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ABSTRACT

We study optimal resource allocation in restless multi-armed bandits (RMABs) un-
der unknown and non-stationary dynamics. Solving RMABs optimally is PSPACE-
hard even with full knowledge of model parameters, and while the Whittle index
policy offers asymptotic optimality with low computational cost, it requires access
to stationary transition kernels - an unrealistic assumption in many applications. To
address this challenge, we propose a Sliding-Window Online Whittle (SW-Whittle)
policy that remains computationally efficient while adapting to time-varying ker-
nels. Our algorithm achieves a dynamic regret of O(TQ/ 3y1/s 4/ 5) for large

RMABES, where T’ is the number of episodes and V is the total variation distance
between consecutive transition kernels. Importantly, we handle the challenging
case where the variation budget is unknown in advance by combining a Bandit-
over-Bandit framework with our sliding-window design. Window lengths are tuned
online as a function of the estimated variation, while Whittle indices are computed
via an upper-confidence-bound of the estimated transition kernels and a bilinear
optimization routine. Numerical experiments demonstrate that our algorithm con-
sistently outperforms baselines, achieving the lowest cumulative regret across a
range of non-stationary environments.

1 INTRODUCTION

Many sequential decision-making problems can be modeled as restless multi-armed bandits (RMABs).
A decision maker needs to choose M out of N arms to activate at each time-slot. Each arm is modeled
as a Markov decision process, and evolves stochastically according to two different transition kernels,
depending on whether the arm is activated or not. At the beginning of each time-slot, the decision
maker picks a subset of arms to be activated. The activated arms evolve according to their active
Markov transition kernels, while the rest of the arms evolve according to their passive Markov
transition kernels. At the end of the time-slot, the decision maker receives rewards from each arm,
where rewards are functions of the current state and the action.

RMABEs have a long history in resource allocation and operations research literature, starting with
Whittle’s seminal work [Whittle| (1988) in the 1980s. Over the past four decades, RMABs have
been used to model and optimize resource allocation problems in a wide variety of domains such as
wireless scheduling |Borkar et al|(2017); Kadota et al.|(2018)); Tripathi & Modiano| (2024); [Shisher
et al.| (2024); [Kadota et al.|(2019), machine monitoring and control |Liu et al.|(2011)); Ruiz-Herndndez
et al.| (2020); |Dahiya et al.| (2022)), server scheduling Dusonchet & Hongler| (2003)), recommendation
systems |Meshram et al.|(2017;|2018)), and health care |Villar et al.|(2015)); Bhattacharya| (2018)); |Lee
et al.[(2019); Mate et al.|(2020); Behari et al.| (2024)). In all of these applications, transition kernels
can be unknown and non-stationary, i.e., the laws governing the evolution of states can drift over
time. For example, consider a load balancing problem, where jobs arrive into a datacenter and a
decision-maker assigns jobs to servers via a load balancer. The time required to finish a job at any
server depends on its current load and how the load evolves over time. This evolution is typically
random and time-varying since there are multiple load balancers and job streams contributing to
the load at any given server within a large datacenter. Deciding which server to pick can then be
formulated as an RMAB, but with non-stationary transition kernels.
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When the transition kernels of a RMAB are unknown and non-stationary, the problem of finding the
Whittle index becomes an online/reinforcement learning problem. Many papers designed algorithms
for MDPs and MAB with unknown and non-stationary transition kernels and analyzed dynamic
regret for MDPs and MAB [Ortner et al.|(2020); Cheung et al.| (2020); Marin Moreno et al|(2024);
Wei et al.|(2023); 'Wei & Luo| (2021). However, algorithm designed in these prior works can not be
applied to RMAB due its special structures: The passive arms (arms that are not activated) continue
to evolve stochastically. Because of the special structure and the combinatorial action space, even
when the transition kernels are known, developing an optimal policy for RMABs is PSPACE-hard
Papadimitriou & Tsitsiklis| (1994). Whittle’s seminal work Whittle, (1988)) introduced a heuristic
policy for RMAB problem, known as the Whittle index policy. This policy relies on establishing a
special mathematical property called indexability for each arm and then deriving functions called
index functions that map states to how valuable it would be to activate an arm at that state. Running
the policy simply requires activating the M bandits with the highest Whittle indices out of the N
bandits at each decision time. To compute Whittle index, the problem is decomposed to multiple
single-arm MDPs after a Lagrangian relaxation technique. Then, Whittle index is computed using the
solution of the multiple MDPs. The Whittle index achieves asymptotic optimality, if the RMAB is
indexable and has a global attractor point Weber & Weiss| (1990); |Verloop| (2016)); (Gast et al.[ (2023}
2021). Most prior works in utilizing Whittle index-based policy focus on known and stationary
transition kernels Dance & Silander| (2015); [Tripathi & Modiano|(2024); Shisher et al.| (2024); |Le Ny
et al.|(2008); Meshram et al. (2018]).

Applying traditional online learning and reinforcement learning policies |Ortner et al.[(2020); (Cheung
et al.| (2020); Marin Moreno et al.| (2024)); [Wei et al.| (2023)); 'Wei & Luo|(2021) naively to RMAB
with unknown and non-stationary transition kernels may lead to inefficient learning performance and
to exponential regret bounds. This necessitates combining Whittle with online learning methods.
In this direction, a recent work Wang et al.| (2023)) designed a Whittle index-based policy called
UCWhittle for unknown but stationary transition kernels. Although techniques exist for adapting
reinforcement learning algorithms to non-stationary environments Wei & Luo| (2021), they are
not directly compatible with the recently proposed UCWhittle policy |Wang et al.| (2023). This
incompatibility arises from the unique structure of RMABs and the specific method used to compute
the Whittle index via Lagrangian relaxation.

