis is fundamental to computational pathol-
ogy. Attention-based heatmaps are commonly used for interpretability in WSI analysis.
However, heatmap is limited in describing the potential relationships between multiple
high-probability regions, which restricts its application in fine-grained WSI analysis tasks.
In this paper, we propose Pathology Causal Discovery Network (PCDN), a novel frame-
work that reconstructs interpretable diagnostic pathways by dynamically discovering re-
gional causal dependencies from WSIs. Unlike approaches relying on predefined medical
priors, PCDN introduces a Causal Structure Learner (CSL) to infer a Directed Acyclic
Graph (DAG) which represents the causal dependencies among pathological regions. A
Causal Graph Propagator (CGP) is then designed to guide feature propagation based on
the DAG, integrating local causal dependencies with global context. Extensive experiments
on three large-scale pathological datasets demonstrate that PCDN achieves state-of-the-art
performance and can provide meaningful causal insights for WSI analysis.
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1 Introduction

Computational pathology has emerged as a promising technique, utilizing deep learning to
automate whole slide image (WSI) analysis Song et al. (2023). One widely used approach
is multiple instance learning (MIL) Shi et al. (2020); Gadermayr and Tschuchnig (2024);
Qu et al. (2024); Lse et al. (2018); Lu et al. (2021); Shao et al. (2021), which treats WSI
patches as instances within a bag and aggregates patch-level features. Although MIL holds
significant potential for automating WSI analysis, it is limited in providing detailed and
interpretable insights into what is the specific process to reach the prediction.

In computational pathology, achieving interpretability at the WSI level has been ap-
proached primarily through two main strategies. The first focuses on localizing decision-
critical regions within WSIs. Techniques such as attention-guided visualizations Lse et al.
(2018); Lu et al. (2021); Shao et al. (2021), and gradient-based saliency methods Zhou et al.
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(2016); Selvaraju et al. (2017); Chattopadhay et al. (2018) can generate spatial heatmaps
to highlight patches that significantly influence model predictions. Although these methods
provide valuable transparency at the patch level, their clinical utility is limited by two fac-
tors: (1) the highlighted regions often do not directly correspond to recognizable histopatho-
logical entities, requiring pathologists to further interpret these regions with their domain
knowledge; and (2) these techniques emphasize local morphological features, neglecting
broader tissue-level context. The second approach employs a feature-based explanation
framework, where predefined morphological features (e.g., nuclear circularity, glandular ar-
chitecture, or cell density) are extracted from regions of interest and statistically related to
clinical outcomes Kapse et al. (2024). Although this strategy follows traditional pathological
reasoning, it is limited by the reliance on manually defined features.
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Figure 1: The proposed pathology causal discovery network (PCDN). (a) Extracted features and
defined anchors serve as the input for the PCDN. (b) PCDN consists of N causal repre-
sentation blocks to discovery regional causal dependencies hierarchically. (c) The inferred
causal graph of regions A4,y guides the prediction of the model.

In recent years, there has been growing interest in integrating causal inference methods
into computational pathology models to enhance their interpretability Chan et al. (2023);
Chen et al. (2024); Song (2024). One major challenge of existing methods is their reliance
on predefined causal assumptions. In addition, they struggle to uncover and represent the
causal dependencies among pathology regions, making it difficult to achieve transparent
and explicit interpretability in the WSI analysis.

In this paper, we propose pathology causal discovery network (PCDN), a novel frame-
work that reconstructs interpretable diagnostic pathways by discovering regional causal
dependencies from WSIs, without relying on predefined causal assumptions. As shown in
Fig. 1, PCDN maintains a Directed Acyclic Graph (DAG) that explicitly captures the causal
dependencies among pathological regions throughout the WSI analysis process. Extensive
experiments conducted on three large-scale pathology datasets demonstrate that PCDN
achieves state-of-the-art (SOTA) performance while also offering causal insights with clini-
cal relevance. The contributions of this paper can be summarized in two aspects.

1) We propose PCDN, a novel interpretable framework for WSI analysis. PCDN dy-
namically uncovers causal dependencies between pathological regions without relying on
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predefined medical knowledge. This approach offers clearer and more intuitive insights
for diagnostic reasoning compared to traditional interpretability methods and meanwhile
improves the overall performance of WSI analysis.

2) A Causal Structure Learner (CSL) is designed to generate the DAG that represents
spatial causal dependencies within the WSI. Meanwhile, a Causal Graph Propagator (CGP)
is built to leverage the DAG to achieve the WSI reasoning. Importantly, the constructed
DAG is not merely an explanatory tool but is directly integrated into the model’s inference
process, resulting in a unified approach that supports both prediction and interpretation.

