

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ONLINE LEARNING OF WHITTLE INDICES FOR RESTLESS BANDITS WITH NON-STATIONARY TRANSITION KERNELS

Anonymous authors

Paper under double-blind review

ABSTRACT

We study optimal resource allocation in restless multi-armed bandits (RMABs) under unknown and non-stationary dynamics. Solving RMABs optimally is PSPACE-hard even with full knowledge of model parameters, and while the Whittle index policy offers asymptotic optimality with low computational cost, it requires access to stationary transition kernels - an unrealistic assumption in many applications. To address this challenge, we propose a Sliding-Window Online Whittle (SW-Whittle) policy that remains computationally efficient while adapting to time-varying kernels. Our algorithm achieves a dynamic regret of $\tilde{O}(T^{2/3}\tilde{V}^{1/3} + T^{4/5})$ for large RMABs, where T is the number of episodes and \tilde{V} is the total variation distance between consecutive transition kernels. Importantly, we handle the challenging case where the variation budget is unknown in advance by combining a Bandit-over-Bandit framework with our sliding-window design. Window lengths are tuned online as a function of the estimated variation, while Whittle indices are computed via an upper-confidence-bound of the estimated transition kernels and a bilinear optimization routine. Numerical experiments demonstrate that our algorithm consistently outperforms baselines, achieving the lowest cumulative regret across a range of non-stationary environments.

1 INTRODUCTION

Many sequential decision-making problems can be modeled as restless multi-armed bandits (RMABs). A decision maker needs to choose M out of N arms to activate at each time-slot. Each arm is modeled as a Markov decision process, and evolves stochastically according to two different transition kernels, depending on whether the arm is activated or not. At the beginning of each time-slot, the decision maker picks a subset of arms to be activated. The activated arms evolve according to their active Markov transition kernels, while the rest of the arms evolve according to their passive Markov transition kernels. At the end of the time-slot, the decision maker receives rewards from each arm, where rewards are functions of the current state and the action.

RMABs have a long history in resource allocation and operations research literature, starting with Whittle's seminal work Whittle (1988) in the 1980s. Over the past four decades, RMABs have been used to model and optimize resource allocation problems in a wide variety of domains such as wireless scheduling Borkar et al. (2017); Kadota et al. (2018); Tripathi & Modiano (2024); Shisher et al. (2024); Kadota et al. (2019), machine monitoring and control Liu et al. (2011); Ruiz-Hernández et al. (2020); Dahiya et al. (2022), server scheduling Dusonchet & Hongler (2003), recommendation systems Meshram et al. (2017; 2018), and health care Villar et al. (2015); Bhattacharya (2018); Lee et al. (2019); Mate et al. (2020); Behari et al. (2024). In all of these applications, transition kernels can be unknown and non-stationary, i.e., the laws governing the evolution of states can drift over time. For example, consider a load balancing problem, where jobs arrive into a datacenter and a decision-maker assigns jobs to servers via a load balancer. The time required to finish a job at any server depends on its current load and how the load evolves over time. This evolution is typically random and time-varying since there are multiple load balancers and job streams contributing to the load at any given server within a large datacenter. Deciding which server to pick can then be formulated as an RMAB, but with non-stationary transition kernels.

When the transition kernels of a RMAB are unknown and non-stationary, the problem of finding the Whittle index becomes an online/reinforcement learning problem. Many papers designed algorithms for MDPs and MAB with unknown and non-stationary transition kernels and analyzed dynamic regret for MDPs and MAB Ortner et al. (2020); Cheung et al. (2020); Marin Moreno et al. (2024); Wei et al. (2023); Wei & Luo (2021). However, algorithm designed in these prior works can not be applied to RMAB due its special structures: The passive arms (arms that are not activated) continue to evolve stochastically. Because of the special structure and the combinatorial action space, even when the transition kernels are known, developing an optimal policy for RMABs is PSPACE-hard Papadimitriou & Tsitsiklis (1994). Whittle’s seminal work Whittle (1988) introduced a heuristic policy for RMAB problem, known as the Whittle index policy. This policy relies on establishing a special mathematical property called *indexability* for each arm and then deriving functions called index functions that map states to how valuable it would be to activate an arm at that state. Running the policy simply requires activating the M bandits with the highest Whittle indices out of the N bandits at each decision time. To compute Whittle index, the problem is decomposed to multiple single-arm MDPs after a Lagrangian relaxation technique. Then, Whittle index is computed using the solution of the multiple MDPs. The Whittle index achieves asymptotic optimality, if the RMAB is indexable and has a global attractor point Weber & Weiss (1990); Verloop (2016); Gast et al. (2023; 2021). Most prior works in utilizing Whittle index-based policy focus on known and stationary transition kernels Dance & Silander (2015); Tripathi & Modiano (2024); Shisher et al. (2024); Le Ny et al. (2008); Meshram et al. (2018).

Applying traditional online learning and reinforcement learning policies Ortner et al. (2020); Cheung et al. (2020); Marin Moreno et al. (2024); Wei et al. (2023); Wei & Luo (2021) naively to RMAB with unknown and non-stationary transition kernels may lead to inefficient learning performance and to exponential regret bounds. This necessitates combining Whittle with online learning methods. In this direction, a recent work Wang et al. (2023) designed a Whittle index-based policy called *UCWhittle* for unknown but stationary transition kernels. Although techniques exist for adapting reinforcement learning algorithms to non-stationary environments Wei & Luo (2021), they are not directly compatible with the recently proposed UCWhittle policy Wang et al. (2023). This incompatibility arises from the unique structure of RMABs and the specific method used to compute the Whittle index via Lagrangian relaxation.

In addition, it is common in many applications to have prior knowledge regarding the sparsity of transition kernels for some parts of the state space. For example, consider a wireless scheduling problem which aims to maximize information freshness in selecting which users (arms) to schedule. In this case, the state can be modeled using Age of Information (AoI) Kaul et al. (2012); Sun et al. (2016) – a widely used metric for quantifying information freshness. Then, the AoI of an arm increases by one if the arm is not scheduled for transmission. Conversely, if the arm is scheduled, its AoI resets to one with the success probability of the transmission. Thus, the AoI will never increase by 2 or decrease to a value other than 1.

In this paper, we pose the following research question: ***Can we develop a Whittle index-based online algorithm for RMABs with non-stationary transition kernels?***

Contributions: The main contributions of our paper can be summarized as follows:

- **Algorithm Design.** The challenge for designing online learning algorithms for RMABs is to incorporate the computationally efficient class of policies such as Whittle index policy into an adaptive process. We design a sliding window-based online Whittle index policy for non-stationary RMABs (see Algorithm 1). We model non-stationarity of transition kernels of arm n by using a total variation budget V_n which is an upper bound of the sum of the total variational distance \hat{V}_n . To estimate the budget V_n , we utilize a Bandit-over-Bandit approach Cheung et al. (2022); Wei et al. (2023), in which V_n is selected from a finite set of possible values. Based on the estimated V_n , the Whittle index is predicted by using a sliding window and upper confidence bound approaches. Moreover, our algorithm takes into account the sparsity of the transition kernels. This significantly simplifies the complexity of optimization and helps to predict the transition kernels accurately.
- **Dynamic Regret Analysis.** We rigorously characterize an upper bound on the dynamic regret of our algorithm. Our paper is the first to provide dynamic regret for the online learning of Whittle index under non-stationary environments. It is difficult to analyze dynamic regret of an online policy under non-stationary environments. It is even more difficult for RMABs. Wang et al. (2023) overcame this challenge by analyzing the regret for stationary environment using the Lagrangian

108 relaxed form of the problem and its solution. In this paper, we extend the regret analysis to (i)
 109 non-stationary environments and (ii) to a stronger version of regret by directly analyzing the main
 110 problem and its solution, instead of the Lagrangian form. Our policy can achieve dynamic regret of
 111 $\tilde{O}(T^{2/3}\tilde{V}^{1/3} + T^{4/5})$ for large system size when RMAB is indexable and has a global attractor
 112 point (see Theorem 3 & Remark 1).

113 • **Simulation Results.** Our simulation results (see Table 1 & Fig. 1) show that our algorithm achieves
 114 lower regret in practice compared with the UCWhittle policy Wang et al. (2023), WIQL policy
 115 Biswas et al. (2021), and a uniformly randomized policy Kadota et al. (2018) baselines.
 116

117 2 RELATED WORK

119 **Offline Whittle Index Policy for RMABs:** Whittle’s seminal work Whittle (1988) introduced a
 120 heuristic policy for the infinite-horizon RMAB problem, known as the Whittle index policy. Motivated
 121 by Whittle’s work, many subsequent works have applied the Whittle index framework to different
 122 resource allocation problems Dance & Silander (2015); Tripathi & Modiano (2024); Shisher et al.
 123 (2024); Le Ny et al. (2008); Meshram et al. (2018); Kadota et al. (2018; 2019); Ornee & Sun (2023)
 124 by modeling them as RMABs.

125 **Online Learning of Whittle Index:** Multiple works Avrachenkov & Borkar (2022); Fu et al. (2019);
 126 Biswas et al. (2021) have proposed Q-learning algorithms to compute Whittle Index. Authors in
 127 Nakhleh et al. (2021) proposed NeurWIN and Nakhleh et al. (2022) proposed DeepTOP to compute
 128 Whittle index by using neural networks. These prior works did not provide any regret guarantees for
 129 their policy. In Tripathi & Modiano (2021), the authors develop an online Whittle algorithm with
 130 static regret guarantees compared to the best fixed Whittle index policy. Wang et al. (2023) is the
 131 first to provide the regret analysis for the online learning of Whittle index with unknown transition
 132 kernels. However, Wang et al. (2023) consider a stationary environment. In Wang et al. (2023),
 133 authors analyzed regret of UCWhittle by using Lagrangian relaxed form of the RMAB problem. We,
 134 in this paper, propose an online learning of Whittle index for *non-stationary* transition dynamics,
 135 with provable regret bounds. To the best of our knowledge, this is the first work to provide dynamic
 136 regret analysis of an online Whittle index-based policy for RMABs with non-stationary transitions.
 137

138 3 PROBLEM SETTING

140 We consider an episodic RMAB problem with N arms and an unknown non-stationary environment.
 141 Each arm $n \in [N]$ is associated with a unichain MDP denoted by a tuple $(\mathcal{S}, \mathcal{A}, P_{n,t}, r_n)$ at every
 142 episode t , where the state space \mathcal{S} is finite, $\mathcal{A} = \{0, 1\}$ is a set of binary actions, $P_{n,t} : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \mapsto$
 143 $[0, 1]$ is the transition kernel of arm n with $P_{n,t}(s'|s, a)$ being the probability of transitioning to state
 144 s' from state s by taking action a in episode t , and $r_n(s, a)$ is the reward function for arm n when the
 145 current state is s and the action a is taken. The total number of episodes is T and each episode itself
 146 consists of H time slots. We consider that the transition kernels $P_{n,t}$ are unknown and non-stationary,
 147 i.e., $P_{n,t}$ can change across episodes $t \in [T]$.