In addition, it is common in many applications to have prior knowledge regarding the sparsity of
transition kernels for some parts of the state space. For example, consider a wireless scheduling
problem which aims to maximize information freshness in selecting which users (arms) to schedule.
In this case, the state can be modeled using Age of Information (Aol) Kaul et al.[(2012); Sun et al.
(2016) — a widely used metric for quantifying information freshness. Then, the Aol of an arm
increases by one if the arm is not scheduled for transmission. Conversely, if the arm is scheduled, its
Aol resets to one with the success probability of the transmission. Thus, the Aol will never increase
by 2 or decrease to a value other than 1.

In this paper, we pose the following research question: Can we develop a Whittle index-based online
algorithm for RMABs with non-stationary transition kernels?

Contributions: The main contributions of our paper can be summarized as follows:

* Algorithm Design. The challenge for designing online learning algorithms for RMABEsS is to
incorporate the computationally efficient class of policies such as Whittle index policy into an
adaptive process. We design a sliding window-based online Whittle index policy for non-stationary
RMAB:S (see Algorithm [I). We model non-stationarity of transition kernels of arm n by using a
total variation budget V,, which is an upper bound of the sum of the total variational distance V,.
To estimate the budget V,,, we utilize a Bandit-over-Bandit approach |(Cheung et al.| (2022)); /Wei
et al.|(2023), in which V, is selected from a finite set of possible values. Based on the estimated V,,
the Whittle index is predicted by using a sliding window and upper confidence bound approaches.
Moreover, our algorithm takes into account the sparsity of the transition kernels. This significantly
simplifies the complexity of optimization and helps to predict the transition kernels accurately.

* Dynamic Regret Analysis. We rigorously characterize an upper bound on the dynamic regret of
our algorithm. Our paper is the first to provide dynamic regret for the online learning of Whittle
index under non-stationary environments. It is difficult to analyze dynamic regret of an online
policy under non-stationary environments. It is even more difficult for RMABs. [Wang et al.| (2023)
overcame this challenge by analyzing the regret for stationary environment using the Lagrangian
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relaxed form of the problem and its solution. In this paper, we extend the regret analysis to (i)
non-stationary environments and (ii) to a stronger version of regret by directly analyzing the main
problem and its solution, instead of the Lagrangian form. Our policy can achieve dynamic regret of
O(T?/3V1/3 4 T4/5) for large system size when RMAB is indexable and has a global attractor
point (see Theorem 3| & Remark[T).

* Simulation Results. Our simulation results (see Table[I|& Fig. [T) show that our algorithm achieves
lower regret in practice compared with the UCWhittle policy Wang et al.| (2023), WIQL policy
Biswas et al.|(2021), and a uniformly randomized policy [Kadota et al.| (2018]) baselines.

2 RELATED WORK

Offline Whittle Index Policy for RMABs: Whittle’s seminal work [Whittle| (1988)) introduced a
heuristic policy for the infinite-horizon RMAB problem, known as the Whittle index policy. Motivated
by Whittle’s work, many subsequent works have applied the Whittle index framework to different
resource allocation problems Dance & Silander| (2015); [Tripathi & Modiano| (2024); Shisher et al.
(2024); |Le Ny et al.|(2008); [Meshram et al.| (2018)); Kadota et al.| (2018}, [2019); |(Ornee & Sun|(2023)
by modeling them as RMABs.

Online Learning of Whittle Index: Multiple works |Avrachenkov & Borkar| (2022); Fu et al.|(2019);
Biswas et al.| (2021) have proposed Q-learning algorithms to compute Whittle Index. Authors in
Nakhleh et al.| (2021) proposed NeurWIN and Nakhleh et al.[(2022) proposed DeepTOP to compute
Whittle index by using neural networks. These prior works did not provide any regret guarantees for
their policy. In|Tripathi & Modiano| (2021)), the authors develop an online Whittle algorithm with
static regret guarantees compared to the best fixed Whittle index policy. |[Wang et al.|(2023) is the
first to provide the regret analysis for the online learning of Whittle index with unknown transition
kernels. However, Wang et al.| (2023) consider a stationary environment. In|[Wang et al.| (2023)),
authors analyzed regret of UCWhittle by using Lagrangian relaxed form of the RMAB problem. We,
in this paper, propose an online learning of Whittle index for non-stationary transition dynamics,
with provable regret bounds. To the best of our knowledge, this is the first work to provide dynamic
regret analysis of an online Whittle index-based policy for RMABs with non-stationary transitions.

3 PROBLEM SETTING

We consider an episodic RMAB problem with /N arms and an unknown non-stationary environment.
Each arm n € [N] is associated with a unichain MDP denoted by a tuple (S, A, P, ;, ry,) at every
episode t, where the state space S is finite, A = {0, 1} is a set of binary actions, P, ; : S X A X S —
[0,1] is the transition kernel of arm n with P, ,(s'|s, a) being the probability of transitioning to state
s’ from state s by taking action «a in episode ¢, and 7, (s, a) is the reward function for arm n when the
current state is s and the action a is taken. The total number of episodes is 7" and each episode itself
consists of H time slots. We consider that the transition kernels P, ; are unknown and non-stationary,
i.e., P, can change across episodes ¢ € [T].

