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Abstract

In-context learning with large language models001
(LLMs) is the current mainstream method for002
text-to-SQL. Previous studies have explored se-003
lecting relevant demonstrations from a human-004
labeled demonstration pool, but these methods005
lack diversity and incur high labeling costs. In006
this work, we address measuring and enhancing007
the diversity of the text-to-SQL demonstration008
pool. First, we introduce a diversity metric and009
present that the diversity of the existing label-010
ing data can be further enhanced. Motivated011
by these findings, we propose FUSED that iter-012
atively fuses demonstrations to create a diverse013
demonstration pool based on human labeling014
or even from scratch with LLMs, reducing la-015
beling costs. FUSED achieves an average im-016
provement of 3.2% based on existing labeling017
and 5.0% from scratch on several mainstream018
datasets, demonstrating its effectiveness.1019

1 Introduction020

Text-to-SQL is a critical task that has garnered021

widespread attention for its ability to reduce the022

overhead of accessing databases by automatically023

generating SQL queries in response to user ques-024

tions (Qin et al., 2022). Recently, in-context learn-025

ing based on large language models (LLMs) has026

become the predominant method for this task, sig-027

nificantly improving performance while minimiz-028

ing the need for fine-tuning (Chen et al., 2024; Qu029

et al., 2024a; Talaei et al., 2024). For the in-context030

learning paradigm, besides the user question and031

the database, the LLM is also provided with several032

demonstrations, guiding the model to generate the033

corresponding SQL queries accurately.034

Currently, numerous works (Su et al., 2023; Ren035

et al., 2024; Pourreza et al., 2024) explore how036

to select question-relevant demonstrations from a037

human-labeled demonstration pool. However, re-038

lying entirely on human labeling limits the perfor-039

1Our data and code will be released after review.

Database
TABLE wine (price, year, name, …)
TABLE grapes (color, grape, id, …)

Demonstration Pool (Database / Question / SQL)
{database} / The max price of wines? / SELECT max(price) FROM wine
{database} / Grapes per color? / SELECT count(*) FROM grapes GROUP BY color

Fused Demonstration Pool
… …
{database} / Max price per year? / SELECT 
max(price) FROM wine GROUP BY year

Answer
SELECT max(pop) FROM country

Answer
SELECT max(pop) FROM country GROUP 
BY code

Selected Demonstration
{database} / The max price of wines? / 
SELECT max(price) FROM wine

Selected Demonstration
{database} / Max price per year / SELECT 
max(price) FROM wine GROUP BY year

User Database / User Question
TABLE country (pop, code, …); …  / Most commonly used languages in each country?

SynthesizeLabel

Fuse

Select

Select

Lower-Cost

Higher-Diversity

Figure 1: The comparison between the baseline (left)
and FUSED (right) of obtaining the demonstration pool
for text-to-SQL. FUSED can synthesize the demonstra-
tion pool from scratch or enhance the diversity of the
existing labeling without additional human involvement.

mance of text-to-SQL based on in-context learning 040

due to two main issues: (i) Low Diversity: Human- 041

labeled data could lack diversity since the data la- 042

beled by the same annotator could be somewhat 043

similar (Ramalingam et al., 2021; Guo, 2023); (ii) 044

High Cost: Human labeling requires significant 045

labor overhead. To address these issues, thereby 046

improving text-to-SQL performance, we discuss: 047

(i) Theoretical metric for measuring the diver- 048

sity of the demonstration pool (§2); (ii) Practical 049

method that builds a diverse demonstration pool 050

with existing labeling or even from scratch (§3). 051

First, we analyze that the diversity of the exist- 052

ing labeling can be further enhanced. We begin 053

by discussing the necessity of demonstration pool 054

diversity and present a diversity metric called Di- 055
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versity Measurement (DM). Using the metric,056

we prove that the existing labeling diversity can057

be further enhanced by showing that there exist058

demonstration pools with significantly higher DM.059

Based on this analysis, we present our method060

called FUSing itEratively for Demonstrations061

(FUSED), which iteratively synthesizes the demon-062

strations using LLMs with existing labeling or from063

scratch, as shown in Figure 1. To tackle the Low Di-064

versity, FUSED fuses demonstrations from previous065

iterations, ensuring that the new demonstrations are066

distinct from the previous, thus enhancing diversity.067

To address the High Cost of labeling, our method068

employs LLMs to generate demonstrations, thereby069

reducing the need for human labeling.070

To validate the effectiveness of our method, we071

apply FUSED to several mainstream text-to-SQL072

datasets, including Spider (Yu et al., 2018) and073

KaggleDBQA (Lee et al., 2021). We synthesize074

demonstrations and compare performance with ex-075

isting labeling and from scratch, where FUSED076

achieves an average performance improvement of077

3.2% and 5.0%, respectively, confirming its effec-078

tiveness. Further analysis shows that FUSED sig-079

nificantly enhances DM of the existing labeling,080

demonstrating its capability to enhance the diver-081

sity of the existing demonstration pool.082

Our contributions are as follows:083

• We present DM, a metric to measure the diversity084

of a given demonstration pool for text-to-SQL,085

revealing that the diversity of the existing human-086

labeling data can be further enhanced.087

• We propose FUSED, a method to build a high-088

diversity demonstration pool iteratively through089

human-free synthesis based on existing labeling090

data or even from scratch.091

• We validate FUSED on multiple mainstream text-092

to-SQL datasets, achieving performance improve-093

ments of 3.2% with existing labeling and 5.0%094

from scratch, demonstrating its effectiveness.095

2 Analysis096

In this section, we present that the diversity of097

the existing labeled demonstration pool can be098

further enhanced. First, we discuss the necessity099

of high diversity for a demonstration pool. Then,100

we introduce a metric to quantify the demonstration101

pool diversity. Based on this metric, we discuss that102

the diversity of the existing labeling data can be103

further enhanced. We compare the metric present104

with the other existing metric in Appendix A.105

Low Diversity (DM=0.12) High Diversity (DM=0.27)

1 / 0.12

1 / 0.27

Figure 2: Two demonstration pools with different DM.
• represents the encoded demonstration, and ✖ repre-
sents the encoded user questions, in which the darkest
denotes the user question with the least similarity to
the most similar demonstration. The Euclidean distance
between the user question and the most similar demon-
stration is indicated next to each line.

