
Published as a conference paper at ICLR 2025

ABSINT-AI: LANGUAGE MODELS FOR
ABSTRACT INTERPRETATION

Michael Wang
MIT CSAIL
mi27950@mit.edu

Kexin Pei
University of Chicago
kpei@uchicago.edu

Armando Solar-Lezama
MIT CSAIL
asolar@csail.mit.edu

ABSTRACT

Static program analysis is a popular technique in software engineering. Traditional
static analysis algorithms treat programs as sets of logical statements with
well-defined semantics. These traditional analyzers can provide guarantees of their
performance, such as guaranteeing that they will never miss a bug. However, they
leave out lots of very rich information such as variable and field names. Language
models for code on the other hand, take full advantage of information such as
variable names, but it is extremely difficult to provide guarantees of their output.
In this work, we present ABSINT-AI, a language model augmented static analyzer
based on abstract interpretation that combines the best of both worlds. Using a
language model in ABSINT-AI achieves up to a 70% decrease in false positives
for bug detection while providing guarantees of never missing a bug.

1 INTRODUCTION

As dynamic languages like JavaScript find their way into more backend applications with strong
performance requirements, there has been a growing interest in compiling them down to more optimal
forms ang; Serrano (2022); Chandra et al. (2016). An important obstacle for these approaches is the
difficulty of performing static program analysis on these languages due to their dynamic behavior and
extensive use of complex heap allocated data Feldthaus et al. (2013); Antal et al. (2023); Sridharan et al.
(2012). This is a problem because sound program analysis is an essential element of compiler optimiza-
tion Hind (2001); Schneck (1973). Soundness ensures that the analysis captures all possible runtime
behaviors of the program; without it, compilers cannot guarantee the safety of specific transformations.

In this paper, we show that Language Models (LMs) can play an important role in supporting sound
program analysis for dynamic languages. Our effort focuses on JavaScript because it is widely used
and representative of other dynamic languages in its extensive use of high order functions, closures
and dynamically created objects represented as heap allocated dictionaries. Our approach is not to
replace traditional analysis with LMs, but rather to leverage the extensive knowledge captured by LMs
to improve the precision of traditional static analysis.

It is not a new idea to combine machine learning and program analysis. One technique that has become
popular recently is to augment traditional static analysis with Language Models applied specifically
for areas that are difficult to analyze. LLift Li et al. (2024a) for example, uses LM’s to analyze
use-before-initialization cases that are too expensive for traditional static analysis. While this improves
the overall performance of the analyzers, the introduction of a neural network almost ubiquitously
loses any guarantees of soundness. To the best of our knowledge, LMs have not been used in program
analysis without losing soundness guarantees.

Our approach instead seeks to preserve the strong guarantees provided by traditional static analysis
techniques while addressing some of their major limitations. Static analysis techniques analyze
programs by treating them as sets of logical statements with well-defined semantics Cousot & Cousot
(1977). This type of analysis can provide guarantees of soundness, but these methods leave out a lot
of rich information, such as variable names, comments, general programming design patterns, and
background knowledge. LM’s on the other hand, are able to take advantage of this information very
well, but lack the robustness and rigor of traditional static analysis techniques. For example, changing
variable names has been shown to have a drastic impact on the performance of these models Zeng

1

Published as a conference paper at ICLR 2025

et al. (2022); Srikant et al. (2021). ABSINT-AI combines the best of both worlds by using LM’s to
provide background information to a static analyzer without losing soundness guarantees.

Static analysis algorithms achieve scalability and soundness by using abstractions in their analysis.
Programs often manipulate unbounded resources (e.g., integers, heap structures). Abstractions merge a
potentially infinite set of objects into a single summary object to ensure convergence and for scalability.
A key challenge is choosing what to abstract in the target program to ensure convergence while
retaining as much important information as possible. In this work, we use an LM to decide what should
be abstracted in the target program.

Deciding what to abstract has two important heuristics: (1) deciding which objects are similar and
can be merged together and (2) deciding what details are unimportant to the analysis at hand and can
be abstracted away. As an example for (1), an abstraction based on an object’s allocation site is based
on the intuition that objects allocated at the same program location often represent the same conceptual
entity in the program Chase et al. (1990).

These are two areas where natural language and knowledge of general concepts is very helpful. For
example, in a learning management system, it may make sense to group all the teachers into one
summary object and all the students into another (an example can be seen in Figure 1a). These are
things that are intuitive to an LM, but are difficult to encode symbolically into a static analysis. We
use the LM only to determine what parts of the input program are suitable for applying abstractions
and what areas should be kept concrete. The static analysis and abstraction process itself is hidden
from the LM. This way, the LM only brings background knowledge.

Achieving soundness with ABSINT-AI. An important point is that ABSINT-AI only uses the LM
to decide where to apply its abstractions. The LM can go wrong in two ways, neither of which results
in unsoundness. (1), the LM decides something should be abstracted when it should not. In this case,
our abstractions lose precision and we report more false positives than necessary. However, because
each abstraction is a superset of the concrete state, this affects precision, but not soundness. (2), The
LM decides something should not be abstracted when it should. This can impede convergence and
scalability, as abstractions are necessary to converge, but does not affect soundness.

In summary, our contributions are:

• A novel static analysis, ABSINT-AI, that integrates background information and variable
names using LM’s without losing soundness.

• An evaluation showing that incorporating an LM increases precision up to 70%.

2 MOTIVATING EXAMPLE

Figure 1a shows a basic example of a learning management system, and illustrates how background
knowledge can help with forming abstractions. First, consider the most common method of
summarization: using an object’s allocation site.

The createUser function defined on line 14 is used to populate the application with users, with the
object representing the new user being allocated on line 18. In a real-world application, there could
be an infinite number of objects being allocated, so one way of making a static analysis tractable is
to create a single summary node for all objects allocated by the statement on line 18. However, this
results in student1, student2, teacher1, and teacher2 all pointing to the same summary
node, illustrated by Figure 1b. This is very imprecise, as both the field accesses to teachingCourses
on line 10 and the access to enrolledCourses on line 3 will be potential invalid accesses. There
have been many previous works on heuristics to decide how to create summary nodes and different
predicates to improve the precision Kanvar & Khedker (2016), such as using the call stack at as well
as heap connectivity to distinguish objects.

As a reader of the code, however, one abstraction that would make sense is to have one summary
node for teachers, and another summary node for students. Intuitively, programmers are likely to write
their code based on the abstract concepts their objects represent. A more intuitive abstraction may
be something similar to the one in Figure 1c, where all the objects representing teachers point to one
summary node, and all objects representing students point to another summary node. This type of
background knowledge and natural language hints are often very difficult to incorporate heuristics for

2

Published as a conference paper at ICLR 2025

1 // Sample user data
2 function enrollStudent(student, courseId) {
3 if (student.role === "student") {
4 student.enrolledCourses.push(courseId);
5 }
6 }
7
8 function addCourse(instructor, courseId) {
9 if (instructor.role !== "teacher") {

10 instructor.teachingCourses.push(courseId);
11 }
12 }
13 // Create a new user
14 function createUser(name, email, role) {
15 if (!["student", "teacher"].includes(role)) {
16 throw new Error("Invalid role specified.");
17 }
18 const newUser = {
19 name:name,
20 role:role,
21 };
22 // Add role-specific fields
23 if (role === "student") {
24 newUser.enrolledCourses = [];
25 } else if (role === "teacher") {
26 newUser.teachingCourses = [];
27 }
28 }
29 //create students
30 const student1 = createUser("Alice", "student");
31 const student2 = createUser("John", "student");
32 //create teachers
33 const teacher1 = createUser("Dr. Bob", "teacher");
34 const teacher2 = createUser("Dr. Jane", "teacher");
35 //assign students
36 enrollStudent(student1, "101");
37 enrollStudent(student2, "102");
38 //assign teachers
39 assignInstructor(teacher1, "101");
40 assignInstructor(teacher2, "102");
41 ...

