

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VISUAL SYMBOLIC MECHANISMS: EMERGENT SYMBOL PROCESSING IN VISION LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

To accurately process a visual scene, observers must bind features together to represent individual objects. This capacity is necessary, for instance, to distinguish an image containing a red square and a blue circle from an image containing a blue square and a red circle. Recent work has found that language models solve this ‘binding problem’ via a set of symbol-like, content-independent indices, but it is unclear whether similar mechanisms are employed by Vision Language Models (VLM). This question is especially relevant, given the persistent failures of VLMs on tasks that require binding. Here, we identify a previously unknown set of emergent symbolic mechanisms that support binding specifically in VLMs, via a content-independent, spatial indexing scheme. Moreover, we find that binding errors, when they occur, can be traced directly to failures in these mechanisms. Taken together, these results shed light on the mechanisms that support symbol-like processing in VLMs, and suggest possible avenues for reducing the number of binding failures exhibited by these models.

1 INTRODUCTION

The visual world is composed of many commonly recurring elements — shapes, colors, textures, etc. — and visual inputs can be efficiently represented by making use of this compositional structure, for instance, by representing a ‘red square’ as a combination of features for ‘red’ and ‘square’. There is growing evidence that neural networks, including language models and vision language models (VLMs), learn such compositional representations and use them to represent novel combinations of familiar features (Lepori et al., 2023; Lewis et al., 2022; Campbell et al., 2024; Assouel et al., 2025). This compositional coding approach, however, introduces a fundamental representational challenge, sometimes referred to as the ‘binding problem’ (Treisman & Gelade, 1980; Greff et al., 2020; Frankland et al., 2021). Given a set of compositional features, such as features representing basic colors and shapes, the binding problem refers to the question of how these features are bound together to represent the entities and relational configurations in a specific context. For instance, in order to represent an image that contains a red square and a blue circle, and to distinguish it from other potential combinations of the same features (e.g., an image containing a blue square and a red circle), it is necessary to form in-context associations between the features that correspond to the same entities (i.e., to bind ‘red’ to ‘square’, and ‘blue’ to ‘circle’).

Recent work has begun to uncover the representations and mechanisms that support this capacity in language models. Of particular relevance is the discovery of emergent *binding IDs*, vectors representing content-independent indices — akin to symbolic variables — that language models use to track the assignment of entities and attributes in-context (Feng & Steinhardt, 2023; Feng et al., 2024). Binding IDs are additively incorporated into the token embeddings corresponding to their arguments, and can be intervened upon to produce systematic binding errors. Other recent work has identified a set of emergent *symbolic mechanisms* that language models use to perform abstract reasoning (Yang et al., 2025). These mechanisms convert input tokens to abstract, symbol-like variables, which can then be processed independently of the tokens to which they’re bound, before eventually being converted back to the corresponding tokens to perform inference. These and other recent findings (Griffiths et al., 2025) suggest that language models rely on an emergent form of symbol processing to represent and reason about entities and relations in-context, but it is an open question whether VLMs employ similar mechanisms to bind *visual* entities in-context.

054 It is particularly notable that many of the most puzzling shortcomings of VLMs are directly related
 055 to the binding problem. VLMs perform very poorly on many tasks that are easy for humans, such as
 056 counting or visual search (Rahmanzadehgervi et al., 2024), and many of these tasks involve the need
 057 to accurately bind features in-context. Indeed, careful behavioral evaluations have found that VLMs
 058 display specific psychophysical signatures similar to those observed in human vision for conditions
 059 that interfere with binding (Campbell et al., 2024). These findings underscore the importance of
 060 understanding the mechanisms that support binding in VLMs, and especially how the failure of
 061 these mechanisms might explain the binding failures that limit the performance of these models.

062 In this work, we present evidence for a set of emergent symbolic mechanisms that support binding
 063 in VLMs. Similar to the content-independent binding IDs that have been identified in text-only
 064 language models, we find that VLMs use *visual space* as a content-independent scaffold to bind
 065 features and parse multi-object scenes. We therefore refer to these indices as *position IDs*. We
 066 also identify a set of *visual symbolic mechanisms* that VLMs use to manipulate these indices: 1)
 067 *ID retrieval heads* retrieve the position ID associated with an object described in the prompt, based
 068 on the features of that object; 2) *ID selection heads* compute the ID of a target object; and 3)
 069 *feature retrieval heads* use this ID to retrieve the features associated with that object. We present
 070 convergent evidence for these mechanisms across a set of representational, causal mediation, and
 071 intervention analyses. Finally, we analyze the role that these mechanisms play in the persistent
 072 binding failures exhibited by VLMs. We find that binding errors can be directly tied to failures of the
 073 identified mechanisms. Taken together, these results begin to uncover the mechanisms that support
 074 symbol-like binding and inference in VLMs, and illustrate how the breakdown of these mechanisms
 075 contributes to their persistent binding failures, suggesting avenues for further improvement of these
 076 models. Our specific contributions are as follows:

- 077 • We identify and characterize the role of 3 sets of attention heads involved in visual object binding
 078 (Section 3). We define the sets using causal mediation analyses (Section 3.4).
- 079 • We validate the role of these attention heads and the use of position IDs across a diverse range
 080 of VLMs (7 models) through representational analyses (Section 3.3) and intervention experiments
 081 (Section 4.2).
- 082 • We show the generality and reuse of position IDs across several tasks and in photorealistic images
 083 (Sections 4.1, 4.3, and 4.4).
- 084 • We link binding failures in VLMs to interference during the ID retrieval process, suggesting new
 085 avenues for improving visual grounding in VLMs (Section 4.5).

086 2 RELATED WORK

087 A number of studies have investigated the emergent mechanisms that support symbol-like processing
 088 in language models and other neural networks. This work has identified a number of surprisingly
 089 interpretable and structured mechanisms, including induction heads (Olsson et al., 2022), function
 090 vectors (Todd et al., 2023), binding IDs (Feng & Steinhardt, 2023; Feng et al., 2024), and emergent
 091 symbolic mechanisms (Yang et al., 2025). Related work has found convergent evidence for such
 092 emergent mechanisms in transformer language models and vision transformers that are trained in
 093 controlled settings (Lepori et al., 2024; Tang et al., 2025). Although a number of recent studies
 094 have begun to apply mechanistic interpretability techniques to understand VLMs (Neo et al., 2024;
 095 Golovanevsky et al., 2024; Kaduri et al., 2024; Basu et al., 2024), it has not yet been established
 096 whether VLMs possess emergent mechanisms for symbol processing similar to those that have been
 097 identified in text-only language models, as our results suggest.

098 Beyond the difference in modalities (images vs. text), there are also several novel contributions
 099 of our work that go beyond the previously identified emergent symbolic mechanisms in text-only
 100 language models (Yang et al., 2025). First, although the identified mechanisms in both cases in-
 101 volve an emergent form of symbol processing, the specific function that these mechanisms perform
 102 is different (parsing of multi-object scenes vs. induction of abstract relational patterns). This is not
 103 merely a translation of the same circuit from the textual domain into the visual domain, but entails a
 104 different circuit altogether. Second, unlike previous results in text-only models, the emergent visual
 105 symbolic representations are distributed across multiple tokens (each object spans multiple patches),
 106 demonstrating that emergent symbol processing extends to more naturalistic and high-dimensional
 107 domains. Third, the identified visual symbolic mechanisms are directly related to a significant lim-

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
itation faced by current VLMs (the binding problem), suggesting that these mechanisms may be of practical relevance for improving these models.

Several studies have probed the capacity of VLMs to process multi-object scenes, revealing a number of failure modes for tasks such as counting (Rahmanzadehgervi et al., 2024; Rane et al., 2024; Zhang & Wang, 2024), visual search (Campbell et al., 2024), and visual analogy (Mitchell et al., 2023; Yiu et al., 2024; Fu et al., 2025). Notably, all of these failure modes appear to be directly related to difficulty with binding object features and relations (Yuksekgonul et al., 2023; Campbell et al., 2024; Assouel et al., 2025). Our results reveal some of the key mechanisms that are involved in these binding failures, suggesting potential avenues for further improvement of VLM architectures and training.

Finally, our findings are closely related to work that has identified the neural and psychological correlates of visual binding. In cognitive science, visual indexing theory (Pylyshyn, 2001) has postulated the existence of content-independent, visual indices that are used for binding object features. In neuroscience, there is a broad distinction between brain regions involved in representing concrete features (e.g., shapes and colors), and brain regions involved in representing space (Goodale & Milner, 1992). The spatial representations in this latter set of brain regions also appear to be more broadly involved in abstract, symbol-like processing (Whittington et al., 2020; O'Reilly et al., 2022; Webb et al., 2024). The emergent mechanisms that we have identified in VLMs, in which visual space serves as a content-independent scaffold for binding object features, thus have interesting parallels to findings from cognitive science and neuroscience.

3 SYMBOLIC MECHANISMS FOR VISUAL BINDING IN VLMs

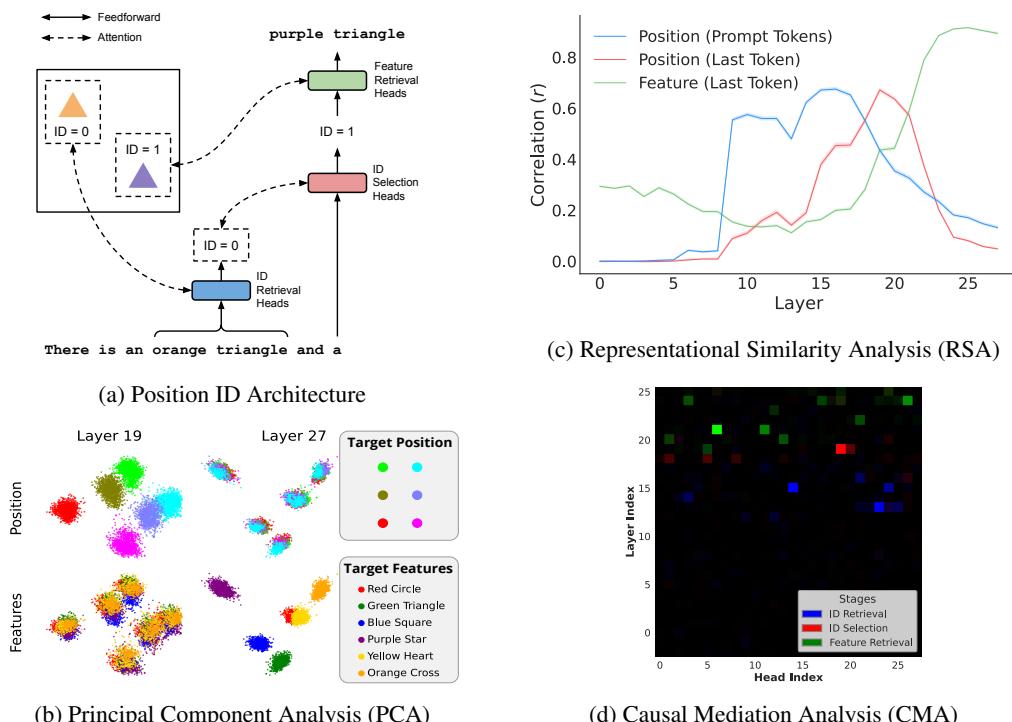


Figure 1: Overview of position ID architecture and supporting evidence. We identify three processing stages: ID retrieval heads that retrieve the position ID of objects described in the prompt, ID selection heads that select the position ID for a target object, and feature retrieval heads that use this position ID to retrieve the features of the target object. These stages are revealed both by (b,c) representational and (d) causal mediation analyses (see text for explanation).

3.1 SCENE DESCRIPTION TASK

To identify the mechanisms underlying visual binding in VLMs, we used a scene description task that tests the model's ability to bind features to objects in multi-object visual scenes. In that task,

162 the model receives an image containing multiple objects (e.g., colored shapes) alongside a prompt
 163 describing some, but not all, objects present. The model must identify and describe the missing
 164 object. For instance, given an image with a red square, blue circle, and green triangle, plus the
 165 prompt “*This image contains a red square, a blue circle and a*”, the model must respond “*green*
 166 *triangle*.”

167 This task requires the model to: (1) parse the visual scene, (2) match objects described in the prompt
 168 to visual representations, (3) determine the missing object, and (4) retrieve its features. Crucially,
 169 success in this task demands accurate spatial binding to avoid erroneously combining features across
 170 objects.

172 3.2 POSITION ID ARCHITECTURE

174 We identified a three-stage architecture that VLMs employ to solve the binding problem (Figure 1a).
 175 These stages implement a content-independent indexing scheme using **position IDs**—spatial indices
 176 serving as symbolic variables for tracking visual objects.

177 **Stage 1: Position ID Retrieval** In this stage the model establishes correspondences between
 178 semantic content in the prompt and spatial locations in the image. Given an object description (e.g.,
 179 “red square”), these heads retrieve the position ID for that object from the corresponding image
 180 tokens. The output of these heads is an abstract spatial index—not the object’s features, but a
 181 *pointer* to its location.

183 **Stage 2: Position ID Selection** In this stage, the model selects the position ID for the target
 184 object, i.e., the object that will be described next, based on the position IDs that have already been
 185 retrieved in the preceding prompt.

187 **Stage 3: Feature Retrieval** In this stage, the model uses the position ID from stage 2 as an
 188 index to retrieve semantic features of the target object from the image tokens corresponding to that
 189 object.

190 In the following sections, we first present representational analyses (Section 3.3) that confirm the
 191 progression of these three stages across layers and sequence positions, and then describe the causal
 192 mediation procedure (Section 3.4) used to identify the specific attention heads that implement these
 193 stages. We show results for Qwen2-VL in the main text, but results for additional models are shown
 194 in the Appendix sections A.5.1 and A.5.2.