148 A decision maker (DM) determines what action to apply to each arm at a decision time $h \in [H]$ of an
 149 episode $t \in [T]$ under the instantaneous activation constraint that at most M arms can be activated.
 150 The action taken by the DM in episode t is described by a deterministic policy $\pi_t : \mathcal{S}^N \mapsto \mathcal{A}^N$ which
 151 maps a given state $(s_1, s_2, \dots, s_N) \in \mathcal{S}^N$ to an action $(a_1, a_2, \dots, a_N) \in \mathcal{A}^N$. The corresponding
 152 expected discounted sum of rewards in episode t is given by

$$153 R_t(\pi_t, (P_{n,t})_{n=1}^N) := \mathbb{E} \left[\sum_{h=1}^H \sum_{n=1}^N \gamma^{h-1} r_n(s_{n,h,t}, a_{n,h,t}) \middle| \pi_t, (P_{n,t})_{n=1}^N \right], \quad (1)$$

155 where $s_{n,h,t} \in \mathcal{S}$ is the state of arm n at time h of episode t , $a_{n,h,t} \in \mathcal{A}$ is the action taken by the
 156 DM for arm n at decision time slot h of episode t , and γ is the discount factor. The DM aims to
 157 maximize the total expected sum reward across all episodes, subject to arm activation constraints, i.e.,
 158

$$159 \max_{\pi_t \in \Pi} R_t(\pi_t, (P_{n,t})_{n=1}^N); \text{ s.t. } \sum_{n=1}^N a_{n,h,t} \leq M, \forall h \in [H], \forall t \in [T] \quad (2)$$

161 where Π is the set of all causal policy $\pi_t : \mathcal{S}^N \mapsto \{0, 1\}^N$.

162 3.1 LAGRANGIAN RELAXATION
163164 Because the main problem described in equation 2 is intractable, we relax the per-time slot constraint
165 and use the Lagrangian defined below:
166

167
168
$$\mathbb{E} \left[\sum_{h=1}^H \sum_{n=1}^N \gamma^{h-1} \left(r_n(s_{n,h,t}, a_{n,h,t}) - \lambda a_{n,h,t} \right) \middle| \pi_t, (P_{n,t})_{n=1}^N \right], \quad (3)$$

169

170 where $\lambda \geq 0$ is a Lagrangian penalty that is interpreted as the cost to pay for activation.
171172 The Lagrangian problem described in equation 3 enables us to decompose the combinatorial decision
173 problem equation 2 into a set of N independent Markov decision process for each arm:
174

175
176
$$U(\pi_{n,t}, P_{n,t}, \lambda) = \max_{\pi_{n,t} \in \Pi_n} \mathbb{E} \left[\sum_{h=1}^H \gamma^{h-1} \left(r_n(s_{n,h,t}, a_{n,h,t}) - \lambda a_{n,h,t} \right) \middle| \pi_{n,t}, P_{n,t} \right], \quad (4)$$

177

178 where $\pi_{n,t}^*$ is the optimal solution that maximizes equation 4 from the set of all causal policies Π_n
179180 3.2 WHITTLE INDEX POLICY
181182 Given λ , we denote by $\phi_n(\lambda)$ the set of states for which it is optimal not to activate the arm. The set
183 $\phi_n(\lambda)$ is given by $\phi_n(\lambda) := \{s \in \mathcal{S} : Q_{n,\lambda,t}(s, 0) > Q_{n,\lambda,t}(s, 1)\}$, where the action value function
184 $Q_{n,\lambda,t}(s, a)$ associated with Bellman optimality equation for equation 4 is
185

186
187
$$Q_{n,\lambda,t}(s, a) = r_n(s, a) - \lambda a + \gamma \sum_{s' \in \mathcal{S}} P_{n,t}(s'|s, a) V_{n,\lambda,t}(s') \quad (5)$$

188

189 and the value function $V_{n,\lambda,t}(s)$ associated with Bellman optimality equation for equation 4 is
190

191
$$V_{n,\lambda,t}(s) = \max_{a \in \mathcal{A}} Q_{n,\lambda,t}(s, a). \quad (6)$$

192 Intuitively, as the Lagrangian cost λ increases, it is less likely the optimal policy activates arm n in a
193 given state. Hence, the set $\phi_n(\lambda)$ would increase monotonically.
194195 **Definition 1 (Indexability)** An arm is said to be indexable if the set $\phi_n(\lambda)$ increases monotonically
196 as λ increases from 0 to ∞ . A restless bandit problem is said to be indexable if all arms are indexable.
197198 **Definition 2 (Whittle Index)** Given indexability and transition kernel $P_{n,t}$, the Whittle index
199 $W_{n,t}(s; P_{n,t})$ of arm n at state $s \in \mathcal{S}$ in episode t is defined as:
200

201
$$W_{n,t}(s; P_{n,t}) := \inf\{\lambda : Q_{n,\lambda,t}(s, 0) = Q_{n,\lambda,t}(s, 1)\}. \quad (7)$$

202

203 The Whittle index $W_{n,t}(s; P_{n,t})$ represents the minimum activation cost at which activating arm n in
204 state s at episode t is equally optimal to not activating it.
205206 **Whittle Index Policy** activates at most M arms out of N arms with highest Whittle indices. However,
207 as we can observe from equation 7, we can compute Whittle index if we know the transition kernel
208 $P_{n,t}$ of every episode $t \in [T]$. Next, we model how transition kernels change over every episode.
209210 3.3 THE TRANSITION KERNEL MODEL
211212 **Non-Stationarity:** In this section, we model the transition kernels for our non-stationary RMAB
213 setting. We assume that the transition kernels $P_{n,t}$ may drift at varying rates across different arms
214 $n \in [N]$ with the constraint that the total variation distance between transition kernels of two
215 consecutive episodes is bounded from above by
216

217
$$\max_{(s,a) \in \mathcal{S} \times \mathcal{A}} \sum_{s' \in \mathcal{S}} \left| P_{n,t}(s'|s, a) - P_{n,t-1}(s'|s, a) \right| \leq \frac{V_n}{T}, \quad (8)$$

218

216 **Algorithm 1:** Sliding Window-based Online Whittle Policy

217 **input:** State Space \mathcal{S} , Action Space \mathcal{A} , Reward Function $r_n(s, a)$ for all (s, a) and arms n

218 1 DM initializes a Lagrange cost $\lambda^{(1)}$

219 2 **for** every episode $t = 1, 2, \dots, T$ **do**

220 3 DM predicts variation budget V_n for all $n \in [N]$

221 4 DM decides window size $w_n = \lceil (T/V_n)^{2/3} \rceil$ for all $n \in [N]$

222 5 Arm n starts with state $s_{n,0}$

223 6 DM predicts $\tilde{P}_{n,t}$ for all arm $n \in [N]$ using equation 12 with $\lambda^{(t)}$.

224 7 DM computes Whittle Index $W_{n,t}(s) \forall s \in \mathcal{S}, n \in [N]$ with $\tilde{P}_{n,t}$ using equation 7.

225 8 **for** $h = 1, 2, \dots, H$ **do**

226 9 DM activates M arms (i.e., action=1) with highest Whittle Indices $W_{n,t}(s_{n,h,t})$.

227 10 All arms n moves to the next state $s_{n,h+1,t} \sim P_{n,t}(\cdot | s_{n,h,t}, a_{n,h,t})$

228 11 DM observes states and updates counts $C_{t,w_n}^{(n)}(s_{n,h+1,t}, s_{n,h,t}, a_{n,h,t})$

229 12 Update $\lambda^{(t+1)} = M$ -th highest Whittle Index

231

232

233 where V_n is the total variation budget across the entire T episodes. The total variation budget V_n represents the total non-stationarity in arm n across the entire horizon, and is a standard quantity used for analyzing dynamic regret in online learning literature Ortner et al. (2020); Cheung et al. (2020).

234 **Sparsity:** In many applications, the probability transition kernels are sparse - meaning that many state transitions are not possible under certain actions. To model this we introduce $\mathcal{S}_0(s, a)$ as the set of all states $s' \in \mathcal{S}$ such that the probability to transit from state $s \in \mathcal{S}$ to state $s' \in \mathcal{S}$ given action $a \in \mathcal{A}$ is always 0, i.e.,

235

$$\mathcal{S}_0(s, a) = \{s' \in \mathcal{S} : P_{n,t}(s'|s, a) = 0, \forall t\}.$$

236

237 The sets $\mathcal{S}_0(s, a)$ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$ represents the sparsity of transition kernels for arm n . Our proposed algorithm can utilize this sparsity to reduce the complexity of the algorithm as described in Appendix A.6. Further, if we know sparsity (even approximately), we can use this information to learn faster by reducing exploration for certain transitions. Even in the absence of any sparsity, our results hold and the proposed algorithm are able to guarantee sublinear dynamic regret.

238 The DM is assumed to know the parameter $\mathcal{S}_0(s, a)$ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$. In next section, we develop our Algorithm 1 that (i) learns the total variation budget and the probability transition kernels, and (ii) uses them to compute the Whittle Index to pick approximately optimal policies in each episode. In the next section, we discuss how we obtain our online algorithm.

239

4 SLIDING WINDOW-BASED ONLINE WHITTLE POLICY

240

241 To compute the Whittle index, we need to know transition kernels. In practice, transition kernels $P_{n,t}$ are unknown and non-stationary. In this section, we present Algorithm 1, an online approach for RMBAs which adapts to unknown and non-stationary transition kernels.