Necessity of the Diversity Regarding in-context 106

learning, LLMs imitate the demonstration provided 107

to generate the answer (Brown et al., 2020). There- 108

fore, given a user question, previous works select 109

the most similar demonstrations from a demonstra- 110

tion pool to guide the LLMs in generating answers 111

(Luo et al., 2024). However, since user questions 112

are unpredictable, the demonstration pool should 113

be as diverse as possible to cover various user ques- 114

tions. The higher the diversity, the higher the simi- 115

larity between any user questions and the demon- 116

strations, thereby better guiding the answer gener- 117

ation; the lower the diversity, the more and more 118

user questions are less similar to the demonstra- 119

tions, decreasing the model performance. 120

Diversity Measurement Based on the preced- 121

ing discussion, we employ the user question with 122

the lowest similarity to the demonstration pool to 123

measure the diversity of the demonstration pool. 124

Formally, let D = {di} represent the demonstra- 125

tion pool, U = {u} denote the user questions, and 126

sim(u, d) as the similarity between u and d, cal- 127

culated as the reciprocal of the Euclidean distance 128

between their encoded vectors in this paper. We 129

utilize Equation 1 to measure the diversity of the 130

demonstration pool D, which is called Diversity 131

Measurement (DM). This metric corresponds to 132

the similarity of the user question with the least 133

similarity to the most similar demonstration in the 134

demonstration pool, compared with any other user 135

question. An illustration of the DM definition is 136

shown in Figure 2. The detailed definitions of U , 137

sim, and the calculation process of DM are dis- 138

cussed in Appendix B. 139

DM = min
u∈U

max
di∈D

sim(u, di) (1) 140
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Demonstration Pool

⋯d1 d2 dndn-1 1.1 Cluster

Clusters Sampled Demonstrations

{database} / The max 
… / SELECT … 

di
{database} / Grapes 
of … / SELECT … 

dj
1.2 Sample

2 Demonstration Fuse
Fused Demonstration
{database} / Max price per year? / 
SELECT max(price) FROM wine ORDER 
BY year

Sampled Demonstrations

{database}  / Grapes per color? / SELECT 
* FROM grapes GROUP BY color

{database} / The max price of wines? / 
SELECT max(price) FROM wine 

Database

2. Fuse

1 Demonstration Sample

TABLE grapes(id, grape…)

TABLE wine(price, year, …)

⋅⋅⋅

Figure 3: The pipeline of FUSED, which consists of two steps: (i) Demonstration Sample: Sample demonstrations
to be fused from the demonstration pool; (ii) Demonstration Fuse: Fuse the sampled demonstrations with the
randomly sampled database. The representation of {database} is discussed in Appendix C.

Diversity of the Existing Labeling Can be Fur-141

ther Enhanced With the metric present above,142

we then measure the diversity of the existing text-143

to-SQL labeling demonstration pool. The DM and144

performance of the existing labeling demonstration145

pool are depicted in Figure 4 and Figure 5. These146

figures reveal other demonstration pools where DM147

and performance are significantly higher than the148

existing labeling data. Thus, although the existing149

labeling exhibits relatively high diversity, it can150

be further improved, thereby enhancing the perfor-151

mance. Consequently, we next discuss the method152

for synthesizing demonstrations to enhance the di-153

versity of the demonstration pool.154

3 Method155

Our method focuses on how to synthesize new156

demonstrations given databases with LLMs. Con-157

sidering the poor diversity of directly generating158

demonstrations only relying on the sampling gener-159

ation (Cegin et al., 2024), we present to synthesize160

by fusing different demonstrations iteratively, as161

shown in Figure 3. In each iteration, we guide the162

model to generate demonstrations that are not simi-163

lar to the previous iterations, thereby enhancing the164

diversity. We theoretically prove that our method165

can enhance DM in Appendix D.166

A simplified explanation of our method is that:167

we first cluster the demonstrations based on the168

SQL keywords (e.g., WHERE, ORDER BY). Then, we169

sample and fuse demonstrations from each clus-170

ter. The fused demonstration contains both WHERE171

and ORDER BY that are different from the sampled172

demonstrations, thereby enhancing the demonstra-173

tion diversity. In practice, we use the encoded user174

questions rather than SQL keywords for synthesis175

since the user question has more semantic informa-176

tion than the SQL (Qin et al., 2022).177

3.1 Overview 178

The fusion process of FUSED starts with an initial 179

demonstration pool, which can be human-labeled 180

or synthesized from scratch (see Appendix E). 181

FUSED includes multiple iterations of fusion, 182

where the synthesis of each iteration is based on the 183

demonstration pool of the previous iteration. Each 184

iteration consists of demonstration sampling (§3.2) 185

and demonstration fusing (§3.3) two steps, which 186

sample and fuse the demonstrations of the demon- 187

stration pool separately. The fused demonstrations 188

of each iteration are then added to the demonstra- 189

tion pool, preparing for the next iteration. 190

After all iterations of fusion, we use the final 191

demonstration pool for the text-to-SQL based on 192

the in-context learning. We generate the SQL of 193

each user question with LLMs directly following 194

Chang and Fosler-Lussier (2023) since this is not 195

the main topic of this paper. 196

3.2 Demonstration Sampling 197

This step is designed to sample the demonstrations 198

to be fused, which consists of: (i) Clustering the 199

demonstrations into multiple clusters; (ii) Sampling 200

demonstrations from clusters to be fused. 201

3.2.1 Clustering 202

Before the fusion to get new demonstrations, it is 203

required that the demonstrations sampled for fus- 204

ing are not similar to ensure that the fused demon- 205

stration is not similar to the sampled demonstra- 206

tions, thereby enhancing the diversity. The pre- 207

vious work (Zhang et al., 2023b) has shown that 208

similar demonstrations are in the same cluster af- 209

ter encoding and then clustering. That is because 210

the encoded vectors can reflect the semantics of 211

the demonstrations, where the closer the vector 212

distance, the more similar the semantics. 213
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Inspired by this, we empirically employ an en-214