196 3.3 REPRESENTATIONAL ANALYSES

198 We carried out representational analyses using two approaches: 1) principal component analysis
 199 (PCA), and 2) representational similarity analysis (RSA). The PCA results for Qwen2-VL are shown
 200 in Figure 1b. These results provide an intuitive visualization of stages 2 and 3. The results show
 201 the hidden state activations for the last token in the sequence, at which the model must generate a
 202 description of the target object. These activations are projected on to the top 2 principal components
 203 (PCs), and colored according to either the spatial position of the object (top row), or the features
 204 (color and shape) of the object (bottom row). The results show that spatial position is clearly separable
 205 in the embeddings for layer 19 (left column), whereas object features are completely overlapping.
 206 This corresponds to stage 2, during which the model computes the position ID for the target object.
 207 By contrast, in layer 27 (right column), spatial position is overlapping, while object features become
 208 separable. This corresponds to stage 3, during which the model retrieves the features of the target
 209 object based on its ID.

210 To more comprehensively characterize this process, we also performed RSA Kriegeskorte et al.
 211 (2008). In RSA, two embedding spaces can be compared by first computing the pattern of pairwise
 212 similarities within each space, and then computing the correlation between these similarities. Using
 213 this approach, we compared the hidden state embeddings in the model to two hypothesized embed-
 214 ding spaces, one that coded only object position, and one that coded only object features. The results
 215 (Figure 1c) further confirmed the proposed three-stage progression (Figure 1a). At the prompt to-
 216 kens describing an object, the position of that object was most strongly represented in layers 14-17,
 217 as predicted by the ID retrieval stage. At the final token, the position of the target object was most

216 strongly represented in layers 18-21, as predicted by the ID selection stage, and the features of the
 217 target object were most strongly represented in layers 23-26, as predicted by the feature retrieval
 218 stage. We also found similar RSA results for the other models studied (Appendix A.5.1)

220 3.4 IDENTIFYING ATTENTION HEADS VIA CAUSAL MEDIATION ANALYSIS

221
 222 In the previous section, we presented representational evidence consistent with the proposed three-
 223 stage architecture. To identify the specific mechanisms that implement these stages, we next per-
 224 formed causal mediation analysis (CMA) (Pearl, 2022; Wang et al., 2022; Meng et al., 2022; Yang
 225 et al., 2025). This approach allows us to estimate the causal effect of an embedding at a particular
 226 layer, position, or attention head. In our case, given our hypothesized architecture, we focus on
 227 analyzing the *causal effect of the output of attention heads* in the prompt tokens. Our goal in this
 228 analysis was to identify the attention heads that are causally involved in the 3 stages that we identi-
 229 fied: 1) retrieving the ID of the object mentioned in the prompt, 2) computing the ID of the missing
 230 target object, and 3) using this ID to retrieve the features of the target object. We refer to the heads
 231 that perform these computations as **ID retrieval heads**, **ID selection heads**, and **feature retrieval**
 232 **heads** respectively.

233 In order to isolate these sets of heads, we designed three conditions. Each CMA condition is defined
 234 by a clean context c_1 , with correct answer a_1 , and a modified context c_2 . Activations are patched
 235 from c_2 to c_1 , yielding the patched context c_1^* , with expected answer a_1^* . Given a model M , we
 236 measure the causal mediation score as defined by (Wang et al., 2022):

$$237 \quad s = (M(c_1^*)[a_1^*] - M(c_1^*)[a_1]) - (M(c_1)[a_1^*] - M(c_1)[a_1]) \quad (1)$$

238 where $M(c)[a]$ corresponds to the logits of token a at the output of the model evaluated on input
 239 c . Intuitively, this score measures the extent to which patching activations from c_2 to c_1 has the
 240 expected effects on the model’s outputs (i.e., makes the model more likely to respond with a_1^* than
 241 a_1). We performed causal mediation on a simpler version of the scene description task involving
 242 only two objects. All CMA scores are averaged across 50 samples for each condition. Below we
 243 define the three different conditions corresponding to the three hypothesized stages. We include a
 244 schematic illustration of the CMA patching intervention targeting all sets of head in Appendix A.3.

245 **ID Retrieval Heads** To identify heads responsible for retrieving the position ID of objects men-
 246 tioned in the prompt, we designed a condition where the clean context c_1 contains an image with
 247 two objects and a prompt mentioning one of them, with the clean answer a_1 being the color of the
 248 unmentioned object. The modified context c_2 uses the same prompt but with the object positions
 249 swapped in the image. We predicted that this would result in the position IDs assigned to these
 250 objects also being swapped. We performed causal mediation by patching attention head outputs at
 251 the prompt tokens for the object described in the prompt. If an attention head is causally involved in
 252 retrieving the position ID for the described object, then patching from the modified context (where
 253 object positions are swapped) should cause the model to retrieve the wrong position ID (namely, the
 254 position ID for the target object, rather than the object described in the prompt). This in turn should
 255 cause the ID selection heads to erroneously select the position ID for the object already described in
 256 the prompt (rather than the target object), which should ultimately cause the feature retrieval heads
 257 to retrieve the features for the object already described in the prompt (see Figure 10 for a schematic
 258 depiction). The expected answer a_1^* in this condition is therefore that the model should repeat the
 259 features for the object already described in the prompt.

260 **ID Selection Heads** To identify heads that compute the position ID of the target object, we used
 261 the same clean and modified contexts as in the ID retrieval condition. However, we performed
 262 causal mediation by patching attention head outputs at the *last token position*, where the model must
 263 generate a description of the target object. If an attention head is causally involved in computing
 264 the target object’s position ID, then patching from the modified context (where object positions are
 265 swapped) should cause these heads to select the wrong target ID (namely, the ID for the object
 266 already mentioned in the prompt). This in turn should cause the feature retrieval heads to retrieve
 267 the features associated with the object already described in the prompt (see Figure 11), and therefore
 268 the expected answer a_1^* in this condition is that the model should repeat the features for the object
 269 already described in the prompt.

270 **Feature Retrieval Heads** To identify heads that retrieve object features, we used clean and modified contexts that differed only in the features of the target object. The features and position of the object mentioned in the prompt, as well as the position of the target object, were the same for both contexts. We patched attention head outputs at the last token position. If an attention head is causally involved in retrieving the features of the target object, then patching from the modified context (in which the target object has different features) should cause the model to retrieve the wrong feature information (see Figure 12), and the expected answer a_1^* is therefore the semantic features of the target object in the modified context rather than the original target object.

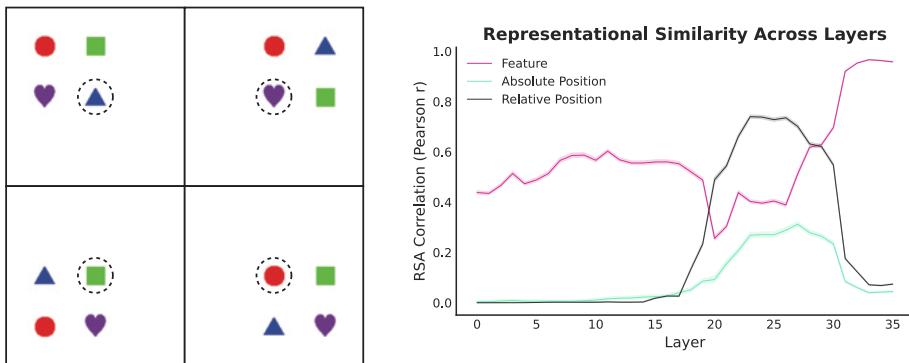
278 **CMA Results** We performed CMA for these 3 conditions on all models (Qwen2.5-VL-3B, Qwen2.5-VL-7B, Qwen2.5-VL-32B, Qwen2-VL, Llava1.5-7B, Llava1.5-13B, and LlavaOneVision-7B) and report the results in the Appendix (see Figures 20, 21, 22, 23, 24, 25). We include the CMA results for Qwen2-VL in Figure 1d, where the CMA scores are color coded by condition (i.e., head type). These results confirmed the predicted three-stage progression, with ID retrieval heads (in blue) primarily localized to layers 12-16, ID selection heads (in red) primarily localized to layers 18-19, and feature retrieval heads (in green) primarily localized to layers 20-27. These layers also corresponded closely to the layers identified for these stages in the representational analyses.

287 4 RESULTS

289 Having identified the mechanisms that support binding in VLMs, we next performed a series of 290 analyses to characterize these mechanisms in more detail. These analyses provide a richer picture 291 of the coding scheme that they employ, demonstrate their generalizability across tasks and image 292 types, and implicate them in the binding failures displayed by VLMs.

294 4.1 ARE POSITION IDs RELATIVE OR ABSOLUTE?

296 In this section we focus on determining whether position IDs employ a *relative* or *absolute* spatial 297 coding scheme. We designed an experiment using a 3×3 object grid. We created four separate 298 2×2 configurations, each positioned within different quadrants of the larger (3×3) grid (Figure 2). 299 Crucially, across all four arrangements, one object was always placed at the same absolute grid 300 location (the center position, circled in Figure 2). We prompted the model to perform the scene 301 description task from the previous analyses, in which a single object is missing from the prompt. 302 We analyzed the representations at the last token, where the model must predict the missing object.



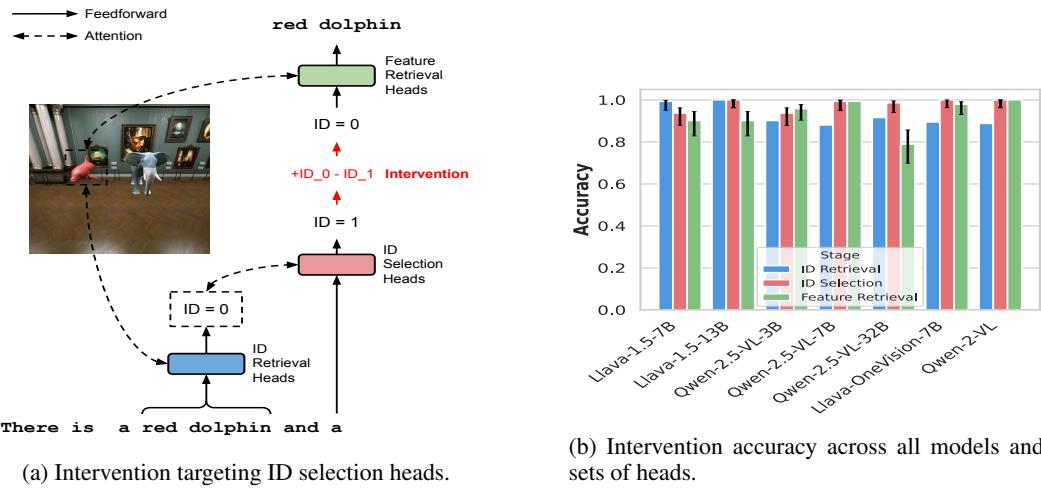
316 Figure 2: Testing for relative vs. absolute spatial coding. Left: Example of each grid condition with 317 centrally located object circled. Right: RSA results showing second-order correlation of last token 318 embeddings (Qwen2-VL) with relative position, absolute position, and object features.

320 We then performed RSA using similarity matrices that reflected either relative (within each inner 321 2x2 grid) or absolute position (within the larger 3×3 grid). We found that models from the Qwen 322 family had a clear preference for a relative coding scheme (Figure 2 shows results for Qwen2-VL). 323 The effects were less pronounced for models from the Llava family (see Appendix A.5.1 for results from all models). This may be a result of differences in position embeddings for the Llava models, or

324 may be due to Llava’s significantly smaller training set. Finally, we further confirmed these results
 325 with a set of interventions that targeted relative vs. absolute positions (see Appendix A.1.2 and
 326 Figure 29).

328 4.2 POSITION IDs GENERALIZE TO VISUALLY COMPLEX SETTINGS

330 We next investigated whether the symbolic mechanisms employed in synthetic visual tasks are also
 331 used when processing more complex, naturalistic images. To do so, we generated a dataset using
 332 the Photorealistic Unreal Graphics (PUG (Bordes et al., 2023)) environment, which allows for
 333 the generation of images that capture important properties of real-world images, including three-
 334 dimensional structure, occlusion, and lighting/shadows. Our dataset was comprised of images that
 335 each contained two distinctly colored 3D animals in varying realistic backgrounds (see Appendix A
 336 for details). We randomly jittered the positions of the animals, but ensured that each image has a
 337 clear leftmost and rightmost animal (to ensure that we have ground-truth labels for the position IDs
 338 that the models will assign).



355 Figure 3: Photorealistic intervention results targeting the different sets of heads as identified by the
 356 CMA.

357 Our position ID hypothesis predicts that by intervening on the position IDs, we can steer the model
 358 to predict the color of either of the animals based solely on position ID (left vs. right) assigned to
 359 them. Figure 3a shows an illustration of this intervention for the outputs of the ID selection heads.
 360 The basic logic of the intervention is to first estimate the embeddings for position IDs 0 and 1 (by
 361 averaging over several instances of these IDs), and then to ‘edit’ the IDs computed by the model
 362 (i.e., to subtract the ID computed by the model and add the other ID).

363 We performed this intervention targeted to each of the 3 identified sets of heads. For the ID retrieval
 364 and selection heads, we performed the intervention on the output of the attention heads. For the
 365 feature retrieval heads, we performed the intervention on the queries, since our hypothesis is that
 366 these heads use position IDs as queries to retrieve features stored in the image tokens.