(a) A learning-management-system application where
incorporating background information into abstrac-
tions would be helpful.

student1

student2

teacher1

teacher2

(Line 18 Summary Node)
name: STRING

role: "teacher" | "student"
enrolledCourses: Array
teachingCourses: Array

Abstract Heap

Variables

(b) An allocation-site based abstraction for Figure
1a. Fields that may or may not exist are in red.

student1

student2

teacher1

teacher2

(Student Node)
name: STRING
role: "student"

enrolledCourses: Array

(Teacher Node)
name: STRING
role: "teacher"

teachingCourses: Array

Abstract Heap

Variables

(c) An abstraction for Figure 1a which takes into ac-
count variable names and background knowledge.

Figure 1: A learning-management-system application and how summarization based on allocation sites differ
from summarization based on natural language and background knowledge.

summarization. In this work, we use an LM to decide which objects should be merged into a summary
node and which parts of the object need further summarization.

3 METHODOLOGY

ABSINT-AI is based on traditional abstract interpretation, but queries an LM to decide how to merge
summary nodes at key points in the analysis. In this section, we describe the abstract interpretation at a
high level as well as how we query the LM. A high-level overview of the architecture of ABSINT-AI
can be found in Figure 2.

3.1 ABSTRACT INTERPRETATION

In this section, we briefly describe our abstract interpretation at a high level. Abstract interpretation
requires an abstract domain as well as modeling of the heap. In this section, we briefly describe
our abstract domain, our two-level representation of the heap, and when we invoke the LM for
summarization. The full analysis supports prototypal inheritance, recursion, loops, and closures.
Additional details can be found in Appendix A. Abstract Domain. Our abstract domain keeps track
of heap objects using concrete nodes and summary nodes. Summary nodes represent a set of possible
concrete nodes. Each node is a dictionary from primitive or abstract values to other values. Our domain
of primitive values is based off of TAJS Jensen et al. (2009), one of the first abstract interpretation
based analyses for Javascript. Additional details on our abstract domain can be found in Appendix
A. The most important runtime decision of ABSINT-AI is deciding when summarize heap nodes. We
keep two separate heap structures, referred to as the local heap and global heap.

3

Published as a conference paper at ICLR 2025

Figure 2: An overview of ABSINT-AI’s architecture. Objects stored in the local heap are highlighted in
orange. Objects stored in the global heap are highlighted in green. ABSINT-AI calls an external LM during the
summarization process to simplify the local and global heaps.

Local heap. The local heap is used for precise representation for objects within local procedures, such
as a local object allocation in a function call. It is flow-sensitive Kildall (1973), taking into account
the order of statements. For example, in Figure 7, obj on line 4 is tracked in the local heap. After
line 5 is executed, obj.f will be 2.

Global heap. The global heap is a much less precise representation for objects that are accessed
and manipulated by multiple functions. The global heap captures all possible relationships between
globally visible objects at any point in the execution. The global heap is motivated by flow-insensitive
analysis Weihl (1980); Cousot & Cousot (1977). This has two benefits: (1) It is much cheaper, as
we don’t have to keep track of a separate heap for each program location, and (2) it allows different
functions to be analyzed independently; the global heap considers all the possible heap states at
the point when the function is invoked, and the analysis of the function can reveal if any additional
relationships need to be added to the global heap. Summarization only happens in the global heap.

We draw a distinction between the local and global heap because JavaScript programs tend to be
reactive, with execution driven largely by external events. This has important implications for analysis,
because the analysis can’t assume the program will simply execute starting at the beginning from a
well defined initial state. Take the example in Figure 7, where inc_global is invoked by an event
handler and must be executed at least 10 times in order to trigger the bug on line 11. Keeping two
separate heaps allows us to to track global dependencies while not losing precision for local procedures.
At the end of each iteration on the program, ABSINT-AI invokes an LM to summarize the global state.
If it remains unchanged from the last iteration, we terminate the analysis.

Loop summarization. A key challenge in abstract interpretation is knowing when to terminate when
analyzing potentially unbounded loops. Typically, abstract interpretation analyzes the loop body and
summarizes the abstract state at the end of the loop until the analysis state reaches a fixpoint.

Take the example in Figure 8, adapted from the original example in Figure 1a. There is an unbounded
loop on line 3, and two distinct objects are pushed to the users array. In order to terminate, this
requires summarizing the users array as well as the objects created in the loop. At the end of each
iteration of an unbounded loop, ABSINT-AI invokes an LM to summarize the state as described in
Section 3.2. If the state remains unchanged from the last iteration of the loop after summarization,
ABSINT-AI exits the loop and continues analyzing the rest of the program.

3.2 SUMMARIZATION WITH LMS

In this section, we describe how we use LM’s to summarize the abstract heap. At a high level, we ask the
LM for the variables that are important to summarize. As explained in the introduction, using the LM
to identify the variables to summarize does not lose soundness, and incorporates additional information
such as variable names which are difficult to encode in traditional heuristics for summarization.

We split our prompting into two parts. First, we ask for any variable names that need to be summarized.
Next, if the variable is an object, we ask for any fields that need to be summarized. For each step,

4

Published as a conference paper at ICLR 2025

Algorithm 1 Variable Selection with LM
Require: Program P , Analysis state S, Prompt Template T
1: Identify all variables Vall in S
2: Construct query Q using T , Vall, and S
3: Send Q to LM and receive response R
4: Extract Vabstract from response R
5: for each v in Vabstract do
6: if v in Vall then
7: summarize(v)
8: end if
9: end for

Algorithm 2 Object summarization with LM
Require: Program P , Analysis state S, Object O, Prompt Tem-

plate T
1: Construct query Q using T , O, and S
2: Send Q to LM and receive response R
3: if R == "ALL FIELDS" then
4: summarize(O)
5: else
6: Extract fields Fall from R
7: for each f in Fall do
8: summarize(O.f)
9: end for
10: end if

1 let userId = 100; // userId abstracted to NUMBER.
2 let names = {100: "Jane"}
3 names[userId]; // False positive

Figure 3: An example of a false positive due to userId getting abstracted to the abstract NUMBER
type.

we give the LM some instructions on some heuristics to use in its decisions. All the prompts for this
section can be found in Appendix B.

Variable selection. First, we ask the LM for high level information about what variables should be
summarized. Our procedure can be seen in Algorithm 1. The exact prompt can be seen in Figure 10
in Appendix B. At a high level, we provide the LM with the state of the code as well as the state of
the current variables, and ask for which variables should be summarized. For each variable that is
returned, we merge all primitive values (if there are integers, we summarize it to the INTEGER type
etc.). If there are objects, we first join all the fields and values as a union into a summary node, and
query the LM further for what parts of the object to summarized.

Object summarization. If an object needs to be summarized, we use the procedure in Algorithm 2 to de-
termine which fields need to be summarized. If the LM returns all fields, we summarize all fields and val-
ues recursively. If not, we extract the fields that should be summarized and only summarized the values
corresponding to the selected fields. The exact prompts can be found in Figures 11 and 12 in Appendix B.

3.3 DETECTING TYPE ERRORS.

As a downstream task to test the precision of ABSINT-AI, we detect the following situations:

• Accessing a property of null or undefined.
• Reading an absent property of an object.

Abstracting unnecessarily can lead to false positives. Take the example in Figure 3. If userId on
line 1 gets abstracted to the abstract NUMBER type, then the object access on line 3 is reported as
a possible read of an absent property. userId could take the value of all possible numbers, but names
only has the the property 100.