coder model to encode the question of all demon-215

strations in the pool into vectors, and then use K-216

means to cluster encoded results into multiple clus-217

ters. Compared with not using the cluster, FUSED218

can ensure that the corresponding encoding vectors219

of the sampled demonstrations from different clus-220

ters are far away, leading to the demonstration used221

for fusion is not similar, enhancing diversity.222

3.2.2 Sampling223

After obtaining different clusters of the demonstra-224

tion pool, we then sample demonstrations from dif-225

ferent clusters for fusing. Considering that even in226

a single cluster, there also exist differences between227

the demonstrations, since the encoded vector can228

not accurately reflect the complete information of229

the demonstration (Morris et al., 2023). To enhance230

diversity, during the demonstration sampling, we231

randomly choose several distinct clusters, and then232

randomly sample demonstrations from each cluster233

separately, making the fused demonstration reflect234

the difference between different demonstrations.235

3.3 Demonstration Fusing236

We employ LLM to fuse demonstrations as the dis-237

cussion in Appendix E, where we add the sampled238

demonstrations to guide the synthesis of the new239

demonstration as in-context learning, comparing240

with the randomly sampled database. Adding the241

sampled demonstrations comes up because LLMs242

imitate the demonstrations to generate results with243

the few-shot, whereas we let the LLM imitate both244

sampled demonstrations at the same time to get the245

fused demonstration. Thus, the fused demonstra-246

tions can reflect the attributes of and be different247

from all sampled demonstrations, thereby enhanc-248

ing the diversity of the demonstration pool.249

4 Experiments250

4.1 Experiment Setup251

Dataset We evaluate FUSED on two text-to-SQL252

datasets: Spider (Yu et al., 2018) and KaggleD-253

BQA (Lee et al., 2021). Spider, a multi-domain254

text-to-SQL dataset, is one of the most widely used255

datasets currently. KaggleDBQA2 is smaller in256

scale but involves more complex database and SQL257

structures, presenting higher hardness.258

2We call KaggleDBQA as Kaggle for simplicity.

Metric Following previous works (Yu et al., 259

2018; Pourreza and Rafiei, 2023; Li et al., 2023), 260

we employ execution match (EX) as our evaluation 261

metric. EX measures the accuracy by comparing 262

the execution results of the generated SQL on the 263

database. There are two ways to evaluate EX: (i) 264

directly using the predicted SQL conditional value 265

(w. value); (ii) replacing the conditional value with 266

that in the correct SQL (w/o. value). 267

Model In our experiments, we use SGPT- 268

125m (Muennighoff, 2022) to encode demonstra- 269

tions for clustering and use CodeLlama (Rozière 270

et al., 2023) and GPT3.53 to synthesize demon- 271

strations and convert user questions into SQLs. 272

We apply FUSED to the Vanilla method, ACT- 273

SQL (Zhang et al., 2023a) and ODIS (Chang and 274

Fosler-Lussier, 2023), where the detail of these 275

models and methods can be seen in Appendix F. 276

Implementation Details We study FUSED on 277

two types of synthesis: from scratch (w/o. Human) 278

and based on human labeling (w. Human). We 279

synthesize 8 SQLs for each given database, set the 280

generation temperature to 0.3, and synthesize in 281

turns of 3 (w/o. Human) and 1 (w. Human) based 282

on the analysis in § 4.4. About KaggleDBQA, we 283

synthesize the demonstrations with both Spider and 284

KaggleDBQA databases following the previous 285

work (Chang and Fosler-Lussier, 2023). The size of 286

demonstration pools of different settings is shown 287

in Appendix G. We employ the 5-shot for text-to- 288

SQL selected with BM-25 similarity, where the 289

prompts for text-to-SQL are shown in Appendix C. 290

4.2 Main Result 291

The text-to-SQL performance is shown in Table 1, 292

where FUSED brings 3.2% and 5.0% performance 293

improvement on average with and without human- 294

labeling across different settings, showing the ef- 295

fectiveness of our method. We further discuss the 296

performance under different SQL hardness in Ap- 297

pendix H. From Table 1, we can also see that: 298

Model Scale Our method brings significant per- 299

formance improvements on models of different 300

scales. However, our method brings performance 301

degradation with CodeLlama-7b, because of the 302

low quality of the synthesized demonstrations due 303

to the relatively poor performance of the 7b model, 304

while ACT-SQL and ODIS are more sensitive to 305

the demonstration quality since they employ the 306

3Document for GPT3.5.
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Dataset Method Label
CodeLlama GPT3.5 ∆

7b 13b 34b - -
w. w/o. w. w/o. w. w/o. w. w/o. w. w/o.

