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Abstract—We investigate the compatibility of distributed noise-
shaping quantization with random samples of bandlimited func-
tions. Let f be a real-valued π-bandlimited function. Suppose
R > 1 is a real number, and assume that {xi}mi=1 is a sequence
of i.i.d random variables uniformly distributed on [−R̃, R̃], where
R̃ > R is appropriately chosen. We show that on using a
distributed noise-shaping quantizer to quantize the values of f at
{xi}mi=1, a function f ] can be reconstructed from these quantized
values such that ‖f − f ]‖L2[−R,R] decays with high probability
as m and R̃ increase.

I. INTRODUCTION

In signal processing, one of the primary goals is to obtain
a digital representation of a function in a signal space suitable
for storage, transmission and recovery. This goal is usually
attained through two steps, sampling and quantization. In
sampling, we sample the function at appropriate data points
such that the function can be stably reconstructed using those
samples. Consider, for example, the space of the bandlimited
functions. The Shannon sampling theorem tells us that any
analog time π-bandlimited signal f can be reconstructed
entirely by sampling it at the integer points Z.

In the second step of quantization, we reduce these real
or complex-valued function samples to a discrete finite set.
More specifically, given a signal x and a vector y containing
linear measurements (function samples, frame measurements
etc.) Ax of x. The quantization process involves replacing
the measurement vector y with a vector q from a finite
set A, called the quantization alphabet, such that accurate
reconstruction of x from q is possible.

One of the most intuitive approaches to quantization is
memoryless scalar quantization (MSQ), which simply replaces
each coefficient of the measurement vector y = Ax with its
nearest element from A. If the vector y consists of frame
coefficients, a simple method for reconstruction is to fix
a dual frame and linearly reconstruct with MSQ quantized
coefficients. However, this is not an effective approach. In
fact, the authors in [8] show that even when using an optimal
reconstruction scheme to approximate x from its MSQ quan-
tized coefficients, the mean squared error cannot be better than
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O(λ−1) with linear reconstruction methods. Here λ denotes
the oversampling ratio.

One of the reasons why the MSQ approach falls short is
because it naively quantizes each coefficient without regard
for how the other coefficients in the vector are quantized. In
order to solve this issue, quantization schemes such as Σ∆
quantization and distributed noise-shaping quantization were
introduced. These schemes follow a recursive procedure to
push the quantization error y − q into an unoccupied portion
of the signal spectrum.

Σ∆ quantization schemes were introduced in [13] for the
quantization of oversampled bandlimited functions. Since then,
they have been studied extensively [6], [7], [9] in this context.
The use of Σ∆ quantization in the setting of finite frames has
also been explored by various authors [1], [10], [15]–[17].

In their paper [2], Chou and Güntürk introduced the concept
of distributed noise-shaping quantization and were able to
achieve an exponentially small error bound in the quantization
of Gaussian random finite frame expansions. They extended
their results to the setting of unitarily generated frames in [3].
Recently, this particular scheme has been applied to fast binary
embeddings [12] and spectral super-resolution [11].

Although the quantization of oversampled bandlimited func-
tions using uniform samples has been investigated signifi-
cantly, to the best of our knowledge, only two papers [5], [18]
are available in the literature that deal with the scenario of
quantizing irregular samples of bandlimited functions. In [5],
the authors first give a formula to reconstruct any bandlimited
function f from its samples {f(tn)}n∈Z, where {tn}n∈Z is a
uniformly discrete sequence such that supn∈Z |tn − n

λ | <∞,
and λ > 1. They then construct a dithered A/D converter
and show that f can be accurately reconstructed from its
quantized samples taken at {tn}n∈Z. In [18], the authors show
that if a bandlimited function f is sampled on an interleaved
collection of N uniform grids {kT + Tn}k∈Z with {Tn}Nn=1

chosen independently from [0, T ] (T < 1), and the samples
are quantized with a first order Σ∆ scheme, then with high
probability the error ‖f − f̃‖L∞(R) turns out to be atmost of
the order logN

N . Here, f̃ represents the function reconstructed
from the quantized values.