2 Methods

2.1 Data Preparation

As shown in Fig. 1, patch-level features X € R™*¢ are extracted using a foundation model,
where n, is the number of patches and d is the feature dimension. To obtain region-level
representations, we follow KAT Zheng et al. (2023) and apply K-means clustering to the
spatial coordinates of foreground patches, generating n; anchors adaptively determined
by each WSI’s size. We then initialize n; learnable kernels K € R™*? each assigned to
an anchor and trained to aggregate features within its spatial scope. The extent of each
anchor’s region is defined by a soft mask (see Appendix A),within which the associated
kernel dynamically aggregates region-level features from surrounding patches.

2.2 Pathology Causal Discovery Network

As illustrated in Fig 2(a), the PCDN architecture operates hierarchically to model both
local and causal dependencies. It takes as input the patch-level features X° and the kernels
K. The first block in the network is a local representation block (LRB). LRB introduces a
kernel attention (KKA) module Zheng et al. (2023), where kernels interact with patch tokens
through cross-attention to adaptively aggregate region-specific features for further causal
analysis (see Appendix A). Subsequently, the model passes through N causal representation
blocks, each of which consists of an LRB, a CSL, and a CGP.

2.3 Causal Structure Learner (CSL)

The CSL module is responsible for discovering causal dependencies among pathology re-
gions. We adopt a score-based causal discovery framework, which searches for DAGs that
best explain the observed dependencies under assumptions such as causal sufficiency and
the causal Markov condition Pearl (2000). To integrate causal discovery into the model, we
impose a DAG constraint on the self-attention mechanism to filter spurious correlations and
encourage structured directional dependencies. Initially, the current kernels and a special
class token [C'LS] are concatenated to create the input K. € R +1%d Then, the DAG
is estimated directly from K by self-attention mechanism:

Adag = StableAtt(Q, K),

1
Q = Wchlsa K= WkJKclsa ( )

where W,, W, € Re*dn are weight matrices, d, is the embedding dimension, dj, is the
head dimension, and Stable Att means stable attention operation Jin et al. (2024), which



ZIXIAN L1, JUN SHI, ZHIGUO JIANG, FENGYING XIE, AND YUSHAN ZHENG

is applied to obtain normalized attention scores between nodes. It is notable that the role
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Figure 2: The structure of pathology causal discovery network (PCDN). Input features pass through
the local representation block (LRB) and causal representation block CRB. A causal
structure learner (CSL) and a causal graph propagator (CGP) work together to learn
and propagate causal dependencies across the pathology regions.

of Agqg is to construct the causal dependencies among kernels and those between kernels
and [CLS]. Therefore, we need to add a directed acyclic constraint to ensure it explicitly
describes the causal dependencies Zheng et al. (2018), which is defined as

Ldag = ghg + ahy, hy = tr(eXp(Adag o Adag)) - (nk + 1), (2)

where ¢r denotes the matrix trace, o is the Hadamard product, and exp () is the matrix
exponential. p and « are dynamic parameters that adjust based on the degree of hy. If hy
exceeds a predefined threshold, both p and « are updated as p < min(p x 10, pmax), and
a ¢ a+ p X hy. Lqag penalizes any violations of the expected causal dependencies among
regions, guiding the self-attention mechanism to model these dependencies as edges in a
DAG. Specifically, the vertical axis of the Ag,, matrix represents the causal source nodes,
the horizontal axis represents the target nodes, and a non-zero element at position (i, 7)
indicates that node ¢ is a causal source of node j, with the value reflecting the strength of
the causal dependencies.

Notably, the positions corresponding to [C'LS] as a causal source node in Ag,, are
masked to ensure that [C'LS] functions solely as a causal sink. It aggregates global causal
dependencies without affecting the causal weights of the region nodes, thereby preventing
any ambiguity in causal directionality.
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2.4 Causal Graph Propagator (CGP)

The CGP facilitates the dynamic propagation of region-specific features across the learned
causal graph. To ensure stable feature propagation, we normalize the DAG into a Laplacian
matrix Adag in accordance with graph convolutional (GCN) Kipf and Welling (2017) theory,
which is then used with K to propagate features through the causal graph. Propagation
is achieved using several GCN layers defined as:

Hl+1 = RGLU(AdangWl), I = 07 ]-7 -y N, (3)

where H; represents the feature matrix at the [-th layer. Specifically, the input Hy =
KSS_I) e ROwtD)xd penresents the updated region representation within the class token
[CLS]®. Due to the masking strategy in CSL, [CLS]® does not participate directly in
local node feature updates, instead, its representation reflects only the cumulative effect of
causal contributions.