Spider

Vanilla

w/o. Human 48.5 59.8 54.9 67.6 56.9 72.2 57.9 74.9
+3.4 +3.4+ FUSED 54.4 66.4 58.8 70.9 59.7 75.1 58.7 75.8

w. Human 55.3 67.5 58.8 72.1 61.6 76.7 61.6 80.3
+1.6 +1.4+ FUSED 56.8 69.0 60.4 74.2 63.2 78.4 63.2 80.7

ACT-SQL† w. Human 62.1 63.2 67.5 69.1 71.0 72.8 75.8 77.6
+0.7 +0.9+ FUSED 60.3 61.7 68.4 69.8 74.6 76.7 76.0 78.0

ODIS† w. Human 58.2 71.8 61.9 76.6 64.3 80.9 63.9 81.1
+0.8 +0.9+ FUSED 58.0 71.0 62.9 78.0 65.6 82.1 64.8 83.0

Kaggle

Vanilla

w/o. Human 9.9 18.0 13.2 23.5 13.2 23.2 14.0 25.4
+6.1 +7.2+ FUSED 22.8 32.0 19.1 29.0 18.0 30.1 14.7 27.6

w. Human 27.9 39.7 32.4 44.1 26.5 38.6 26.5 40.4
+5.4 +4.2+ FUSED 35.3 47.1 34.6 46.0 32.4 45.6 32.4 40.8

ACT-SQL† w. Human 27.6 30.5 30.5 33.8 33.8 38.2 29.4 31.6
+0.4 +0.5+ FUSED 27.6 30.9 30.5 33.8 33.8 38.6 30.9 32.7

ODIS† w. Human 33.8 43.4 34.6 47.1 31.6 46.3 34.6 48.9
+2.3 +3.0+ FUSED 35.7 47.1 36.0 48.5 35.3 50.4 36.8 51.5

Table 1: The main experimental results on the Spider and KaggleDBQA dev sets. About the label setting, w/o.
Human denotes synthesis from scratch using zero-shot and w. Human denotes synthesis based on human labeling
with few-shot. About the metric, w. denotes with values and w/o. denotes without values. † denotes the reproduced
results since the performance differences brought by the API version of GPT3.5. The improved results led by
FUSED are marked green, the degradation is marked in red, and unchanged results are marked in black. The best
results of different models and datasets are annotated in underline. ∆ denotes the average improvement of different
prompt methods leading by FUSED. We only adapt w/o. Human to the Vanilla method since ACT-SQL and ODIS
cannot be adapted to the zero-shot inference without labeling data.

demonstrations to guide the intermediate genera-307

tion rather than only for the few-shot. However,308

on KaggleDBQA, the performance does not in-309

crease as the model scale increases, because the310

demonstration pool used is synthesized or labeled311

with Spider databases (as described in § 4.1), which312

could mislead the generation for the KaggleDBQA.313

Method Our method continues to improve per-314

formance based on all experiment methods under315

most settings, even improving performance based316

on ODIS and ACT-SQL such two well-performed317

baselines, proving the generalization and effective-318

ness of FUSED. Compared to the Vanilla method,319

our method shows relatively minor improvements320

with ACT-SQL and ODIS. This is because ACT-321

SQL and ODIS are more effective in helping the322

model understand the reasoning process within323

demonstrations, rather than merely imitating. This324

reduces the dependency on the similarity between325

demonstrations and user questions, making perfor-326

mance improvements less sensitive to the diversity327

of the demonstration pool compared to Vanilla.328

Dataset FUSED brings significant performance329

improvements on all experimental datasets and330

even achieves results close to w. Human on Spi- 331

der under the w/o. Human setting, demonstrating 332

the effectiveness of our method under different do- 333

mains. Besides, our method significantly improves 334

KaggleDBQA more than Spider, showing that the 335

demonstrations synthesized by FUSED are more 336

effective for complex text-to-SQL questions. 337

4.3 Ablation Studies 338

To verify the effectiveness of the iteration and the 339

cluster designed by FUSED, we perform ablation 340

experiments on each part separately. The experi- 341

mental results are shown in Table 2. Based on such 342

results, we discuss the impact of different parts on 343

the performance of our method. 344

4.3.1 Ablation of Iteration 345

To demonstrate that iterations work by improving 346

the quality rather than quantity of the demonstra- 347

tions, we conduct experiments that generate the 348

same number of data as our method without iter- 349

ations. From Table 2, we can see that: (i) There 350

is a significant performance degradation after re- 351

moving iteration, proving that FUSED enhances 352

the performance by improving the demonstration 353

quality rather than quantity; (ii) For larger-scale 354
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Label Spider KaggleDBQA
7b 13b 34b 7b 13b 34b

FUSED w/o. Human 66.4 70.9 75.1 32.0 29.0 30.1
- Iteration 66.2(−0.2) 69.9(−1.0) 73.9(−1.2) 30.1(−1.9) 28.8(−0.2) 28.7(−1.4)
- Cluster 65.3(−1.1) 69.9(−1.0) 74.6(−0.5) 26.5(−5.5) 26.5(−2.5) 30.0(−0.1)

FUSED w. Human 69.0 74.2 78.4 47.1 46.0 45.6
- Iteration 67.6(−1.4) 71.9(−2.3) 76.6(−1.8) 38.6(−8.5) 44.1(−1.9) 38.6(−7.0)
- Cluster 67.7(−1.3) 70.5(−3.7) 75.4(−3.0) 41.2(−5.9) 40.4(−5.6) 35.7(−9.9)

Table 2: EX without values on CodeLlama ablating: (i) Iteration: synthesizing the same demonstration number of
FUSED in one single turn; (ii) Cluster: randomly sampling demonstration to be fused without clustering.