Intersection of multiple runs. Different abstraction choices within the program lead to different
sets of reported bugs. For example, if we run ABSINT-AI on the program in Figure 3 multiple times,
it might not decide to abstract userId every single time. However, soundness guarantees ensures
that we will never miss any true bugs; as long as a bug is not present in any single run, we know it
is not a true bug. This allows us to improve precision by taking the intersection of reported bugs from
several runs (similar to self-consistency Wang et al. (2022b)) while still guaranteeing soundness.

4 IMPLEMENTATION

Dataset. We collected 12 Javascript programs from the Big Code dataset Raychev et al. (2016).
We filtered for programs that were self-contained and did not use builtins excessively, as this greatly
increases the imprecision of the analysis (Math.floor, for example, requires modeling the Math

5

Published as a conference paper at ICLR 2025

Table 1: Each program and a small description.
Program #Lines Description

CGOL.js 65 Conway’s Game of Life.
equal.js 304 Methods of comparing equality.
base64.js 158 base64 encoding and decoding.
datepattern.js 91 Testing date string equality
confetti.js 400 Confetti animations in the DOM.
pong.js 243 Pong game in the DOM.
snake_game.js 102 Snake game in the DOM.
books.js 504 A library for storing books.
FlashSort.js 84 Flash Sort.
math_sprint.js 345 Math calculations in the DOM.
drawing-app.js 442 A drawing app in the DOM.
TimSort.js 113 Tim Sort.

Table 2: Overall performance across the Dataset.
#FP stands for False Positives. Fewer is better.

Model #FP↓ % Improve

Baselines
Baseline 271 0%
Lower Bound 147 100%

Mean
Llama-3.3 204 54.0%
GPT-4o-mini 216 44.3%
Qwen2.5 205 53.2%

Intersection
Llama-3.3 184 70.1%
GPT-4o-mini 183 70.9%
Qwen2.5 189 66.1%

Full Intersection 162 87.9%

library to analyze precisely). A description of the dataset can be found in Table 1. Each programs
has unbounded loops or a global state which requires some form of abstraction in order to converge.

Implementation. We implemented ABSINT-AI in 8049 lines of Python, and use Espree brettz9 to
parse the Javascript into an AST. We conducted the experiments on a Linux server with two AMD EPYC
7763 64-Core Processors, 128 cores, 1024GB RAM, and 4 NVIDIA RTX 6000 Ada Generation GPUs.

4.1 BASELINES

Allocation-site based abstractions. Our baseline that we compare against is an abstraction which
merges all objects allocated at the same location in the code into one object. Details of our baseline
can be found in Appendix C. At a high level, whenever we encounter an unbounded loop and at the
end of a full iteration, we keep track of any addresses that are modified and merge them together with
other objects allocated at the same location until the abstract state reaches a fixpoint.

Lower bound. There are additional sources of imprecision and false positives beyond just our
abstractions such as lack of builtin modeling. For example, Math.floor is reported as an access to
an uninitialized object if the Math library is not included in the static analyzer.

To get a lower bound on the number of false positives returned (lower is better), we perform a single
run executing each loop once and computing no abstractions, and only running once on the whole
program. This is not sound, but returns the number of bugs from sources like unmodeled builtins and
DOM accesses. The number of false positives returned is the lower bound that a perfect abstraction
scheme can return.

5 EVALUATION

We aim to answer the following questions:

• RQ1: Performance. How well does using an LM perform compared to the baseline? How
sensitive is this to the choice of LM? How does taking the intersection improve performance?

• RQ2: Runtime. How does the runtime of using an LM compare to using allocation-site
based abstractions?

• RQ3: Guided vs. Direct. Does using the LM as a high-level guide for program analysis
work better than having the LM directly predict the abstraction?

• RQ4: Interactivity. Can the LM take advantage of comments in the code to improve
precision?

5.1 RQ1: PERFORMANCE.

We tested three different models, GPT-4o-mini, Qwen2.5-72B Instruct, and Llama-3.3-70B Instruct.
We ran each model 10 times across the dataset listed in Table 1, and measure the performance as an
improvement in percentage from the baseline to the lower bound for the number of buggy lines reported.

Each model performs well, with the mean performance resulting 44-54% compared to the baseline
of using allocation sites. Each LM performs either about the same or better than the baseline across all

6

Published as a conference paper at ICLR 2025

Figure 4: Performance of taking the intersection.
The X-axis denotes how many runs, and the Y-axis
denotes the number of false positives reported by
taking the intersection of the number of runs.

Figure 5: Performance improvements by adding
comments.

Table 3: Comparison of the average runtime in
seconds of using LM’s compared to the baseline.

Benchmark Baseline Llama3.3 4o-mini Qwen

CGOL.js 3 151 81 166
equal.js 11093 82 88 91
base64.js 15 331 250 605
datepattern.js 1 384 146 426
confetti.js 3 2510 498 2516
pong.js 1 307 202 387
snake_game.js 1 313 390 833
books.js 3 643 139 585
FlashSort.js 18 1075 466 1348
math_sprint.js 4 1671 769 1521
drawing-app.js 3 348 194 503
TimSort.js 32 1408 861 1846

Table 4: Directly predicting the abstraction does not
converge on more than half the samples.

Llama-3.3 4o-mini Qwen
Benchmark Guide Dir. Guide Dir Guide Dir.

CGOL.js ✓ ✓ ✓ ✗ ✓ ✗
equal.js ✓ ✓ ✓ ✓ ✓ ✓
base64.js ✓ ✗ ✓ ✗ ✓ ✗
datepattern.js ✓ ✓ ✓ ✗ ✓ ✗
confetti.js ✓ ✓ ✓ ✗ ✓ ✓
pong.js ✓ ✗ ✓ ✗ ✓ ✗
snake_game.js ✓ ✓ ✓ ✓ ✓ ✓
books.js ✓ ✗ ✓ ✗ ✓ ✗
FlashSort.js ✓ ✗ ✓ ✗ ✓ ✗
math_sprint.js ✓ ✗ ✓ ✗ ✓ ✗
drawing-app.js ✓ ✗ ✓ ✗ ✓ ✗
TimSort.js ✓ ✓ ✓ ✗ ✓ ✗

1 // The snake MUST be abstracted!!
2 var snake = [{x:10,y:10}]

Figure 6: A comment being added to guide the abstraction.

benchmarks. All three models perform well, indicating that our result is generalizable across different
model architectures.

Intersection. As stated in Section 3.3, a benefit of soundness is being able to take the intersection
of all of the positives. The results of this can be seen in Figure 4. As expected, the LM frequently
makes different abstraction decisions. We also took the intersection of all bugs from the 10 runs for
each model as well as taking the full intersection of all 30 runs. Most notably, taking the intersection
of all the runs together leads to an 87.9% improvement in precision.

5.2 RQ2: RUNTIME.

Running an LM is notably slower than the baseline, as querying the LM takes much longer than a
simple merge. Table 3 shows the average runtime performance of each LM in seconds compared to the
baseline. However, An interesting case is equal.js, where using an LM is actually much faster than
the baseline. This is due to equal.js having an object with many functions that get merged together
with the baseline, leading to a state explosion in the abstract space. The LMs are able to come up with
an abstraction that avoid this state explosion, leading to an improvement in runtime. GPT-4o-mini
is notably faster, likely due to better hardware. The longest benchmark is TimSort.js, where it still
finishes in under 15 minutes.

5.3 RQ3: GUIDED VS. DIRECT.

ABSINT-AI uses the LM to provide high-level information about the target program to determine
what to abstract, but the LM does not perform the abstraction itself. One question is whether using
the LM to perform the abstraction directly and then verifying the abstraction’s validity would perform
better. This tests the LM’s capability of performing the analysis itself, rather than providing high-level
information. We define not converging if an unbounded loop executes more than 10 times without

7

Published as a conference paper at ICLR 2025

reaching a fixpoint, or if ABSINT-AI runs over the entire program more than 25 times. The prompts
used for direct abstraction can be found in Appendix D.