367 The intervention can be formally defined as follows:

$$\tilde{o}_h(x) = o_h(x) + \alpha * (d_t - d_o)$$

$$d_{i \in t, o} = \mathbb{E}_{x \in X_i} [o_h(x)]$$

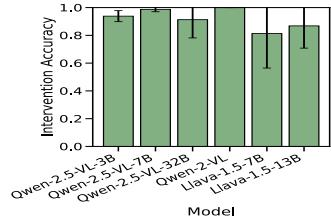
369 where $o_h(x)$ is the output of attention head h given input x , d_t is the estimate of the target binding
 370 ID (e.g., ID 0 in Figure 3a), d_o is the estimate of the original binding ID (e.g., ID 1 in Figure 3a), and
 371 α is a coefficient that controls the magnitude of the intervention. The intervention was applied to the
 372 top K heads as defined by the CMA conditions for each head type. We optimized the intervention
 373 by sweeping over a range of values for α and K (see Appendix A.5.5 for results across all values),
 374 and show the results for the best performing parameters in Figure 3b. The results indicated that this
 375 intervention was highly effective (> 79% efficacy) for all 3 head types and all models, demonstrating
 376 that position IDs also play a central role in processing more complex images. Furthermore, we
 377

378 present intervention results in section B of the Appendix showing that position IDs also play a role
 379 in processing of real-world images (using the COCO dataset).
 380

382 4.3 POSITION IDs ARE LOCALIZED WITHIN VISUAL OBJECT PATCHES

384 We then sought to determine whether position IDs are **localized** in the residual stream of visual
 385 patches spanning the objects in the image. This analysis employed a simple color retrieval task,
 386 in which the model is prompted to identify the color of a specified object. The following prompt
 387 template was used: “In this image what is the color of the {SHAPE}. Answer with the correct color
 388 only.” Our objective was to steer the models to retrieve the color of an arbitrarily specified object
 389 by intervening on the keys of the visual object patches. Let $K_l^o \in \mathbb{R}^{N_o \times d}$ be keys vectors span-
 390 ning the N_o visual patches of object o . We perform an additive intervention on the K_l^o in order to
 391 swap the ID of object o_0 with the ID of object o_1 at layer l such that : $\tilde{K}_l^{o_0} = K_l^{o_0} + \alpha(d_1^l - d_0^l)$
 392 and $\tilde{K}_l^{o_1} = K_l^{o_1} + \alpha(d_0^l - d_1^l)$, with $d_i = \mathbb{E}_{o \in O_i}[K_l^o]$ and O_i being the set of object patches
 393 with ID i . Importantly, we performed the intervention *before* the RoPE embedding module, and
 394 therefore any effects of this intervention on position IDs is independent of the RoPE position
 395 embeddings. For this experiment, we fixed α to 2, and we applied the intervention to the layers
 396 containing the top-20 highest scoring feature retrieval heads (according to the CMA scores).
 397

397 The results are shown in Figure 4. This intervention was highly
 398 effective for all models, confirming that position IDs are stored
 399 locally in the keys of the image patches spanning each object.



400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744<br

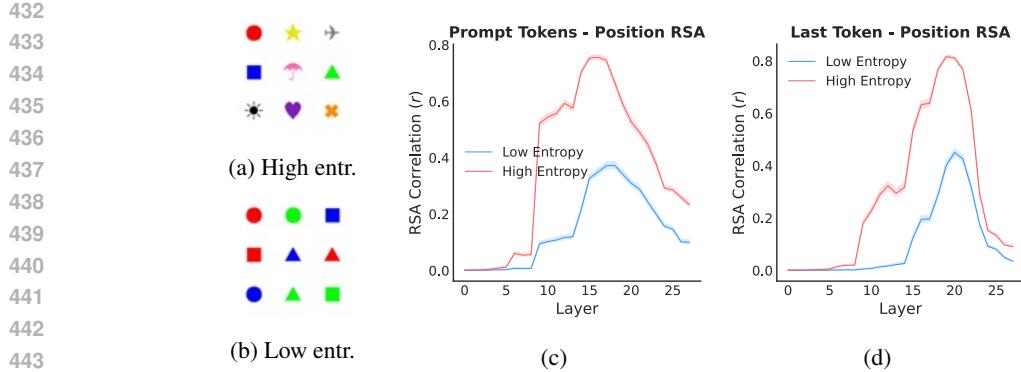


Figure 6: Binding error analysis showing effect of feature entropy on position ID mechanisms.

4.5 BINDING ERRORS ANALYSIS

We next investigated the role that position IDs and visual symbolic mechanisms play in binding errors. Specifically, we analyzed how position IDs influence the model’s ability to bind features to objects or locations, using a scene description task with varying feature entropy – a factor known to impact binding errors (Greff et al., 2020; Campbell et al., 2024). Details of the generation process are provided in Appendix A.5.4 and examples of low (resp. high) entropy stimuli are shown in Figure 6b (resp. 6a). Our results (Figure 6) show that entropy level strongly affects position ID representations at two critical stages: ID retrieval (Figure 6c) and ID selection (Figure 6d). We observe that lower entropy leads to less accurate ID retrieval and more ambiguous ID selection, reflected in performance differences between low and high entropy settings (Figure 7). We also report overall RSA (averaged across layers) for prompt tokens and last tokens in Figure 7. Layer-wise RSA details for all models are included in Appendix A.5.4.

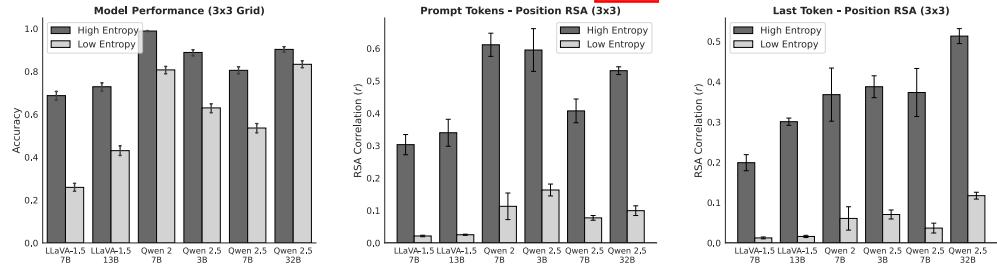


Figure 7: Link between binding errors and failure of position ID mechanisms.

5 CONCLUSION AND FUTURE WORK

In this work, we have identified and characterized a set of emergent symbolic mechanisms that VLMs use to perform visual binding (Greff et al., 2020; Lewis et al., 2022; Campbell et al., 2024; Assouel et al., 2025) in multi-object scenes. Through a combination of representational analyses, causal mediation, and interventions across seven different VLM models, we uncovered a three-stage architecture that employs **position IDs** as content-independent spatial indices for binding object features. These mechanisms are similar to mechanisms that support symbol-like processes in language models, most notably including binding IDs (Feng & Steinhardt, 2023) and emergent symbolic mechanisms (Yang et al., 2025), but our results extend these findings to visual processing.

Our key findings demonstrate that VLMs implement binding through: (1) **ID retrieval heads** that establish correspondences between semantic content in prompts and spatial locations in images, (2) **ID selection heads** that compute the position ID of target objects, and (3) **feature retrieval heads** that use these IDs to retrieve object features. Importantly, we show that this architecture is remarkably consistent across multiple model families and scales, suggesting it represents a fundamental solution to visual binding in current VLMs. Our analyses reveal several critical properties of these

486 mechanisms: position IDs employ relative rather than absolute spatial coding; they generalize be-
 487 yond synthetic stimuli to complex, photorealistic images with naturalistic backgrounds; they are
 488 localized within the image patches corresponding to each object; and they are reusable across dif-
 489 ferent tasks, indicating a *general-purpose symbolic indexing system* that supports diverse forms of
 490 visual reasoning.

491 Crucially, we demonstrate that the persistent binding failures exhibited by VLMs can be directly
 492 traced to failures in these symbolic mechanisms. We find that position IDs are less accurately rep-
 493 resented in conditions that typically lead to binding errors, such as images where multiple objects
 494 share features. These findings have important implications for the development of more capable
 495 VLMs. Our results suggest that binding performance may be improved either via architectural in-
 496 novations that better support spatial indexing (such as object-centric architectures (Locatello et al.,
 497 2020)) or training strategies that explicitly strengthen these symbolic mechanisms, such as spatial
 498 pointing tasks (Deitke et al., 2024).

499 It is worth considering the extent to which the identified mechanisms are truly emergent, particularly
 500 given the potential relationship between a model’s innate position embeddings and the structure of
 501 the position IDs. It is important to emphasize that these mechanisms involve several operations
 502 that are not entailed by position embeddings alone, and which are not built into the architecture,
 503 including the clustering of position embeddings for patches belonging to the same object, and the
 504 specific function of the three identified attention heads (mediated by the content of their queries,
 505 keys, and values). However, it is an open question whether the emergence of these mechanisms
 506 may be driven by architectural inductive biases, such as the use of distinct query/key and value
 507 embeddings (enabling a form of indirection, or the use of ‘pointers’), or distributional aspects of the
 508 training data. We leave the investigation of these questions to future work.

510 6 REPRODUCIBILITY STATEMENT

511 We included all the generation details of our synthetic datasets in Appendix A. A detailed explanation
 512 of the RSA is provided in A.2 and the CMA score in Section A.5.2 of the main text. We additionally
 513 referenced all the analyses for all the models we study in Appendices A.5.5 A.5.2 A.2. Datasets,
 514 analysis and intervention code will be released.

517 REFERENCES

518 Rim Assouel, Pietro Astolfi, Florian Bordes, Michal Drozdzal, and Adriana Romero-Soriano.
 519 Object-centric binding in contrastive language-image pretraining, 2025. URL <https://arxiv.org/abs/2502.14113>

520 Samyadeep Basu, Martin Grayson, Cecily Morrison, Besmira Nushi, Soheil Feizi, and Daniela Mas-
 521 siceti. Understanding information storage and transfer in multi-modal large language models.
 522 *arXiv preprint arXiv:2406.04236*, 2024.

523 Florian Bordes, Shashank Shekhar, Mark Ibrahim, Diane Bouchacourt, Pascal Vincent, and Ari S.
 524 Morcos. Pug: Photorealistic and semantically controllable synthetic data for representation learn-
 525 ing, 2023. URL <https://arxiv.org/abs/2308.03977>.

526 Declan Campbell, Sunayana Rane, Tyler Gialanza, Camillo Nicolò De Sabbata, Kia Ghods, Amogh
 527 Joshi, Alexander Ku, Steven Frankland, Tom Griffiths, Jonathan D Cohen, et al. Understanding
 528 the limits of vision language models through the lens of the binding problem. *Advances in Neural
 529 Information Processing Systems*, 37:113436–113460, 2024.

530 Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
 531 madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo: Open
 532 weights and open data for state-of-the-art multimodal models. *arXiv preprint arXiv:2409.17146*,
 533 2024.

534 Jiahai Feng and Jacob Steinhardt. How do language models bind entities in context? *arXiv preprint
 535 arXiv:2310.17191*, 2023.

540 Jiahai Feng, Stuart Russell, and Jacob Steinhardt. Monitoring latent world states in language models
 541 with propositional probes. *arXiv preprint arXiv:2406.19501*, 2024.

542

543 Steven M Frankland, Taylor Webb, Richard L Lewis, and Jonathan D Cohen. No coincidence,
 544 *george: Capacity-limits as the curse of compositionality*. *PsyArXiv preprint*, 2021. URL https://osf.io/preprints/psyarxiv/cjuxb_v2/

545

546 Shuhao Fu, Andrew Jun Lee, Anna Wang, Ida Momennejad, Trevor Bihl, Hongjing Lu, and Tay-
 547 lor W Webb. Evaluating compositional scene understanding in multimodal generative models.
 548 *arXiv preprint arXiv:2503.23125*, 2025.

549

550 Michal Golovanevsky, William Rudman, Vedant Palit, Ritambhara Singh, and Carsten Eickhoff.
 551 What do vlms notice? a mechanistic interpretability pipeline for gaussian-noise-free text-image
 552 corruption and evaluation. *arXiv preprint arXiv:2406.16320*, 2024.

553

554 Melvyn A Goodale and A David Milner. Separate visual pathways for perception and action. *Trends
 in neurosciences*, 15(1):20–25, 1992.

555

556 Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. On the binding problem in artificial
 557 neural networks. *arXiv preprint arXiv:2012.05208*, 2020.

558

559 Thomas L Griffiths, Brenden M Lake, R Thomas McCoy, Ellie Pavlick, and Taylor W Webb.
 560 Whither symbols in the era of advanced neural networks? *arXiv preprint arXiv:2508.05776*,
 2025.

561

562 Omri Kaduri, Shai Bagon, and Tali Dekel. What's in the image? a deep-dive into the vision of vision
 563 language models. *arXiv preprint arXiv:2411.17491*, 2024.

564

565 Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. Representational similarity analysis-
 566 connecting the branches of systems neuroscience. *Frontiers in systems neuroscience*, 2:249, 2008.

567

568 Michael Lepori, Thomas Serre, and Ellie Pavlick. Break it down: Evidence for structural compo-
 569 sitionality in neural networks. *Advances in Neural Information Processing Systems*, 36:42623–
 42660, 2023.

570

571 Michael Lepori, Alexa Tartaglini, Wai Keen Vong, Thomas Serre, Brenden M Lake, and Ellie
 572 Pavlick. Beyond the doors of perception: Vision transformers represent relations between ob-
 jects. *Advances in Neural Information Processing Systems*, 37:131503–131544, 2024.

573

574 Martha Lewis, Nihal V Nayak, Peilin Yu, Qinan Yu, Jack Merullo, Stephen H Bach, and Ellie
 575 Pavlick. Does clip bind concepts? probing compositionality in large image models. *arXiv preprint
 arXiv:2212.10537*, 2022.

576

577 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 578 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European
 conference on computer vision*, pp. 740–755. Springer, 2014.