models, iteration has a more significant impact on355

performance, indicating that larger-scale models356

can more effectively synthesize diverse demonstra-357

tions through multiple iterations; (iii) Compared358

with w/o. Human, FUSED under the w. Human359

setting has a more obvious decrease after remov-360

ing iteration, because the quality of the synthesis361

without labeling data is lower than the labeling362

data, mixing which leads to a quality degradation363

compared with the original labeling data.364

4.3.2 Ablation of Cluster365

To demonstrate the effectiveness of the cluster, we366

perform ablation experiments on it. We compare367

our method with randomly selecting demonstra-368

tions during the demonstration sampling. From369

Table 2, we can find: (i) synthesis without cluster-370

ing brings performance degradation in all settings,371

proving the effectiveness of the cluster; (ii) The372

performance degradation of KaggleDBQA is more373

obvious compared to Spider, indicating that the374

more complex text-to-SQL questions are more sen-375

sitive to the demonstration diversity.376

4.4 Analysis377

In this part, we discuss the impact of different pa-378

rameters on the model performance. The analysis379

experimental settings are shown in Appendix I.380

Can Diversity Measurement Reflect the Diver-381

sity of the Demonstration Pool? To prove that382

the metric DM we proposed can reflect the diversity383

of the demonstration pool, we randomly sample384

20 demonstration pools, where each pool has 100385

demonstrations from the Spider train set with dif-386

ferent diversities. Then we use the Vanilla method387

to evaluate the performance of each pool on the388

Spider dev set. The experiment results are shown389

in Figure 4, from which we can see that: (i) With390

the same demonstration pool size, as DM enhances,391

the overall performance of the model is on the rise,392

indicating that the higher DM, the higher quality of393

0.05 0.06 0.07 0.08 0.09 0.1

72
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X
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Figure 4: EX of 20 different demonstration pools with
different DM on the Spider dev set. Different points
denote different pools containing 100 demonstrations
randomly sampled from the Spider train set.

the demonstration pool, denoting higher diversity; 394

(ii) Most of the results are concentrated around 395

73.3, because such randomly sampled pools could 396

not contain any demonstrations similar to the user 397

questions, resulting in consistent performance. 398

Does the Diversity and Performance of Synthe- 399

sized Data Continue to Rise with the Iteration 400

Turn Increasing? To analyze the effectiveness of 401

the iteration, we adapt experiments with different 402

iterative turns, which are summarized in Figure 5. 403

From the table, we can see that: (i) When the turn 404

is ≤ 3 (w/o. Human) or ≤ 1 (w. Human), as the 405

turn increases, DM and the performance of our 406

method improves steadily, indicating that multiple 407

iterations can enhance the diversity, thereby en- 408

hancing performance; (ii) When the turn is > 3 409

(w/o. Human) or > 1 (w. Human), with the num- 410

ber of turns increasing, diversity and performance 411

improvement brought by FUSED becomes less and 412

less, indicating the diversity can not be infinitely 413

enhanced. Based on the above discussion, we use 414

3 and 1 as the synthesized turns. 415

How Does the Synthesized Scale Effect the Per- 416

formance To verify the impact of different syn- 417

thesized scales on performance, especially the per- 418

formance under the small synthesized scale, we 419

6



0 1 2 3 4 5 6
0

0.1

0.2

0.3

Iteration Turn

D
M

w/o. Human DM w. Human DM
w/o. Human EX w. Human EX

72

75

78

81

E
X

w
/o

.v
al

ue
s

Figure 5: DM and EX without values on the Spider dev
set of CodeLlama-34b across different iterations with
FUSED. Turn 0 denotes the origin demonstration pool
without FUSED. The sizes of the demonstration pools
can be seen in Appendix G.
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Figure 6: The EX without values of CodeLlama-34b
with different synthesized scales. The X-axis denotes
the number of demonstrations randomly sampled from
the synthesized data, where ALL denotes 1947 and
10653 demonstrations under the w/o. Human and w.
Human respectively. The Y-axis on the left and right are
the results of Spider and KaggleDBQA respectively.

adapt experiments on synthesizing different demon-420

stration numbers. The experiment results are shown421

in Figure 6, from which we can see that: (i) With422

the small synthesized scale (≤ 100), FUSED can423

also improve the performance, proving the effec-424

tiveness under low synthesis overhead; (ii) With425

the synthesized scale increasing, the performance is426

continuously enhancing, indicating that the synthe-427

sized scale has a significant impact on performance.428

How Does the Initial Labeling Scale Effect Our429

Synthesized Performance Although the main430

experiments of Table 1 demonstrate the effective-431

ness of our method on labeled data, the practical432

applications could lack labeled data with the same433
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Figure 7: The EX without values of CodeLlama-34b
under different initial human labeling scales sampled
from the Spider train set. The X-axis represents the
number of labeled demonstrations used for synthesis.
The Y-axis on the left and right represent the results of
Spider and KaggleDBQA respectively.

Database 7b 13b 34b

None 18.0 23.5 23.2
Kaggle 29.0 24.3 27.6
Kaggle + Spider 32.0 29.0 30.1

Table 3: EX without values of FUSED using CodeL-
lama evaluated on the KaggleDBQA dev set with the
data synthesized based on the databases of different
datasets under the w/o. Human setting. None denotes
no synthesis data, Kaggle denotes synthesis only with
the KaggleDBQA databases, and Kaggle + Spider de-
notes synthesis by mixing Spider databases.

scale as the Spider training data. Therefore, to val- 434

idate the effectiveness of FUSED across varying 435

scales of labeling, we randomly sample and con- 436

duct experiments on initial labeling demonstrations 437

of different numbers from Spider training data. 438

The experiment results are shown in Figure 7, 439

from which we can see that: (i) Under most settings, 440

our method brings performance improvement, indi- 441

cating its widespread effectiveness under different 442

initial label scales; (ii) With the increase of the 443

initial label scale, the performance demonstrates a 444

consistent increase, suggesting that expanding the 445

labeling scale can reliably enhance performance. 446

Can FUSED Effectively Help LLMs Migrate to 447

the Domain without Labeling? In this part, we 448

evaluate that FUSED can improve the text-to-SQL 449

performance across different domains without hu- 450

man labeling. The experimental results are shown 451

in Table 3. From the table, we can see that: (i) 452

Compared with not synthesizing demonstrations, 453

FUSED can bring performance improvements when 454
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Demonstration 1
SELECT t1.id, count(*) 
FROM stadium JOIN game

Demonstration 2
SELECT name FROM 
stadium WHERE capacity < 
(SELECT avg(capacity) 
FROM stadium)

SQL
SELECT count(*), max(
capacity) FROM concert

Fused Demonstration
SELECT count(*) FROM 
stadium WHERE capacity < 
(SELECT avg(capacity) 
FROM stadium)

SQL
SELECT count(*) FROM 

concert WHERE capacity = 
(SELECT max(capacity) 

FROM stadium)

Question
Find the number of concerts that happened in the stadium with the 
highest capacity.

