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Abstract 
Modern language models, such as GPT-3, 

BERT, and LLaMA, are notoriously data-
hungry, requiring millions to over a trillion 
tokens of training data. Yet, transformer-based 
learning models have demonstrated a 
remarkable ability to learn natural languages. 
After sufficient training, they can consistently 
distinguish grammatical from ungrammatical 
sentences. Children as young as 14 months 
already have the capacity to learn abstract 
grammar rules from very few examples, even 
in the presence of non-rule-following 
exceptions. Yang’s (2016) Tolerance 
Principle specifies an exact threshold for how 
many exceptions are permissible in a given 
dataset for a rule to be learnable by humans. 
We explore the minimal amount and quality of 
training data necessary for rules to be 
generalized by language models to test for 
evidence of Tolerance-Principle-like effects. 
We implement BabyBERTa (Huebner et al. 
2021), a transformer-based language model 
optimized for training on smaller corpora than 
most LLMs. We train it on very small artificial 
grammar sets. For the simplest kind of rule, 
BabyBERTa can learn from datasets of under 
1,000 tokens. The effect of type and token 
frequency of exemplars vs. exceptions on 
learning follows a gradient. We see no effect 
that can be related to the Tolerance Principle. 

1   Introduction 

1.1   Tolerance Principle 

Learning a rule from a set of examples, in an 
unsupervised (no feedback) setting, requires the 
ability to generalize the rule to novel instances 
unseen in the training set (Huebner et al. 2021). 
We say that a rule is productive if it is learnable 
from a set of examples. Given a sufficient set of 
examples, being able to determine whether a rule 
should or should not be productive—i.e., having a 
theory that can explain how it is that abstract rules 
are generalized—is a challenge relevant to 
linguists and cognitive scientists because, among 
other things, a good explanation of the ability to 
generalize would shed a great deal of light on the 
process of early language acquisition in humans. 

One theory of rule generalization is the 
Tolerance Principle (TP), originally proposed via 
mathematical derivation in The Price of Linguistic 
Productivity (Yang 2016). The Tolerance 
Principle was derived as a necessary consequence 
of a rule-ordering algorithm known as the 
Elsewhere Condition (Anderson 1969, Kiparsky 
1973), which Yang proposes as a cognitive model 
of processing rules and exceptions. According to 
the Elsewhere Condition, as applied to the human 
brain, learning operates in an “exceptions-first, 
rule-later” fashion. When encountering a new 
exemplar and needing to decide whether to apply 
a rule, the brain must first consider every known 
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exception to the rule (in order to see if this 
exemplar is one of these exceptions) before the 
general rule can be applied to it. When there are 
very many exceptions and very few rule-
following examples, it is more time-efficient to 
just memorize each exemplar on a case-by-case 
basis and not try to learn a rule at all. The 
Tolerance Principle explores, mathematically, the 
relationship between the number of exceptions 
and the number of rule-following examples that 
allows the brain to “optimize/minimize the time 
complexity of language use,” (Yang, 2016, p. 60). 

The Tolerance Principle is well described in “A 
User’s Guide to the Tolerance Principle,” (Yang 
2018), but it is made most explicit in “A User’s 
Defense of the Tolerance Principle” with the 
following excerpt: “The TP is first and foremost a 
theory of learning. It specifies a precise threshold, 
as a proportion of items in the learner’s 
experience, that a generalization can tolerate as 
exceptions: 𝜃ே = 𝑁/𝑙𝑛𝑁, where 𝑁 is the 
cardinality of the item set,” (Yang, 2023, p. 2). 
Yang makes the claim that the Tolerance Principle 
is applicable to many kinds of learning where a 
rule must be generalized despite the possibility of 
exceptions, and is not explicitly limited to natural 
language rules. 

One key feature of the TP is that rule learning, 
according to the theory, does not occur gradually; 
it is instead quantal, meaning a rule is either 
productive or unproductive on a given set. In other 
words, given a sufficient number of examples, a 
learner should either be able to generalize a rule, 
or they will be entirely unable to do so, in which 
case they can only memorize the behavior of the 
examples they were given on a case-by-case basis, 
with no capacity to generalize beyond them. This 
applies to the learning of dominant rules over an 
entire set, and it also applies to the learning of sub-
rules for subsets of a set. 