Table 4 shows the difference between using the LMs to provide high level guidance compared to directly
predicting the abstraction output. Directly performing the abstraction itself results in the LM not being
able to converge in half the benchmarks. This supports the notion that LM’s are best suited for providing
high level guidance, and leaving the abstractions themselves to the symbolic program analysis.

5.4 RQ4: INTERACTIVITY.

There have been several past works on user-guided program analysis, where certain analysis choices
are made by the analysis user rather than the analysis writer Mangal et al. (2015). However, this
requires the user to learn a specific language and configuration for the analysis tool. In SLEEK Chin
et al. (2011), for instance, the user must provide inductive predicates as separation logic formulas
to describe the shape of data structures. Using an LM for the abstractions allows users to provide
information using natural language comments, allowing for a more intuitive user interface.

To show this, we took three examples from our benchmark where the LM had some trouble forming
abstractions, and annotated them with comments detailing what should and shouldn’t be abstracted.
An example of a comment being added can be seen in Figure 6. In all 3 examples, adding comments
notably reduced the number of false positives returned, as show in Figure 5.

6 LIMITATIONS AND FUTURE WORK

Scalability. Querying an LM whenever summarization is needed is very expensive. Larger programs
with lots of loops could take prohibitively long. In the future, we will investigate combining LM’s
with traditional heuristics to improve speed.

More advanced baselines. There is a rich literature on improving heap abstractions with additional
predicates and heuristics Kanvar & Khedker (2016), and it has been shown that using only allocation
sites is very imprecise Liang et al. (2010). It is possible that incorporating these would increase the
false positive rate more than using an LM. We will leave investigating these to future work.

7 RELATED WORK

LMs for program analysis. LMs have been used for many program analysis task such as type
inference Peng et al. (2023); Wei et al. (2023); Wang et al. (2023b), fuzzing Xia et al. (2024); Yang et al.
(2023b;a); Deng et al. (2023), vulnerability detection Mathews et al. (2024); Liu et al. (2023), resource
leak detection Wang et al. (2023a); Mohajer et al. (2023), code summarization Cai et al. (2023); Geng
et al. (2024); Ahmed et al. (2024); Wang et al. (2022a), and fault localisation Wu et al. (2023). They
differ from traditional machine learning applied to code in that they use pre-trained language models,
and typically do not need large amounts of training data. However, they have not been applied to static
analysis while maintaining soundness guarantees.

Neurosymbolic approaches for program analysis. LLift Li et al. (2024a) specifically applies
LM’s on the Linux kernel to detect Use-Before-Initialization. They run UBITect Zhai et al. (2020),
which returns many possible false positives, and apply an LM to filter out false positives that cannot
be handled easily by static analysis. IRIS Li et al. (2024b) augments CodeQL Avgustinov et al. (2016)
with an LM to improve taint analysis. InferROI Wang et al. (2024) uses LM’s to augment a static
analysis to detect resource leaks in Java programs. While all of these approaches use LMs to improve
analysis precision, the introduction of a neural network loses soundness.

8 CONCLUSION

We propose a method to augment static analyzers with LM’s to provide background information and
take advantage of variable names. We present ABSINT-AI as a proof-of-concept and an evaluation
showing that augmenting static analysis with LM’s can have a dramatic improvement on the precision
without losing soundness guarantees.

8

Published as a conference paper at ICLR 2025

REFERENCES

URL https://angular.dev/tools/cli/aot-compiler.

Toufique Ahmed, Kunal Suresh Pai, Premkumar Devanbu, and Earl T. Barr. Automatic semantic
augmentation of language model prompts (for code summarization), 2024.

Gábor Antal, Péter Hegedűs, Zoltán Herczeg, Gábor Lóki, and Rudolf Ferenc. Is javascript call
graph extraction solved yet? a comparative study of static and dynamic tools. IEEE Access, 11:
25266–25284, 2023. doi: 10.1109/ACCESS.2023.3255984.

Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. Ql: Object-oriented
queries on relational data. In European Conference on Object-Oriented Programming, 2016. URL
https://api.semanticscholar.org/CorpusID:13385963.

brettz9. Brettz9/espree: An esprima-compatible javascript parser. URL https:
//github.com/brettz9/espree.

Yufan Cai, Yun Lin, Chenyan Liu, Jinglian Wu, Yifan Zhang, Yiming Liu, Yeyun Gong, and Jin Song
Dong. On-the-fly adapting code summarization on trainable cost-effective language models. In
A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 56660–56672. Curran Associates, Inc., 2023.

Satish Chandra, Colin S Gordon, Jean-Baptiste Jeannin, Cole Schlesinger, Manu Sridharan, Frank
Tip, and Youngil Choi. Type inference for static compilation of javascript. ACM SIGPLAN Notices,
51(10):410–429, 2016.

David R Chase, Mark Wegman, and F Kenneth Zadeck. Analysis of pointers and structures. ACM
SIGPLAN Notices, 25(6):296–310, 1990.

Wei-Ngan Chin, Cristina David, and Cristian Gherghina. A hip and sleek verification system. In
Proceedings of the ACM international conference companion on Object oriented programming
systems languages and applications companion, pp. 9–10, 2011.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pp. 238–252, 1977.

Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang. Large language
models are zero-shot fuzzers: Fuzzing deep-learning libraries via large language models, 2023.

Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Efficient construction
of approximate call graphs for javascript ide services. In 2013 35th International Conference on
Software Engineering (ICSE), pp. 752–761, 2013. doi: 10.1109/ICSE.2013.6606621.

Mingyang Geng, Shangwen Wang, Dezun Dong, Haotian Wang, Ge Li, Zhi Jin, Xiaoguang
Mao, and Xiangke Liao. Large language models are few-shot summarizers: Multi-intent
comment generation via in-context learning. In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, ICSE ’24, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN 9798400702174. doi: 10.1145/3597503.3608134. URL
https://doi.org/10.1145/3597503.3608134.

Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In Proceedings of the 2001
ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineering, pp.
54–61, 2001.

Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for javascript. In Static
Analysis: 16th International Symposium, SAS 2009, Los Angeles, CA, USA, August 9-11, 2009.
Proceedings 16, pp. 238–255. Springer, 2009.

Vini Kanvar and Uday P. Khedker. Heap abstractions for static analysis. ACM Comput-
ing Surveys, 49(2):1–47, June 2016. ISSN 1557-7341. doi: 10.1145/2931098. URL
http://dx.doi.org/10.1145/2931098.

9

https://angular.dev/tools/cli/aot-compiler
https://api.semanticscholar.org/CorpusID:13385963
https://github.com/brettz9/espree
https://github.com/brettz9/espree
https://doi.org/10.1145/3597503.3608134
http://dx.doi.org/10.1145/2931098

Published as a conference paper at ICLR 2025

Gary A Kildall. A unified approach to global program optimization. In Proceedings of the 1st annual
ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pp. 194–206, 1973.

Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. Enhancing static analysis for practical bug
detection: An llm-integrated approach. Proc. ACM Program. Lang., 8(OOPSLA1), April 2024a.
doi: 10.1145/3649828. URL https://doi.org/10.1145/3649828.

Ziyang Li, Saikat Dutta, and Mayur Naik. Llm-assisted static analysis for detecting security
vulnerabilities, 2024b. URL https://arxiv.org/abs/2405.17238.

Percy Liang, Omer Tripp, Mayur Naik, and Mooly Sagiv. A dynamic evaluation of the precision of
static heap abstractions. ACM Sigplan Notices, 45(10):411–427, 2010.