In contrast to [5], where the particularly developed A/D
converter needs a very specific sampling process, and [18],
where the sample points are interleaved randomly shifted



grids, we do not put such stringent limits on the structure of
the sample points. Our work deals with the distributed noise-
shaping quantization of bandlimited functions using random
samples, where it is assumed that the samples {xi}mi=1 are
a sequence of i.i.d random variables uniformly distributed
on a suitable interval, i.e. they are completely random and
have no kind of structure. Let R > 1, and assume that
{xi}mi=1 is a sequence of i.i.d random variables uniformly
distributed on [−R−3m

1
16 , R+3m

1
16 ]. Given a real-valued π-

bandlimited function f , in our main result Theorem 3.1 (stated
in Section III), we prove that if a stable distributed noise-
shaping quantization scheme is used, then the reconstruction
error satisfies

‖f − f ]‖L2[−R,R] ≤
d1R

m
7
16

(1)

with probability greater than 1− 17m
15
16 exp

(
−m

3
8

d2R

)
. Here,

the function f ] denotes the function reconstructed using the
quantized values, and d1 and d1 are known positive constants.
To illustrate our result, we discuss the following specific case.
Select m = R16 in the preceding configuration; here, it is
assumed that R is such that R16 satisfies the condition on
m in the theorem statement. Then, each xi is distributed
uniformly on [−4R, 4R]. Further, the bound in (1) simplifies
to ‖f − f ]‖L2[−R,R] ≤ d1

R6 and the probability bound changes
to 1− 17R15 exp

(
−R

5

d2

)
. Hence, we obtain decay in R; this

becomes particularly useful when R is large.

II. PRELIMINARIES

A. Notations

• For any positive real number t, let

[t] := {− btc ,−(btc − 1), · · · , 0, · · · , btc − 1, btc}.

Here btc denotes the greatest integer less than or equal
to t.

• Let X = (x1, · · · , xn1) ∈ Cn1 and Y = (y1, · · · , yn2) ∈
Cn2 , then

X _ Y := (x1, · · · , xn1
, y1, · · · , yn2

) ∈ Cn1+n2 .

• Let PW[−π,π] denote the space of π-bandlimited func-
tions i.e.

PW[−π,π] := {f ∈ L2(R) : supp(f̂) ⊂ [−π, π]}.

•

C[−π,π] :={f ∈ PW[−π,π] : ‖f‖L∞(R) ≤ 1 and
f is real valued}.

B. Sampling of bandlimited functions

The celebrated Shannon sampling theorem says that for any
f ∈ PW[−π,π], we have

f(t) =
∑
n∈Z

f(n) sinc(t− n) ∀ t ∈ R (2)

where sinc(t) := sinπt
πt . However, (2) is not useful in practice

because sinc(t) decays too slowly. To circumvent this issue, it
is useful to introduce oversampling. This can easily be done
as shown in [5]. We review the method over here.

Let λ > 1 be a fixed real number. Choose a function g such
that

1) ĝ ∈ C∞.
2)

ĝ(ξ) =

{ 1√
2πλ

ξ ∈ [−π, π],

0 |ξ| > (2λ− 1)π.
(3)

3) ∑
k∈Z

∣∣ĝ(ξ + 2kλπ)
∣∣2 =

1

2πλ
∀ ξ ∈ R. (4)

Using [4, Theorem 9.2.5] and (4), it can be seen that{
g
(
· − k

λ

)
: k ∈ Z

}
forms a orthonormal system. Now,

consider any band-limited function f ∈ PW[−π,π], then its
Fourier transform can be viewed as an element in L2[−(2λ−
1)π, (2λ − 1)π]. Using the Fourier series expansion of f̂ on
[−(2λ− 1)π, (2λ− 1)π] and (3), it can be shown that

f(t) =
1√
λ

∑
n∈Z

f

(
n

λ

)
g

(
t− n

λ

)
∀ t ∈ R. (5)

In comparison to (2), the above reconstruction formula,
although requiring more samples, has the advantage
that each sample is weighted in a very localized way(
f
(
n
λ

)
only contributes in a small neighbourhood of n

λ

)
.