Also crucial for a full understanding of the TP 
is the fact that the set size 𝑁, as well as the number 
of permissible exceptions 𝑒 ≤ 𝜃ே, both refer to 
numbers of unique types of items, with no regard 
to the number of repetitions of items of the same 
type. In a linguistic context, this means the only 
consideration that goes into productivity is the 
type frequency (number of unique items), with no 

regard to the token frequency (total number of 
items, including repeated items of the same type). 
So long as a learner is exposed to enough different 
examples for rule learning to occur at all, the 
number of repetitions of individual elements of 
the example set will not affect the productivity of 
the rule. 

The Tolerance Principle’s application to non-
human learners has not been explored. 

1.2   Rule Generalization in Human Infants 

A long line of research in the laboratory of Rushen 
Shi has investigated the abilities of human infants 
to generalize abstract grammar rules. Koulaguina 
& Shi (2013) showed that infants as young as 14 
months can generalize abstract grammar rules to 
novel instances from relatively little training (as 
few as 8 exemplar sentences, repeated four times). 
Koulaguina & Shi (2019) showed with 14-month-
olds that a training set that consisted of 50% rule-
following and 50% non-rule- following sentences 
was insufficient for the word-order rule to be 
generalized, while a training set consisting of 80% 
rule-following and 20% non-rule-following was 
sufficient. They also found that it was the type 
frequency of the example set and not the token 
frequency that determined whether a word-order 
shift rule was productive. 

Shi & Emond (2023) continued the above 
paradigm with more rigor, attempting to find a 
threshold of permissible exceptions beyond which 
generalizability would be impossible. They also 
investigated the gradual/quantal question. Their 
findings lent significant support to the Tolerance 
Principle. 

1.3   Motivation 

It is difficult to explain how or why 14-month-
olds are so remarkably capable of generalizing 
abstract rules to novel instances; however, 
computational models are less of a black box than 
a human brain. When a model uses unsupervised 
learning to learn a rule from noisy or exception-
filled data, is its learning governed by the 
Tolerance Principle, or something like it? This 
was the question that motivated our work. If it is 
possible to show that models can do the same 
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thing human infants can do, examining how they 
do it might help explain how human infants do it. 

The problem of explaining the capacity to learn 
is also at the forefront of language model research 
(see Contreras et al. 2023, Jawahar et al. 2019). 
Whereas there is plenty of research on how LLMs 
learn when they are provided with superhuman 
amounts of data and training, there is very limited 
research on their capacity to learn with small 
amounts of training data. 

1.4   Related Studies 

A few efforts have been made to optimize LLMs 
with the objective of achieving substantial 
learning from developmentally feasible quantities 
of training data. In the BabyLM challenge 
(Warstadt et al. 2023), language models were 
optimized to maximize learning with a training 
data size of 10M words or less. Huebner et al. 
(2021) developed the BabyBERTa transformer-
based language model as a variation of 
RoBERTa-base (Liu 2019) and pre-trained it on 
as few as 5M words, simulating the input 
available to children aged one to six years old. 
Some of the best performers on the BabyLM 
challenge used BabyBERTa. 

2   Implementation 

2.1   Task 

Our objective is to attempt to address the 
following questions: (1) What is the minimal 
amount of training data that our language model 
needs in order to learn a rule? (2) How noisy can 
this training data be? In other words, what 
proportion of training data in the training set can 
be non-rule-following for the rule to still be 
learnable? What is the relation between this 
proportion and the size of the dataset? (3) Is 
productivity quantal or gradient? That is, if a 
language model can generalize a rule to novel 
instances, is there a gradient or quantal effect as 
we move from unproductive regions of the 
parameter space to productive regions? 

2.2   Model Selection 

2.2.1   Architecture 

We implement BabyBERTa (Huebner et al. 
2021), whose code is available on GitHub. 
BabyBERTa uses the Transformers architecture 
(Vaswani 2017) and is the result of a fine-tuning 
of the hyper-parameters of RoBERTa (Liu 2019). 

BabyBERTa, in line with RoBERTa and 
differing from BERT (Devlin 2018), does not do 
next-sentence prediction. It is instead trained only 
on the masked language model (MLM) pre-
training objective used by BERT. A new random 
subsample of tokens is selected for masking every 
epoch. 

Unlike RoBERTa-base, BabyBERTa is trained 
exclusively on single sentences. This means that 
the prediction of masked tokens takes into account 
only the rest of the tokens in the same sentence as 
the masked token. The MLM procedure is a form 
of self-supervised learning. 

2.2.2   Hyper-Parameters 

Like the original BabyBERTa implementation, 
our model uses 8 layers, 8 attention heads, 256 
hidden units, and an intermediate size of 1024. We 
use Adam optimizer (Kingma 2014) with a 
learning rate of 1𝑒 − 4. Batch size is set to 16. In 
creating a random subsample of tokens for 
masking, tokens are selected with a probability of 
0.15.  