242 Our *sliding window-based online Whittle policy*, provided in Algorithm 1, is motivated by the *UCWhittle* approach proposed in Wang et al. (2023). However, the *UCWhittle* policy is designed for static settings and does not handle time-varying transition kernels. This motivates the two main technical innovations in our policy. First, we employ a sliding window method that tracks transition kernels of the past w_n episodes instead of all past episodes. The parameter w_n is decided based on the total variation budget V_n . Second, we change the confidence bound provided in Wang et al. (2023). In designing the new confidence bound, we add a prediction horizon $w_n V_n / T$. We also discuss in Section 4.3 how we estimate the total variation budget V_n .

243

4.1 SLIDING WINDOW AND CONFIDENCE BOUNDS

244

245 At each episode t and for each arm n , we maintain variables $C_{t,w}^{(n)}(s', a, s)$, which count the number of transitions from state s to the state s' via the action a observed within the past w episodes, i.e.

270 the sliding window. By using the counts for past w episodes, we compute the empirical transition
271 probabilities
272

$$273 \hat{P}_{n,t,w}(s'|s, a) := \frac{C_{t,w}^{(n)}(s', a, s)}{C_{t,w}^{(n)}(s, a)}, \quad (9)$$

$$274$$

$$275$$

276 where we define $C_{t,w}^{(n)}(s, a) := \max \left\{ \sum_{s' \in \mathcal{S}} C_{t,w}^{(n)}(s', a, s), 1 \right\}$. Using the upper confidence bound
277 approach, we consider the following confidence radius
278

$$280 d_t^n(s, a) = \sqrt{\frac{2|\mathcal{S}|\log(2|\mathcal{S}||\mathcal{A}|NT/\eta)}{C_{t,w}^{(n)}(s, a)}} + \frac{w_n V_n}{T}, \quad (10)$$

$$281$$

$$282$$

283 where $\eta > 0$ is a design parameter. Notice that the term $\frac{w_n V_n}{T}$ in the confidence radius $d_t^n(s, a)$
284 measures how far the transition kernels could have drifted over a window of w_n episodes.
285

286 Equipped with these definitions, the ball $B_t^{(n)}$ of the possible values for transition probabilities
287 $P_{n,t}(s'|s, a)$ at any episode t can be characterized as follows
288

$$289 B_t^{(n)} = \left\{ P_{n,t} : \sum_{s' \in \mathcal{S}} \left| P_{n,t}(s'|s, a) - \hat{P}_{n,t,w_i}(s'|s, a) \right| \leq d_t^{(n)}(s, a), \right. \\ 290 \left. P_{n,t}(s'|s, a) = 0, \forall s' \in \mathcal{S}_0(s, a), \sum_{s' \in \mathcal{S}} P_{n,t}(s'|s, a) = 1, \forall (s, a) \in \mathcal{S} \times \mathcal{A} \right\}. \quad (11)$$

$$291$$

$$292$$

$$293$$

294 We will show later that the true transition kernel lies within this high-dimensional ball with high
295 probability in each episode.
296

297 4.2 ONLINE WHITTLE INDICES

298 Similar to Wang et al. (2023), we predict the transition probabilities in an optimistic approach. We
299 select the optimistic transition probability $\tilde{P}_{n,t}$ for each arm n that maximizes the value function
300 within the confidence bound. The optimization problem for predicting the transition probability $\tilde{P}_{n,t}$
301 is given by
302

$$304 \max_{P_{n,t} \in B_t^{(n)}} V_{n,\lambda,t}(s), \text{ s.t. } V_{n,\lambda,t}(s) = \max_{a \in \mathcal{A}} Q_{n,\lambda,t}(s, a), \quad (12)$$

$$305$$

$$306$$

$$307 Q_{n,\lambda,t}(s, a) = r_n(s, a) - \lambda a + \sum_{s'} P_{n,t}(s'|s, a) V_{n,\lambda,t}(s') \quad (13)$$

$$308$$

309 As a result of the maximization procedure of equation 12, the true value function is upper bounded
310 by the value function under the predicted transition kernel provided that the confidence bound in
311 equation 11 holds. This upper bound value function will later allow us to prove regret bounds. Using
312 the predicted transition kernel $\tilde{P}_{n,t}$, we compute $W_{n,t}(s : \tilde{P}_{n,t})$, the Whittle index of state $s \in \mathcal{S}$ for
313 arm n as defined in equation 7. Finally, we update Lagrange multiplier λ^{t+1} as the M -th highest
314 Whittle index at time slot H of episode t . Detailed analysis of the computational complexity due to
315 the kernel maximization problem equation 12 is discussed in Appendix A.6.
316

317 4.3 ESTIMATION OF UNKNOWN VARIATION BUDGET

318 In the above discussions, the total variation budget V_n is assumed to be known. Now, we discuss how
319 to adapt with the unknown variation budget V_n . We adopt the Bandit over Bandit approach Cheung
320 et al. (2022); Wei et al. (2023) for the estimating the variation budget V_n . In this estimation approach,
321 we solve another bandit problem to select V_n from a finite set of possible budget values based on the
322 history by using EXP3 algorithm Auer et al. (2002). Modified EXP3 algorithm for our problem is
323 provided in Algorithm 2.

324 Next, we discuss how we can create a set of possible budget values. First, we get the maximum value
 325 for the variation budget as $V_{n,max} = 2T$. This holds because
 326

$$327 \max_{(s,a) \in \mathcal{S} \times \mathcal{A}} \sum_{s' \in \mathcal{S}} \left| P_{n,t}(s'|s, a) - P_{n,t-1}(s'|s, a) \right| \leq 2. \quad (14)$$

330 By using $V_{n,max}$, we can now define the set of quantized drift values as $\{V_{n,max}, V_{n,max} -$
 331 $V_{n,max}/J_n, V_{n,max} - 2V_{n,max}/J_n, \dots, V_{n,max}/J_n\}$, where J_n is the number of quantization levels.
 332 This approach of quantizing and approximately estimating drift values is novel within online learning
 333 literature. We will show in Theorem 1 and Theorem 2 that the number of levels J_n affects the
 334 dynamic regret (more levels means more accurate tracking of V_n but also slower learning in the
 335 Bandit-over-Bandit approach).

336 5 REGRET ANALYSIS

339 We determine the regret of the policy π_t in episode t by subtracting the performance of our policy
 340 from the performance of the optimal policy (both under the true unknown transition kernel $P_{n,t}$). The
 341 cumulative dynamic regret in T episodes is given by

$$342 \text{Reg}(T) = \sum_{t=1}^T \left(R_t(\pi_t^*, (P_{n,t})_{n=1}^N) - R_t(\pi_t, (P_{n,t})_{n=1}^N) \right) \\ 343 \leq \sum_{t=1}^T \left(\sum_{n=1}^N U(\pi_{n,t}^*, P_{n,t}, \lambda) - R_t(\pi_t, (P_{n,t})_{n=1}^N) \right) \\ 344 = \underbrace{\sum_{t=1}^T \left(\sum_{n=1}^N U(\pi_{n,t}^*, P_{n,t}, \lambda) - \sum_{n=1}^N U(\pi_{n,t}, P_{n,t}, \lambda) \right)}_{\text{Term1}} \\ 345 + \underbrace{\sum_{t=1}^T \left(\sum_{n=1}^N U(\pi_{n,t}, P_{n,t}, \lambda) - R_t(\pi_t, (P_{n,t})_{n=1}^N) \right)}_{\text{Term2}}, \quad (15)$$

356 where $\pi_{n,t}^*$ is the optimal policy of the problem defined in equation 4 associated with transition kernel
 357 $P_{n,t}$ and $\pi_{n,t}$ is the optimal policy of the the problem defined in equation 4 associated with transition
 358 kernel $\tilde{P}_{n,t}$. The first inequality holds because relaxed Lagrangian upper bounds the main problem.
 359

360 Term1 is regret on the Lagrangian relaxed problem. To analyze the performance of Whittle index
 361 policy, Wang et al. (2023) only used the Lagrangian relaxed problem to assess the performance of an
 362 online learning algorithm. We consider a stronger version of regret definition by considering Term2
 363 compared to Wang et al. (2023). Term2 is the performance difference between the Lagrangian
 364 problem and the original problem with the Whittle index policy derived using the solution of the
 365 Lagrangian problem.

366 First, we analyze Term1. Note that sublinear dynamic regret is usually challenging to establish
 367 in online learning literature, since we are comparing to a dynamic optimal policy that knows the
 368 entire sequence of transition kernels Besbes et al. (2015; 2019). We will show that our approach has
 369 sublinear dynamic regret, as long as the transition kernels don't vary too quickly.

370 To create a regret bound, we first need to establish how good our estimates of the time-varying
 371 transition kernel are. To do so, we will bound the probability that the true kernel is outside the
 372 high-dimensional ball $B_t^{(n)}$ introduced in equation 11. Lemma 1 describes the result in detail.
 373

374 **Lemma 1** *Given $\eta \geq 0$, the probability that the true kernel $P_{n,t}$ lies within the high-dimensional Ball
 375 $B_t^{(n)}$ (described by eq. 11) is greater than or equal to $1 - \eta$, i.e., $\Pr(P_{n,t} \in B_t^{(n)}, \forall n, \forall t) \geq 1 - \eta$.*
 376

377 Lemma 1 implies that for every episode t , we can provide a confidence region in which true transition
 378 kernel will lie with high probability. A detailed proof of Lemma 1 is provided in Appendix A.1.

378 Next, using this result, Theorem 1 characterizes the upper bound for Term1.
 379

380 **Theorem 1** *With probability $1 - \eta$, the cumulative dynamic regret of Algorithm 1 satisfies:*

$$\begin{aligned} 381 \text{Term1} &\leq \sum_{t=1}^T O\left(\sum_{n=1}^N 2|\mathcal{S}|G_{t,n}(w_n)\right) + \sum_{n=1}^N O\left(w_n(\tilde{V}_n + 2T/J_n)H\right) \\ 382 &\quad + \sum_{n=1}^N O\left(\sqrt{J_n \log(J_n)T}\right), \end{aligned} \quad (16)$$

387 where $G_{t,n}(w) = \max_{(s,a) \in \mathcal{S} \times \mathcal{A}} g_{t,n}(s, a, w)$ and the function $g_{t,n}(s, a, w) =$
 388 $\mathbb{E}_{P_{n,t}, \pi_{n,t}}[\alpha_t^{(n)}(s, a) / \sqrt{C_{t,w}^{(n)}(s, a)}]$ is non-increasing in w , where $\alpha_t^{(n)}(s, a)$ is a random
 389 variable that denotes the number of visit at (s, a) in episode t , J_n is the number of elements in the set
 390 of quantized drift values for arm n and \tilde{V}_n is the actual total variation measure, given by
 391

$$\tilde{V}_n = \sum_{t=1}^T \max_{(s,a) \in \mathcal{S} \times \mathcal{A}} \sum_{s' \in \mathcal{S}} \left| P_{n,t}(s'|s, a) - P_{n,t-1}(s'|s, a) \right|. \quad (17)$$

395 **Proof.** See Appendix A.2.