A decision maker (DM) determines what action to apply to each arm at a decision time h € [H| of an
episode ¢ € [T] under the instantaneous activation constraint that at most M arms can be activated.
The action taken by the DM in episode ¢ is described by a deterministic policy 7, : SV ~— AN which
maps a given state (s1, 52, ...,sy) € SV to an action (a1, as,...,ay) € AYN. The corresponding
expected discounted sum of rewards in episode ¢ is given by

H N
N h—1
Rt (7Tt7 (Pn,t)nzl) =E Z Z Y 7nn(Sn,h,ta an,h,t)
h=1n=1
where s, ,,+ € S is the state of arm 7 at time h of episode ¢, a,, 5+ € A is the action taken by the
DM for arm n at decision time slot h of episode ¢, and +y is the discount factor. The DM aims to
maximize the total expected sum reward across all episodes, subject to arm activation constraints, i.e.,
N

max R, (7o, (Pa)h_1) s 5.6 anns < M,Vh € [H],Vt € [T] 2)

T, (Pn,t)if_ll : (1

n=1

where I1 is the set of all causal policy 7 : S + {0, 1}V,
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3.1 LAGRANGIAN RELAXATION

Because the main problem described in equation[2]is intractable, we relax the per-time slot constraint
and use the Lagrangian defined below:

E

H N
E § h—1
v <rn(8n,h,t; amh,t) - Aaf’n,h,lﬁ)

h=1n=1

Tt (Pn,t)if_ll : A3

where A\ > 0 is a Lagrangian penalty that is interpreted as the cost to pay for activation.

The Lagrangian problem described in equation [3|enables us to decompose the combinatorial decision
problem equation 2]into a set of N independent Markov decision process for each arm:

H

h—1
E vy (rn(sn,h,tv an,h,t) - )\an,h,t)

h=1

U(Trn,tvpn,h)\) = max E

T, t €M,

N C))

Tty Pn,t

where 7, , is the optimal solution that maximizes equation E] from the set of all causal policies II,,

3.2 WHITTLE INDEX POLICY

Given \, we denote by ¢, () the set of states for which it is optimal not to activate the arm. The set
dn(A) is given by ¢, (A) :=={s € S : Qn:(5,0) > Qn x:(s,1)}, where the action value function
Qn, (8, a) associated with Bellman optimality equation for equationis

Qui(s,0) =7ra(s,0) = Xa+7 Y Pui(s'|s,a)Vo () )
s’eS
and the value function V;, » +(s) associated with Bellman optimality equation for equation is

Vaoae(s) = r;leajc Qnrt(8,a). (6)

Intuitively, as the Lagrangian cost A increases, it is less likely the optimal policy activates arm n in a
given state. Hence, the set ¢, (\) would increase monotonically.

Definition 1 (Indexability) An arm is said to be indexable if the set ¢,,(\) increases monotonically
as X increases from 0 to co. A restless bandit problem is said to be indexable if all arms are indexable.

Definition 2 (Whittle Index) Given indexablity and transition kernel P, ., the Whittle index
Wi t(8; Pnt) of arm m at state s € S in episode t is defined as:

Wn,t(s; Pn,t) = ll’lf{)\ : Qn,/\,t(svo) = Qn,)\,t(sa 1)} (7)

The Whittle index W, +(s; P, ;) represents the minimum activation cost at which activating arm n in
state s at episode ¢ is equally optimal to not activating it.

Whittle Index Policy activates at most M arms out of NV arms with highest Whittle indices. However,
as we can observe from equation[7} we can compute Whittle index if we know the transition kernel
P, . of every episode ¢ € [T]. Next, we model how transition kernels change over every episode.

3.3 THE TRANSITION KERNEL MODEL

Non-Stationarity: In this section, we model the transition kernels for our non-stationary RMAB
setting. We assume that the transition kernels P, ; may drift at varying rates across different arms
n € [N] with the constraint that the total variation distance between transition kernels of two
consecutive episodes is bounded from above by

Ppu(s']s,a) = Poy1(s']s,a)| < =, ®)

SIS

max E
(s,a)eSxA T8
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Algorithm 1: Sliding Window-based Online Whittle Policy

input : State Space S, Action Space A, Reward Function 7, (s, a) for all (s, a) and arms n
DM initializes a Lagrange cost (1)
for every episodet = 1,2,...,T do
DM predicts variation budget V;, for all n € [N]
DM decides window size w,, = [(T/V;,)?/?] for all n € [N]
Arm n starts with state s,, g
DM predicts P, ; for all arm n € [N] using equationwith PYON
DM computes Whittle Index W, +(s)Vs € S,n € [N] with P, ; using equation
forh=1,2,...,Hdo
DM activates M arms (i.e., action=1) with highest Whittle Indices W, ¢ (S 5.¢)-
All arms n moves to the next state Sy, 41,6 ~ Pt (*[Sn.n.ts nnt)

DM observes states and updates counts Cﬁffjn (Sn,h1,t> Snu bty G it )
Update A(**1) = M-th highest Whittle Index

where V,, is the total variation budget across the entire 1" episodes. The total variation budget V,,
represents the total non-stationarity in arm n across the entire horizon, and is a standard quantity used
for analzing dynamic regret in online learning literature Ortner et al.| (2020); |Cheung et al.| (2020).

Sparsity: In many applications, the probability transition kernels are sparse - meaning that many
state transitions are not possible under certain actions. To model this we introduce Sy (s, a) as the set
of all states s’ € S such that the probability to transit from state s € S to state s’ € S given action
a € Ais always 0, i.e.,

So(s,a) ={s' € S: P, +(s|s,a) = 0,Vt}.

The sets Sy(s, a) for all (s,a) € S x A represents the sparsity of transition kernels for arm n. Our
proposed algorithm can utilize this sparsity to provide better regret bounds. However, even in the
absence of any sparsity, we are able to guarantee sublinear dynamic regret.

The DM is assumed to know the parameter Sy(s, a) for all (s,a) € S x A. In next section, we
develop our Algorithm|T|that (i) learns the total variation budget and the probability transition kernels,
and (ii) uses them to compute the Whittle Index to pick approximately optimal policies in each
episode. In the next section, we discuss how we obtain our online algorithm.