This property will be exploited by us when we find a
finite-dimensional approximation space for PW[−π,π].

C. Distributed noise-shaping quantization

First, we define the quantization alphabet AδL that we use
in our paper.

Definition 2.1: For a positive integer L and a real number
δ > 0, let the quantization alphabet AδL be defined as

AδL := {±(2l − 1)δ : 1 ≤ l ≤ L, l ∈ Z}.

Let m and p be positive integers such that p divides m.
Then for any fixed β > 1, the block diagonal distributed noise-
shaping transfer operator Hβ [2] is the m×m matrix defined
as

Hβ = Ip ⊗ H̃β , (6)

where Ip denotes the identity matrix of order p and H̃β is the
following m

p ×
m
p matrix

(H̃β)ij :=


1 if i = j,

−β if i = j + 1,

0 otherwise.
(7)

Definition 2.2: Given a quantization alphabet A, by a
distributed noise-shaping quantizer we mean any map Q :
Rm → Am that satisfies

y − q = Hβu, (8)

where q := Q(y), Hβ is the matrix given in (6), and u is
a vector such that ‖u‖∞ ≤ c for some constant c which is



independent of m. The existence of such schemes is given by
the following lemma.

Lemma 2.3: [12, Lemma 4.2] Let A := AδL. Suppose that
‖y‖∞ ≤ µ and β + µ

δ ≤ 2L. For each s ≥ 1, let ws :=

ys +
∑s−1
j=1(I −Hβ)s,s−jus−j ,

qs := (Qβ(y))s = arg min
r∈A
|ws − r|,

and
us := ws − qs.

Then the resulting q satisfies the noise-shaping relation (8)
with ‖u‖∞ ≤ δ.

Let the vector νβ := [β−1β−2 · · ·β−
m
p ] and the β conden-

sation operator [2] Ṽβ be defined as

Ṽβ := Ip ⊗
νβ
‖νβ‖1

. (9)

Then we can easily determine the following bound, which we
will utilize later.

‖ṼβHβ‖∞→2 ≤
√
pβ−

m
p +1. (10)

III. MAIN RESULT

A. Statement of the result

Theorem 3.1: Let R > 1, δ > 0 be real numbers, L be a
positive integer, and f ∈ C[−π,π]. Fix β ∈ (1, 2L− 1

δ ). Assume
that {xi}mi=1 is a sequence of i.i.d random variables that are
uniformly distributed on [−R− 3m

1
16 , R+ 3m

1
16 ]. Let Qβ be

the quantization scheme from Lemma 2.3 with alphabet AδL. If
m

15
16 is an integer such that it divides m and m is sufficiently

large, then with probability greater than

1− 17m
15
16 exp

(
− m

3
8

d2R

)
we have

‖f − FWṼβ
q‖L2[−R,R] ≤

d1R

m
7
16

, (11)

where FWṼβ
and y are as defined in (16) and (17) respectively,

q := Qβ(y), and d1 and d2 are known positive constants.

B. Sketch of proof of Theorem 3.1

Our proof combines the theory of quantization of bandlim-
ited functions with the theory of frames. It is divided into
three steps. In the following, we will outline the ideas of these
steps; for the complete proof, we refer the reader to the journal
version of this paper [14].

1) A suitable finite dimensional approximation space: As
the first step, we project the infinite-dimensional space of
bandlimited functions onto a finite-dimensional space. This en-
ables us to work with a finite number of samples. The chosen
finite-dimensional space is such that the orthogonal projection
Pf of any bandlimited function f onto it approximates f well
in a neighbourhood of [−R,R].

To make this notion of neighbourhood mathematically pre-
cise, fix an ε > 0 such that εR ≥ 1 and consider the
interval [−(1 + 3ε)R, (1 + 3ε)R]. It can be partitioned into
I1ε := (−(1 + ε)R, (1 + ε)R), I2ε := (−(1 + 2ε)R,−(1 +

ε)R] ∪ [(1 + ε)R, (1 + 2ε)R) and I3ε := [−(1 + 3ε)R,−(1 +
2ε)R] ∪ [(1 + 2ε)R, (1 + 3ε)R]. Let g and λ be as defined in
the Subsection II-B.