397 The regret bound for Term1 involves three error components: First term is a transition kernels
 398 learning error that decreases with the window size w_n ; Second term is a transition kernels prediction
 399 error that increases with both w_n and the variation budget \tilde{V}_n but decreases with J_n ; Third term is a
 400 variation budget learning error that increases with J_n . The following theorem simplifies this bound.

401 **Theorem 2** *If there exists a positive probability to visit every $(s, a) \in \mathcal{S} \times \mathcal{A}$ at least once in any
 402 episode $t \in [T]$ for all arms $n \in [N]$ and $w_n = \lceil (1/\epsilon_n)^{2/3} \rceil$, then with probability $1 - \eta$, we have*

$$\begin{aligned} 404 \text{Term1} &\leq \sum_{n=1}^N \tilde{O}(T^{2/3}(\tilde{V}_n + 2T/J_n)^{1/3}) + \tilde{O}(\sqrt{TJ_n}). \end{aligned}$$

407 **Proof.** See Appendix A.3.

408 To develop our final regret bound, we introduce $h(N)$ which is a function of the number of arms N

$$410 h(N) = \sum_{n=1}^N U\left(\pi_{n,t}, \tilde{P}_{n,t}, \lambda\right) - R_t\left(\pi_t, (\tilde{P}_{n,t})_{n=1}^N\right), \quad (18)$$

413 where $R_t(\pi_t, (P_{n,t})_{n=1}^N)$ and $U(\pi_n, P_{n,t}, \lambda)$ are defined in equation 2 and equation 4, respectively.
 414 The function $h(N)$ represents the gap between the performance of the Lagrangian problem under
 415 its optimal solution and the main problem under Whittle index Policy. In $h(N)$, both the optimal
 416 solution of Lagrangian problem and the Whittle index Policy are designed and evaluated under same
 417 transition kernel $\tilde{P}_{n,t}$. Hence, $h(N)$ does not reflect the learning errors or regret, rather it measures
 418 the inherent optimality gap of the Whittle index policy even if we know transition kernels accurately.

419 Now, we are ready to present the upper bound of the cumulative regret term $\text{Reg}(T)$.

420 **Theorem 3** *Under the conditions of Theorem 2, if $J_n = O(T^{3/5})$, with probability $1 - \eta$, we have*

$$422 \text{Reg}(T) \leq \tilde{O}(T^{2/3}\tilde{V}^{1/3} + T^{4/5}) + h(N)T, \quad (19)$$

423 where $\tilde{V} = \max_n \tilde{V}_n$.

425 **Proof.** See Appendix A.4.

427 **Remark 1** *According to Theorem 3, the upper bound of $\text{Reg}(T)$ is given by $\tilde{O}(T^{2/3}\tilde{V}^{1/3} + T^{4/5}) +$
 428 $h(N)T$, where $\tilde{O}(T^{4/5})$ is the learning error for transition kernels and variation budget. It is proved
 429 in Tripathi & Modiano (2024) that $h(N) = 0$ for $N = 2$. Other prior works Gast et al. (2023);
 430 Verloop (2016); Weber & Weiss (1990); Gast et al. (2021) showed that $h(N) \rightarrow 0$ as $N \rightarrow \infty$ if
 431 the RMAB is indexable and has a global attractor point. This suggests that our policy can achieve
 sub-linear regret $\tilde{O}(T^{2/3}\tilde{V}^{1/3} + T^{4/5})$ for large system size and sub-linear \tilde{V} .*

Applications	(N, M)	Our Policy	UCWhittle	UCWhittle+Win	Random	WIQL
1-D Bandit	(10, 1)	957 \pm 155	6528 \pm 1996	6377 \pm 1452	11916 \pm 2154	12060 \pm 2226
	(10, 4)	2119 \pm 237	27620 \pm 5850	21628 \pm 3054	28349 \pm 4668	28068 \pm 4601
	(20, 4)	2065 \pm 368	28985 \pm 7417	24405 \pm 7286	39358 \pm 6145	40314 \pm 6491
Scheduling (Synthetic)	(10, 1)	503 \pm 31	981 \pm 55	787 \pm 42	3239 \pm 115	3408 \pm 98
	(10, 4)	945 \pm 94	1183 \pm 152	1095 \pm 118	2598 \pm 49	2216 \pm 64
	(20, 4)	1276 \pm 90	2097 \pm 189	1808 \pm 138	7094 \pm 189	6397 \pm 279
Scheduling (Real)	(6, 1)	2003 \pm 32	4821 \pm 176	4772 \pm 99	10539 \pm 80	5171 \pm 163
	(6, 3)	1964 \pm 35	3544 \pm 73	3504 \pm 73	19587 \pm 38	4163 \pm 72

Table 1: $\text{Reg}(T)$ for different values of N and M .Figure 1: $\text{Reg}(T)$ Vs. number of episodes in Scheduling and 1-D Bandit.

6 SIMULATION RESULTS

In this section, we demonstrate the performance of our proposed policy by evaluating it under two applications (wireless scheduling and one-dimensional bandit) modeled as RMAB. For wireless scheduling, we provide performance evaluations using both synthetic and real-world datasets. In each application, we consider that there are N arms and a policy can activate M of them in each time slot $h \in [H]$ of every episode $t \in [T]$. We evaluate our policy against the UCWhittle policy Wang et al. (2023), UCWhittle + Window policy, where we incorporate sliding window to UCWhittle and the window size is taken randomly, the WIQL policy Biswas et al. (2021), and a randomized policy Kadota et al. (2018). The results are averaged over 50 independent runs. More details of our experimental setup are discussed in Appendix A.5.

Simulation results are shown in Table 1 and Figure 1. Our algorithm achieves the best regret in all cases. In contrast, UCWhittle is designed for static settings, uses all historical data and naïvely attempts to learn the entire transition matrix. While UCWhittle+Window employs sliding windows, the window size is chosen randomly and it does not utilize extra optimism for non-stationarity. WIQL, a Q-learning approach, requires extensive data samples to converge and uses all historical data. Specifically, our performance gain can be attributed to two main factors: (i) our intelligent update of the window size for predicting transition kernels, and (ii) our algorithm’s exploitation of sparsity knowledge.

7 CONCLUSIONS AND LIMITATIONS

This paper introduced an online/reinforcement learning algorithm for estimating the Whittle index for restless bandit problems with unknown and non-stationary transition kernels using sliding window and upper confidence bound approaches. To our knowledge, this is the first work to provide an upper bound of the dynamic regret of an online Whittle index-based algorithm for RMABs with unknown and non-stationary transition kernels. Our proposed algorithm is evaluated on two different restless bandit problems against four baselines and provides significant performance gains. We also provide novel regret analysis. An interesting direction of future work involves proving lower bounds for regret. Other future directions include extending this work to infinite or continuous state spaces, and designing algorithms that achieve sub-linear dynamic regret even for large \tilde{V}_n (rapidly varying kernels).

486 REFERENCES
487

488 Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed
489 bandit problem. *SIAM journal on computing*, 32(1):48–77, 2002.

490 Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement
491 learning. *Advances in neural information processing systems*, 21, 2008.

492

493 Konstantin E Avrachenkov and Vivek S Borkar. Whittle index based q-learning for restless bandits
494 with average reward. *Automatica*, 139:110186, 2022.

495

496 Nikhil Behari, Edwin Zhang, Yunfan Zhao, Aparna Taneja, Dheeraj Nagaraj, and Milind Tambe. A
497 decision-language model (dlm) for dynamic restless multi-armed bandit tasks in public health.
498 *arXiv preprint arXiv:2402.14807*, 2024.

499

500 Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-stationary stochastic optimization. *Operations
research*, 63(5):1227–1244, 2015.

501

502 Omar Besbes, Yonatan Gur, and Assaf Zeevi. Optimal exploration–exploitation in a multi-armed
503 bandit problem with non-stationary rewards. *Stochastic Systems*, 9(4):319–337, 2019.

504

505 Biswarup Bhattacharya. Restless bandits visiting villages: A preliminary study on distributing public
506 health services. In *Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable
Societies*, pp. 1–8, 2018.

507

508 Arpita Biswas, Gaurav Aggarwal, Pradeep Varakantham, and Milind Tambe. Learn to intervene: An
509 adaptive learning policy for restless bandits in application to preventive healthcare. *arXiv preprint
arXiv:2105.07965*, 2021.

510

511 Vivek S Borkar, Gaurav S Kasbekar, Sarath Pattathil, and Priyesh Y Shetty. Opportunistic scheduling
512 as restless bandits. *IEEE Transactions on Control of Network Systems*, 5(4):1952–1961, 2017.

513

514 Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Reinforcement learning for non-stationary
515 markov decision processes: The blessing of (more) optimism. In *International conference on
machine learning*, pp. 1843–1854. PMLR, 2020.

516

517 Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Hedging the drift: Learning to optimize
518 under nonstationarity. *Management Science*, 68(3):1696–1713, 2022.

519

520 Kai-Min Chung, Henry Lam, Zhenming Liu, and Michael Mitzenmacher. Chernoff-hoeffding bounds
521 for markov chains: Generalized and simplified. *arXiv preprint arXiv:1201.0559*, 2012.

522

523 Abhinav Dahiya, Nima Akbarzadeh, Aditya Mahajan, and Stephen L Smith. Scalable operator
524 allocation for multirobot assistance: A restless bandit approach. *IEEE Transactions on Control of
Network Systems*, 9(3):1397–1408, 2022.

525

526 Christopher R Dance and Tomi Silander. When are kalman-filter restless bandits indexable? In
527 C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), *Advances in Neural Informa-
tion Processing Systems*, volume 28. Curran Associates, Inc., 2015.

528

529 Fabrice Dusonchet and M-O Hongler. Continuous-time restless bandit and dynamic scheduling for
530 make-to-stock production. *IEEE Transactions on Robotics and Automation*, 19(6):977–990, 2003.