Figure 8: The case study of demonstrations by human-
labeling (left) and FUSED (right) from Spider. The
corresponding SQL keywords between demonstrations
and the answer are annotated in bold.

only using KaggleDBQA databases, proving the ef-455

fectiveness of our method adapted to a new domain456

without labeling; (ii) Compared to using only Kag-457

gleDBQA databases, the demonstrations obtained458

by mixing Spider databases can bring greater per-459

formance improvements, indicating that increasing460

the diversity of databases can also enhance the di-461

versity of synthesized demonstrations.462

4.5 Case Study463

Although the above analysis proves the effective-464

ness of FUSED, how our method improves the465

performance of the text-to-SQL using in-context466

learning remains to be discovered. To analyze how467

our method improves the model performance more468

specifically, in this part, we conduct a case study. A469

comparison between results based on labeled data470

and the demonstrations obtained using FUSED is471

shown in Figure 8. From the figure, we can see that472

the results using only labeled data do not combine473

the SQL keywords of the two demonstrations well.474

The demonstration obtained with our method, on475

the other hand, has already combined the SQL key-476

words of the two demonstrations, which guides the477

model to successfully generate the correct SQL.478

5 Related Works479

5.1 Text-to-SQL480

Text-to-SQL is a vital task that generates SQL481

based on the user question and the provided482

databases. Recent research shows that text-to-483

SQL based on LLMs can approach or exceed the484

performance of fine-tuned models without fine-485

tuning, which greatly advances research on this486

task while reducing labeling overhead (Chang and487

Fosler-Lussier, 2023; Zhang et al., 2023a; Li and 488

Xie, 2024). For example, DIN-SQL (Pourreza and 489

Rafiei, 2023) decomposes the text-to-SQL task into 490

multiple sub-tasks. DAIL-SQL (Gao et al., 2023) 491

evaluates different prompt formats to find the best 492

combination. MCS-SQL (Lee et al., 2024) consis- 493

tency the results generated with multiple prompts. 494

However, existing LLM-based methods entirely 495

rely on human-labeled demonstrations, demanding 496

high labeling costs be adapted to a new domain. 497

Therefore, we propose FUSED to synthesize text- 498

to-SQL demonstrations based on LLMs using pro- 499

vided domain databases without human labeling, 500

effectively reducing the labor cost. 501

5.2 In-Context Learning 502

In-context learning is an effective method to en- 503

hance the reasoning ability of LLMs by providing 504

several demonstrations to guide reasoning (Xun 505

et al., 2017; Wei et al., 2022). Some works propose 506

to automatically select relevant demonstrations for 507

each user question to improve the performance of 508

LLMs (Zhang et al., 2023b; Shum et al., 2023; Qu 509

et al., 2024b). Another kind of work enhances in- 510

context learning by synthesizing relevant data by 511

supervised fine-tuning (Wang et al., 2023; Yang 512

et al., 2024; Sun et al., 2023). 513

However, existing methods only demonstrate 514

that increasing the diversity of the demonstrations 515

can enhance performance but do not discuss if the 516

diversity of the existing labeling data is sufficient, 517

and how to increase the diversity of the demonstra- 518

tions (Su et al., 2023; Levy et al., 2023). Therefore, 519

we present DM to show that the existing labeling 520

data of the text-to-SQL is not diverse enough and 521

propose FUSED to enhance the diversity. 522

6 Conclusion 523

In this paper, we improve the performance of the 524

text-to-SQL task using in-context learning from 525

the perspectives of measuring and enhancing the 526

demonstration pool diversity. We first present DM 527

to measure the diversity of the demonstration pool, 528

based on which we present that the diversity of 529

the existing labeling data can be further enhanced. 530

Based on the above analysis, we present FUSED, 531

which synthesizes demonstrations using LLMs, 532

lowering the labeling cost. Experiments show that 533

FUSED brings an average improvement of 3.2% 534

and 5.0% with and without labeling data on Spider 535

and KaggleDBQA, proving the effectiveness. 536
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Limitations537

FUSED has two limitations, including: (i) About538

the encoding of the demonstration sample step, di-539

rectly splice the user question and the SQL could540

not fully reflect the attributes of them. In future541

work, we will try to encode the question and SQL542

according to the attributes separately; (ii) For the543

synthesized demonstration pool, we only enhance544

the diversity, while ignoring the effect of the scale545

on the demonstration selection. Our future work546

will filter the synthesis, reducing the scale of syn-547

thesis under the premise of ensuring diversity.548

Ethics Statement549

All datasets and models used in this paper are pub-550

licly available, and our usage follows their licenses551

and terms.552
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A Comparison with Other Diversity789

Metrics790

To better explore the progress of the diversity met-791

ric we proposed in §2, we compare it with the792

past metric present by Nan et al. (2023): (i) Nan793

et al. (2023) mainly focus on selecting demonstra-794

tions, while the motivation of ours is to synthesize795

demonstrations; (ii) Nan et al. (2023) does not give796

a numerical measure of diversity, while our method797

gives a numerical measure of diversity; (iii) Nan798

et al. (2023) is based on clustering, and the granu-799

larity of judging diversity is relatively coarse, while800

our method is based on the entire demonstration801

pool, which can more accurately measure the diver-802

sity of demonstrations.803

B How to Calculate Diversity804

Measurement805

min
u∈U

max
di∈D

sim(u, di)