2.5 Loss Function

The total loss L is defined as the sum of the cross-entropy loss Lee between the ground-truth
y and the output logits z. of the class token and the DAG loss L((Qg in each CSL block,
weighted by a hyperparameter A\ to control the trade-off between the two components:

Lee = —y 7T log(softmax(z.)). (4)

N
L=Lee+AY LY,
i=1

3 Experiments

3.1 Experimental Settings

The proposed method was evaluated on two public available datasets TCGA-RCC and
TCGA-EGFR and an in-house dataset Gastric-2k. TCGA-RCC contains 940 cases with
3 subtypes of renal cell carcinoma. TCGA-EGFR contains 696 WSIs used for classifying
EGFR mutations in lung adenocarcinoma, categorized into 4 classes: EGFR-19del, EGFR-
L858R, Wild, and Other types. Gastric-2K is an in-house dataset that consists of 2040 WSIs
from 6 categories of gastric pathology: low-grade intraepithelial neoplasia (LGIN), high-
grade intraepithelial neoplasia (HGIN), adenocarcinoma (A.), mucinous adenocarcinoma
(MA), signet-ring cell carcinoma (SRCC), and non-tumor tissue (Normal).

Each dataset was randomly split into training and test sets in a 7:3 ratio. Five-fold cross-
validation was conducted within the training set, with early stopping and hyperparameter
selection based on validation data in each fold. Final evaluation was performed on the test
set. Baseline methods were configured according to their original implementations.

Patch features were extracted under 20x lenses with CONCH Lu et al. (2024), where
patch size is 256 and feature dimension is 512. The number of CRBs was empirically set to
3. The DAG loss weigh A is robust within the range of [1,10] and set to 5. The model was
trained with a learning rate of 1 x 10~% using the Adam optimizer. The initial values of p
and « were 1.0 and 0.0 respectively, with ppax = 10%. All experiments were conducted in
Python using PyTorch and run on a computer with Nvidia GeForce 4090 GPUs.
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Best values are in bold and second-best values are underlined.

Table 1: Results of hyperparameter settings and ablation study (n;: number of GCN layers).

AUC ACC F1 FLOPs Mem.
Settings (%) (%) (%) (x10%) (MB)
PCDN (n; =1) 93.80 (2.28)  90.16 (1.80)  71.16 (2.00) | 27.455 108.36
PCDN (n; = 2) 94.64 (1.00)  90.50 (1.60)  70.00 (6.30) | 27.460 108.36
PCDN (n; = 3) 95.18 (1.30) 90.36 (1.70) 75.78 (4.20) | 27.473 108.62
PCDN (n; = 4) 93.28 (1.90) 90.94 (1.70) 72.38 (6.50) | 27.486  108.89
PCDN (n; = 5) 95.12 (1.50)  90.22 (2.00)  72.00 (8.10) 27.499 109.15
PCDN (n; = 3) w/0 Laag | 93.88 (1.00)  90.12 (1.60)  69.20 (7.70) | 27.473  108.62
PCDN (n; = 3) w/o CGP | 91.84 (3.40)  89.00 (2.00) 67.74 (8.40) | 27.477  109.28

3.2 Model Structure Verification

Hyperparameter settings. We first adjust the number of GCN layers in the CGP module.
The cross-validation results are presented in Table 1, which shows that the best performance
was achieved with three GCN layers (n; = 3). These results suggest that three iterations of
causal inference is the most effective for summarizing the regional information of the WSIs.
FLOPs and memory usage increase slightly with more layers (FLOPs: 27.455—27.499 x 10?;
memory: 108.36 — 109.15M B), but the overhead remains minimal. Based on the results,
we fixed n; = 3 in the following experiment.

Ablation study. Lg,, constraint Table 1 enforces the self-attention mechanism to
uncover the causal dependencies among kernels. When removed, the model focuses only on
kernel correlation. This leads to a 1.3% decrease in AUC and a 6.58% drop in Fl-score,
indicating that its removal introduces redundancy and noise. In the w/o CGP experiment,
regional features are propagated via simple matrix multiplication based on A 444, leading
to a 3.34% decrease in AUC, an 8.04% drop in Fl-score and increased FLOPs and memory
usage. Moreover, CGP’s multi-layer propagation supports cross-layer causal interactions,
and its removal eliminates hierarchical reasoning. Consequently, Lgags ensures the causal
structure’s validity and sparsity, while CGP enables directed regional features propagation.
They jointly ensure that the model extracts high-confidence causal dependencies from WSIs.