4 SLIDING WINDOW-BASED ONLINE WHITTLE POLICY

To compute the Whittle index, we need to know transition kernels. In practice, transition kernels P, ;
are unknown and non-stationary. In this section, we present Algorithm [T} an online approach for
RMABs which adapts to unknown and non-stationary transition kernels.

Our sliding window-based online Whittle policy, provided in Algorithm |I| is motivated by the
UCWhittle approach proposed in [Wang et al.[|(2023). However, the UCWhittle policy is designed
for static settings and does not handle time-varying transition kernels. This motivates the two main
technical innovations in our policy. First, we employ a sliding window method that tracks transition
kernels of the past w,, episodes instead of all past episodes. The parameter w,, is decided based on the
total variation budget V,,. Second, we change the confidence bound provided inWang et al.|(2023]).
In designing the new confidence bound, we add a prediction horizon w,,V,,/T. We also discuss in
Section[4.3lhow we estimate the total variation budget V/,.

4.1 SLIDING WINDOW AND CONFIDENCE BOUNDS

At each episode ¢ and for each arm n, we maintain variables Ct(’fj (s, a, s), which count the number
of transitions from state s to the state s’ via the action a observed within the past w episodes, i.e.
the sliding window. By using the counts for past w episodes, we compute the empirical transition
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probabilities
(s’ a,5)

Pen’t,w(s’|s7 a) =
Cih(s,a)

©))
where we define Ct(fu) (s,a) :== max { Yoses Ct(z (s',a,9),1 } Using the upper confidence bound
approach, we consider the following confidence radius

T (s, a) T

(10)

where 77 > 0 is a design parameter. Notice that the term “2¥= in the confidence radius dy(s,a)

measures how far the transition kernels could have drifted over a window of w,, episodes.

Equipped with these definitions, the ball B,En) of the possible values for transition probabilities
P, (s'|s, a) at any episode ¢ can be characterized as follows

B™ :{Pm Y

s'eS

P, 4(s]s,a) — Pn’t,wi(s'\& a)| < dgn)(s,a),

P, (s']s,a) = 0,Vs" € Sy(s,a), Z P, +(s'|s,a) =1,¥(s,a) € S x A}. (11)
s'eS

We will show later that the true transition kernel lies within this high-dimensional ball with high
probability in each episode.

4.2 ONLINE WHITTLE INDICES

Similar to/Wang et al.|(2023)), we predict the transition probabilities in an optimistic approach. We
select the optimistic transition probability P, ; for each arm n that maximizes the value function

within the confidence bound. The optimization problem for predicting the transition probability Isnyt
is given by

max  Viae(s), s.t. Vi i(s) = max Qn (s, a), (12)
Pn,ter(,n) acA

Qnai(s,0) =rn(s,a) = Aa+ > Pas(s']s,a)Vaaa(s)  (13)

As a result of the maximization procedure of equation the true value function is upper bounded
by the value function under the predicted transition kernel provided that the confidence bound in
equation [TT]holds. This upper bound value function will later allow us to prove regret bounds. Using
the predicted transition kernel P, ;, we compute W,, +(s : P, ;), the Whittle index of state s € S for
arm n as defined in equation (7| Finally, we update Lagrange multiplier A‘*! as the M -th highest
Whittle index at time slot H of episode ¢t. However, the approach can be computationally intensive
due to the kernel maximization problem equation[I2] Some approaches to reduce the complexity are
discussed in Appendix [A.5]

4.3 ESTIMATION OF UNKNOWN VARIATION BUDGET

In the above discussions, the total variation budget V;, is assumed to be known. Now, we discuss how
to adapt with the unknown variation budget V,,. We adopt the Bandit over Bandit approach Cheung
et al.| (2022); |Wei et al.| (2023) for the estimating the variation budget V,,. In this estimation approach,
we solve another bandit problem to select V,, from a finite set of possible budget values based on the
history by using EXP3 algorithm |Auer et al.|(2002)). Modified EXP3 algorithm for our problem is
provided in Algorithm 2]
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Next, we discuss how we can create a set of possible budget values. First, we get the maximum value
for the variation budget as V;, ;4 = 27. This holds because

P, ! — P, (s <2. 14
(s,ggngZ n,t(s |57a) n,t 1(5 |S,CL) = ( )

s'eS

By using Vj, maz, We can now define the set of qunatized drift values as {Vi, maz; Vi,maz —
Vamaz/ Ins Vamaz — 2Va,maz/Ins - - - s Vamaz [ JIn }» Where J;, is the number of quantization levels.
This approach of quantizing and approximately estimating drift values is novel within online learning
literature. We will show that the number of levels J,, affects the dynamic regret (more levels means
more accurate tracking of V,, but also slower learning in the Bandit-over-Bandit approach).

5 REGRET ANALYSIS

We determine the regret of the policy 7 in episode ¢ by subtracting the performance of our policy
from the performance of the optimal policy (both under the true unknown transition kernel P, ;). The
cumulative dynamic regret in 7" episodes is given by

Reg(T) = 3 (Rt (77, (Pad)_y) — By (7 (Pa )y )

( zNj U (52 Pas A) — Ry (s (Pa) ) )

t=1 n=1
T N N

= Z (Z U (Tr;kz,tapnq,h )\) - Z U (ﬂ'n,ta Pn,t7 )\))

t=1 n=1 n=1

Term1

T N
JFZ <ZU<7Tn,t7Pn,ta)‘) - Ry (ﬂ—ta(Pn,t)q]’Y_l))v (15)

t=1 “n=1

Term?2

where 7, , is the optimal policy of the problem defined in equation ) associated with transition kernel
P, ¢ and 7, ; is the optimal policy of the the problem defined in equation [d]associated with transition

kernel P, ;. The first inequality holds because relaxed Lagrangian upper bounds the main problem.