Definition 3.2: Define,

V (1+ 5
2 ε)R(g) := span

{
g

(
· −k

λ

)
: k ∈

[
λ

(
1 +

5

2
ε

)
R

]}
.

(12)
Let P denote the orthogonal projection from L2(R) onto

V (1+ 5
2 ε)R(g). Then, for any f = 1√

λ

∑
k∈Z f

(
k
λ

)
g
(
· − k

λ

)
∈

PW[−π,π], we have

P (f) =
1√
λ

∑
k∈[λ(1+ 5

2 ε)R]

f

(
k

λ

)
g

(
· −k

λ

)
. (13)

Given an f ∈ PW[−π,π], we approximate it with the
function Pf from the finite dimensional approximation space
V (1+ 5

2 ε)R(g). From the formula for Pf , it is clear that it has
been calculated by simply replacing the samples of f outside[
−
(
1 + 5

2ε
)
R,
(
1 + 5

2ε
)
R
]

with 0. However, as the function
samples are weighted locally because of the decay of g, this
replacement has a minimal effect on the function f in the
region I1ε ∪ I2ε if εR is large enough. Hence the projected
function Pf will be a good approximation of f on I1ε and
I2ε, but it need not be on I3ε.

2) A random frame for the approximation space: In the
next step, we find a random frame for the finite-dimensional
approximation space V (1+ 5

2 ε)R(g), such that the frame mea-
surements for any h ∈ V (1+ 5

2 ε)R(g) can be calculated using
its function samples. If we want to work with a reasonable
number of samples, then any frame satisfying the above
condition will require us to sample in a region larger than
[−
(
1 + 5

2ε
)
R,
(
1 + 5

2ε
)
R]. We give a simple heuristic ar-

gument for this. Suppose we have no sample points in an
interval [a, b] ⊂ [−

(
1 + 5

2ε
)
R,
(
1 + 5

2ε
)
R]. Then it cannot

be expected that a function h, which is concentrated on [a, b],
can be reconstructed using a feasible number of its frame
measurements, as the frame measurements do not use the
samples of h on the region where it is concentrated.

Subsequently, assume that {xi}mi=1 is a sequence of
i.i.d random variables that are uniformly distributed on
[−(1 + 3ε)R, (1 + 3ε)R]. Since we work in the finite-
dimensional space V (1+ 5

2 ε)R(g), the projected function’s sam-
ples {Pf(xi)}mi=1 would be needed to compute the frame
measurements of Pf . However, the samples available are of
the original function f ’s and not the projected function Pf ’s.
Since by construction, Pf approximates f well in I1ε∪I2ε, we
use the function samples {f(xi)}mi=1 instead of {Pf(xi)}mi=1

to calculate frame measurements. Here, we must remember
that we also have sampling points in the region I3ε, where the
Pf does not approximate f well.

The goal is to devise a reconstruction process where the
error generated by this approximation of samples can be
controlled and minimized. It turns out that the main issue is
the completely random ordering of the sample points {xi}mi=1,
which leads to a mix-up of accurately approximated sample



values {f(xi)}xi∈I1ε∪I2ε and potentially inaccurately approx-
imated sample values {f(xi)}xi∈I3ε during reconstruction.
In order to solve this, we design a procedure to partition
the random variables {xi}mi=1 into three disjoint collections.
As the random variables are i.i.d uniformly distributed, the
random variables in each of these three collections are i.i.d
uniformly distributed, albeit on different intervals. In any
realization of the random variables {xi}mi=1, there will be some
m1 points in I1ε, m2 points in I2ε and m3 points in I3ε. These
m1,m2 and m3 will be random variables and can take the
values {0, 1, · · · ,m}.

Definition 3.3: Let p be a positive integer that divides m.
We define the following new random variables.