Puzhuo Liu, Chengnian Sun, Yaowen Zheng, Xuan Feng, Chuan Qin, Yuncheng Wang, Zhi Li, and
Limin Sun. Harnessing the power of llm to support binary taint analysis, 2023.

Ravi Mangal, Xin Zhang, Aditya V Nori, and Mayur Naik. A user-guided approach to program
analysis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
pp. 462–473, 2015.

Noble Saji Mathews, Yelizaveta Brus, Yousra Aafer, Meiyappan Nagappan, and Shane McIntosh.
Llbezpeky: Leveraging large language models for vulnerability detection, 2024.

Mohammad Mahdi Mohajer, Reem Aleithan, Nima Shiri Harzevili, Moshi Wei, Alvine Boaye Belle,
Hung Viet Pham, and Song Wang. Skipanalyzer: A tool for static code analysis with large language
models, 2023.

Yun Peng, Chaozheng Wang, Wenxuan Wang, Cuiyun Gao, and Michael R. Lyu. Generative type
inference for python, 2023.

Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause. Learning programs from noisy data.
SIGPLAN Not., 51(1):761–774, January 2016. ISSN 0362-1340. doi: 10.1145/2914770.2837671.
URL https://doi.org/10.1145/2914770.2837671.

Paul B Schneck. A survey of compiler optimization techniques. In Proceedings of the ACM annual
conference, pp. 106–113, 1973.

Manuel Serrano. On javascript ahead-of-time compilation performance (keynote). In Proceedings of the
19th International Conference on Managed Programming Languages and Runtimes, pp. 1–1, 2022.

Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip. Correlation tracking for
points-to analysis of javascript. In James Noble (ed.), ECOOP 2012 – Object-Oriented Programming,
pp. 435–458, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-31057-7.

Shashank Srikant, Sijia Liu, Tamara Mitrovska, Shiyu Chang, Quanfu Fan, Gaoyuan Zhang, and
Una-May O’Reilly. Generating adversarial computer programs using optimized obfuscations. arXiv
preprint arXiv:2103.11882, 2021.

Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang, and Michael R. Lyu. No
more fine-tuning? an experimental evaluation of prompt tuning in code intelligence. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2022, pp. 382–394, New York, NY, USA, 2022a.
Association for Computing Machinery. ISBN 9781450394130. doi: 10.1145/3540250.3549113.
URL https://doi.org/10.1145/3540250.3549113.

Chong Wang, Jianan Liu, Xin Peng, Yang Liu, and Yiling Lou. Llm-based resource-oriented intention
inference for static resource leak detection, 2023a.

Chong Wang, Jianan Liu, Xin Peng, Yang Liu, and Yiling Lou. Boosting static re-
source leak detection via llm-based resource-oriented intention inference, 2024. URL
https://arxiv.org/abs/2311.04448.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv
preprint arXiv:2203.11171, 2022b.

10

https://doi.org/10.1145/3649828
https://arxiv.org/abs/2405.17238
https://doi.org/10.1145/2914770.2837671
https://doi.org/10.1145/3540250.3549113
https://arxiv.org/abs/2311.04448

Published as a conference paper at ICLR 2025

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and Steven C. H. Hoi.
Codet5+: Open code large language models for code understanding and generation, 2023b.

Jiayi Wei, Greg Durrett, and Isil Dillig. Typet5: Seq2seq type inference using static analysis, 2023.

William E Weihl. Interprocedural data flow analysis in the presence of pointers, procedure variables,
and label variables. In Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pp. 83–94, 1980.

Yonghao Wu, Zheng Li, Jie M. Zhang, Mike Papadakis, Mark Harman, and Yong Liu. Large language
models in fault localisation, 2023.

Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang. Fuzz4all:
Universal fuzzing with large language models, 2024.

Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao, Jiawei Liu, Reyhaneh Jabbarvand, and Lingming
Zhang. White-box compiler fuzzing empowered by large language models, 2023a.

Chenyuan Yang, Zijie Zhao, and Lingming Zhang. Kernelgpt: Enhanced kernel fuzzing via large
language models, 2023b.

Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Lingming Zhang. An
extensive study on pre-trained models for program understanding and generation. In Proceedings of
the 31st ACM SIGSOFT international symposium on software testing and analysis, pp. 39–51, 2022.

Yizhuo Zhai, Yu Hao, Hang Zhang, Daimeng Wang, Chengyu Song, Zhiyun Qian, Mohsen
Lesani, Srikanth V. Krishnamurthy, and Paul Yu. Ubitect: a precise and scalable method to
detect use-before-initialization bugs in linux kernel. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2020, pp. 221–232, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450370431. doi: 10.1145/3368089.3409686. URL
https://doi.org/10.1145/3368089.3409686.

11

https://doi.org/10.1145/3368089.3409686

Published as a conference paper at ICLR 2025

A ABSTRACT INTERPRETATION DETAILS

1 var global = 0;
2 var global_obj = {};
3 function inc_global() {
4 let obj = {f: 1};
5 obj.f += 1;
6 global = global + obj.f;
7 }
8
9 function access_obj() {

10 if (global > 10) {
11 var f = global_obj.foo.bar; // bug
12 }
13 }
14 var button1 = document.createElement("button");
15 var button2 = document.createElement("button");
16 button1.addEventListener("click", inc_global);
17 button2.addEventListener("click", access_obj);

Figure 7: inc_global needs to be run at least 10
times before the bug on line 11 is triggered.

1 var users = []
2 let n = user_input();
3 for (let i = 0; i < n; i++) {
4 let student = createUser(i, "student");
5 if (i % 10 == 0) {
6 let teacher = createUser(i, "teacher");
7 }
8 users.push(student);
9 users.push(teacher);

10 }

Figure 8: An unbounded loop that requires abstrac-
tion to terminate.

A.1 ANALYSIS DETAILS

Functions In Javascript, functions are stored as objects on the heap. We include a __code__ property
storing the function body to be executed. At the beginning of the analysis, ABSINT-AI scans the entire
program, and generates a schema for each function. The schema for each function contains which
variables are local to the function and which variables are accessed by other functions. We refer to
variables that are local as private, and variables that are accessed by other functions as shared. Each
time a function is executed, an environment is initialized according to the schema for that function.
When a function is defined, is initialized with a __hf__ field set to the current heap frame. The
__hf__ field is used to model scopes and closures. When the function returns, the stack frame σ is
popped from the stack, and the stack pointer is decremented.

Scopes and Closures Whenever a function is called, a new stack frame σ is pushed, along with a
corresponding heap frame. The stack pointer for the current stack frame is updated to point to σ. The
private variables for that function are stored in the stack frame σ, and any shared variables are stored in
the heap frame. The heap frame is initialized with a parent field __parent__ which is used to model
the scope chain. The __parent__ field points to the __hf__ field for the function being initialized.

To lookup a variable name in the environment, ABSINT-AI first checks the current stack frame. If
it finds a value for the variable, it returns the value. If it doesn’t, it checks the corresponding heap frame
for the stack frame, and then follows the chain of __parent__ pointers until it finds the variable.

Recursion ABSINT-AI keeps track of all functions that have been called but have not finished
executing yet. Whenever it encounters a recursive call, ABSINT-AI sets the return value to a recursive
placeholder and stores a hash of the function that is called. When the function returns, ABSINT-AI
checks the return values and any allocated heap objects for recursive placeholders for the function
and fills them in with the return values.