579

580 Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
 581 Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-
 582 tion. *Advances in neural information processing systems*, 33:11525–11538, 2020.

583

584 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
 585 associations in gpt. *Advances in neural information processing systems*, 35:17359–17372, 2022.

586

587 Melanie Mitchell, Alessandro B Palmarini, and Arseny Moskvichev. Comparing humans, gpt-4, and
 588 gpt-4v on abstraction and reasoning tasks. *arXiv preprint arXiv:2311.09247*, 2023.

589

590 Clement Neo, Luke Ong, Philip Torr, Mor Geva, David Krueger, and Fazl Barez. Towards interpret-
 591 ing visual information processing in vision-language models. *arXiv preprint arXiv:2410.07149*,
 2024.

591

592 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 593 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
 heads. *arXiv preprint arXiv:2209.11895*, 2022.

594 Randall C O'Reilly, Charan Ranganath, and Jacob L Russin. The structure of systematicity in the
 595 brain. *Current directions in psychological science*, 31(2):124–130, 2022.
 596

597 Judea Pearl. Direct and indirect effects. In *Probabilistic and causal inference: the works of Judea*
 598 Pearl, pp. 373–392. 2022.

599 Zenon W Pylyshyn. Visual indexes, preconceptual objects, and situated vision. *Cognition*, 80(1-2):
 600 127–158, 2001.
 601

602 Pooyan Rahmazadehgervi, Logan Bolton, Mohammad Reza Taesiri, and Anh Totti Nguyen. Vision
 603 language models are blind. In *Proceedings of the Asian Conference on Computer Vision*, pp. 18–
 604 34, 2024.

605 Sunayana Rane, Alexander Ku, Jason Baldridge, Ian Tenney, Tom Griffiths, and Been Kim. Can
 606 generative multimodal models count to ten? In *Proceedings of the Annual Meeting of the Cogni-*
 607 *tive Science Society*, volume 46, 2024.

608 Cheng Tang, Brenden Lake, and Mehrdad Jazayeri. An explainable transformer circuit for compo-
 609 sitional generalization. *arXiv preprint arXiv:2502.15801*, 2025.

610

611 Eric Todd, Millicent L Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.
 612 Function vectors in large language models. *arXiv preprint arXiv:2310.15213*, 2023.

613

614 Anne M Treisman and Garry Gelade. A feature-integration theory of attention. *Cognitive psychol-*
 615 *ogy*, 12(1):97–136, 1980.

616 Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
 617 pretability in the wild: a circuit for indirect object identification in gpt-2 small. *arXiv preprint*
 618 *arXiv:2211.00593*, 2022.

619

620 Taylor W Webb, Steven M Frankland, Awni Altabaa, Simon Segert, Kamesh Krishnamurthy, Declan
 621 Campbell, Jacob Russin, Tyler Giallanza, Randall O'Reilly, John Lafferty, et al. The relational
 622 bottleneck as an inductive bias for efficient abstraction. *Trends in Cognitive Sciences*, 2024.

623

624 James CR Whittington, Timothy H Muller, Shirley Mark, Guifen Chen, Caswell Barry, Neil Burgess,
 625 and Timothy EJ Behrens. The tolman-eichenbaum machine: unifying space and relational mem-
 626 ory through generalization in the hippocampal formation. *Cell*, 183(5):1249–1263, 2020.

627

628 Yukang Yang, Declan Campbell, Kaixuan Huang, Mengdi Wang, Jonathan Cohen, and Taylor Webb.
 629 Emergent symbolic mechanisms support abstract reasoning in large language models. *arXiv*
 630 *preprint arXiv:2502.20332*, 2025.

631

632 Eunice Yiu, Maan Qraitem, Anisa Noor Majhi, Charlie Wong, Yutong Bai, Shiry Ginosar, Alison
 633 Gopnik, and Kate Saenko. Kiva: Kid-inspired visual analogies for testing large multimodal mod-
 634 els. *arXiv preprint arXiv:2407.17773*, 2024.

635

636 Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and
 637 why vision-language models behave like bags-of-words, and what to do about it?, 2023. URL
 638 <https://arxiv.org/abs/2210.01936>.
 639

640

641

642

643

644

645

646

647

648
649

A APPENDIX

650
651

A.1 DATASET GENERATION DETAILS

652
653

A.1.1 SYNTHETIC SCENE DESCRIPTION TASK

654
655
656
657
658

This section describes the synthetic image datasets generated for representational similarity analysis (RSA), patching experiments, and principal component analysis (PCA). All images used colored shapes that each occupied a 56×56 pixel region, comprising a 2×2 grid of patches (each patch had a size of 28×28 pixels). RSA and intervention experiments were conducted using datasets generated by arranging objects within a 2×2 or 3×3 grid, while PCA analyses used a 3×2 grid configuration.

659
660
661
662
663

Dataset generation protocol: For each dataset, there were N unique objects defined by unique color-shape conjunctions, where N was equal to the number of grid positions. Each image contained one target object at a fixed position, with the remaining $N-1$ objects randomly permuted across remaining positions. We generate K trials for each combination of object identity and grid position, yielding $K \times N \times N$ total trials per dataset.

664
665
666
667
668
669

PCA dataset The 3×2 grid configuration (392×932 pixels) used for the PCA results shown in Figure 1b used 6 specific color-shape conjunctions: red circle, green triangle, blue square, purple star, yellow heart, and orange cross. Objects were placed in the leftmost and rightmost columns of a 3×3 grid layout with the center column empty. 200 trials/combination were generated, resulting in 7,200 total trials.

670
671

A.1.2 DATASET FOR TESTING ABSOLUTE VS. RELATIVE SPATIAL CODING

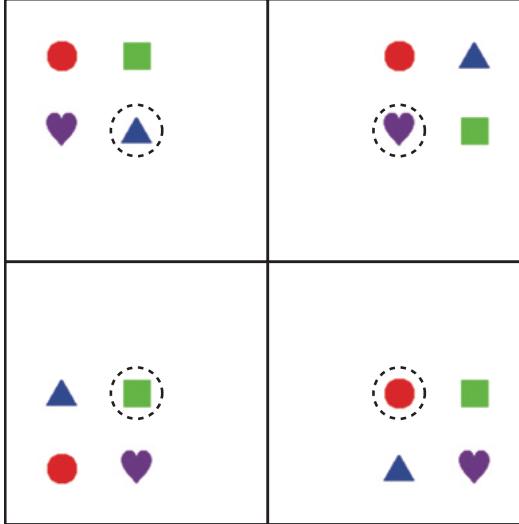
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688689
690

Figure 8: Stimulus condition for characterizing relative vs absolute position IDs.

691
692
693
694

To determine whether position IDs use relative or absolute position coding, we designed an experiment using a 3×3 object grid. We created four different 2×2 sub-arrangements of objects, each positioned within different quadrants of the larger grid (Figure 8). Crucially, across all four arrangements, one object was always placed at the same absolute position (the center position).

695
696

A.1.3 SCENE DESCRIPTION TASK WITH NATURALISTIC IMAGES (PUG)

697
698
699
700
701

To validate the use of position IDs in more naturalistic settings, we performed additional experiments using the PUG (Photorealistic Unreal Graphics) environment, which allows for the generation of images that capture important properties of real-world images, including three-dimensional structure, occlusion, and lighting/shadows. We generated a dataset of images that each contained two distinctly colored 3D animals with realistic backgrounds. We randomly jittered the positions of the animals, but ensured that each image has a clear leftmost and rightmost animal (to ensure

702 that we have ground-truth labels for the position IDs that the models will assign). An example is
 703 shown in Figure 3. The dataset is comprised of 200 images with 3 different animals (camel, dolphin,
 704 elephant) and 3 different colors (green, red, white) in 3 different realistic environments (beach, salt
 705 desert, museum).

706

707 A.1.4 DATASET FOR INVESTIGATING BINDING ERRORS

708

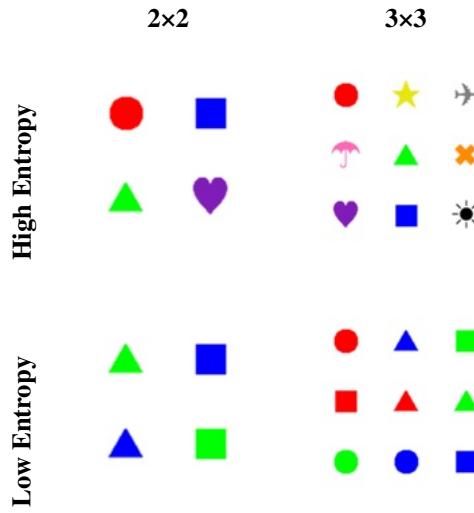


Figure 9: Image configurations for investigating binding errors.

To investigate the role of position IDs in binding errors, we created datasets varying in grid size and entropy. Low entropy datasets used all possible conjunctions from limited color and shape sets, while high entropy datasets used the most distinct conjunctions from larger sets. The 2×2 grid (280x280 pixels; 4 objects) used 2 colors \times 2 shapes for low entropy and the 4 most distinct conjunctions from 4 colors \times 4 shapes for high entropy (both involving 100 trials/combination; 1600 total). The 3×3 grid (392x392 pixels; 9 objects) used 9 conjunctions from 3 colors \times 3 shapes for low entropy and 9 objects with unique color and shape for high entropy (both involving 50 trials/combination; 4,050 per condition).

756 A.2 REPRESENTATIONAL SIMILARITY ANALYSIS PROTOCOL
757

758 We used representational similarity analysis (RSA) to assess the alignment of the model’s internal
759 representations with either the spatial position or the semantic features (color and shape) of objects.
760 RSA quantifies representational alignment by comparing pairwise representational similarity matrices
761 (RSMs) between model embeddings and hypothesized representational structures, as quantified
762 by correlation metrics.

763 A.2.1 TOKEN POSITIONS USED FOR RSA
764

765 We performed RSA on embeddings from two different token position sources. The first was the
766 last token in the sequence, positioned immediately before the description of the target object. This
767 token represents a critical decision point where the model must integrate all relevant information
768 to generate the appropriate object description. Analyzing this single token position yields RSMs
769 of shape $[1, T, T]$, where T represents the number of trials. The second source was the comma
770 tokens that punctuate each object description in the prompt. Specifically, we analyze the comma
771 tokens that follow each of the $N-1$ object descriptions preceding the target. These tokens serve as
772 natural boundaries between object descriptions and we found that they encode information about
773 the preceding object in the description. This multi-token approach produces RSMs of shape $[N-1,$
774 $T, T]$. For both token position sources, we extract activations from two locations within the model:
775 the residual stream and the attention block outputs.

776 A.2.2 MODEL RSM CONSTRUCTION
777

778 We constructed model RSMs by computing pairwise cosine similarities between activations across
779 samples. All our RSAs were performed on the residula stream. We systematically extract activations
780 at the specified token positions, yielding a single representation per layer. Given a set of activations
781 $\text{Act}(i, t)$ for token i and trial t , we computed pairwise similarities across all trial pairs. Each entry
782 in the resulting RSM reflects the similarity of representations across two trials.

783 A.2.3 TARGET RSM CONSTRUCTION
784

785 To evaluate what type of information these representations encode, we constructed two types of
786 target RSMs. The position-based RSM captures spatial relationships using ground-truth (x, y) co-
787 ordinates $\text{coord}(i, t)$ of object i in trial t , with normalized Euclidean distances:

$$789 \quad \text{RSMpos}[i, t_1, t_2] = 1 - \frac{D(\text{coord}(i, t_1), \text{coord}(i, t_2))}{\max t_1, t_2 D} \quad (2)$$

792 The feature-based RSM represents semantic similarity through visual attributes. We constructed
793 separate matrices for color and shape attributes, then combined them:

$$796 \quad \text{RSMcolor}[i, t_1, t_2] = \mathbb{1}(\text{color}(i, t_1) = \text{color}(i, t_2)) \quad (3)$$

$$797 \quad \text{RSMshape}[i, t_1, t_2] = \mathbb{1}(\text{shape}(i, t_1) = \text{shape}(i, t_2)) \quad (4)$$

$$798 \quad \text{RSMfeat}[i, t_1, t_2] = \frac{1}{2}(\text{RSMcolor}[i, t_1, t_2] + \text{RSMshape}[i, t_1, t_2]) \quad (5)$$