Terml is regret on the Lagrangian relaxed problem. To analyze the performance of Whittle index
policy,|[Wang et al.| (2023)) only used the Lagrangian relaxed problem to assess the performance of an
online learning algorithm. We consider a stronger version of regret definition by considering Term?2
compared to |Wang et al.| (2023)). Term?2 is the performance difference between the Lagrangian
problem and the original problem with the Whittle index policy derived using the solution of the
Lagrangian problem.

First, we analyze Term1. Note that sublinear dynamic regret is usually challenging to establish
in online learning literature, since we are comparing to a dynamic optimal policy that knows the
entire sequence of transition kernels Besbes et al.| (2015;2019). We will show that our approach has
sublinear dynamic regret, as long as the transition kernels don’t vary too quickly.

To create a regret bound, we first need to establish how good our estimates of the time-varying
transition kernel are. To do so, we will bound throbability that the true kernel is outside the

high-dimensional ball Bg") introduced in equation |11} Lemma 1 describes the result in detail.

Lemma 1 Givenn > 0, the probability that the true kernel P,, ; lies within the high-dimensional Ball
B,En) (described by eq. is greater than or equal to 1 — 1, i.e., Pr(P,; € B§”>, VYn,Vt) > 1 —n.

Lemma 1 implies that for every episode ¢, we can provide a confidence region in which true transition
kernel will lie with high probability. A detailed proof of Lemma 1 is provided in Appendix [A.T]

Next, using this result, Theorem [I] characterizes the upper bound for Term1.
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Theorem 1 With probability 1 — 1, the cumulative dynamic regret of Algorithm/[l|satisfies:

Terml < XT: 0 ( ZNj 2|3|Gt,n(wn)) + ZN: 0 <wn(f/n + 2T/Jn)H>

t=1 n=1
+ZO( Julog(J, )T), (16)
where Gin(w) =  mMax(saesxdfin(s,a,w) and the function gin(s,a,w) =

IEpM,ﬂM[aEn)(s,a)/ C't(jfg(s,a)] is nom-increasing in w, where agn)(s,a) is a random

variable that denotes the number of visit at (s, a) in episode t, Jy, is the number of elements in the set
of quantized drift values for arm n and V,, is the actual total variation measure, given by
T

V, = max E
P (s,a)ESXASIES

Py i(8'|s,a) — Pyi—1(5]s, a)l. (17)

Proof. See Appendix[A.2]

The regret bound for Term1 involves three error components: First term is a transition kernels
learning error that decreases with the window size w,,; Second term is a transition kernels prediction
error that increases with both w,, and the variation budget V,, but decreases with .J,,; Third term is a
variation budget learning error that increases with J,,. The following theorem simplifies this bound.

Theorem 2 [f there exists a positive probability to visit every (s,a) € S x A at least once in any
episode t € [T for all arms n € [N] and w,, = [(1/€,)*/*], then with probability 1 — 1, we have

N
Terml < Z O(T*3(V,, + 2T/ J.)Y?) + O(/T J,,).

Proof. See Appendix

To develop our final regret bound, we introduce h(N') which is a function of the number of arms N

>0 (7o Pt ) = B (w0 (Pa)t) (1)
n=1

where Ry (s, (Pn+)Y_,) and U(7y, P+, \) are defined in equation and equation E], respectively.
The function h(N) represents the gap between the performance of the Lagrangian problem under
its optimal solution and the main problem under Whittle index Policy. In h(N'), both the optimal
solution of Lagrangian problem and the Whittle index Policy are designed and evaluated under same
transition kernel 157,,,t. Hence, h(N) does not reflect the learning errors or regret, rather it measures
the inherent optimality gap of the Whittle index policy even if we know transition kernels accurately.

Now, we are ready to present the upper bound of the cumulative regret term Reg(T).

Theorem 3 Under the conditions of Theorem if Jp, = O(T3/ %), with probability 1 — 1, we have
Reg(T) < O(T?/3VY/3 4 74/5) 4 h(N)T, (19)
where V = max,, f/n

Proof. See Appendix[A.4]

Remark 1 According to Theorem the upper bound of Reg(T") is given by O(T2/3f/1/3 + T4/5) 4
h(N)T, where O(T*/%) is the learning error for transition kernels and variation budget. It is proved
in|Tripathi & Modiano| (2024)) that h(N) = 0 for N = 2. Other prior works |Gast et al.| (2023);
Verloop|(2016); \Weber & Weiss|(1990); \Gast et al.|(2021) showed that h(N) — 0 as N — oo if
the RMAB is indexable and has a global attractor point. This suggests that our policy can achieve
sub-linear regret O(TQ/?’Vl/3 + T4/5)f0r large system size and sub-linear V.
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Applications (N, M) Our Policy UCWhittle UCWhittle+ Window Random WIQL

1-D Bandit (10, 1) 957 1155 652841996 6377 +1452 11916+2154 1206042226
(10,4) 21194237 27620 45850 21628 +3054 28349 tae6s  28068+4601
(20,4) 20651368 28985 L7417 24405 +7286 39358 16145  40314-16491

Scheduling (10,1) 503131 981455 787 +42 32394115 3408 +9s
(10, 4) 945194 1183+152 1095+118 259849 2216+64
(20,4) 1276490 2097 +189 1808+138 7094 +189 6397 +279

Table 1: Reg(T") for T' = 50 episodes for different values of N and M.

10*

----Random
) ——UCWhittle
10 -ewaL - UCWhittle
8- UCWhitlsWindow 102 -6~ UCWhittle+Window
—OurPolicy1 —o wiQL
10! — OurPolicy
0 10 20 30 40 50 10!
episode 0 10 20 30 40 50
episode
(a) Wireless Scheduling. (b) One Dimensional Bandit.