A.2 ENVIRONMENT

In this section we describe how ABSINT-AI represents the abstract state. We define concrete and
abstract values. HL refers to the concrete heap, HG refers to the global heap, and σ refers to the stack.
τ is an abstract type, C refers to constants, obj and õbj refer to concrete and abstract objects. val and

12

Published as a conference paper at ICLR 2025

Null

{’a’,’b’,...} {true,false} {1,2,...}

{String} {Bool} {Num}

{String, Bool} {String, Num} {Bool, Num}

{String, Bool, Num}

⊤

Figure 9: Our lattice.

ṽal refer to the values that a variable can take.

val ::= a |obj | ṽal
ṽal ::= C | ã |τ | õbj
τ ::= Bool |Null |Num |String

obj ::= τ→val |C→val

õbj ::= τ→ ṽal |C→ ṽal
HL ::= a→val

HG ::= ã→ ṽal
σ ::= C→val

A.3 SYNTAX

op ::= + |−|÷| · | ...
E ::= id |E.field |E[E] |foo(E) |E1[E2](E3,E4,...) | function(x0,x1,...){S}

|new foo(E1,E2,...) |C |{f :E}
varDef ::= var id=E | let id=E |const id=E

Stmt ::= varDef | id=E |
E.f=E |E[E]=E |def foo(x1,x2,...,xn){Stmt}|
if (E){Stmt} else {Stmt}|class foo{Stmt}|
return E | for (varDef; E; Stmt){Stmt}
for (varDef in E){Stmt}|while (E){Stmt}|Stmt;Stmt

13

Published as a conference paper at ICLR 2025

A.4 SEMANTICS

A.4.1 FUNCTIONS

This section is several functions we use, such looking up a variable name and initializing a new schema
for a function.

lookup(id)
s≡∅ θ=∅

⟨lookup(HL,HG,s,id)→θ⟩

s∈HL id∈HL(s) θ=s

⟨lookup(HL,HG,s,id)→θ⟩

s∈HG id∈HG(s) θ=s

⟨lookup(HL,HG,s,id)→θ⟩

s∈HL id ̸∈HL(s) θ= lookup(HL,HG,HL(s).par,id)

⟨lookup(HL,HG,s,id)→θ⟩

s∈HG id ̸∈HG(s) θ= lookup(HL,HG,HG(s).par,id)

⟨lookup(HL,HG,s,id)→θ⟩

initialize(schema)
HL[a 7→{schema.public,par 7→σ.hf}] σ′._secret 7→{schema.secret} σ′.hf 7→a

initialize(schema)→HL,HG,σ ::σ′

return_from_schema
σ≡σ′ ::v

return_from_schema→HL,HG,σ′

A.4.2 SMALL-STEP SEMANTICS

⟨HL,HG,σ,S⟩→⟨H ′
L,H

′
G,σ

′,S′⟩

14

Published as a conference paper at ICLR 2025

id
⟨HL,HG,σ,id⟩→⟨HL,HG,σ,lookup(id)⟩

E.field
⟨HL,HG,σ,E⟩→⟨H ′

L,H
′
G,σ

′,V ⟩
⟨HL,HG,σ,E.field⟩→⟨H ′

L,H
′
G,σ

′,get(V,field)⟩

E1[E2]
⟨HL,HG,σ,E2⟩→⟨H ′

L,H
′
G,σ

′,V2⟩ ⟨H ′
L,H

′
G,σ

′,E1⟩→⟨H ′′
L,H

′′
G,σ

′′,V1⟩
⟨HL,HG,σ,E1[E2]⟩→⟨H ′

L,H
′
G,σ

′,get(V1,V2)⟩

foo(E0,E1,...)
⟨lookup(foo)→V,V.__type≡Function⟩ ⟨HL,HG,σ,E0,E1,...⟩→⟨H ′

L,H
′
G,σ

′,V0,V1,...⟩
⟨HL,HG,σ,foo(E0,E1,...)⟩→⟨H ′

L[x0 7→V0,x1 7→V1,...],H ′
G,σ

′,initialize(V.__code);V.__code⟩

E1[E2](E3,E4,...)
⟨HL,HG,σ,E0,E1,...⟩→⟨H ′

L,H
′
G,σ

′,V0,V1,V2,...⟩ ⟨get(V0,V1)→V,V.__type≡Function⟩
⟨HL,HG,σ,foo(E0,E1,...)⟩→⟨H ′

L[x0 7→V0,x1 7→V1,...],H ′
G,σ

′[this 7→V0],V.__code⟩
function(x0,x1,...){S} ⟨HL,HG,σ,function(x0,x1,...)⟩→⟨H ′

L[a
′ 7→{...,prototype :a},a 7→],H ′

G,σ
′,a′⟩

new foo(E0,E1,...)
⟨lookup(foo)→V ⟩ ⟨V.__type≡Class⟩ ⟨E0,E1,...⟩→⟨V0,V1,...⟩

⟨HL,HG,σ,new foo(E0,E1,...)⟩→⟨H ′
L,H

′
G,σ

′[this 7→V],init();get(prototype(V),constructor)(V0,V1,...)⟩

⟨lookup(foo)→V ⟩ ⟨V.__type≡Function⟩ ⟨E0,E1,...⟩→⟨V0,V1,...⟩
⟨HL,HG,σ,new foo(E0,E1,...)⟩→⟨H ′

L,H
′
G,σ

′,V.__code(V0,V1,...)⟩

{f1 :E1,f2 :E2,...}
⟨HL,HG,σ,E1,E2,...⟩→⟨H ′

L,H
′
G,σ

′,V1,V2,...⟩
⟨HL,HG,σ,{f1 :E1,f2 :E2,...}⟩→⟨HL[a 7→{f1 :V1,f2 :V2,...,__type :object}],HG,σ,a⟩

(var x = E)
⟨HL,HG,σ,E⟩→⟨H ′

L,H
′
G,σ

′,V ⟩ θ= lookup(x) θ∈HL fr=HL[θ] fr’=fr[id 7→V]