:= min
u∈Convex(D)

max
di∈D

|u− di|−1 (2)806

As the discussion in §2, given a demonstration807

pool, the calculation process of DM can be formal-808

ized as Equation 2, where sim(u, d) = |u − d|−1809

is the reciprocal of the Euclidean distance between810

the encoded vectors of u and d, and Convex(D)811

denotes the convex hull of the demonstrations.812

We use the Euclidean distance to represent sim813

since the closer the distance between the embed-814

ding question and the embedding demonstration,815

the more similarity between the question and the816

demonstration. The user question u should be in817

the area surrounded by Convex(D) corresponds to818

the question-related domain, and the user questions819

are highly related to the domain and have a high820

probability of locating in the convex.821

We use SciPy (Virtanen et al., 2020) to solve822

Equation 2, and use SGPT-125m (Muennighoff,823

2022) to encode demonstrations. We first generate824

the Voronoi diagram (Aurenhammer, 1991) and825

compute the convex hull for the encoded demon-826

stration points. For each point, we then calculate827

the maximum distance to any vertex in its corre-828

sponding Voronoi region confined within the con-829

vex hull and use the greatest of these maximum830

distances as the result.831

C Text-to-SQL Prompts832

The prompts of the SQL generation and the ques-833

tion generation are shown in Table 4 and Ta-834

ble 5, where the formats of {database} and 835

{demonstration} are same as Chang and Fosler- 836

Lussier (2023). 837

D Why FUSED can Enhance the Diversity 838

Measurement 839

In this section, we explain why the demonstra- 840

tion sampling (§3) in FUSED can enhance DM. 841

To increase Equation 1, it is required to maxi- 842

mum minu∈U maxdi∈D sim(u, di). Let u∗ = 843

argminu∈U maxdi∈D sim(u, di), then we aim to 844

update D to make maxdi∈D sim(u∗, di) as large as 845

possible. 846

We define that the cluster corresponding to di is 847

cdi , and let sim(u, ci) = maxd∈ci sim(u, d). We 848

denote di that maximum sim(u∗, di) as d∗. Then 849

we have maxdi∈D sim(u∗, di) = sim(u∗, cd†) = 850

|u∗ − cd∗ |−1 > (|u∗ − c|+ |c− cd∗ |)−1, where c 851

is any cluster. The above inequality holds because 852

cd† , c, u
∗ can be considered as the vertices of a 853

triangle, and the sum of the lengths of two sides is 854

greater than the length of the third side. 855

According to the discussion in Appendix B, it 856

is hard to precisely find u∗, so we maximize the 857

right-hand side of the inequality as much as pos- 858

sible to increase sim(u∗, cd∗). Therefore, as de- 859

scribed in §3.2, the demonstration sampling contin- 860

uously combines demonstrations to generate new 861

demonstrations between different clusters, thereby 862

reducing the distance between different clusters. 863

During the sampling, adding new results can also 864

decrease the distance between u∗ and c, so the right- 865

hand side of the inequality is continuously decreas- 866

ing. In summary, FUSED can continuously increase 867

maxdi∈D sim(u∗, di), thus increasing DM of the 868

results. 869

E Synthesize Text-to-SQL 870

Demonstrations with LLMs 871

In this section, we discuss how to employ LLMs to 872

obtain the initial demonstration pool with the given 873

database, lowering the labeling cost. The prompts 874

we used are shown in Appendix C. 875

SQL Synthesize Following the previous 876

work (Chang and Fosler-Lussier, 2023), we 877

synthesize SQL based on the linearized schema of 878

the given database with LLMs. During synthesis, 879

we ask LLMs to generate multiple SQLs for each 880

database to enhance the diversity of the results 881

with the sampling generation. The prompt we used 882

is shown in Table 4. 883
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SQL Synthesize
Synthesize one SQL query for the given database.

{database}
– Synthesize a new single SQL for the above database
imitating {SQL1} and {SQL2}.
SELECT

Table 4: The prompt for the SQL synthesis.

Question Synthesize
Using natural language, generate a question correspond-
ing to the given SQL.
Different examples are separated with ‘\n\n’.

{demonstration1}

...

{demonstration5}

{database}
– Using natural language, generate a question corre-
sponding to the given SQL: {SQL}.
Question:

Table 5: The prompt for the question synthesis.