531

532 Jing Fu, Yoni Nazarathy, Sarat Moka, and Peter G Taylor. Towards q-learning the whittle index for
533 restless bandits. In *2019 Australian & New Zealand Control Conference (ANZCC)*, pp. 249–254.
534 IEEE, 2019.

535

536 Nicolas Gast, Bruno Gaujal, and Chen Yan. LP-based policies for restless bandits: necessary and
537 sufficient conditions for (exponentially fast) asymptotic optimality. *arXiv:2106.10067*, 2021.

538

539 Nicolas Gast, Bruno Gaujal, and Chen Yan. Exponential Asymptotic Optimality of Whittle Index
Policy. *Queueing Systems*, 104:1–44, June 2023. doi: 10.1007/s11134-023-09875-x. URL
<https://inria.hal.science/hal-03041176>.

540 Igor Kadota, Abhishek Sinha, Elif Uysal-Biyikoglu, Rahul Singh, and Eytan Modiano. Scheduling
 541 policies for minimizing age of information in broadcast wireless networks. *IEEE/ACM Transactions
 542 on Networking*, 26(6):2637–2650, 2018.

543 Igor Kadota, Abhishek Sinha, and Eytan Modiano. Scheduling algorithms for optimizing age
 544 of information in wireless networks with throughput constraints. *IEEE/ACM Transactions on
 545 Networking*, 27(4):1359–1372, 2019.

546 Sanjit Kaul, Roy Yates, and Marco Gruteser. Real-time status: How often should one update? In
 547 *IEEE INFOCOM*, pp. 2731–2735, 2012.

548 Jackson A Killian, Arpita Biswas, Sanket Shah, and Milind Tambe. Q-learning lagrange policies for
 549 multi-action restless bandits. In *Proceedings of the 27th ACM SIGKDD Conference on Knowledge
 550 Discovery & Data Mining*, pp. 871–881, 2021.

551 Jerome Le Ny, Munther Dahleh, and Eric Feron. Multi-uav dynamic routing with partial observations
 552 using restless bandit allocation indices. In *2008 American Control Conference*, pp. 4220–4225.
 553 IEEE, 2008.

554 Elliot Lee, Mariel S Lavieri, and Michael Volk. Optimal screening for hepatocellular carcinoma: A
 555 restless bandit model. *Manufacturing & Service Operations Management*, 21(1):198–212, 2019.

556 Kebin Liu, Richard Weber, and Qing Zhao. Indexability and whittle index for restless bandit problems
 557 involving reset processes. In *2011 50th IEEE Conference on Decision and Control and European
 558 Control Conference*, pp. 7690–7696. IEEE, 2011.

559 Bianca Marin Moreno, Margaux Brégère, Pierre Gaillard, and Nadia Oudjane. Metacurl: Non-
 560 stationary concave utility reinforcement learning. *Advances in Neural Information Processing
 561 Systems*, 37:123091–123126, 2024.

562 Aditya Mate, Jackson Killian, Haifeng Xu, Andrew Perrault, and Milind Tambe. Collapsing bandits
 563 and their application to public health intervention. *Advances in Neural Information Processing
 564 Systems*, 33:15639–15650, 2020.

565 Zvifadzo Matsena Zingoni, Tobias F Chirwa, Jim Todd, and Eustasius Musenge. A review of
 566 multistate modelling approaches in monitoring disease progression: Bayesian estimation using
 567 the kolmogorov-chapman forward equations. *Statistical methods in medical research*, 30(5):
 568 1373–1392, 2021.

569 Rahul Meshram, Aditya Gopalan, and D Manjunath. A hidden markov restless multi-armed bandit
 570 model for playout recommendation systems. In *Communication Systems and Networks: 9th
 571 International Conference, COMSNETS 2017, Bengaluru, India, January 4–8, 2017, Revised
 572 Selected Papers and Invited Papers 9*, pp. 335–362. Springer, 2017.

573 Rahul Meshram, D Manjunath, and Aditya Gopalan. On the whittle index for restless multiarmed
 574 hidden markov bandits. *IEEE Transactions on Automatic Control*, 63(9):3046–3053, 2018.

575 Khaled Nakhleh, Santosh Ganji, Ping-Chun Hsieh, I Hou, Srinivas Shakkottai, et al. Neurwin: Neural
 576 whittle index network for restless bandits via deep rl. *Advances in Neural Information Processing
 577 Systems*, 34:828–839, 2021.

578 Khaled Nakhleh, I Hou, et al. Deeptop: Deep threshold-optimal policy for mdps and rmabs. *Advances
 579 in Neural Information Processing Systems*, 35:28734–28746, 2022.

580 Tasmeen Zaman Ornee and Yin Sun. A Whittle index policy for the remote estimation of multiple
 581 continuous Gauss-Markov processes over parallel channels. *ACM MobiHoc*, 2023.

582 Ronald Ortner, Pratik Gajane, and Peter Auer. Variational regret bounds for reinforcement learning.
 583 In *Uncertainty in Artificial Intelligence*, pp. 81–90. PMLR, 2020.

584 Christos H Papadimitriou and John N Tsitsiklis. The complexity of optimal queueing network control.
 585 In *Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory*, pp. 318–322,
 586 1994.

594 Simone Parisi, Montaser Mohammedalamen, Alireza Kazemipour, Matthew E Taylor, and Michael
 595 Bowling. Monitored markov decision processes. *arXiv preprint arXiv:2402.06819*, 2024.
 596

597 Gautham Reddy, Simran Singh, Ismail Guvenc, Mark Poletti, and Ruoyu Sun. Wioc: Wireless indoor-
 598 outdoor classification using wifi and cellular signals. In *2025 IEEE International Conference on*
 599 *Communications Workshops (ICC Workshops)*, pp. 1954–1959. IEEE, 2025.

600 Diego Ruiz-Hernández, Jesús M Pinar-Pérez, and David Delgado-Gómez. Multi-machine preventive
 601 maintenance scheduling with imperfect interventions: A restless bandit approach. *Computers &*
 602 *Operations Research*, 119:104927, 2020.

603 Md Kamran Chowdhury Shisher, Yin Sun, and I-Hong Hou. Timely communications for remote
 604 inference. *IEEE/ACM Transactions on Networking*, 32(5):3824–3839, 2024.

605 Yin Sun and Benjamin Cyr. Sampling for data freshness optimization: Non-linear age functions. *J.*
 606 *Commun. Netw.*, 21(3):204–219, 2019.

607 Yin Sun, Elif Uysal-Biyikoglu, Roy Yates, C. Emre Koksal, and Ness B. Shroff. Update or wait:
 608 How to keep your data fresh. In *IEEE INFOCOM*, pp. 1–9, 2016. doi: 10.1109/INFOCOM.2016.
 609 7524524.

610 Vishrant Tripathi and Eytan Modiano. An online learning approach to optimizing time-varying costs
 611 of aoi. In *Proceedings of the Twenty-second International Symposium on Theory, Algorithmic*
 612 *Foundations, and Protocol Design for Mobile Networks and Mobile Computing*, pp. 241–250,
 613 2021.

614 Vishrant Tripathi and Eytan Modiano. A whittle index approach to minimizing functions of age of
 615 information. *IEEE/ACM Transactions on Networking*, 2024.

616 Ina Maria Verloop. Asymptotically optimal priority policies for indexable and nonindexable restless
 617 bandits. *The Annals of Applied Probability*, 26(4):1947–1995, 2016.

618 Sofía S Villar, Jack Bowden, and James Wason. Multi-armed bandit models for the optimal design
 619 of clinical trials: benefits and challenges. *Statistical science: a review journal of the Institute of*
 620 *Mathematical Statistics*, 30(2):199, 2015.

621 Kai Wang, Lily Xu, Aparna Taneja, and Milind Tambe. Optimistic whittle index policy: Online
 622 learning for restless bandits. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 623 volume 37, pp. 10131–10139, 2023.

624 Richard R Weber and Gideon Weiss. On an index policy for restless bandits. *Journal of applied*
 625 *probability*, 27(3):637–648, 1990.

626 Chen-Yu Wei and Haipeng Luo. Non-stationary reinforcement learning without prior knowledge: An
 627 optimal black-box approach. In *Conference on learning theory*, pp. 4300–4354. PMLR, 2021.

628 Honghao Wei, Arnob Ghosh, Ness Shroff, Lei Ying, and Xingyu Zhou. Provably efficient model-free
 629 algorithms for non-stationary cmdps. In *International Conference on Artificial Intelligence and*
 630 *Statistics*, pp. 6527–6570. PMLR, 2023.

631 Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger.
 632 Inequalities for the l_1 deviation of the empirical distribution. *Hewlett-Packard Labs, Tech. Rep*, pp.
 633 125, 2003.

634 Peter Whittle. Restless bandits: Activity allocation in a changing world. *Journal of applied probability*,
 635 25(A):287–298, 1988.