⟨HL,HG,σ,x=E⟩→⟨H ′
L[θ 7→fr′],H ′

G,σ
′,skip⟩

⟨HL,HG,σ,E⟩→⟨H ′
L,H

′
G,σ

′,V ⟩ θ= lookup(x) θ∈HG fr=HG[θ] fr’=fr[id 7→V ∪fr[id]]
⟨HL,HG,σ,x=E⟩→⟨H ′

L,H
′
G[θ 7→fr′],σ′,skip⟩

(x.f = E)
lookup(x)≡a θ=HL(a) ⟨HL,HG,σ,E⟩→⟨H ′

L,H
′
G,σ

′,V ⟩
⟨HL,HG,σ,x.f=E⟩→⟨H ′

L[θ[f 7→V]],H ′
G,σ

′],skip⟩

lookup(x)≡ ã θ̃=HG(ã) ⟨HL,HG,σ,E⟩→⟨H ′
L,H

′
G,σ

′,V ⟩
⟨HL,HG,σ,x=E⟩→⟨H ′

L,H
′
G[θ̃[f 7→V],σ′,skip⟩

15

Published as a conference paper at ICLR 2025

(x[E] = E’)
lookup(x)≡a θ=HL(a) ⟨HL,HG,σ,E,E′⟩→⟨H ′

L,H
′
G,σ

′,V,V ′⟩
⟨HL,HG,σ,x[f]=E⟩→⟨H ′

L[θ[V 7→V ′]],H ′
G,σ

′],skip⟩

lookup(x)≡ ã θ̃=HG(ã) ⟨HL,HG,σ,E,E′⟩→⟨H ′
L,H

′
G,σ

′,V,V ′⟩
⟨HL,HG,σ,x=E⟩→⟨H ′

L,H
′
G[θ̃[V 7→V ′],σ′,skip⟩

(def foo(x0,x1,...,xn){Stmt}) θ= lookup(foo) θ∈σ

⟨HL,HG,σ,x[f]=E⟩→⟨HL[a 7→ ...,prototype :a′,a′ 7→{}],HG,σ[θ 7→a],skip⟩

θ= lookup(foo) θ∈HL

⟨HL,HG,σ,x[f]=E⟩→⟨HL[a 7→ ...,prototype :a′,a′ 7→{},θ 7→a],HG,σ,skip⟩

θ= lookup(foo) θ∈HG

⟨HL,HG,σ,x[f]=E⟩→⟨HL,HG[a 7→ ...,prototype :a′,a′ 7→{},θ 7→θ∪a],σ,skip⟩

(x[E] = E’)
lookup(x)≡a θ=HL(a) ⟨HL,HG,σ,E,E′⟩→⟨H ′

L,H
′
G,σ

′,V,V ′⟩
⟨HL,HG,σ,x[f]=E⟩→⟨H ′

L[θ[V 7→V ′]],H ′
G,σ

′],skip⟩

lookup(x)≡ ã θ̃=HG(ã) ⟨HL,HG,σ,E,E′⟩→⟨H ′
L,H

′
G,σ

′,V,V ′⟩
⟨HL,HG,σ,x=E⟩→⟨H ′

L,H
′
G[θ̃[V 7→V ′],σ′,skip⟩

if (E) { Stmt }) else { Stmt’ }
⟨HL,HG,σ,E⟩→⟨H ′

L,H
′
G,σ

′,False∨∅⟩
⟨HL,HG,σ,if (E){Stmt} else {Stmt;}⟩→⟨H ′

L,H
′
G,σ

′],Stmt⟩

⟨HL,HG,σ,E⟩ ̸→⟨H ′
L,H

′
G,σ

′,False∨∅⟩
⟨HL,HG,σ,if (E){Stmt} else {Stmt′}⟩→⟨H ′

L,H
′
G,σ

′],Stmt′⟩

class foo[M1,M2,...,MN]
class_obj={M1,M2,...,MN}

⟨HL,HG,σ,class foo[M1,M2,...,MN]⟩→⟨HL[a 7→class_obj],HG,σ,skip⟩

(return E)
⟨HL,HG,σ,E⟩→⟨H ′

L,H
′
G,σ

′,V ⟩
⟨HL,HG,σ,returnE⟩→⟨H ′

L,H
′
G,σ

′[returns 7→σ′[returns]∪V],skip⟩

for ([let |var] id in E) {Stmt} ⟨HL,HG,σ,E⟩→⟨H ′
L,H

′
G,σ

′,V ⟩ V.__proto__≡∅ isEmpty(V)≡True

⟨HL,HG,σ,for ([let |var] id in E) {Stmt}⟩→⟨H ′
L,H

′
G,σ

′,skip⟩

⟨HL,HG,σ,E⟩→⟨H ′
L,H

′
G,σ

′,V ⟩ V.__proto__ ̸≡∅ isEmpty(V)≡True

⟨HL,HG,σ,for ([let |var] id in E) {Stmt}⟩→⟨H ′
L,H

′
G,σ

′,for ([let |var] id in V.__proto__) {Stmt}⟩

⟨HL,HG,σ,E⟩→⟨H ′
L,H

′
G,σ

′,V ⟩ V ≡X ::V ′ varDef.type≡ let

⟨HL,HG,σ,for (let id in E) {Stmt}⟩→⟨H ′′
L,H

′′
G,σ

′′,initialize(Stmt);let id=X;Stmt; for (let id in V’) { Stmt }⟩

⟨HL,HG,σ,E⟩→⟨H ′
L,H

′
G,σ

′,V ⟩ V ≡X ::V ′ varDef.type≡var

⟨HL,HG,σ,for (let id in E) {Stmt}⟩→⟨H ′
L,H

′
G,σ

′,var id=X;Stmt; for (let id in V’) { Stmt }⟩

16

Published as a conference paper at ICLR 2025

while (E) {Stmt} ⟨HL,HG,σ,E⟩→⟨H ′
L,H

′
G,σ

′,V ⟩ V ∈Falsey
⟨HL,HG,σ,while (E) {Stmt}⟩→⟨H ′

L,H
′
G,σ

′,skip⟩

⟨HL,HG,σ,E⟩→⟨H ′
L,H

′
G,σ

′,V ⟩ V ̸∈Falsey ⟨H ′
L,H

′
G,σ

′,Stmt;summarize()→⟨H ′
L,H

′
G,σ

′⟩
⟨HL,HG,σ,while (E) {Stmt}⟩→⟨H ′

L,H
′
G,σ

′,skip⟩

⟨HL,HG,σ,E⟩→⟨H ′
L,H

′
G,σ

′,V ⟩ V ̸∈Falsey ⟨H ′
L,H

′
G,σ

′,Stmt;summarize()→⟨H ′′
L,H

′′
G,σ

′′⟩
⟨HL,HG,σ,while (E) {Stmt}⟩→⟨H ′′

L,H
′′
G,σ

′′,while (E) {Stmt}⟩

B PROMPTING FOR HIGH-LEVEL GUIDANCE

This section contains the prompts used for high-level guidance for the LLM.

You are part of a static analyzer, where you are responsible for deciding which
variables need to be abstracted and which ones can be kept concrete. Your goal is
to abstract the necessary variables so that the analysis can converge to a fixpoint
, but not to lose too much information through the abstractions. You are only
allowed to abstract variable names, not fields. Here are some basic heuristics for
when to abstract a variable and when to keep it concrete:
- Abstract a variable if the precise value of the variable is not important for the
analysis.
- Abstract a variable if re-executing the program infinitely will cause the
variable to increase in size. If re-executing the program does not change the shape
or values of the variable, keep it concrete.
- Keep a variable concrete if the current values provided above would not change by
re-executing the program.
- Keep a variable concrete if it is used frequently in control flow decisions.
- Whenever possible and if you are unsure, keep variables concrete and do not
abstract. We can always abstract later if needed.

I will provide the code and the current state of the variables.
The code is:
‘‘‘javascript

[code]

‘‘‘

The variables you can abstract are: [all variable names] . The values for the

variables in JSON form so far are:
‘‘‘json

[all variable values as JSON]

‘‘‘
What variables should be abstracted? You can abstract both primitives and objects.
The program will converge when the variables do not change between executions.
Please perform enough abstractions for the program converge but do not abstract
too much information. We are about to re-execute the code I provided above with
the variables initialized to the values above with no destructive updates to the
variables. This means that any updates will be performed on the variables above.

[MODEL RESPONSE]

Figure 10: The initial prompt for getting the variable names to abstract.

17

Published as a conference paper at ICLR 2025

You chose to abstract the following variable: ‘ variable name ‘. It has multiple
fields, the value of the object is:
‘‘‘json

variable value
‘‘‘
As a reminder, the code is:
‘‘‘javascript

code
‘‘‘
Do you want to pick individual fields to abstract, or should I abstract the whole
thing? You would abstract individual fields if:

- You know that only some fields are relevant to the analysis
- Some fields are not being updated, and can stay concrete
- Some fields are being updated, and need to be abstracted

You would abstract all fields if:
- You are not sure which fields are relevant
- The fields are being added dynamically

If there are fields or properties being added dynamically, you’ll have to abstract
all fields.
Please respond with "INDIVIDUAL FIELDS" or "ALL FIELDS". DO NOT say anything else.

[MODEL RESPONSE]

Figure 11: The prompt determining whether the entire object should be abstracted or only certain fields.

You chose to abstract the following variable: ‘ variable name ‘. It has multiple
fields, the value of the object is:
‘‘‘json

variable value
‘‘‘
As a reminder, the entire code is:
‘‘‘javascript

code
‘‘‘
What fields should be abstracted, and why? The possible fields are:

comma separated fields .

You should abstract a field if:
- The value for the field is being updated dynamically, and abstraction will
help the analysis converge.