Figure 1: Reg(T) Vs. number of episodes in Scheduling and 1-D Bandit with N = 20, M = 4.
6 SIMULATION RESULTS

In this section, we demonstrate the performance of our proposed policy by evaluating it under two
applications modeled as RMAB. In each application, we consider that there are [V arms and a policy
can activate M of them in each time slot i € [H] of every episode ¢ € [T']. We evaluate our policy
against the UCWhittle policy Wang et al.|(2023), UCWhittle + Window policy, where we incorporate
sliding window to UCWhittle and the window size is taken randomly, the WIQL policy Biswas et al.
(2021])), and a randomized policy Kadota et al.|(2018). The results are averaged over 50 independent
runs. Simulation results are shown in Table[I]and Figure[I] It can be observed that our algorithm
achieves the best regret in all cases. The performance gain is observed due to two main reasons: (i)
we are predicting transition kernels with intelligent update of window size and (ii) our algorithm
exploits the knowledge of sparsity. Detailed experimental setup is discussed in Appendix [A.5]

7 CONCLUSIONS AND LIMITATIONS

This paper introduced an online/reinforcement learning algorithm for estimating the Whittle index for
restless bandit problems with unknown and non-stationary transition kernels using sliding window
and upper confidence bound approaches. To our knowledge, this is the first work to provide an upper
bound of the dynamic regret of an online Whittle index-based algorithm for RMABs with unknown
and non-stationary transition kernels. Our proposed algorithm is evaluated on two different restless
bandit problems against four baselines and provides significant performance gains. We also provide
novel regret analysis. An interesting direction of future work involves proving lower bounds for
regret. Other future directions include extending this work to infinite or continuous state spaces,
and designing algorithms that achieve sub-linear dynamic regret even for large V,, (rapidly varying
kernels).
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A APPENDIX

A.1 PROOF OF LEMMA 1

The L1-deviation of the true distribution and the empirical distribution of m events is bounded by
Weissman et al.[(2003):

Pr(|p—ply > B) < (2™ —2) exp” "7 ), (20)

where k is the number of samples.

We denote 1(s', s, a,n, t) as an indicator variable that represents the event of state s, action a, and
next state s’ for arm n at one time slot of episode ¢. Similarly, 1(s’, s, a,n,t,w) is an indicator
variable that represents the event of state s, action a, and next state s’ for arm n at one time slot in
any one of the episodes t —w + 1,t — (w—1)+1,...,t — 1.

By using equation [20] with
8= \/2|8|10g(2|S|AINT/77)
Ct(jlw)(& a)
and
k= Ct(ifj (s,a),
we get

r <||me(-|s,a) —E[1(5,a,n,t, )] > \/2l5|10g<2IS|A|NT/n))

C’t(,nu?(s,a)
Svear
With probability one, we have
[Pt (|5, a) = E[1(-; 5,0, n,t, w)] 1
SlPnilcls a) = t’e{t7w+1,?l%q)jfl)+1,..‘,t}E[l(.7 57t Dl
=[|Pnt(:]s,a) — max Py (cs,a)]ll1 < wn Vi, /T. (22)

t'e{t—w+1,t—(w—1)+1,...,t}

Now, by combining equation [21]and equation 22} we have

Pr(Py s € By, ¥n, Vi) > 1 ZZ > m

t=1n=1 (s,a)ESxA
1—n. (23)

This concludes the proof of Lemmal[I]

A.2  PROOF OF THEOREMII]
We first decompose Term1. We solve another bandit problem to select V;, from a set of possible

drift values based on the history by using EXP3 algorithm |Auer et al.| (2002). In this case, we can
decompose the regret associated with Term1 as follows:

Terml—ZZU T s Pty A) — (7Tnt( n(t)), Pat, M)

t=1 n=1
T N
-y (U( o PaiA) — Ul (Va), Pm,»)
t=1 n=1
N A
'y (Um,t(vnx Pots A) — Ut (Vi (1)) P, A)) 24)
t=1 n=1
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where we denote V, is optimal, V,, (t) is estimated, and 7,, (1) denotes our policy when V is used.

The regret bound for the term

ZZ( BtV Pats ) = Ulrns (T 0). Pos: ) )

t=1n=1

represents the loss from needing to learn V;, instead of knowing it apriori and can be found by using
Auer et al.|(2002). In particular, assuming the finite discretization of possible drifts in Section @ we
can have

ZZ( Tt (V) Prts A) = U (70n,¢ (Va (8)), m,) ZO( Jnlog(J, )T>, (25)

t=1n=1 n=1

where .J,, is the number of elements in the set of possible values of drift for arm n.

n=1

Next, we show the upper bound of Z;‘FZI sV (U(w;t, P, N) = U(mn,e(Vi), Prts A)) For the

ease of notation, we use 7, ¢(V;,) as 7, ;. When the confidence bound holds, we have

N N
Z U(T‘-;:}t) Pn,ta A) - U(Trn,tv Pn,t7 )‘)S Z U(Trn,ta pn,ta )\) - U(ﬂ-n,ty Pn,t; A)
n=1

n=1

N r H
é Z ]EP,L,t,ﬂ'n,t Z Z ’Yh_l(Pn,t<s/‘Sn,t,ha an,t,h) - Pn7t(3/|5n,t,h7 an,t,h))Vn<s/§ Tn,ts Pn7t):| 5
n=1 “h=1s'cS
N -
§ Z ]EPn,t,Trn‘t Z gn)( ) Z pn,t(s/|sa a) - Pn,t(5/|37 a) :| V;naxa
n=1 - (s,a)€S s'esS
N -
< Z Ep, ,mn. Z agn)(s, a)dEn)(s, a)} Vinaz (26)
n=1 - (s,a)ESXA

where (a) is obtained by using (Wang et al.l 2023, Theorem 6.4), the simplified notation V;, is

used instead of V), x ¢, Vinaz = max,e[ny,ses Va(8'; Tt P, +) and a( )(
denoting the number of visits of (s,a) € S x A at episode ¢ € [T].