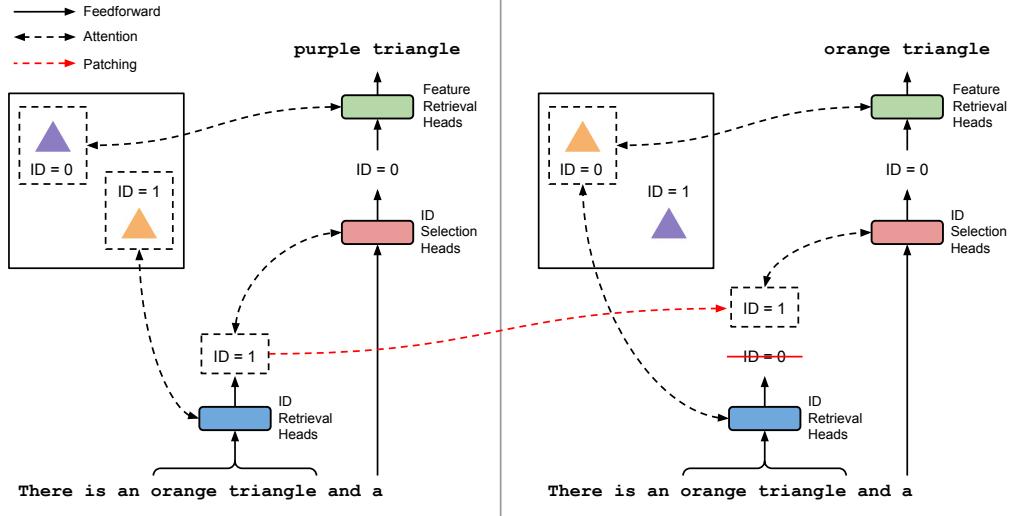
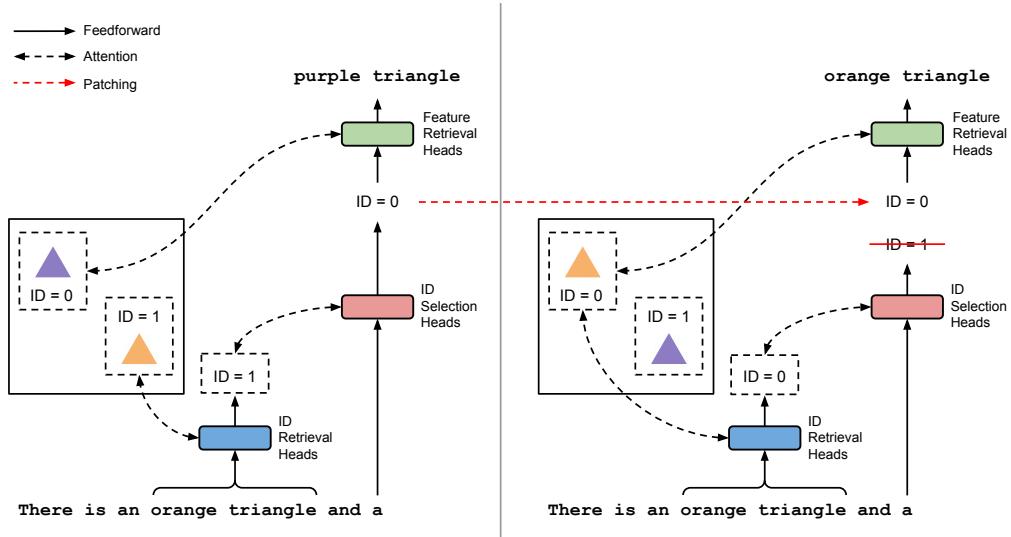
801 A.2.4 QUANTIFYING ALIGNMENT
802

803 We quantified the alignment between model representations and object features by computing Pearson
804 correlations between model RSMs and each target RSM. These correlations produce scalar
805 similarity scores that vary depending on the source of the activations — for residual stream analysis,
806 we obtained one score per layer, while for attention block analysis, we obtained one score per head
807 per layer. By comparing these alignment patterns across our two token sources, and between the
808 residual stream and attention mechanisms, we can trace how different types of object information
809 are encoded and transformed throughout the model’s processing hierarchy.

810 A.3 ILLUSTRATION OF CMA CONDITIONS
811

812 For the CMA analysis all of the prompts follow the simple Scene description template. In this
813 image there is a [COLOR] [SHAPE] and a and the model is tasked to complete the
814 sentence with the missing colored shape.

815 Here we present schematic illustrations of the different CMA conditions used to identify the different
816 sets of attention heads described in Section 3.4, namely the ID retrieval heads (Figure 10), ID
817 selection heads (Figure 11), and the feature retrieval heads (Figure 12).

835 Figure 10: Causal mediation procedure used to identify ID retrieval heads.
836855 Figure 11: Causal mediation procedure used to identify ID selection heads.
856
857
858
859
860
861
862
863

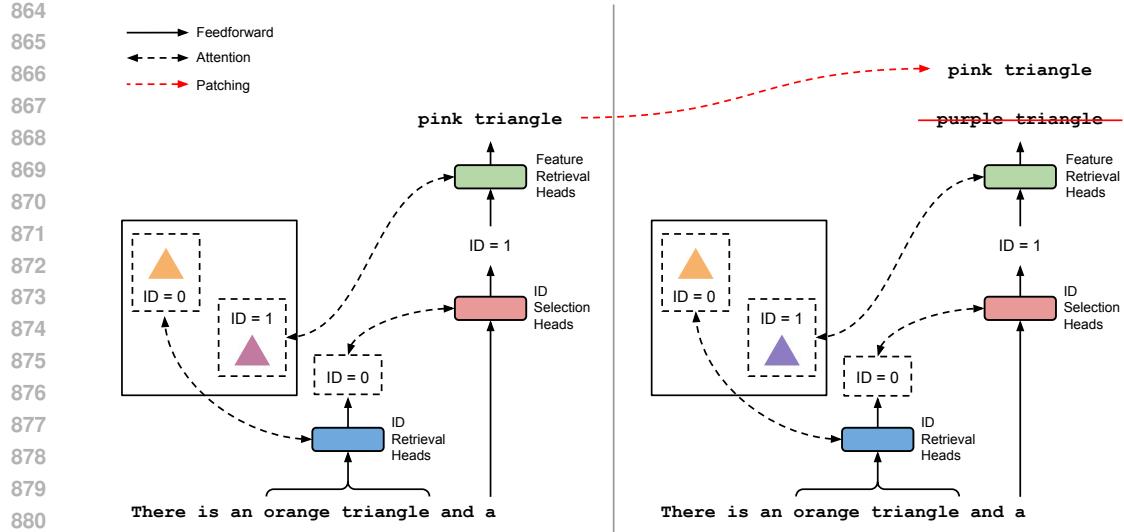


Figure 12: Causal mediation procedure used to identify feature retrieval heads.

A.4 ILLUSTRATION OF ABSOLUTE VS. RELATIVE POSITION INTERVENTION

Figure 13 illustrates the intervention performed to test whether position IDs employ an absolute or relative spatial coding scheme. The figure depicts a pair of images involving two different 2x2 grid configurations. For the first image, a prompt was presented including 3 out of the 4 objects present in the image (specific prompt: In this image there is a [COLOR0] [SHAPE0], a [COLOR1] [SHAPE1], a [COLOR2] [SHAPE2] and a), and the output of the ID selection heads was extracted at the final token position (where the model generated a description of the target object). For the second image, a prompt was presented including 2 out of the 4 objects (specific prompt: In this image there is a [COLOR0] [SHAPE0], a [COLOR1] [SHAPE1], a). One of the missing objects appeared at the same *absolute* position as the target object in the first image (the center of the image), and the other missing object appeared at the same *relative* position as the target object from the first image (the lower right quadrant of the 2x2 configuration). The ID for the target object in the first image was patched into the output of the ID selection heads for the target object in the second image, and we assessed whether the object generated by the model matched the prediction of the absolute vs. relative position hypotheses. The results are shown in Figure 29.

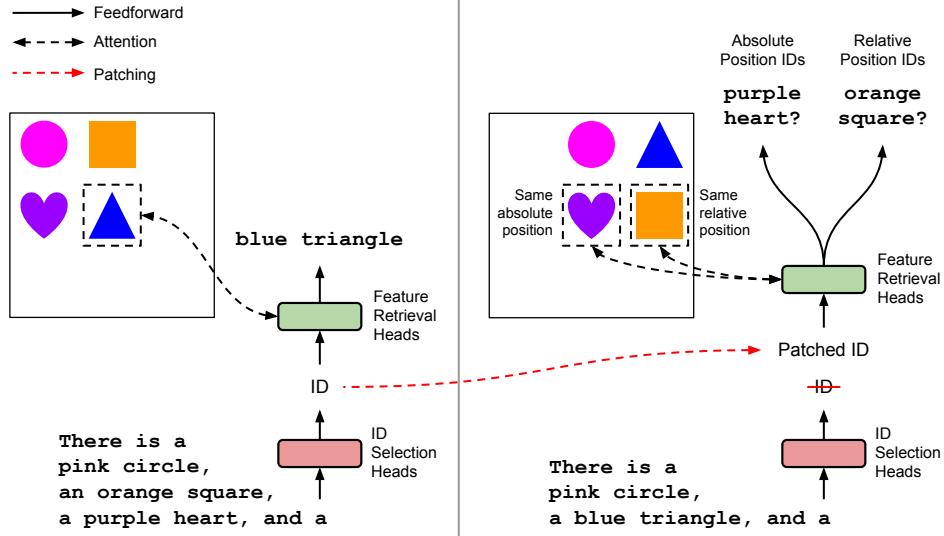
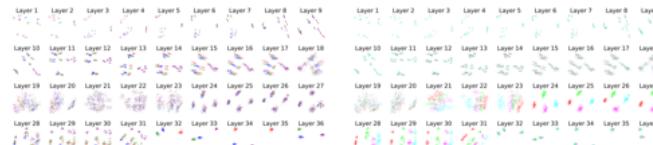


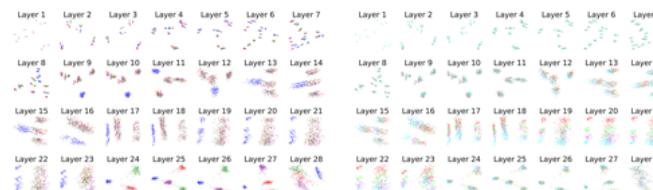
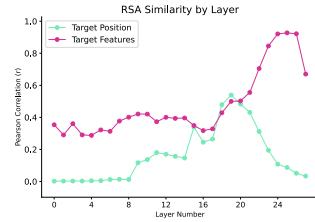
Figure 13: Illustration of the intervention testing for relative vs. absolute spatial coding.

918 A.5 ADDITIONAL RESULTS
919920 A.5.1 REPRESENTATIONAL ANALYSES
921

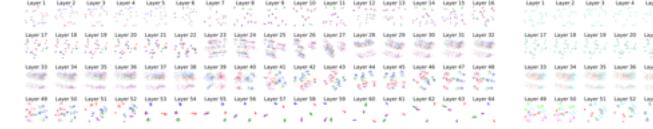
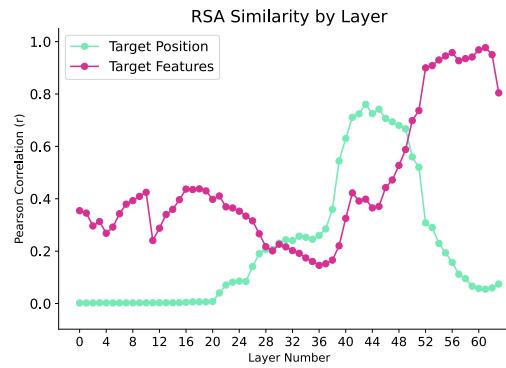
922 Here we present RSA results across a range of different open-source VLMs (Qwen2-v1, LLaVa 1.5,
923 LLaVa-Onevision-7b, and Qwen 2.5) and model scales (Qwen 2.5 3b, 7b, 32b). We find convergent
924 evidence for the same two stage processing (position followed by object features) across all models
925 and model scales.



933 Figure 14: Representational analyses for Qwen2.5-VL-3b.



944 Figure 15: Representational analyses for Qwen2.5-VL-7b.



944 Figure 16: Representational analyses for Qwen2.5-VL-32b.

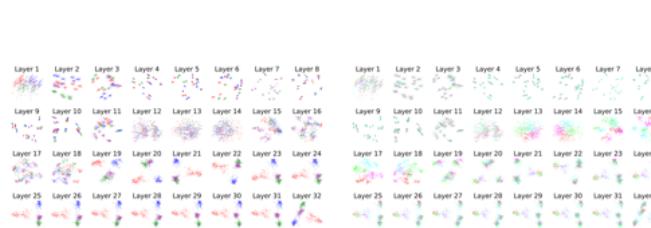
972
973
974
975
976
977
978
979
980

Figure 17: Representational analyses for Llava1.5-7b.

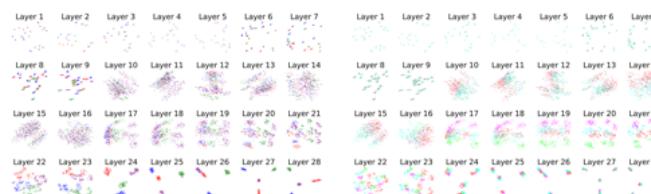
981
982
983
984
985
986
987
988
989
990

Figure 18: Representational analyses for LlavaOnevision-7b.

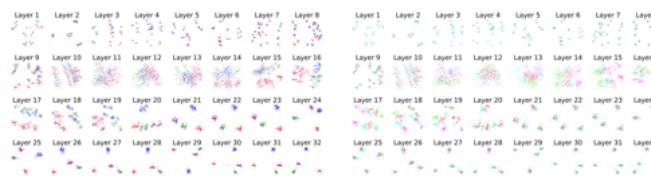
991
992
993
994
995
996
997
998
999

Figure 19: Representational analyses for Idefics2-8b.

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

A.5.2 CAUSAL MEDIATION ANALYSES

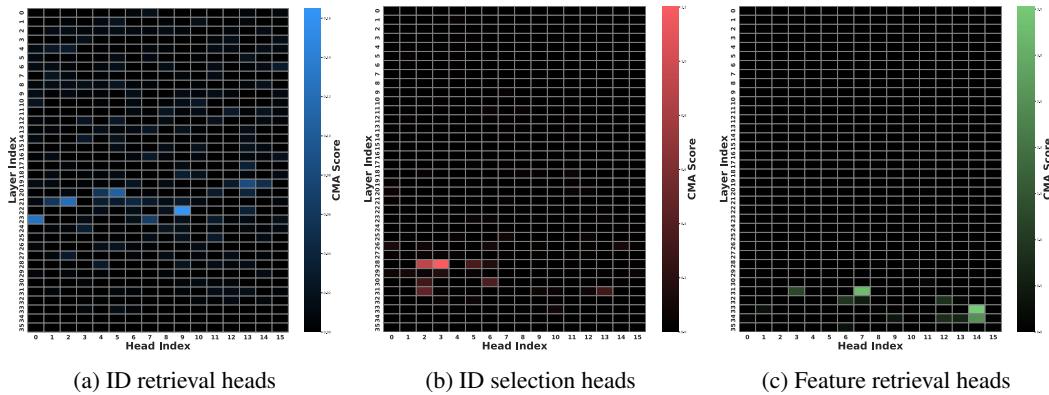


Figure 20: CMA results for Qwen-2.5-VL-3b.