Question Synthesize We synthesize the corre-884

sponding questions of the generated SQL with the885

linearized schema of the. We first synthesize SQL886

instead of questions because LLMs could gener-887

ate questions that are hard to answer using SQL888

(Cheng et al., 2023), and it is harder to validate889

the semantic consistency between the SQL and the890

question for generating questions first. The prompt891

of this step is shown in Table 5.892

Validate Due to the limitation of the model per-893

formance, it is hard to guarantee that the seman-894

tics of all synthesized SQL-question pairs are com-895

pletely consistent, resulting in a decrease in the896

quality of the synthesized demonstration. To im-897

prove the quality of the synthesized results, we898

verify the semantic consistency between the synthe-899

sized questions and SQL. We generate SQL based900

on the question and then evaluate if the generated901

SQL is the same as the synthesized SQL, for which902

we use LLMs to reduce the cost of fine-tuning. The903

prompts for text-to-SQL follow Chang and Fosler-904

Lussier (2023).905

F Baselines906

F.1 Baseline Models907

CodeLlama CodeLlama is a model based on908

Llama2 (Touvron et al., 2023), which is fine-tuned909

on a large amount of code data and can better solve910

code-related problems (including SQL). 911

GPT3.5 GPT3.5 is an improved model based 912

on GPT3 (Brown et al., 2020), which further 913

enhances performance through additional task- 914

specific fine-tuning. We use Azure OpenAI API of 915

gpt-3.5-turbo of GPT3.5 for our experiments 4. 916

F.2 Baseline Methods 917

Vanilla Following the previous work (Chang 918

and Fosler-Lussier, 2023), we design the Vanilla 919

method that directly employs the few-shot to gen- 920

erate the answer, where the demonstrations are se- 921

lected by the BM-25 similarity between the user 922

question and the demonstration questions. 923

ACT-SQL ACT-SQL (Zhang et al., 2023a) is a 924

method to construct the chain-of-thought rationales 925

based on SQL automatically. This method syn- 926

thesizes reasoning steps with table names, column 927

names, and values used in the SQL. 928

ODIS ODIS (Chang and Fosler-Lussier, 2023) 929

is an automatic demonstration selection method 930

designed for the text-to-SQL task. This method se- 931

lects out-domain demonstrations from the labeled 932

data and synthesizes in-domain demonstrations 933

based on the databases related to the user question. 934

G Number of Synthesized Data 935

The synthesized demonstrations under different set- 936

tings are shown in Table 6. From the table, we can 937

see that gpt-3.5-turbo has less data than that syn- 938

thesized by CodeLlama, because the SQL synthe- 939

sized by gpt-3.5-turbo is more complex, which 940

makes it more difficult to pass the filter. 941

To find the best turn number of synthesis, we 942

synthesize more turns on CodeLlama-34b, and the 943

size of synthetic data is shown in Table 7. 944

H FUSED Performance under Different 945

SQL Hardness 946

To analyze the effectiveness of FUSED on ques- 947

tions with different complexity, we evaluate our 948

method on SQL categorized by different hardness. 949

The category criteria follows Yu et al. (2018). The 950

experimental results are shown in Table 8. 951

From the table, we can see that: (i) On most hard- 952

ness, our method can bring significant performance 953

improvements, which proves the effectiveness of 954

4https://azure.microsoft.com/en-us/products/
cognitive-services/openai-service
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Model Label Turn Total0 1 2 3

CodeLlama-7b w/o. Human 0 584 561 608 1753
w. Human 7000 1937 − − 8937

CodeLlama-13b w/o. Human 0 954 741 803 2489
w. Human 7000 3001 − − 10001

CodeLlama-34b w/o. Human 0 457 668 822 1947
w. Human 7000 3653 − − 10653

gpt-3.5-turbo
w/o. Human 0 803 643 502 1948
w. Human 7000 387 − − 7387

Table 6: Synthesized size under different settings.

Model Label Turn
0 1 2 3 4 5 6

CodeLlama-34b w/o. Human 0 457 668 822 854 981 897
w. Human 7000 3653 4243 4344 − − −

Table 7: More synthesized size of CodeLlama-34b for Figure 5.

Dataset Label Easy MediumHard Extra

Spider w/o. Human 88.7 80.7 57.5 40.4
+ FUSED 87.5 81.2 63.8 52.4

Kaggle w/o. Human 53.1 30.3 5.1 1.9
+ FUSED 59.4 32.9 11.4 1.9

Table 8: EX without values of CodeLlama-34b under
different SQL hardness with and without FUSED. The
best result of each setting is annotated in bold.

FUSED; (ii) On Spider, the more difficult SQL, the955

more significant the improvement, showing that956

synthesized demonstrations can more effectively957

guide complex SQL generation; (iii) For the easy958

questions of Spider, our method brings a slight per-959

formance degradation because the model already960

performs well under the w/o. Human setting for961

this hardness, and the additional demonstrations962

could mislead the model; (iv) On the extra ques-963

tions of KaggleDBQA, our method does not bring964

performance improvement, which could be because965

it is too hard to synthesize too complex demonstra-966

tions (harder than Spider extra questions), resulting967

in the selected demonstrations being unable to ef-968

fectively guide the generation of the extra hardness.969

I Settings of Analysis Experiments970

We adapt analysis experiments under the setting of:971

CodeLlama-34b CodeLlama is one of the most972

mainstream code generation models at present,973

which achieves near the performance of the closed-974

source model (as shown in Table 1) in the open-975

Template (%)

SELECT * FROM * WHERE * <op> * (25.7)
SELECT * FROM * WHERE * <op> * AND * <op> * (13.9)
SELECT * FROM * JOIN * JOIN * WHERE * <op> * (5.2)
SELECT * FROM * JOIN * WHERE * <op> * (4.9)
SELECT * FROM * WHERE * IN (SELECT * FROM * WHERE
* <op> *) (4.3)

Table 9: Top five SQL templates synthesized by FUSED
using CodeLlama-34b. The numbers in the brackets
denote the proportion of each template.

source model with less inference cost (no need to 976

call API), of which CodeLlama-34b is the best per- 977

formance in this series of models. 978

Evaluating without values Regarding the text- 979

to-SQL task, current research mainly focuses on 980

how to generate SQL with the correct structure, 981

while paying less attention to extracting the condi- 982

tion values exactly, since this requires the memoriz- 983

ing ability rather than the semantic parsing ability. 984

J Synthesized Template 985

To guide future works in generating more diverse 986

demonstrations, in this part, we analyze the pro- 987

portion of demonstrations with different SQL tem- 988

plates synthesized by our method. We replace table 989

names, column names, and values with * and oper- 990

ators with <op> as the templates corresponding to 991

each SQL. Our method synthesizes 175 different 992

SQL templates, showing the diversity of the syn- 993

thesized demonstrations. The five most frequent 994

template types are shown in Table 9. 995
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From the table, we can find: (i) The current996

model is most inclined to generate SELECT and997

WHERE, which is nearly 40%, indicating that such998

types of SQL occur more frequently in the pre-999

training data of LLMs we use and, thereby, are1000

more frequently used in real-world scenarios; (ii)1001

Existing models hardly generate complex SQL that1002

contains nested SQL (less than 5% of synthetic1003

data), indicating that future methods should specif-1004

ically pay attention to guide the model to generate1005

results that contain two or more sub-SQLs or even1006

more complex structures.1007
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