636

637

638

639

640

641

642

643

644

645

646

647

648 A APPENDIX
649650 A.1 PROOF OF LEMMA 1
651652 The L1-deviation of the true distribution and the empirical distribution of m events is bounded by
653 Weissman et al. (2003):

654
$$\Pr(|\hat{p} - p|_1 \geq \beta) \leq (2^m - 2) \exp\left(-\frac{k\beta^2}{2}\right), \quad (20)$$

655 where k is the number of samples.656 We denote $\mathbf{1}(s', s, a, n, t)$ as an indicator variable that represents the event of state s , action a , and
657 next state s' for arm n at one time slot of episode t . Similarly, $\mathbf{1}(s', s, a, n, t, w)$ is an indicator
658 variable that represents the event of state s , action a , and next state s' for arm n at one time slot in
659 any one of the episodes $t - w + 1, t - (w - 1) + 1, \dots, t - 1$.
660

661 By using equation 20 with

662
$$\beta = \sqrt{\frac{2|\mathcal{S}|\log(2|\mathcal{S}||\mathcal{A}|NT/\eta)}{C_{t,w}^{(n)}(s, a)}}$$

663 and

664
$$k = C_{t,w}^{(n)}(s, a),$$

665 we get

666
$$\begin{aligned} \Pr\left(\|\hat{P}_{n,t,w}(\cdot|s, a) - \mathbb{E}[\mathbf{1}(\cdot, s, a, n, t, w)]\|_1 \geq \sqrt{\frac{2|\mathcal{S}|\log(2|\mathcal{S}||\mathcal{A}|NT/\eta)}{C_{t,w}^{(n)}(s, a)}}\right) \\ \leq \frac{\eta}{N|\mathcal{S}||\mathcal{A}|T}. \end{aligned} \quad (21)$$

667 With probability one, we have

668
$$\begin{aligned} & \|\hat{P}_{n,t}(\cdot|s, a) - \mathbb{E}[\mathbf{1}(\cdot, s, a, n, t, w)]\|_1 \\ & \leq \|\hat{P}_{n,t}(\cdot|s, a) - \max_{t' \in \{t-w+1, t-(w-1)+1, \dots, t\}} \mathbb{E}[\mathbf{1}(\cdot, s, a, n, t', 1)]\|_1 \\ & = \|\hat{P}_{n,t}(\cdot|s, a) - \max_{t' \in \{t-w+1, t-(w-1)+1, \dots, t\}} P_{n,t'}(\cdot|s, a)\|_1 \leq w_n V_n / T. \end{aligned} \quad (22)$$

669 Now, by combining equation 21 and equation 22, we have

670
$$\begin{aligned} \Pr(P_{n,t} \in B_{n,t}, \forall n, \forall t) & \geq 1 - \sum_{t=1}^T \sum_{n=1}^N \sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} \frac{\eta}{N|\mathcal{S}||\mathcal{A}|T} \\ & = 1 - \eta. \end{aligned} \quad (23)$$

671 This concludes the proof of Lemma 1.

672 A.2 PROOF OF THEOREM 1
673674 We first decompose Term1. We solve another bandit problem to select V_n from a set of possible
675 drift values based on the history by using EXP3 algorithm Auer et al. (2002). In this case, we can
676 decompose the regret associated with Term1 as follows:

677
$$\begin{aligned} \text{Term1} & = \sum_{t=1}^T \sum_{n=1}^N U(\pi_{n,t}^*, P_{n,t}, \lambda) - U(\pi_{n,t}(\hat{V}_n(t)), P_{n,t}, \lambda) \\ & = \sum_{t=1}^T \sum_{n=1}^N \left(U(\pi_{n,t}^*, P_{n,t}, \lambda) - U(\pi_{n,t}(V_n), P_{n,t}, \lambda) \right) \\ & \quad + \sum_{t=1}^T \sum_{n=1}^N \left(U(\pi_{n,t}(V_n), P_{n,t}, \lambda) - U(\pi_{n,t}(\hat{V}_n(t)), P_{n,t}, \lambda) \right) \end{aligned} \quad (24)$$

702 where we denote V_n is optimal, $\hat{V}_n(t)$ is estimated, and $\pi_n(\mathcal{V})$ denotes our policy when \mathcal{V} is used.
 703

704 The regret bound for the term

$$705 \sum_{t=1}^T \sum_{n=1}^N \left(U(\pi_{n,t}(V_n), P_{n,t}, \lambda) - U(\pi_{n,t}(\hat{V}_n(t)), P_{n,t}, \lambda) \right)$$

$$706$$

$$707$$

708 represents the loss from needing to learn V_n instead of knowing it apriori and can be found by using
 709 Auer et al. (2002). In particular, assuming the finite discretization of possible drifts in Section 4.3, we
 710 can have

$$711 \sum_{t=1}^T \sum_{n=1}^N \left(U(\pi_{n,t}(V_n), P_{n,t}, \lambda) - U(\pi_{n,t}(\hat{V}_n(t)), P_{n,t}, \lambda) \right) \leq \sum_{n=1}^N O\left(\sqrt{J_n \log(J_n) T}\right), \quad (25)$$

$$712$$

$$713$$

714 where J_n is the number of elements in the set of possible values of drift for arm n .
 715

716 Next, we show the upper bound of $\sum_{t=1}^T \sum_{n=1}^N \left(U(\pi_{n,t}^*, P_{n,t}, \lambda) - U(\pi_{n,t}(V_n), P_{n,t}, \lambda) \right)$. For the
 717 ease of notation, we use $\pi_{n,t}(V_n)$ as $\pi_{n,t}$. When the confidence bound holds, we have
 718

$$719 \sum_{n=1}^N U(\pi_{n,t}^*, P_{n,t}, \lambda) - U(\pi_{n,t}, P_{n,t}, \lambda) \leq \sum_{n=1}^N U(\pi_{n,t}, \tilde{P}_{n,t}, \lambda) - U(\pi_{n,t}, P_{n,t}, \lambda)$$

$$720$$

$$721$$

$$722 \stackrel{a}{=} \sum_{n=1}^N \mathbb{E}_{P_{n,t}, \pi_{n,t}} \left[\sum_{h=1}^H \sum_{s' \in \mathcal{S}} \gamma^{h-1} (\tilde{P}_{n,t}(s'|s_{n,t,h}, a_{n,t,h}) - P_{n,t}(s'|s_{n,t,h}, a_{n,t,h})) V_n(s'; \pi_{n,t}, \tilde{P}_{n,t}) \right],$$

$$723$$

$$724$$

$$725 \leq \sum_{n=1}^N \mathbb{E}_{P_{n,t}, \pi_{n,t}} \left[\sum_{(s,a) \in \mathcal{S}} \alpha_t^{(n)}(s, a) \sum_{s' \in \mathcal{S}} \left| \tilde{P}_{n,t}(s'|s, a) - P_{n,t}(s'|s, a) \right| \right] V_{max},$$

$$726$$

$$727$$

$$728 \leq \sum_{n=1}^N \mathbb{E}_{P_{n,t}, \pi_{n,t}} \left[\sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} \alpha_t^{(n)}(s, a) d_t^{(n)}(s, a) \right] V_{max} \quad (26)$$

$$729$$

$$730$$

731 where (a) is obtained by using (Wang et al., 2023, Theorem 6.4), the simplified notation V_n is
 732 used instead of $V_{n,\lambda,t}$, $V_{max} = \max_{n \in [N], s \in \mathcal{S}} V_n(s'; \pi_{n,t}, \tilde{P}_{n,t})$ and $\alpha_t^{(n)}(s, a)$ is a random variable
 733 denoting the number of visits of $(s, a) \in \mathcal{S} \times \mathcal{A}$ at episode $t \in [T]$.
 734

735 By substituting the value of $d_t^{(n)}(s, a)$, we have
 736

$$737 \sum_{t=1}^T \sum_{n=1}^N \mathbb{E}_{P_{n,t}, \pi_{n,t}} \left[\sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} \alpha_t^{(n)}(s, a) d_t^{(n)}(s, a) \right]$$

$$738$$

$$739$$

$$740 \leq \sum_{t=1}^T \left(\sum_{n=1}^N \sqrt{2|\mathcal{S}| \log(2|\mathcal{S}||\mathcal{A}|NT/\eta)} \mathbb{E}_{P_{n,t}, \pi_{n,t}} \left[\sum_{(s,a) \in \mathcal{Z}_2} \frac{\alpha_t^{(n)}(s, a)}{\sqrt{C_{t,w_n}^{(n)}(s, a)}} \right] + w_n V_n / TH \right)$$

$$741$$

$$742$$

$$743 = \sum_{t=1}^T \left(\sum_{n=1}^N \sqrt{2|\mathcal{S}| \log(2|\mathcal{S}||\mathcal{A}|NT/\eta)} \sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} g_{t,n}(s, a, w_n) + w_n V_n H / T \right)$$

$$744$$

$$745$$

$$746 \leq \sum_{t=1}^T \left(\sum_{n=1}^N \sqrt{2|\mathcal{S}| \log(2|\mathcal{S}||\mathcal{A}|NT/\eta)} 2|\mathcal{S}| G_{t,n}(w_n) + w_n V_n H / T \right)$$

$$747$$

$$748$$

$$749 = \sum_{t=1}^T O\left(\sum_{n=1}^N 2|\mathcal{S}| G_{t,n}(w_n) + w_n V_n H / T\right), \quad (27)$$

$$750$$

$$751$$

752 where $G_{t,n}(w) = \max_{(s,a) \in \mathcal{S} \times \mathcal{A}} g_{t,n}(s, a, w)$ and
 753

$$754 g_{t,n}(s, a, w) = \mathbb{E}_{P_{n,t}, \pi_{n,t}} \left[\sum_{(s,a) \in \mathcal{Z}_2} \frac{\alpha_t^{(n)}(s, a)}{\sqrt{C_{t,w}^{(n)}(s, a)}} \right]$$

$$755$$

756 is a non-increasing function of the window size w . This is because $C_{t,w}^{(n)}(s, a)$ is a non-decreasing
 757 function of w .
 758

759 Now, in the above analysis V_n is the optimal choice of drift values. Specifically, the optimal choice
 760 of V_n from the set of drift values satisfies: $\max_{(s,a) \in \mathcal{S} \times \mathcal{A}} \sum_{s' \in \mathcal{S}} \left| P_{n,t}(s'|s, a) - P_{n,t-1}(s'|s, a) \right| \leq$
 761 $V_n/T \leq \max_{(s,a) \in \mathcal{S} \times \mathcal{A}} \sum_{s' \in \mathcal{S}} \left| P_{n,t}(s'|s, a) - P_{n,t-1}(s'|s, a) \right| + 2/J_n T$. Consequently, the optimal
 762 upper bound of total variation budget $V_{n,T}$ satisfies
 763

$$764 \tilde{V}_n \leq V_n \leq \tilde{V}_n + 2T/J_n.$$

765 Then, the upper bound becomes
 766

$$767 \sum_{t=1}^T O\left(\sum_{n=1}^N 2|\mathcal{S}|G_{t,n}(w_n)\right) + \sum_{n=1}^N O\left(w_n(\tilde{V}_n + 2T/J_n)H\right).$$

771 **A.3 PROOF OF THEOREM 2**

772 Lets denote the probability to visit every $(s, a) \in \mathcal{S} \times \mathcal{A}$ at least once in an episode for all arms
 773 $n \in [N]$ by P_{\min} . According to the condition in Theorem 2, $P_{\min} > 0$.
 774

775 Now, to prove Theorem 2, we bound
 776

$$777 g_{t,n}(s, a, w) = \mathbb{E}_{P_{n,t}, \pi_{n,t}} \left[\frac{\alpha_t^{(n)}(s, a)}{\sqrt{C_{t,w}^{(n)}(s, a)}} \right] \leq H \mathbb{E}_{P_{n,t}, \pi_{n,t}} \left[\frac{1}{\sqrt{C_{t,w}^{(n)}(s, a)}} \right], \quad (28)$$