Visualization with local causal dependencies. Fig. 3 provides an application ex-
ample of a gastric case with the trained PCDN. To highlight the most important causal
dependencies among the nodes (i.e., region-level feature representations for each anchor),
low-weight edges in A 4,4 are removed by thresholding. In Fig. 3d and e, the inferred DAG
describes third-order causality. First, Anchors 1, 8 and 6 are identified as initial causal
sources, corresponding to dysplastic areas indicative of a precancerous state, and directed
towards Anchor 9. Anchor 9 exhibits faint but preserved glandular structures, suggesting
well-differentiated adenocarcinoma. It further influences Anchor 2, where fused cribriform
glands indicate moderate differentiation. Finally, Anchors 9 and 2 serve as causal sources
for the class token, where diagnostic information is summarized, and the WSI is classified as
adenocarcinoma. The learned causal structure aligned with expert pathological assessment.

Compared to the conventional attention-based heatmap in Fig. 3¢, which merely high-
lights discriminative areas, PCDN enhances interpretability by performing causal discovery
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Figure 3: Visualization of causal graph on WSI based on PCDN, where (a) shows a raw
WSI within adenocarcinoma, (b) presents tumor annotations by pathologists,
(c) visualizes a conventional attention-based heatmap, (d) highlights the crucial
regional representation and the discovered DAG with low-weight edges removed
by thresholding. Distinct areas are color-coded and connected via inferred causal
dependencies. (e) shows a multi-order causal chain and the final prediction.

to uncover meaningful dependencies among regions. The learned DAG helps filter spurious
correlations and encourages structured, directional reasoning aligned with pathological pro-
gression. It also provides topological insights into WSI analysis, offering greater potential
to support pathologists with more informative, actionable diagnosis, and research guidance.

3.3 Comparison with State-of-the-art methods

Finally, we evaluate PCDN against seven SOTA methods, covering various types: (1)
Attention-enhanced frameworks: CLAM Lu et al. (2021), DTFD Zhang et al. (2022); (2)
Context-aware methods: TransMIL Shao et al. (2021)(self-attention), MambaMIL Yang
et al. (2024) (Mamba), and WiKG Li et al. (2024) (GNN); (3) Morphological prototyp-
ing method: PANTHER Song et al. (2024), and (4) a causal inference-based MIL model:
IBMIL Lin et al. (2023). Table 2 presents the performance comparison on TCGA-EGFR,
TCGA-RCC, and Gastric-2K datasets.

Overall, the proposed PCDN achieves performance comparable to SOTA methods across
three datasets with diverse WSI analysis tasks. In the TCGA-RCC dataset, which presents a
relatively simple task, all methods achieved satisfactory performance, owing to the discrim-
inative patch features powered by CONCH. PCDN stands out by focusing on regions with
causal dependencies, while disregarding causal chains with minimal influence on decision-
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Table 2: Performance comparison with other methods on different datasets, where the best
values are printed in bold, and the second best values are underlined.

Method TCGA-EGFR Gastric-2K TCGA-RCC
AUC(%) ACC(%) F1(%) AUC(%) ACC(%) F1(%) AUC(%) ACC(%) F1(%)

CLAM Lu et al. (2021) 73.04(2.54) 65.22(4.50) 69.24(3.77) 87.52(1.36) 87.78(1.25) 61.56(4.74) 96.06(0.97) 90.08(1.59)  87.52(2.07)
TransMIL Shao et al. (2021) 51.36(5.85) 75.64(2.40) 69.80(1.32) 83.34(3.82) 85.44(1.63) 48.40(5.61) 98.26(0.72) 91.26(0.54)  89.60(1.01)
DTFD Zhang et al. (2022) 72.66(1.93) 77.20(1.29) 76.36(0.77) 87.48(2.52) 87.78(1.10) 64.40(3.45) 96.96(0.19) 92.74(0.63)  90.64(1.39)
IBMIL Lin et al. (2023) 72.58(3.88) 78.94(1.31) 74.28(1.92) 92.10(1.01) 88.66(0.62) 58.20(4.27) 98.58(0.29) 91.58(0.70)  89.58(0.85)
WiIKG Li et al. (2024) 68.54(6.24) 75.08(2.76) 73.06(2.34) 91.38(0.30) 88.96(1.21) 63.80(6.20) 98.42(0.70) 91.52(1.32)  89.88(1.66)
MambaMIL Yang et al. (2024) | 64.94(4.67) 76.70(2.56) 72.74(1.82) 90.20(0.87) 87.82(0.54) 58.38(5.05) | 98.98(0.26)  92.66(0.54)  90.98(1.06)
Panther Song et al. (2024) 66.72(4.66) 78.74(1.72) 73.66(1.94) 91.82(0.51)  89.78(0.65)  57.14(1.74) 98.90(0.19) 91.00(0.81)  91.00(0.01)
KAT Zheng et al. (2023) 65.48(4.91) 78.36(0.98) 73.84(1.19) 91.64(2.21) 89.20(0.77) 60.44(4.63) 98.58(0.36) 91.74(0.99)  90.14(1.26)
PCDN 74.06(2.01) 80.58(0.94) 77.28(1.58) | 93.30(0.94) 89.02(0.75)  65.24(0.89) | 98.80(0.24) 92.82(0.71) 91.32(1.08)