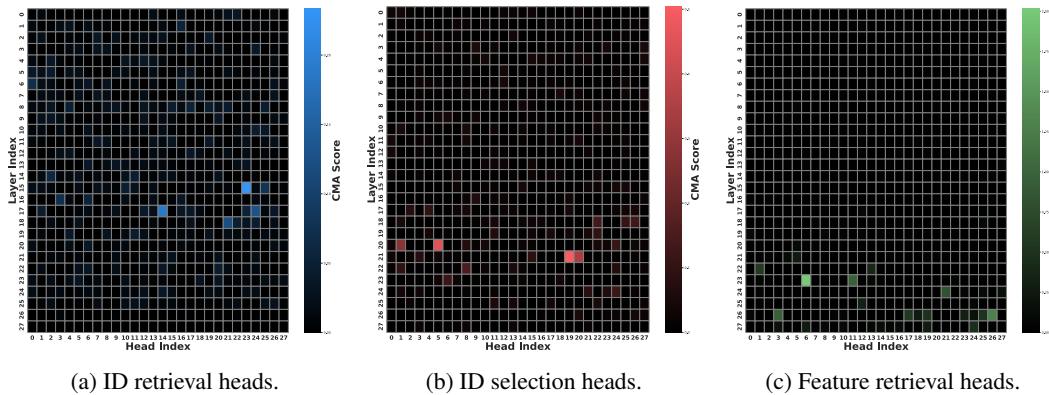


Figure 21: CMA results for Qwen-2.5-VL-7b.

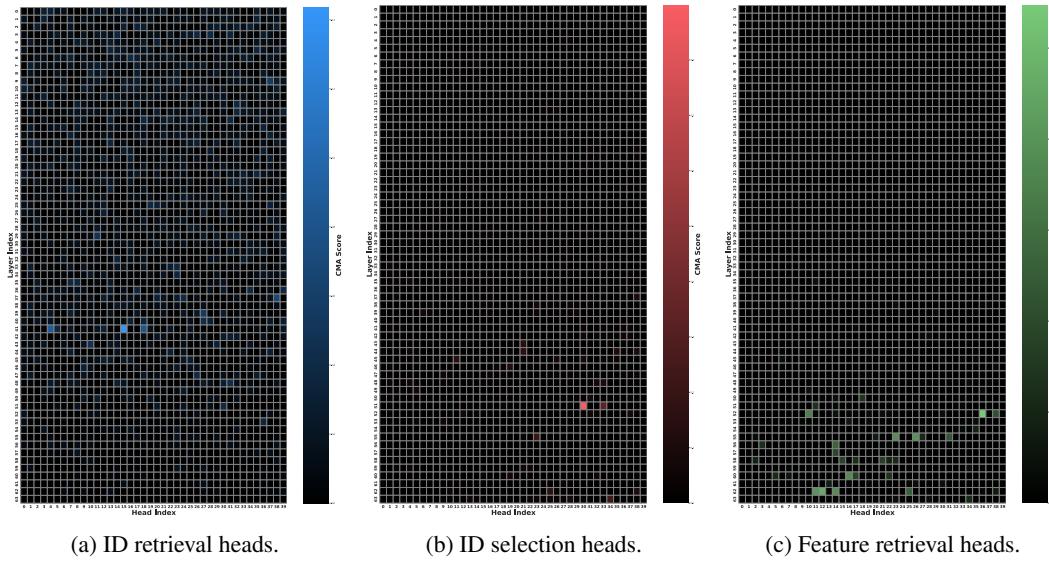


Figure 22: CMA results for Qwen-2.5-VL-32b.

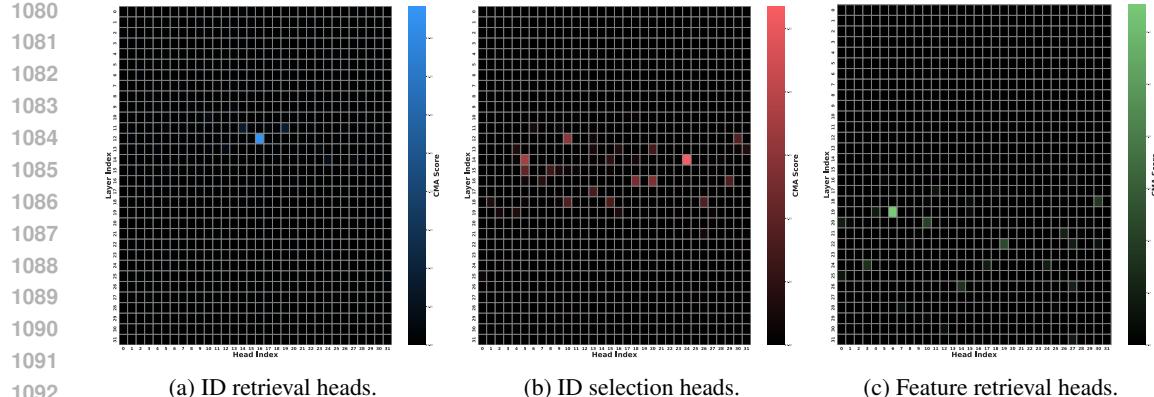


Figure 23: CMA results for Llava-1.5-7b.

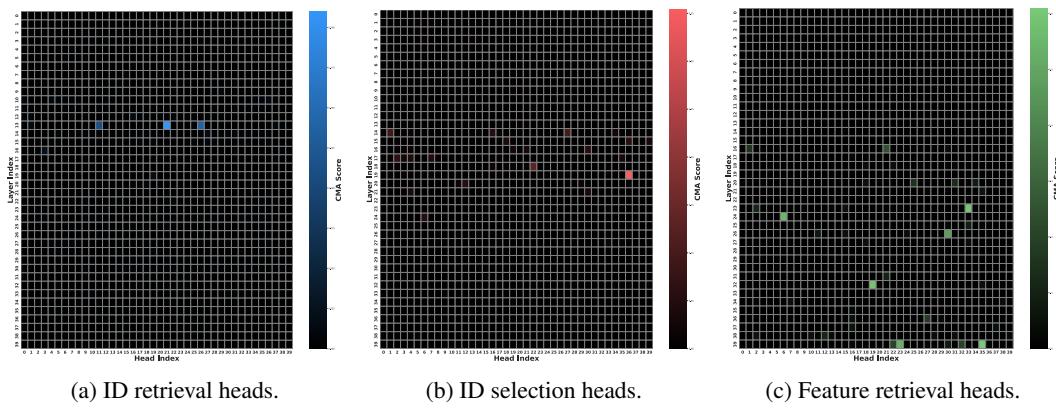


Figure 24: CMA results for Llava-1.5-13b.

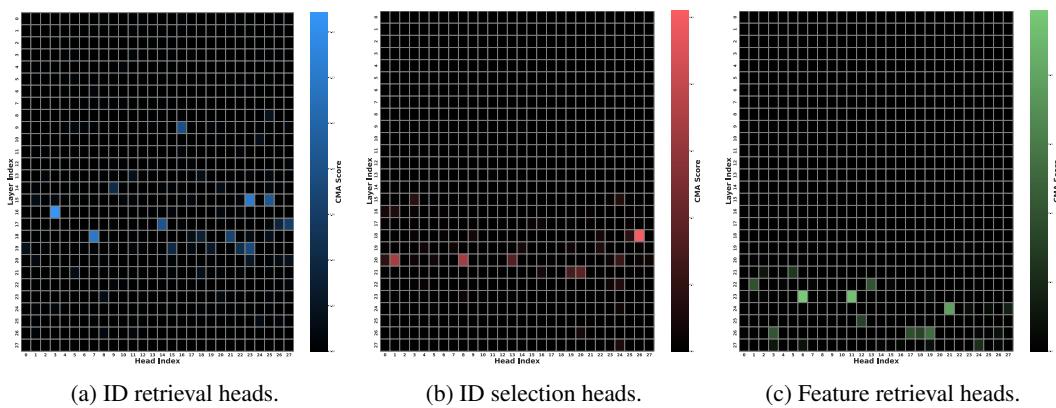
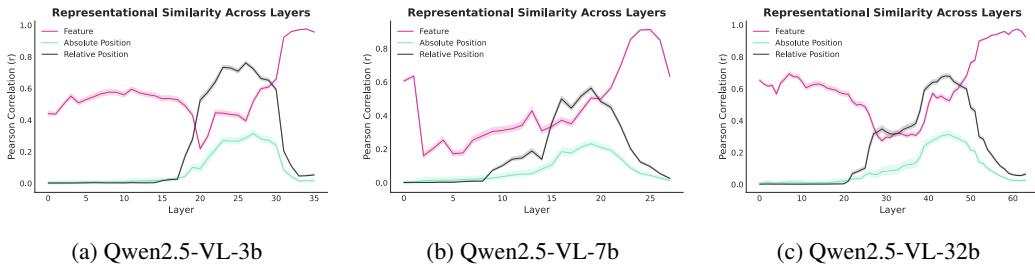


Figure 25: CMA results for Llava-OneVision.

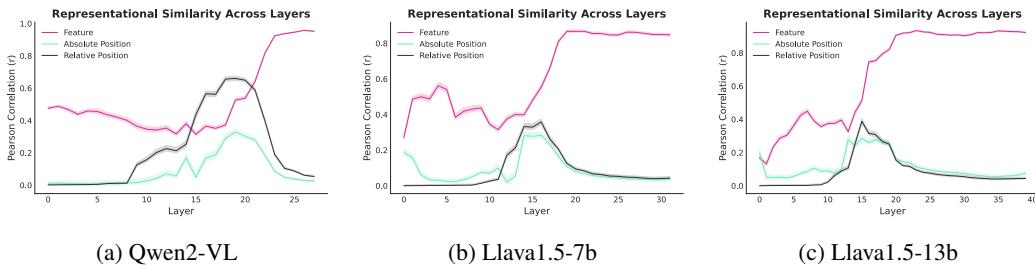
1134 A.5.3 ADDITIONAL RESULTS FOR RELATIVE VS. ABSOLUTE SPATIAL CODING
1135

1136 **RSA Analyses.** We performed RSA on the last token in a scene description task. The task involved
1137 completing a caption that described all but one of the objects present in the image. Our results
1138 (Figures 26 and 27) confirmed that the Qwen family of models employ a relative position coding
1139 scheme, while the difference was less pronounced for the Llava family. Interestingly, those results
1140 are also reflected in the effectiveness of the interventions reported in Figure 29. We also tested a
1141 model from the Idefics family, finding similar results as those seen for the Qwen models (Figure 28).
1142

1149 Figure 26: RSA results comparing relative vs. absolute spatial coding schemes for Qwen2.5 models.
1150

1151

1152

1153 Figure 27: RSA results comparing relative vs. absolute spatial coding schemes for Qwen2 and
1154 Llava1.5 models.
1155

1156

1157

1158

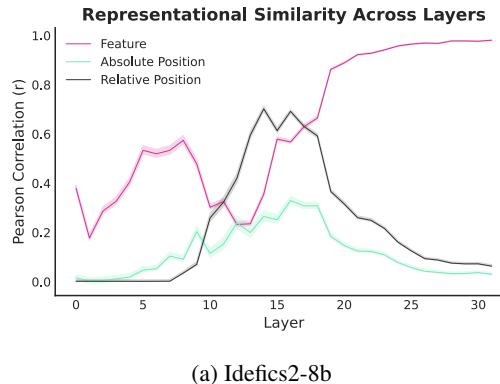
1159

1160

1161

1162

1163

1164 Figure 28: RSA results comparing relative vs. absolute spatial coding schemes for Idefics2-8b.
1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188
 1189 **Intervention Setup.** Figure 29 shows the results of the intervention testing for relative vs. absolute
 1190 spatial coding, as described in Section A.4

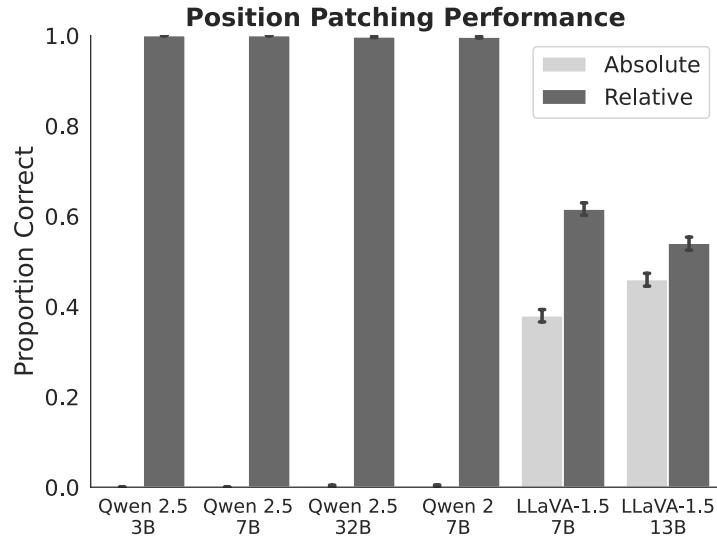


Figure 29: Intervention results testing for relative vs. absolute spatial coding schemes.

A.5.4 BINDING ERRORS

1214 Here we report RSA results in the low vs. high entropy conditions, illustrating the relationship
 1215 between position IDs and binding errors (similar to Figure 6), for all models.