777 where the number of visit $\alpha_t^{(n)}(s, a)$ in one episode is upper bounded by the time horizon H .
 778

779 Let $\mathbb{E}[C_{t,w}^{(n)}(s, a)] = \mu$. Then, $\mu \geq 1$ because by definition, $C_{t,w}^{(n)}(s, a) :=$
 780 $\max \left\{ \sum_{s' \in \mathcal{S}} C_{t,w}^{(n)}(s', a, s), 1 \right\}$. Moreover, $\mu \geq w_n P_{\min}$.
 781

782 Now, we have
 783

$$784 \mathbb{E} \left[\frac{1}{\sqrt{C_{t,w}^{(n)}(s, a)}} \right] = \mathbb{E} \left[\frac{1}{\sqrt{C_{t,w}^{(n)}(s, a)}} \middle| C_{t,w}^{(n)}(s, a) < \frac{\mu}{2} \right] P \left(C_{t,w}^{(n)}(s, a) < \frac{\mu}{2} \right) \\ 785 + \mathbb{E} \left[\frac{1}{\sqrt{C_{t,w}^{(n)}(s, a)}} \middle| C_{t,w}^{(n)}(s, a) \geq \frac{\mu}{2} \right] P \left(C_{t,w}^{(n)}(s, a) \geq \frac{\mu}{2} \right) \quad (29)$$

786 If $C_{t,w}^{(n)}(s, a) \geq \mu/2$, then $1/\sqrt{C_{t,w}^{(n)}(s, a)} \leq 1/\sqrt{\mu/2} = \sqrt{2/\mu}$. This part of the expectation is
 787 therefore bounded by $\sqrt{2/\mu} \cdot P(C_{t,w}^{(n)}(s, a) \geq \mu/2) \leq \sqrt{2/\mu} \leq \sqrt{\frac{2}{w_n P_{\min}}}$.
 788

789 If $C_{t,w}^{(n)}(s, a) < \mu/2$, there exists a constant $\eta > 0$ such that we have $P(C_{t,w}^{(n)}(s, a) < (1 - 1/2)\mu) \leq$
 800 $O(e^{-\mu/4\eta}) \leq O(e^{-w_n P_{\min}/4\eta})$ by using the Chernoff bound for Markov Chains Chung et al. (2012).
 801

802 Thus, the expectation becomes
 803

$$804 \mathbb{E} \left[\frac{1}{\sqrt{C_{t,w}^{(n)}(s, a)}} \right] \leq \frac{\sqrt{2}}{\sqrt{w_n P_{\min}}} + O(e^{-w_n P_{\min}/4\eta}). \quad (30)$$

805 We can have a constant $\eta_1 > 0$ independent of w_n and P_{\min} such that
 806

$$807 \frac{\sqrt{2}}{\sqrt{w_n P_{\min}}} + e^{-w_n P_{\min}/4\eta} \leq \frac{\eta_1}{\sqrt{w_n P_{\min}}} = O(1/\sqrt{w_n P_{\min}}). \quad (31)$$

810 Therefore, we have
 811

$$812 g_{t,n}(s, a, w) = \mathbb{E}_{P_{n,t}, \pi_{n,t}} \left[\frac{\alpha_t^{(n)}(s, a)}{\sqrt{C_{t,w}^{(n)}(s, a)}} \right] \leq O\left(\frac{H}{\sqrt{w_n P_{\min}}}\right) \quad (32)$$

815
 816 Next, we have
 817

$$818 \sum_{t=1}^T \left(\frac{H}{\sqrt{w_n P_{\min}}} + \frac{w_n V_n H}{T} \right) = H \left(\frac{T}{\sqrt{w_n P_{\min}}} + V_n w_n \right). \quad (33)$$

820
 821 Then, by substituting $w_n = (T/V_n)^{2/3}$, we get
 822

$$823 H \left(\frac{T}{\sqrt{w_n P_{\min}}} + w_n V_n \right) = HT^{2/3}V_n^{1/3}P_{\min}^{-1/2} + HT^{2/3}V_n^{1/3} = \tilde{O}\left(T^{2/3}V_n^{1/3}\right), \quad (34)$$

825 where H and P_{\min} are absorbed in big-O-notation because H is constant number time-slots in every
 826 episode, P_{\min} depends on the number of time-slots H and the initial state in any episode.
 827

By substituting $V_n = \tilde{V}_n + 2T/J_n$ in the above, we obtain Theorem 2.
 828

829 A.4 PROOF OF THEOREM 3 830

831 We first decompose Term2. By adding and subtracting
 832

$$833 \sum_{n=1}^N U(\pi_{n,t}, \tilde{P}_{n,t}, \lambda) \text{ and } R_t \left(\pi_t, (\tilde{P}_{n,t})_{n=1}^N \right),$$

835 we can express Term2 as follows:
 836

$$837 \sum_{t=1}^T \left(\sum_{n=1}^N U(\pi_{n,t}, P_{n,t}, \lambda) - R_t \left(\pi_t, (P_{n,t})_{n=1}^N \right) \right) \\ 838 = h(N)T + \sum_{t=1}^T \left(\sum_{n=1}^N U(\pi_{n,t}, P_{n,t}, \lambda) - \sum_{n=1}^N U(\pi_{n,t}, \tilde{P}_{n,t}, \lambda) \right. \\ 839 \left. + R_t \left(\pi_t, (\tilde{P}_{n,t})_{n=1}^N \right) - R_t \left(\pi_t, (P_{n,t})_{n=1}^N \right) \right). \quad (35)$$

845 When the confidence bound holds,
 846

$$847 U(\pi_{n,t}, P_{n,t}, \lambda) - U(\pi_{n,t}, \tilde{P}_{n,t}, \lambda) \leq 0. \quad (36)$$

848 This is because $\pi_{n,t}$ is the optimal solution of the Lagrangian problem and $\tilde{P}_{n,t}$ achieves the highest
 849 Lagrangian objective value.
 850

851 Similar to equation 26(a), by using (Wang et al., 2023, Theorem 6.4), we can have
 852

$$853 R_t \left(\pi_t, (\tilde{P}_{n,t})_{n=1}^N \right) - R_t \left(\pi_t, (P_{n,t})_{n=1}^N \right) \\ 854 = \mathbb{E}_{P_t, \pi_t} \left[\sum_{n=1}^N \sum_{h=1}^H \sum_{s' \in \mathcal{S}} \gamma^{h-1} (\tilde{P}_{n,t}(s'|s_{n,t,h}, a_{n,t,h}) - P_{n,t}(s'|s_{n,t,h}, a_{n,t,h})) V_n(s'; \pi_t, \tilde{P}_{n,t}) \right] \\ 855 \leq \mathbb{E}_{P_t, \pi_t} \left[\sum_{n=1}^N \sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} \alpha_t^{(n)}(s, a) d_t^{(n)}(s, a) \right] V_{\max} \quad (37)$$

860 which is similar to the last inequality of equation 26. Hence, similar to Theorem 1 and Theorem 2,
 861 we can have
 862

$$863 R_t \left(\pi_t, (\tilde{P}_{n,t})_{n=1}^N \right) - R_t \left(\pi_t, (P_{n,t})_{n=1}^N \right) \leq \tilde{O}(T^{2/3}(\tilde{V}_n + 2T/J)^{1/3}) + \tilde{O}(\sqrt{TJ_n}) \quad (38)$$

864 Therefore, we have
 865

$$\begin{aligned}
 866 \quad \text{Reg}(\mathbf{T}) &\leq \text{Term1} + \text{Term2} \\
 867 \quad &\leq \sum_{n=1}^N \tilde{O}(2T^{2/3}(\tilde{V}_n + 2T/J)^{1/3}) + \sum_{n=1}^N \tilde{O}(2\sqrt{TJ_n}) + h(N)T.
 868 \\
 869
 \end{aligned}$$

870 Next, we can substitute $J_n = O(T^{3/5})$ and obtain
 871

$$\begin{aligned}
 872 \quad &\tilde{O}(2T^{2/3}(\tilde{V}_n + 2T/J)^{1/3}) + \tilde{O}(2\sqrt{TJ_n}) \\
 873 \quad &\leq \tilde{O}(2T^{2/3}\tilde{V}_n^{1/3}) + \tilde{O}(2^{4/3}T^{4/5}) = \tilde{O}(T^{2/3}\tilde{V}_n^{1/3} + T^{4/5}) \\
 874
 \end{aligned} \tag{39}$$

875 Next, by using $\tilde{V} = \max_n \tilde{V}_n$, we have $\sum_{n=1}^N \tilde{O}(T^{2/3}\tilde{V}_n^{1/3} + T^{4/5}) = \tilde{O}(T^{2/3}\tilde{V}^{1/3} + T^{4/5})$. This
 876 concludes the proof.
 877

879 A.5 EXPERIMENTAL SETUP

880 Firstly, we discuss how we compute the regret in our numerical studies. Because it is not possible
 881 to obtain the optimal RMAB policy even if everything is known exactly, we use the best Whittle
 882 index policy to demonstrate the regret in Table 1 and Fig. 1. Given a policy, we evaluate the regret of
 883 the policy at each episode t by subtracting the total discounted sum reward of all arms obtained by
 884 the policy from the total discounted sum reward of all arms received by a Whittle index policy with
 885 access to the true transition probabilities. In our simulation, we have used MATLAB. In simulation
 886 results of Table 1 and Fig. 1, a discount factor of $\gamma = 0.99$ was considered. Time-slots $H = 50$ and
 887 $T = 50$ episodes were considered for wireless scheduling (synthetic) and 1-D bandit. Time-slots
 888 $H = 500$ and $T = 500$ episodes were considered for wireless scheduling (Real). Moreover, we
 889 considered $V_n = V$ for all n in the wireless scheduling (synthetic) and 1-D bandit problems. But, in
 890 wireless scheduling (Real), V_n can vary across n and depends on the dataset. In Figure 1, we used
 891 $N = 20, M = 4$ for wireless scheduling (synthetic) and 1-D bandit. For wireless scheduling (Real),
 892 we consider $N = 6$ and $M = 1$.