$,a) is a random variable

By substituting the value of d\"’ (s, a), we have

T N
ZZEpn,t,m,t{ > aE”’(s,a)d@(s,a)}

t=1n=1 (s,a)eSxA

T N agn) (S a)
<y (Z VISTos @IS ANT/M)Er, o r,. [( T ] i wnvn/TH)

s,a)EZs Ct( 13"(8 a)

N
(Z VST @STANT/) Y gt,n<s7a,wn>+wnvnH/T)

n=1 (s,a)eSxA

N
< (3 VESTosISTAIN T 248 o)+ Vo7 )

21S(Gun (1) + wn Vi /T ) @
where G (W) = max(s,a)esx.4 9.0 (8, @, w) and

(n)
(07 S, a
gtm(s’a7w) ]Epn hﬂn’t{ Z t()}

(s,a)EZs Ot(r;u (S a)
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is a non-increasing function of the window size w. This is because Ct(fu) (s, a) is a non-decreasing
function of w.

Now, in the above analysis V;, is the optimal choice of drift values. Specifically, the optimal choice
‘Pmt(s’s, a) — Py i—1(8']s,a)| <

of V,, from the set of drift values satisfies: max(, q)esx ZS’ES

Vi /T < maX(s a)esxa Dges ‘Pn,t(s’s, a)— Py, 1—1(5'|s,a)|+2/J,T. Consequently, the optimal
upper bound of total variation budget V,, 1 satisfies

Vi < Vi < Vi + 2T/ J,,.

Then, the upper bound becomes

i0<i28|Gt,n(wn)) + i 0 (wn(ffn + 2T/Jn)H) :

n=1
A.3 PROOF OF THEOREM[2|

Lets denote the probability to visit every (s,a) € S x A at least once in an episode for all arms
n € [N] by Puin. According to the condition in Theorem 2] Pyyin > 0.

Now, to prove Theorem 2] we bound

(n)
1

gem(s,a,0) =Ep, o, | -0 | g, L] (28)
Ct(rfu) (s,a) Ct(:lg (s,a)

where the number of visit agn) (s,a) in one episode is upper bounded by the time horizon H.

Let E[C’(n)(s a))] = p Then, pw > 1 because by definition, Ct(z)(s,a) =
max { doves C’(n)(s a, s), 1}. Moreover, p > Wy Puin.

Now, we have

1 1
E|———| =E | ———|C")(s,a) < % P(Cf’:j(s,a) < “)
Cil)(s,a) i) (s,a)
1
+E|——— Cfffg(&a) >HElp (Ct(:lg(s,a) > H) (29)
C(n)( ’ 2 ’ 2
t,w 8 (L)

If C’t(jfu)(s7 a) > p/2, then 1/ C’t('fi, (s,a) < 1/+4/p/2 = +/2/p. This part of the expectation is
therefore bounded by /2/p - (s a) > p/2) <\/2/p <

wnpmzn

If C’t(cf (s,a) < u/2, we can use Chernoff bound to have P(C’t(z) (5,a) < (1 —1/2)pu) < e /8 <
e*’LU,,,,Pmin/g

Thus, the expectation becomes

\/i + e_u}nF)min/8 < 4

< < (30)
\/C(") S (1 \/wanin wanin

Therefore, we have

a§”) (s,a) < 4H
C(”) (S, a) wanin

t,w

€1y

gt,n(57 a, w) = EPn,tﬂTn.t
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Next, we have

T
H AT
3 ( “’”;” ) - H( n Vnwn). (32)

=1 wanin
Then, by substituting w,, = (T/V;,)?/?, we get

AT »
H( tw,V, | = AHT?3VBP L2 L gr2/3yis — o 723y 1/3),  (33)
VWn Prin, > min n

where H and P,,;, are absorbed in big-O-notation because H is constant number time-slots in every
episode, P, depends on the number of time-slots H and the initial state in any episode.

By substituting V,, = Vn + 2T/ J,, in the above, we obtain Theorem

A.4 PROOF OF THEOREM [3]

We first decompose Term?2. By adding and subtracting
N

Z U(7Tn7t, pn,ta )\) and Rt (ﬂ't, (p77«,t)£LV:1) y

n=1

we can express Term?2 as follows:

i(iU(wn,t,PH,t,A) Ry (w1, ( m)ﬁj_l))

t=1 n=1
T N N ~
=h(N)T+ (Z Ut Pats A) = > Ulnt, Pat, )
t=1 n=1 n=1
+ By (7 (Pai)hr ) = R (o, (Paa)s) (34)

When the confidence bound holds,
U (Fnts Pats \) = U (T, Pt A) <0, (35)

This is because 7, ; is the optimal solution of the Lagrangian problem and P,ht achieves the highest
Lagrangian objective value.

Similar to equation [26[a), by using (Wang et al.,[2023| Theorem 6.4), we can have
Ry (Wt,(pn,t) ) Ry (Wt,( nt)nNzl)

N H
=Ep, x, {Z SN AT P8 St Ontn) = Pat(8'|5ntms Gnen)) Va8 7, Poy)

<Ep, r, l:z Z al(ﬁn) )(s7a) Vinaa (36)

n=1 (s,a)Sx.A

which is similar to the last inequality of equation [26] Hence, similar to Theorem 1 and Theorem 2,
we can have

Rt(m(m) ) Ry (me, (Pan)N_y) < O(T?3(V,y + 2T/ )3 + O(TT,)  (37)
Therefore, we have

Reg(T) < Term1 + Term2

2

(272/3(V,, + 27/ J)"/3) Z ) 4+ h(N)T.