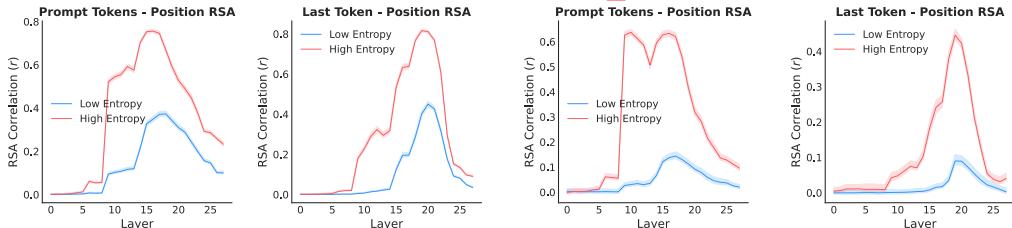


Figure 30: RSA for Qwen2-VL.

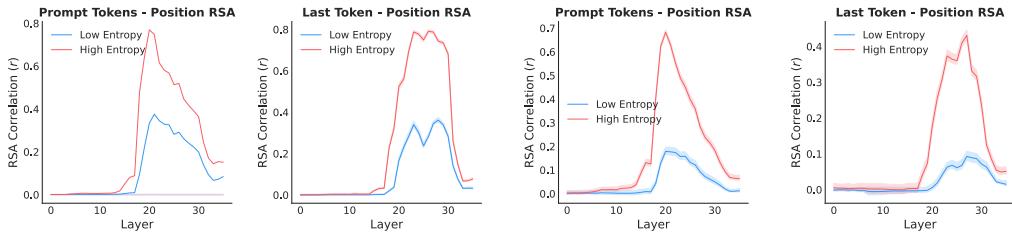


Figure 31: RSA for Qwen2.5-VL-3b.

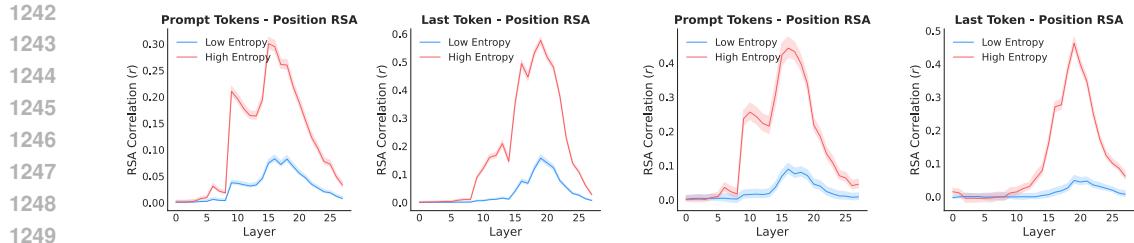


Figure 32: RSA for Qwen2.5-VL-7b.

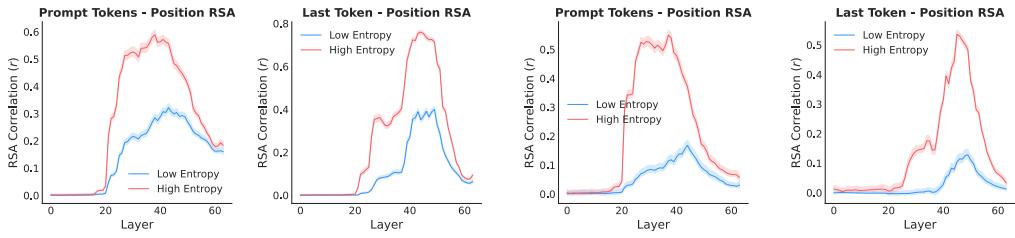


Figure 33: RSA for Qwen2.5-VL-32b.

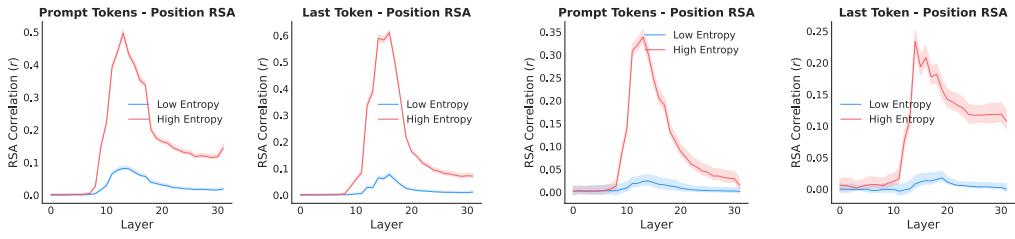


Figure 34: RSA for Llava1.5-7b.

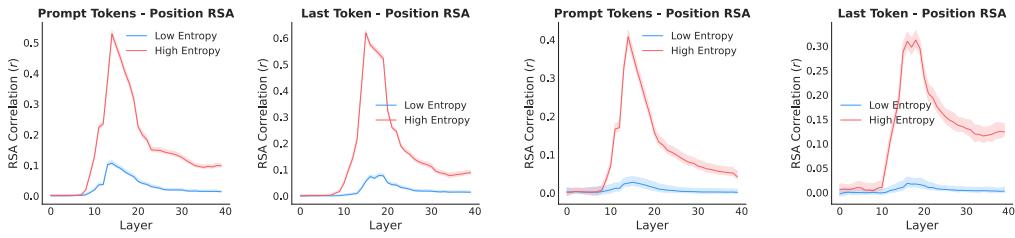


Figure 35: RSA for Llava1.5-13b.

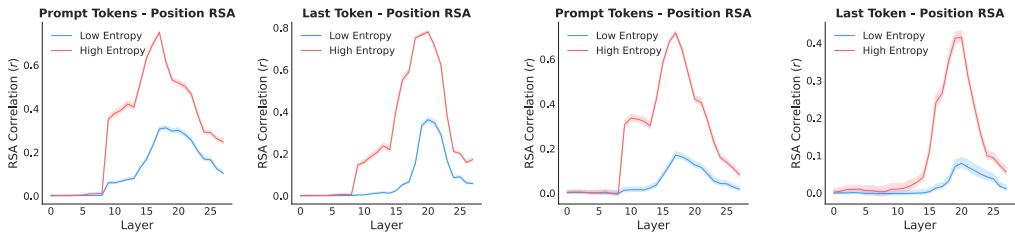


Figure 36: RSA for LlavaOne-7b.

1296
1297

A.5.5 OPTIMIZING HYPERPARAMETERS FOR POSITION ID INTERVENTION

1298
1299
1300
1301

In this section, we report the hyperparameter sweep results for the position ID intervention using the PUG environment. We report intervention performance as a function of the number of top-K heads that are intervened on and the magnitude of the intervention coefficient α , as described in Section 4.2.

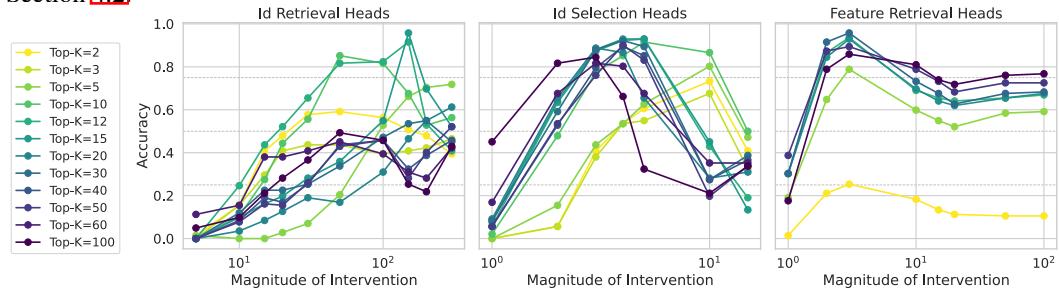
1302
1303
1304
1305
1306
1307
1308
1309
13101311
1312

Figure 37: Qwen-2.5-VL-3B

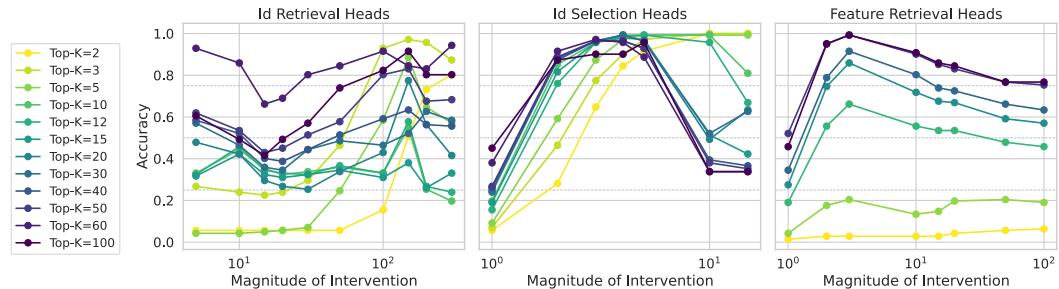
1313
1314
1315
1316
1317
1318
1319
1320
13211322
1323

Figure 38: Qwen-2.5-VL-7B

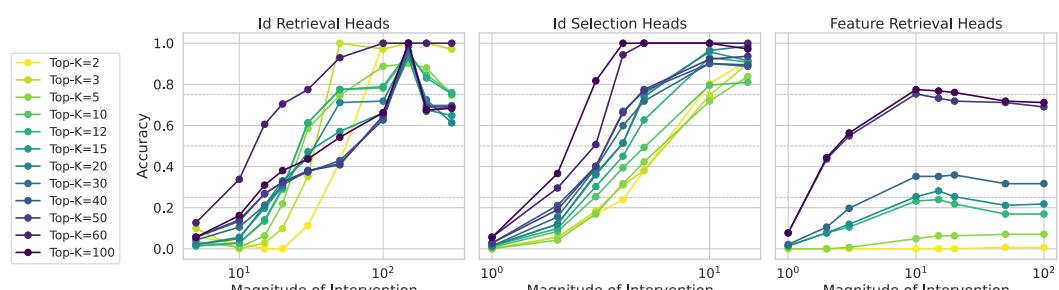
1324
1325
1326
1327
1328
1329
1330
1331
13321333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 39: Qwen-2.5-VL-32B