2.2.3   Training Procedure 

We train our model on a text (.txt) file. The 
primary reason we use transformers rather than 
another neural network architecture is to be able 
to train our model on sequential text data. The 
simplest kind of rule, with as few features as 
possible, is a binary rule. We trained the model on 
binary strings of 0’s and 1’s of length 16. Our rule 
was: the first digit of each vector should be ‘1’. 

In all our trials, we separated sentences in the 
training sets by a newline character (one vector is 
considered a sentence), like the original 
BabyBERTa’s training data. 

We trained the model many times from scratch, 
varying (a) the proportion of exceptions in the 
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dataset, (b) the number of unique vectors 
(sentences) in the dataset, and, (c) the number of 
epochs of training. 

2.2.4   Evaluation Procedure 

After a full training sequence was complete, we 
tested the trained models on novel test sets, whose 
format was inspired by the grammar test suites 
used to evaluate BabyBERTa (Huebner et al. 
2021). 

Test vectors were generated in pairs. Each pair 
of vectors was identical, except that the first digit 
of the 16 digits of one of the vectors was ‘1’and in 
the other it was ‘0’. Each vector has its “surprisal” 
calculated. Surprisal is equivalent to the sum of 
the cross-entropy errors of each token in a given 
sequence. Since our sequences were only one 
token each, surprisal was just the cross-entropy 
error of that token. 

If the model has learned a rule, then it should 
assign a lower surprisal score to a vector that 
follows the rule than to a nearly identical vector 
that breaks the rule. The model did a better job 
predicting one sentence in each pair over the 
other—the one with a lower surprisal score. We 
say that the model prefers sentences with lower 
surprisal scores. 

The model’s accuracy on each test set is 
equivalent to how often, as a percentage, the 
model prefers vectors that follow the rule, which 
we compute by dividing the number of vector 
pairs for which the model prefers the rule-
following vector by the overall number of vector 
pairs. 

For each from-scratch model, we generated a 
new unique test set of 1,000 vector pairs. 

3   Trials 

 

 

Figure 1: Model accuracies (represented by color of a point) for different training set sizes (x-axis), proportions 
of exceptions per training set (y-axis), and number of epochs (5, 10, & 20). 
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Figure 2: Effects of varying the proportion of exceptions (x-axis) on model accuracy (y-axis) for all combinations 
of e (# of epochs) and n (size of training dataset). Each graph contains 2 linear regressions: one on the left side of 
the TP threshold (𝜃 = 𝑛/𝑙𝑛(𝑛)) and one to the right. 

 
Figures 1 and 2 show the results of training and 
testing our models. If our models’ learning were 
governed by the Tolerance Principle, we would 
expect: 

(1) Learning should occur quantally. 
There should be a statistically significant 
jump, for each graph in Figure 2, from the 
regression on the left of the TP threshold 
to the regression on right of the TP 
threshold. The slope of each regression 
should be close to 0. 
(2) Varying the number of epochs should 
have no significant effects on learning, 
since token frequency is not significant in 
determining whether the language model 
can learn. 

 
We observe some clear trends in the above 

figures. For one, noticeable learning of a rule 
appears to be possible from training sets of just a 
few hundred vectors. The number of epochs in 
training has a major effect on learning: increasing 
the number of epochs leads to higher overall 
accuracies. 

In general, we see no Tolerance-Principle-like 
quantal effect. In Figure 2, the jump from one 
regression to the other (at the TP threshold) was 
only statistically significant in 2 instances out of 
30: (e=5, n=50) and (e=20, n=450), no more than 
we would expect by chance. In combinations of e 
and n where learning occurred, we tend to see a 
gradient decrease in model accuracy as the 
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proportion of exceptions in the training set 
increases. 

4   Conclusion 

For this machine learning architecture, datasets of 
a few hundred examples are large enough for rule 
learning to occur. Learning appears to follow a 
gradient—as the proportion of exceptions is 
increased, there is a linear, not quantal, decrease 
in accuracy. Token frequency is significant in 
determining whether this language model can 
learn; training for more epochs over the same data 
increases accuracy. The threshold predicted by 
the Tolerance Principle seems to have no 
significant bearing on the language model’s 
learning. 

5   Limitations 

This work does not reflect a broad study on many 
language models. It is limited in scope to the 
study of one model with fixed hyper-parameters. 
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