893 Now, we discuss how we model One Dimensional Bandits and Wireless Scheduling.
 894

895 One Dimensional Bandits: We consider a modified version of the one dimensional RMAB problem
 896 studied in Killian et al. (2021); Nakhleh et al. (2022). Each arm n is a Markov process with K states,
 897 numbered as $0, 1, \dots, K - 1$. For our simulations, we set $K = 10$. The reward of an arm increases
 898 linearly with the current state, i.e. $r(s, a) = s$. If the arm is activated, then it can evolve from state s to
 899 $\min\{s + 1, K - 1\}$ with probability $q_n(t)$ or remain in the same state s with probability $1 - q_n(t)$. If
 900 the arm is not activated, then it evolves from state s to $\max\{s - 1, 0\}$ with probability $p_n(t)$ or remain
 901 in the same state s with probability $1 - p_n(t)$. One-dimensional MDPs of this form are often used in
 902 health monitoring and machine monitoring applications Matsena Zingoni et al. (2021); Parisi et al.
 903 (2024). In our simulation, we consider - (i) $V_n = 35$, (ii) $p_n(t)$ changes to $\min\{p_n(t - 1) + \frac{V_n}{4T}, 1\}$
 904 with probability 0.5, or it changes to $\max\{p_n(t - 1) - \frac{V_n}{4T}, 0\}$ with probability 0.5 and (iii) $q_n(t)$
 905 changes to $\min\{q_n(t - 1) + \frac{V_n}{4T}, 1\}$ with probability 0.5, or it changes to $\max\{q_n(t - 1) - \frac{V_n}{4T}, 0\}$
 906 with probability 0.5.

907 Wireless Scheduling Using Synthetic Data: We consider a wireless scheduling problem, where M
 908 out of N sources can send their observation to a receiver side over an unreliable channel at every time
 909 slot $h \in [H]$ of episode $t \in [T]$. Due to channel unreliability, the observation may not be delivered.
 910 The goal of the receiver is to estimate the current signal values of all N sources based the information
 911 delivered from the sources. The reward for accurate timely estimation can be modeled as the mutual
 912 information between the estimated signal and the actual signal. Sun & Cyr (2019) showed that the
 913 mutual information can be determined by using a decreasing function $-(\log_2(1 - \sigma_n^{2s_{n,h,t}}))/2$ of
 914 Age of Information (AoI) for zero-mean i.i.d. Gaussian random variables with variance σ_n^2 , where
 915 AoI $s_{n,h,t}$ of source n is the time difference between current time h and the generation time of the
 916 most recently delivered signal. The AoI value of a source n increases by 1 if the source n is not
 917 scheduled. If the source n is scheduled, the AoI value drops to 1 with probability $q_n(t)$ (successful
 918 delivery) or increases by 1 with probability $1 - q_n(t)$ (unsuccessful delivery). The parameter $q_n(t)$
 919 measures the reliability of channel n at time t . In our experiment, we assume that $q_n(t)$ is unknown

Figure 2: Success Probability $q_n(t)$ in 500 episodes

and non-stationary for half of the sources, whereas it is unknown but stationary for the remaining half. For non-stationary arms, the variance of signal values $\sigma_n^2 = 0.9$ is used and the probability of successful transmission $q_n(t)$ changes to $\min\{q_n(t-1) + \frac{V_n}{2T}, 1\}$ with probability 0.6, or it changes to $\max\{q_n(t-1) - \frac{V_n}{2T}, 0\}$ with probability 0.4; the initial value of $q_n(t) = 0.1$ is used. For the other half, $q_n(t) = 1$ is unknown but stationary and $\sigma_n^2 = 0.5$.

Wireless Scheduling Using Real-world Dataset:

We have also incorporated a recent dataset from Reddy et al. (2025) for the wireless scheduling problem. The dataset contains traces of measured signal strength for six users across indoor and outdoor settings, leading to non-stationary behavior. The signal strength time-series values allow us to calculate packet transmission success probabilities, which we then utilize to set up our wireless scheduling problem. In Figure 2, we plot these success probability values, which clearly demonstrate the highly time-varying nature of the dataset due to user mobility. We also plot variation $\epsilon_n(t) = |q_n(t) - q_n(t-1)|$ in success probability in Figure 3. In this simulation, we consider six users with AoI function $-\text{alog2}(1 - 0.9^{s_{n,h,t}})$, where we set $a = 0.4$ for three users, $a = 0.5$ for one user, $a = 0.9$ for the other two users.

A.6 COMPUTATIONAL COMPLEXITY

At the beginning of every episode t , we must compute the predicted transition kernels for all arms by solving the optimization problem equation 12. The solution can be obtained either via a closed-form expression or by employing the Extended Value Iteration (EVI) algorithm Auer et al. (2008). Crucially, this computation is performed only once per episode, not at every time step. When a closed-form solution is unavailable, each iteration of the EVI algorithm requires $O(|\mathcal{S}|^2|\mathcal{A}|)$ time per state $s \in \mathcal{S}$. Subsequently, at every time step within the episode, the Whittle index for all states is computed. This can be achieved either through a straightforward closed-form equation or by iteratively solving equation 7 using the bisection method. With a specified tolerance tol , an upper bound u , and a lower bound l , the bisection method requires at least $O(\log_2((u - l)/\text{tol}))$ steps per state. We now proceed to a detailed analysis of the computational complexity associated with solving equation 12.

In many problems, for example in wireless scheduling and one dimensional bandit problem, we can get closed form solution of equation 12, making the bilinear optimization very efficient. Here are the closed form solution:

Figure 3: Variation $\epsilon_n(t) = |q_n(t) - q_n(t-1)|$ in 500 Episodes

• Wireless Scheduling:

$$P_{n,t}(1|s,1) = \min \left\{ \hat{P}_{n,t,w_i}(1|s,1) + d_t^{(n)}(s,1)/2, 1 \right\}, \quad (40)$$

$$P_{n,t}(s+1|s,1) = 1 - P_{n,t}(1|s,1), \quad (41)$$

$$P_{n,t}(s+1|s,0) = 1. \quad (42)$$

• One Dimensional Bandit:

$$P_{n,t}(s+1|s,1) = \min \left\{ \hat{P}_{n,t,w_i}(s+1|s,1) + d_t^{(n)}(s,1)/2, 1 \right\}, \quad (43)$$

$$P_{n,t}(s|s,1) = 1 - P_{n,t}(s+1|s,1), \quad (44)$$

$$P_{n,t}(s|s,0) = \min \left\{ \hat{P}_{n,t,w_i}(s|s,0) + d_t^{(n)}(s,0)/2, 1 \right\}, \quad (45)$$

$$P_{n,t}(s-1|s,0) = 1 - P_{n,t}(s-1|s,0), \quad (46)$$

In settings where we do not have closed form solutions, we can use extended value iteration algorithm Auer et al. (2008). In the extended value iteration algorithm, in every iteration, we visit every state $s \in \mathcal{S}$ to update the value function. The complexity to update the value function for each $s \in \mathcal{S}$ in the extended value iteration algorithm is $O(|\mathcal{S}|^2|\mathcal{A}|)$, whereas the complexity of value iteration algorithm is $O(|\mathcal{S}||\mathcal{A}|)$, where \mathcal{S} and $|\mathcal{A}|$ are total number of states and actions, respectively. The extra computation, we need is to solve the linear problem

$$\max_{P_{n,t} \in B_t^{(n)}} \sum_{s' \in \mathcal{S}} P_{n,t}(s'|s,a) V_{n,t,\lambda}(s'),$$

which takes $O(|\mathcal{S}|)$ time.

Wall Clock Time: For wireless scheduling problem, we have count the wall clock time. One iteration in extended value iteration algorithm takes 0.037 sec and one iteration using closed form solution takes 0.006 sec. These are implemented using MATLAB in MacBook Pro, 2022 with Apple M2 chip and 8 GB memory.

Next, at every time step h of each episode t , we need to sort N arms using Whittle index and select M arms with highest Whittle indices. Sorting can take $O(N \log N)$ time.

How Sparsity Helps: The sparsity helps us find computationally efficient solutions to equation 12. The complexity to update the value function for each $s \in \mathcal{S}$ reduces to $O((|\mathcal{S} - \mathcal{S}(s,a)|)^2|\mathcal{A}|)$, if we know the sparsity information $\mathcal{S}(s,a)$.

1026

Algorithm 2: BoB algorithm for choosing V

1027

input: $\beta \in (0, 1]$, $J = O(T^{3/5})$ (we omit subscript n from J_n and V_n)1029 1 Initialize $V(i) = V_{max} - (i - 1)V_{max}/J$ 1030 2 Initialize $w_i = 1$ and $\hat{X}_i = 0$ 1031 3 **for** every episode $t = 1, 2, \dots, T$ **do**1032 4 Set $p_i(t) = (1 - \beta) \frac{w_i}{\sum_{i=1}^J w_i} + \frac{\beta}{J}$ 1033 5 Select $i_t \in \{1, \dots, J\}$ randomly according to probability $p_1(t), \dots, p_J(t)$, respectively1034 6 Select $V(i_t)$ at episode t and Observe Reward $R_{n,t}$ 1035 7 Normalize reward: $X_t = R_{n,t}/r_{max}H$, where $r_{max} = \max_{s,a,n} r_n(s, a)$ 1036 8 Update $\hat{X}_{i_t} \leftarrow X_t/p_{i_t}(t)$ 1037 9 Update $w_i \leftarrow w_i \exp(\beta \hat{X}_{i_t}/J)$

1038

1039

1040

(N, M)	V_n known	$J_n = 40$	$J_n = 20$	$J_n = 10$
(6, 1)	1878	2003	2024	2101
(6, 3)	1897	1964	1956	1934

1041

1042

1043

Table 2: $\text{Reg}(T)$ for known V_n and different J_n with unknown V_n for Scheduling Problem (Real Dataset).

1044

1045

1046

A.7 IMPACT OF THE BoB ALGORITHM

1047

1048

Now, we discuss the impact of the BoB algorithm provided in Algorithm 2 on the regret, specifically the impact of the parameter J_n . Theorem 2 directly quantifies the fundamental trade-off introduced by the quantization level in the BoB approach: increasing J_n improves the accuracy of tracking the variation budget V_n but concurrently slows down the BoB learning. The effectiveness of the approach is empirically evaluated in the new Table 2, which shows that performance is robust and not highly sensitive to the exact value of J_n , provided a sufficiently large level is chosen.

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079