1) pi :=
∑i
j=1

⌊mjp
m

⌋
, m̃i :=

⌊
mip
m

⌋
m
p ∀ i ∈ {1, 2, 3}.

2) m̃ := m
p p3.

3) For all i ∈ {1, · · · , m̃1}, define y1i = xn where n is
the i-th number such that xn ∈ I1ε. Conditionally on
m1,m2 and m3, each of the random variables {y1i }

m̃1
i=1

will be i.i.d uniformly distributed on I1ε.
4) Similarly, for each j ∈ {2, 3} and i ∈ {1, · · · , m̃j},

define yji = xn where n is the i-th number such that
xn ∈ Ijε. Conditionally on m1,m2 and m3, each of
the random variables {yji }

m̃j
i=1 will be i.i.d uniformly

distributed on Ijε.
5) Define {ε1i }

m̃1
i=1,{ε2i }

m̃2
i=1 and {ε3i }

m̃3
i=1 to be sequences

of ±1 Bernoulli independent random variables that are
also independent from all the above defined random
variables.

Define the operator E from V (1+ 5
2 ε)R(g) to Cm̃ as

E(f) = {f(y1i )}m̃1
i=1 _ {f(y2i )}m̃2

i=1 _ {f(y3i )}m̃3
i=1

=_3
j=1 {f(yji )}

m̃j
i=1.

Let Ṽβ be the β condensation operator (see (9)) with p3 rows
and m̃ columns. Define the following two matrices.

(W )ij :=



√
2(1+ε)R

p1
i = j, i ∈ {1, 2, · · · , p1},√

2εR
p2−p1 i = j, i ∈ {p1 + 1, · · · , p2},√
2εR
p3−p2 i = j, i ∈ {p2 + 1, · · · , p3},

0 i 6= j, i, j ∈ {1, · · · , p3}.

(Φ)ij =


ε1i i = j, i ∈ {1, · · · , m̃1},
ε2i−m̃1

i = j, i ∈ {m̃1 + 1, · · · , m̃1 + m̃2},
ε3i−m̃1−m̃2

i = j, i ∈ {m̃1 + m̃2 + 1, · · · , m̃},
0 i 6= j, i, j ∈ {1, · · · , m̃}.

And, let hj :=
∑m̃1

i=1(WṼβ)jiε
1
i ky1i +∑m̃2

i=1(WṼβ)j(m̃1+i)ε
2
i ky2i +

∑m̃3

i=1(WṼβ)j(m̃1+m̃2+i)ε
3
i ky3i

for all j ∈ {1, · · · p3}, where

ky(·) =
∑

k∈[λ(1+ 5
2 ε)R]

g

(
y − k

λ

)
g

(
· − k

λ

)
. (14)

Then we prove the following lemma.

Lemma 3.4: Let γ, t ∈ (0, 1) be such that 1 − γ − 3t > 0
and εR be large enough, then

‖νβ‖22
‖νβ‖21

(1−γ − 3t)‖f‖2L2(R) ≤
p3∑
j=1

|〈f, hj〉|2 (15)

≤ ‖νβ‖
2
2

‖νβ‖21
(1 + 3t)‖f‖2L2(R) ∀f ∈ V (1+ 5

2 ε)R(g)

holds with probability greater than 1 − 6 exp
(
− mε

12(1+3ε)

)
−

5p exp
(
− t2(β−1)

42(2λ−1)(β+1)R

(
p

2(1+3ε) −
1
εR

))
.

Using Lemma 3.4, we conclude that with
probability greater than 1 − 6 exp

(
− mε

12(1+3ε)

)
−

5p exp
(
− t2(β−1)

42(2λ−1)(β+1)R

(
p

2(1+3ε) −
1
εR

))
, the following

hold.
• The collection {hj}p3j=1 forms a frame [4] for

V (1+ 5
2 ε)R(g).