You should NOT abstract a field if:
- The precise value of the field is important for the analysis, for example if
it is important for control flow.
- The value of the field is not being updated

Figure 12: If the LLM says to abstract only certain fields, select what fields to abstract.

18

Published as a conference paper at ICLR 2025

C ALLOCATION SITE ABSTRACTIONS

This is the baseline. We keep a map of allocation sites to all the objects that are allocated there. When
summarize is called, it merges all of the allocation sites into a single node. There is a separation
between merging objects, heap frames, and functions. The rough steps of the algorithm for merging
a collection of objects or classes:

1. Combine fields and values of the objects into summary node in the abstract heap. If there
is already a node for the allocation site, we merge in the objects for the allocation site. If
not, we create an empty object for that allocation site and use it for future merges. Update all
pointers for the previous objects to the old objects to the new summary node. We then recurse
through all values in the new summary node and move any objects referenced in the concrete
heap to the abstract heap. If the object has been modified, continue to step 2. If not, exit. This
way we don’t prematurely run our abstractions on objects that haven’t been modified.

2. Merge all the fields into abstract types. So if there are fields that are strings, merge all of them
into the STRING object, etc. Now the summary object has a maximum of 3 keys (STRING,
BOOL, NUM).

3. For the values of each field, if there are primitives merge them into the abstract primitives. For
any objects in the values, perform steps 1-3 on the collection of objects. If there are functions,
perform the function merging algorithm.

The rough steps of the algorithm for merging heap frames:

1. Combine fields and values of the heap frames into one summary frame, similar to objects.
If there is already a node for the allocation site, we merge in the existing heap frames for
the allocation site. We then recurse through all values in the new summary frame and move
any objects referenced in the concrete heap to the abstract heap.

2. Each "field" in the heap frame is a variable in the program, so we don’t need to merge them
together. For all the values for each variable, if there are primitives merge them into the
abstract primitives. For any objects in the values, perform steps 1-3 on the collection of
objects. If there are functions, perform the function merging algorithm.

The rough steps for merging a collection of functions. The only thing that gets dynamically allocated
and needs to be summarized is the heap frames for closures which are encapsulated by the __parent__
field for the function.

1. Merge the function objects into a single one, where everything is the same except the
__parent__ field which is now a collection of heap frames. If there is only one value for
the __parent__ field, exit.

2. For the collection of parent objects, the fields are all the same since these are just the variable
names. Merge all of the values following step 3 of the object merging function.

3. Repeat for each parent.

19

Published as a conference paper at ICLR 2025

D PROMPTS FOR DIRECT ABSTRACTION PREDICTION

I am going to provide you with the code, the environment, and the state of the
concrete heap and abstract heap. The environment and heaps will be provided in JSON
format. Please merge nodes in the heap to achieve the best balance of scalability
and precision for detecting ‘TypeError: Cannot read properties of null or undefined
‘.
Here is the code: \n
‘‘‘javascript

[code]

‘‘‘
Here is the loop body we are analyzing:
‘‘‘javascript

[Loop Body]

‘‘‘

Here is the current state of the environment:
‘‘‘json

[Current Primitive Values]

‘‘‘

Here is the current state of the concrete heap:
‘‘‘json

[Concrete Heap]

‘‘‘

Here is the current state of the abstract heap:
‘‘‘json

[Abstract Heap]

‘‘‘

Please provide an abstraction by merging nodes in the concrete and abstract heap,
and provide a mapping between which nodes have been merged in your output. Only
specify the addresses you want to merge.
The keys in your JSON object should be abstract address strings, and the values
should be lists of concrete addresses that you want to merge. For example, if you
want to merge addresses ["Concrete Address(1)", "Concrete Address(2)"] into an
abstract address "Abstract Address(1)", you would provide the following JSON object
:
{{"Abstract Address(1)": ["Concrete Address(1)", "Concrete Address(2)"]}}
You can also return an empty object if you do not want to merge any nodes.

[MODEL RESPONSE]

Figure 13: The initial prompt for merging objects without abstracting.

20

Published as a conference paper at ICLR 2025

You are performing heap abstractions to find a fixpoint in order to finish
analyzing a loop. I am going to provide you with the code surrounding the loop body
we are analyzing, the loop body we are analyzing, and the state of the heap.
Please provide a heap abstraction that results in a fixpoint while keeping as much
relevant information as possible.

1. Abstract a list of strings into an abstract STRING object. For example, ["foo1",
"foo2", "foo3"] can become ["STRING"]
2. Abstract a list of numbers into an abstract NUMBER object. For example,
[1,2,3,4,5] can become ["NUMBER"]
3. Merging keys in an object following the above rules. For example, {{1: ["var"],
2: ["var"], 3: ["var"]}} can become {{"NUMBER": ["var"]}}. It can also become {{"
NUMBER": ["STRING"]}}.
4. Leave the object as is and do not perform an abstraction.

Here is the code:
‘‘‘javascript

[code]

‘‘‘

[Loop Body]

Here is the current state of the environment:
‘‘‘json

[Current Primitive Values]

‘‘‘

Here is the current state of the concrete heap:
‘‘‘json

[Concrete Heap]

‘‘‘

Here is the current state of the abstract heap:
‘‘‘json

[Abstract Heap]

‘‘‘‘

Please provide a general heap abstraction for the relevant variables that results
in a fixpoint. Perform as few abstractions as are necessary to reach a fixpoint.

You can return an empty object if you do not want to perform any abstractions.
Please use an abstraction that is as precise as possible while still maintaining a
fixpoint and include a JSON of the abstraction in your response.

[MODEL RESPONSE]

Figure 14: The prompt for directly abstracting the heap.

21

Published as a conference paper at ICLR 2025

You are abstracting variables in order to finish analyzing a loop. I am going to
provide you with the code and the state of the heap. Please provide an abstraction
of the primitive variables that results in a fixpoint while keeping as much
relevant information as possible.

1. Abstract a list of strings into an abstract STRING object. For example, ["foo1",
"foo2", "foo3"] can become ["STRING"]
2. Abstract a list of numbers into an abstract NUMBER object. For example,
[1,2,3,4,5] can become ["NUMBER"]
3. Merging keys in an object following the above rules. For example, {{1: ["var"],
2: ["var"], 3: ["var"]}} can become {{"NUMBER": ["var"]}}. It can also become {{"
NUMBER": ["STRING"]}}.
4. Leave the object as is and do not perform an abstraction.

Here is the code:
‘‘‘javascript

[code]

‘‘‘
Here is the loop body we are analyzing:
‘‘‘javascript

[Loop Body]

‘‘‘

Here is the current state of the environment:
‘‘‘json

[Current Primitive Values]

‘‘‘

Please provide a general abstraction for the relevant variables that results in a
fixpoint. Perform as few abstractions as are necessary to reach a fixpoint. You can
return an empty object if you do not want to perform any abstractions. Please use
an abstraction that is as precise as possible while still maintaining a fixpoint,
and include a JSON of the abstraction in your response.

[MODEL RESPONSE]

Figure 15: The prompt for directly abstracting any primitive values in the environment.

22

	Introduction
	Motivating Example
	Methodology
	Abstract Interpretation
	Summarization with LMs
	Detecting type errors.

	Implementation
	Baselines

	Evaluation
	RQ1: Performance.
	RQ2: Runtime.
	RQ3: Guided vs. Direct.
	RQ4: Interactivity.

	Limitations and Future Work
	Related Work
	Conclusion
	Abstract Interpretation Details
	Analysis details
	Environment
	Syntax
	Semantics
	Functions
	Small-step semantics

	Prompting for high-level guidance
	Allocation Site Abstractions
	Prompts for Direct Abstraction Prediction