making. Gastric-2K dataset which involves a more fine-grained 5-classes classification task,
further highlights the strength of PCDN. By inferring regional causal dependencies, PCDN
delivers the best AUC of 93.3% and F1-score of 65.24%, demonstrating its ability to capture
complex interactions in multi-class scenarios. Finally the TCGA-EGFR dataset presents
the most challenging gene-related task. PCDN excels in this task by modeling latent re-
lationships between genes, yielding more accurate classification results with an AUC of
74.06%, an ACC of 80.58%, and an Fl-score of 77.28%. IBMIL which incorporates inter-
ventional training to reduce confounding, demonstrates competitive performance. WiKG is
a method based on undirected graph structure, which struggles to capture causal direction-
ality, reducing its effectiveness. In contrast, PCDN enables end-to-end modeling of causal
dependencies among pathological regions through dynamic causal discovery and directed
propagation mechanisms. This approach allows PCDN to surpass traditional methods that
primarily focus on simple correlations between local and global features. Notably, the
proposed method can directly provide the causal graph that informs the decision-making
process, offering a valuable tool to supplement heatmaps in interpretability.

4 Conclusion

We proposed the Pathology Causal Discovery Network (PCDN), a novel approach that im-
proves whole-slide image (WSI) analysis by dynamically discovering causal dependencies
between pathological regions. A causal structure learner (CSL) and a causal graph prop-
agator (CGP) are then designed to infer a directed acyclic graph (DAG) for feature prop-
agation. PCDN effectively constructs the underlying region dependencies in WSI through
the designed causal structure learning approach. Experiments on three large-scale datasets
demonstrate the effectiveness of PCDN and its potential to enhance the interpretability
of WSI analysis. Future work will improve PCDN’s causal modeling by moving beyond
DAG-constrained attention, leveraging identifiable and interventional graph learning.
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Appendix A.

Kernel Attention Module. To capture region-level representations, the kernel attention
(KA) module establishes bidirectional cross-attention between kernels and patches. This
interaction is guided by a spatial soft mask M € RE*™  where each entry my; encodes
the spatial weight between the k-th kernel and the i-th patch, computed based on their
Fuclidean distance:

Ip(f) — CkH%)

262 (5)

where p(f;) and c¢j denote the spatial coordinates of the i-th patch and the k-th kernel,
respectively. The scaling parameter ¢ controls the spatial range of the Gaussian-like mask.

Firstly, each kernel receives information from its associated patches via cross-attention,
denoted as:

mg; = exp (

KMOwW™ . <X(”)W£”)>T
V.

KMt = o oM- XM . W), (6)

where X e R™*d and K™ e R™*d denote the patch and kernel features at the n-
th block. Wén),W,(fn),Wq()n) € R¥de are learnable projection matrices for queries, keys,
and values, with d. being the output dimension of each head, and o denotes the softmax
function. Subsequently, each patch aggregates information from kernels to update its own
local representation, formulated as:

X(n)wg”) ) <I((TL)\;§7](;‘))T

X (nt+1) —
7 Ve

oM-KM™ . w, (7)

This bidirectional interaction enables kernels and patches to exchange hierarchical spatial
information, benefiting fine-grained region-level representation learning.

Appendix B.

Computational complexity. Our DAG-based causal structure learning is built on Anchor
Representations. Let nj denotes the anchor number and n, be the patch number, its
complexity is O(n2), which is much more efficient than the O(ng - np) of KAT block since
ny < np (tens vs. thousands). As a result, the inference of PCDN requires 27.47 GFLOPs
per WSI, which is only 0.51% higher than the 27.33 GFLOPs required by the KAT baseline.
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