HMZ
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Next, we can substitute .J,, = O(73/) and obtain
02123 (Vy, + 2T/ )3 + O(2\/T J,,)
< OQT*PVI3) + 02 PT4%) = O(T**V,/% + /%) (38)

Next, by using V = max,, V,,, we have S O(T2/3V,1/3 4 T4/5) = O(T?/3V1/3 4 T4/5). This
concludes the proof.

A.5 EXPERIMENTAL SETUP

Firstly, we discuss how we compute the regret in our numerical studies. Because it is not possible
to get the optimal policy of RMAB even if everything is known exactly, we use the best Whittle
index policy to demonstrate the regret in Table|l|and Fig. 1| Given a policy, we evaluate the regret of
the policy at each episode ¢ by subtracting the total discounted sum reward of all arms obtained by
the policy from the total discounted sum reward of all arms received by a Whittle index policy with
access to the true transition probabilities. In our simulation, we have used MATLAB. In simulation
results of Table[T]and Fig. [T} discount factor of v = 0.99 and time-slots H = 50 were considered.
Moreover, we considered V,, = V for all n.

Now, we discuss how we model One Dimensional Bandits and Wireless Scheduling.

One Dimensional Bandits: We consider a modified version of the one dimensional RMAB problem
studied in |Killian et al.[(2021); Nakhleh et al.|(2022). Each arm n is a Markov process with K states,
numbered as 0, 1, ..., K — 1. For our simulations, we set K = 10. The reward of an arm increases
linearly with the current state, i.e. 7(s, a) = s. If the arm is activated, then it can evolve from state s to
min{s + 1, K — 1} with probability ¢, (¢) or remain in the same state s with probability 1 — ¢, (t). If
the arm is not activated, then it evolves from state s to max{s — 1, 0} with probability p,,(t) or remain
in the same state s with probability 1 — p,,(¢). One-dimensional MDPs of this form are often used in
health monitoring and machine monitoring applications Matsena Zingoni et al.|(2021); |Parisi et al.
(2024). In our simulation, we consider - (i) V,, = 35, (ii) p, (¢) changes to min{p, (t — 1) + Xi&, 1}
with probability 0.5, or it changes to max{p, (¢t — 1) — 2,0} with probability 0.5 and (iii) g, (t)
changes to min{g,,(t — 1) + 32, 1} with probability 0.5, or it changes to max{g, (t — 1) — Y=, 0}
with probability 0.5.

Wireless Scheduling: We consider a wireless scheduling problem, where M out of IV sources can
send their observation to a receiver side over an unreliable channel at every time slot b € [H] of
episode ¢ € [T]. Due to channel unreliability, the observation may not be delivered. The goal of the
receiver is to estimate the current signal values of all IV sources based the information delivered from
the sources. The reward for accurate timely estimation can be modeled as the mutual information
between the estimated signal and the actual signal. |Sun & Cyr| (2019) showed that the mutual

information can be determined by using a decreasing function —(log,(1 — oo ))/2 of Age of
Information (Aol) for zero-mean i.i.d. Gaussian random variables with variance Ufl, where Aol sy, 1, 1
of source n is the time difference between current time A and the generation time of the most recently
delivered signal. The Aol value of a source n increases by 1 if the source n is not scheduled. If
the source n is scheduled, the Aol value drops to 1 with probability g,,(t) (successful delivery) or
increases by 1 with probability 1 — g, (¢) (unsuccessful delivery). The parameter g, (¢) measures
the reliability of channel n at time ¢. In our experiment, we assume that g, (¢) is unknown and
non-stationary for half of the sources, whereas it is is unknown but stationary for the remaining
half. For non-stationary arms, the variance of signal values 0> = 0.9 is used and the probability of

successful transmission g, () changes to min{g, (t — 1) 4+ 2, 1} with probability 0.6, or it changes

to max{g,(t — 1) — ¥=,0} with probability 0.4; the initial value of g, (t) = 0.1 is used. For the

other half, g,,(t) = 1 is unknown but stationary and o2 = 0.5.

How we can simplify the maximization problem equation [I2; In One Dimensional Bandit
applications, we can show that Q,, » (s, 0) is a decreasing function of p,, (), and @, x (s, 1) is an
increasing function of g, (t). This is because the reward r(s, a) is an increasing function of state s,
which results in V;, » .(s) being an increasing function of state s. Using this structure, we can get
closed-form solution of the maximization problem equation|[12} For our wireless scheduling problem,
the value function V, » ;(s) is an increasing function of ¢, (¢) because the reward function r(s, a) is
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Algorithm 2: BoB algorithm for choosing V'
input: 3 € (0,1], J = O(T?3/5) (we omit subscript n from .J,, and V;,)
Initialize V (i) = Viaz — (1 — 1)Vinaz/J
Initialize w; = 1 and X; = 0
for every episode t =1,2,...,T do
Setpi(t) = (1 = B)sr - + 5
Selecti; € {1,...,J} randomly according to probability p; (¢), ..., ps(t), respectively
Select V(i) at episode ¢ and Observe Reward Ry (7, (P¢)Y_1)
Normalize reward: X; = Ry (s, (Pnt)N_1)/N7maz H, Where 7,00 = maxs o n 70 (8, )
Update X;, < X, /p;, (t)
Update w; + w; exp(8X;/J)

a decreasing function of the Aol state s. This structure allows us to obtain a closed-form solution
for the maximization problem equation[I2} Furthermore, a closed-form expression for the Whittle
index exists [Tripathi & Modiano|(2024). Though the closed-form expression is obtained for average
cost problem, we can use the Whittle index expression from [Tripathi & Modiano|(2024) when the
discount factor v — 1. In our experiment, as we have used v = 0.99, the approximation does not
affect the performance of our policy. Consequently, we can determine the Whittle index for our
problem using a low-complexity method that exploits these closed-form expressions.
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