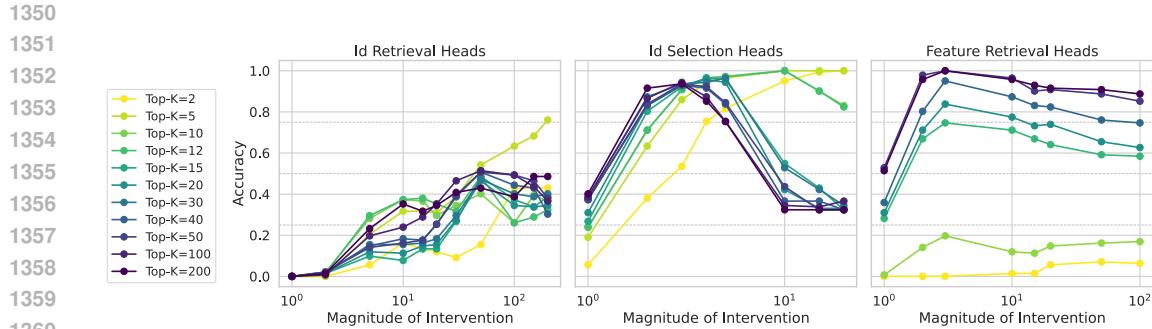


Figure 40: Qwen-2-VL

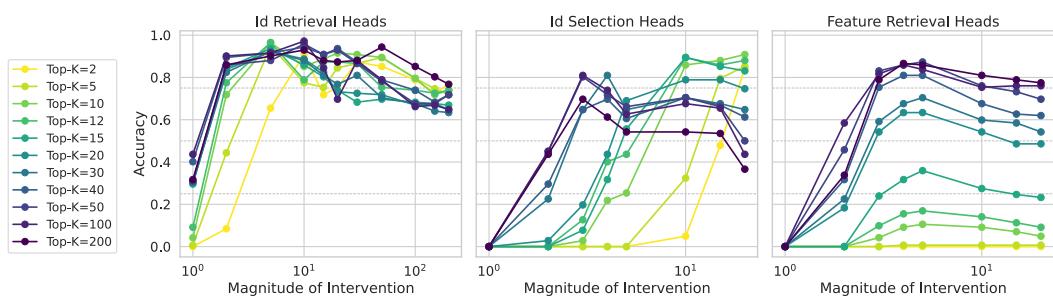


Figure 41: Llava-1.5-7B

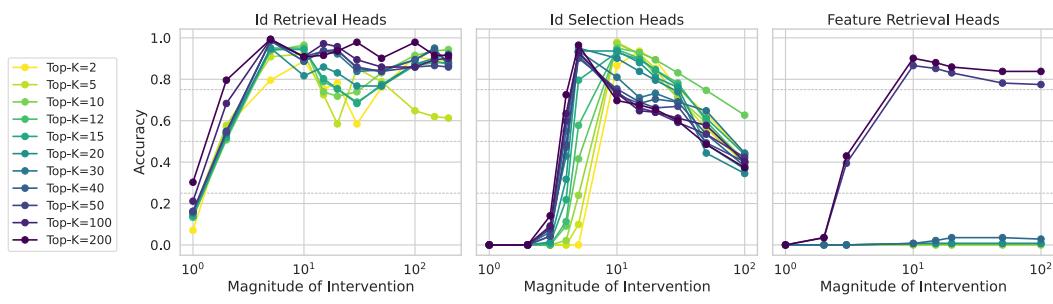


Figure 42: Llava-1.5-13B

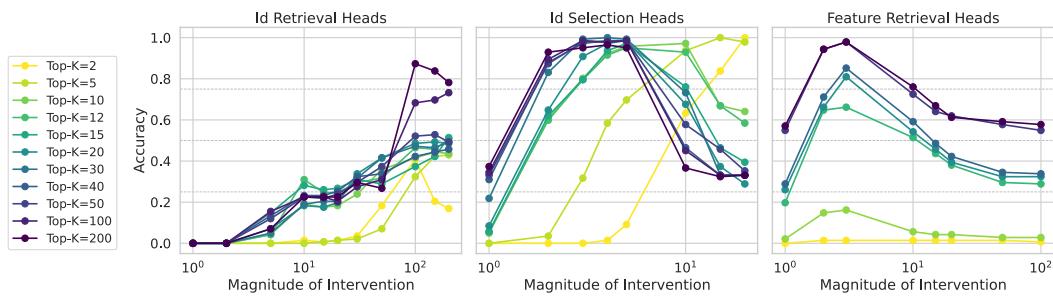
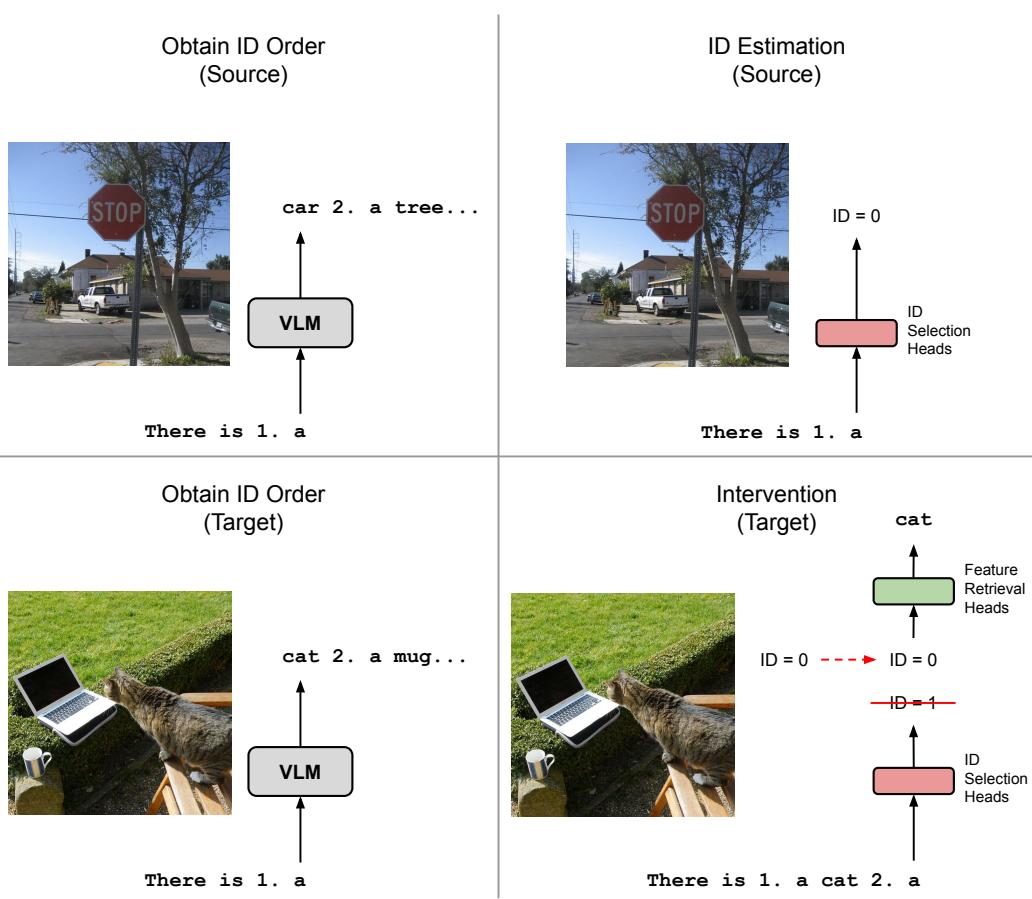


Figure 43: Llava-OneVision

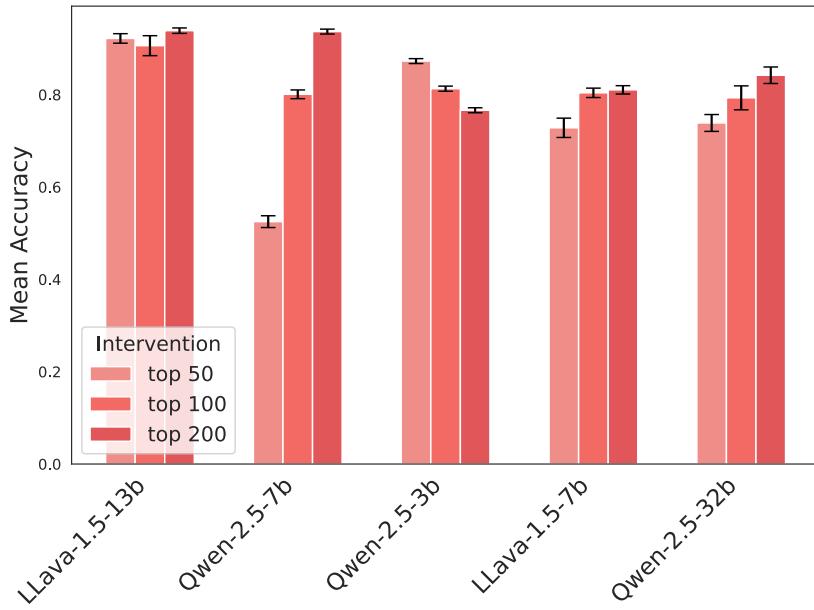
1404
1405 **B GENERALIZATION OF POSITION IDs TO REAL-WORLD SETTINGS**
1406
1407
1408
1409
14101435 Figure 44: Illustration of the intervention performed with the COCO dataset.
1436

1437 In this section, we verify that the use of position IDs generalizes to real-world images. Importantly,
1438 in contrast to the experiments conducted in the main sections, for real-world spatial arrangements we
1439 do not know the assignment of IDs to objects in the image. We hypothesized that the ID assignment
1440 order would be reflected by the order in which objects were enumerated in an open-ended scene
1441 description task. Accordingly, we obtained an ordering for the objects in an image based on the order
1442 in which the model described these objects, and then used this ordering to perform an intervention
1443 (Figure 44).

1444 Specifically, we first created separate source and target sets using images from the COCO
1445 dataset (Lin et al., 2014). The source set was used to estimate position IDs that were then used
1446 to intervene on scene description for the target set. For each image in the source set, we first ob-
1447 tained the model’s assigned order by presenting the prompt ‘In this image there is 1.
1448 a’. We then parsed the response and extracted the first two objects (O_0, O_1) listed by the model (fil-
1449 tering out cases in which the model described the same object twice). Then, using the same image
1450 and prompt, we extracted the output of the ID selection heads from the final position (at which the
1451 model generated O_0). We performed this procedure for all images in the source set and averaged the
1452 resulting embeddings, yielding $\sim ID_{O_0}$, an estimate of the position ID for object O_0 .

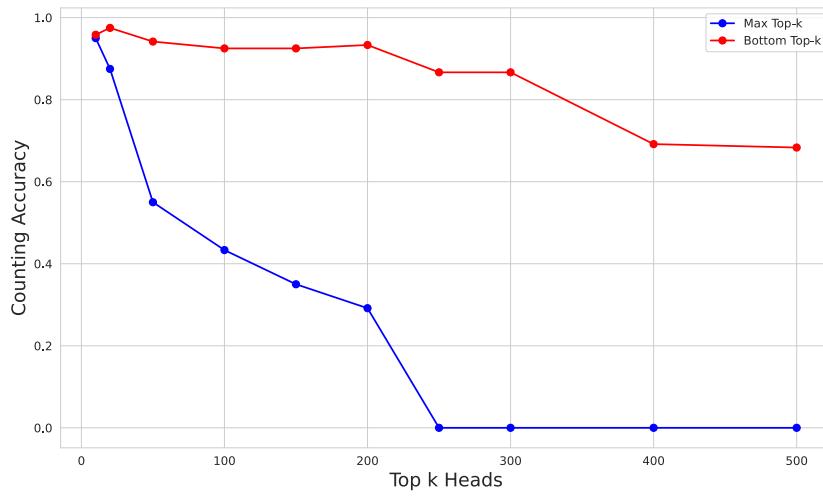
1453 We then used this estimated position ID embedding to intervene on scene description with images
1454 from the target set. For each image in the target set, we again obtained the model’s assigned order for
1455 the first two objects (O_0, O_1). We then presented the model with the same image and the prompt ‘In
1456 this image there is 1. a O_0 2. a’ (where O_0 was filled in based on the model’s assigned order), and replaced
1457 the output of the ID selection heads at the last token position with the estimated position ID embedding
1458 $\sim ID_{O_0}$. Our prediction was that this intervention should cause the model to repeat O_0 .

1458 For this experiment, we used the COCO 2017 validation set, with 3 random splits for the source
 1459 and target sets. We performed the intervention on the top 50, 100, and 200 ID selection heads (as
 1460 identified by the CMA scores in A.5.2). We report the results for models from the Llava1.5 and
 1461 Qwen2.5 families in Figure 45.



1482 Figure 45: COCO intervention results. Intervention performed on ID selection heads.
 1483
 1484

1485 C INVOLVEMENT OF VISUAL SYMBOLIC MECHANISMS IN COUNTING



1504 Figure 46: Ablation of top- vs. bottom-K heads (as identified by CMA) on a counting task. Note
 1505 that the model contains a total of 2,560 attention heads.
 1506

1506 To test whether the visual symbolic mechanisms identified in the main text are involved in more
 1507 complex tasks that require binding, we performed an experiment with a counting task. We hypothe-
 1508 sized that these mechanisms are involved in enumerating the objects present in an image, and that the
 1509 ablation of these mechanisms would interfere with this enumeration process, and therefore interfere
 1510 with the final count provided by the model. To test this, we sorted the attention heads in the model
 1511 according to their scores (as given by the maximum CMA score for each head from the 3 identified
 stages) and ablated (by setting the output to 0) either the top-K or bottom-K heads according to

1512 those scores. We tested the impact of this ablation in a counting task. The task involved images with
 1513 between 3 and 8 unique objects with the following characteristics:
 1514

1515 • shapes sampled from: triangle, square, circle, cross
 1516 • colors sampled from: red, blue, green, yellow
 1517 • positions sampled randomly from a 3x3 grid

1519 We used the following prompt for this experiment:

1520 **Counting Task Prompt**

1523 You are given an image containing multiple colored objects. Your task is
 1524 to carefully observe the image and identify all the unique colored
 1525 objects present.
 1526 Enumerate all the unique colored objects you find in the image, providing
 1527 a numbered list for clarity.
 1528 After listing the objects, provide the total count of these unique
 1529 colored objects.
 1530 Format the total count by writing 'Answer:' followed by the number. It is
 1531 crucial to adhere to this format: 'Answer: TOTAL_COUNT'.

1532 Figure 46 shows the ablation results for the best performing model on this task, Qwen2.5-32b.
 1533 Ablation of the top-K heads had a much stronger impact on task performance than than the bottom-
 1534 K heads, with performance falling to 0% after the ablation of the highest-scoring 250 heads (out of
 1535 2,560 heads in total), whereas the model still displayed performance close to 70% even after ablating
 1536 the lowest-scoring 500 heads. These results indicate that the identified visual symbolic mechanisms
 1537 play an important role in more complex tasks that require binding, such as counting.
 1538

1539 **D BINDING ERROR INTERVENTIONS**

1541 1542 1543 1544 1545 1546 1547 1548	Model	High Entropy		Low Entropy		Improvement	
		No Intervention	With Intervention	No Intervention	With Intervention		
1549	LLaVA 1.5 7B	70.30%	27.50%	32.10%	4.60%		
1550	LLaVA 1.5 13B	75.00%	41.20%	51.60%	10.40%		
1551	Qwen 2.5-VL 3B	91.20%	69.00%	80.10%	11.10%		
1552	Qwen 2.5-VL 7B	89.90%	51.20%	62.30%	11.10%		

1549 Table 1: Performance (accuracy) on high vs. low entropy scene description. Intervention performed
 1550 on ID selection heads in low entropy condition.
 1551

1552 To causally test the relationship between binding errors and failures in the position ID mechanism,
 1553 we conducted an activation patching intervention targeting the ID selection heads identified in Sec-
 1554 tion 3.4. We leveraged the observation that models generate robust position ID representations in
 1555 high-entropy settings (distinct feature conjunctions) but suffer from representational collapse in low-
 1556 entropy settings (shared features). We first computed the mean activations of the top-k ID selection
 1557 heads during successful trials on the high-entropy dataset to extract a robust prototype of the spatial
 1558 symbol for each grid position. We then intervened during the processing of low-entropy trials by
 1559 replacing the activations of the ID selection heads with those obtained from the high-entropy trials.

1560 The results of this intervention are presented in Table I. Injecting position IDs from high-entropy
 1561 trials significantly improved performance in low-entropy trials across all tested architectures. For
 1562 instance, Qwen 2.5-VL 3B improved by 11.1%, while LLaVA 1.5 13B improved by 10.4%. Notably,
 1563 the effectiveness of the intervention appears contingent on the quality of the source representations;
 1564 LLaVA 1.5 7B showed the smallest improvement (+4.6%), consistent with its lower baseline perfor-
 1565 mance in the high-entropy setting (70.3%). This suggests that because the source position IDs were
 less precise, the resulting patch was less effective in improving performance in the low-entropy

1566 condition. Overall, these findings demonstrate that patching more precise position IDs from the
1567 high-entropy condition can attenuate binding errors during the low-entropy condition, providing
1568 causal evidence that position ID failures are responsible for binding errors.
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619