• The frame operator S [4] corresponding to {hj}p3j=1,
is invertible. Let FWṼβ

be the operator from Cm̃ to

V (1+ 5
2 ε)R(g) defined as

FWṼβ
(c) =

p3∑
j=1

(
WṼβc

)
j
S−1hj . (16)

Then FWṼβ
satisfies FWṼβ

ΦE = I , where I is the

identity operator on V (1+ 5
2 ε)R(g).

3) Quantization and error bound computation: Let f ∈
C[−π,π] and f̃ := Pf . Define,

1) ỹ := ΦEf̃ =_3
j=1 {ε

j
i f̃(yji )}

m̃j
i=1,

2)
y :=_3

j=1 {ε
j
if(yji )}

m̃j
i=1, (17)

3) e := y − ỹ.
We quantize y using the distributed noise shaping quantizer
Qβ . Therefore, y − q = Hβu. Consequently, it can be shown
that with probability greater than 1 − 6 exp

(
− mε

12(1+3ε)

)
−

5p exp
(
− t2(β−1)

42(2λ−1)(β+1)R

(
p

2(1+3ε) −
1
εR

))
we have∥∥∥f̃ − FWṼβ

q
∥∥∥
L2[−R,R]

=
∥∥∥FWṼβ

ΦEf̃ − FWṼβ
q
∥∥∥
L2[−R,R]

= ‖FWṼβ
(ỹ − q)‖L2[−R,R]

= ‖FWṼβ
(y − e− q)‖L2[−R,R]

= ‖FWṼβ
(Hβu− e)‖L2[−R,R]

= ‖FWṼβ
Hβu‖L2[−R,R] + ‖FWṼβ

e‖L2[−R,R]

≤ ‖νβ‖1
‖νβ‖2

√
1− γ − 3t

√
2

p
2(1+ε)R −

1
εR

‖ṼβHβ‖∞→2‖u‖∞

+ ‖FWṼβ
e‖L2[−R,R]. (18)

The first term in (18) is bounded using (10). It gives us expo-
nential decay in m

p . Further, the second term can be bounded
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Fig. 1. Plot of f along with f] in the interval [−5, 5]. The greedy quantizer
defined in Lemma 2.3 is used to quantize the samples, with the noise transfer
operator taken as Hβ = H5, i.e. β = 5 and the quantization alphabet as
A0.1

10 . The value of p is fixed as 100.

by using the localization property of the frame {hj}p3j=1,
and the fact that by construction, the approximation error
|f(yji ) − f̃(yji )| is small if yji ∈ [−R,R]. However, showing
this involves a significant amount of calculation. Next, use
the triangle inequality to bound ‖f −FWṼβ

q‖L2[−R,R]. In the

end, choose ε = m
1
16

R , λ = 2, t = 1

12m
1
4

, γ = 1

8m
1
4

and

p = m

m
1
16

= m
15
16 to prove the result.

IV. NUMERICAL EXPERIMENTS

In order to test the accuracy of Theorem 3.1, we run
numerical experiments. Let w be defined as

w(ξ) =

{
e−

1
ξ ξ > 0,

0 ξ ≤ 0.

For g, we chose the following function defined via the Fourier
transform

ĝ(ξ) =


1√
2λπ

|ξ| ≤ π,
1√
2λπ

cos
(
π
2 ν
(
|ξ|−π

(2λ−2)π

))
π < |ξ| ≤ (2λ− 1)π,

0 (2λ− 1)π < |ξ|.

Here ν(ξ) := w(ξ)
w(ξ)+w(1−ξ) ∀ ξ ∈ R and λ = 2. We run our

experiment in two parts. In the first part, we show visually
that we achieve good reconstruction using our method. Taking
1200 random samples from the interval

[
− 25

2 ,
25
2

]
, in Fig 1,

we plot f along with the reconstructed function f ] := FWṼβ
q

in the interval [−5, 5]. It is easy to see from this graph that
the β quantization scheme is very effective.

Working with the same function f , in Fig 2, we plot
average error

∥∥∥{f(ti)− f ](ti)
}200
i=1

∥∥∥
∞

after ten iterations,

where {ti}200i=1 are evenly spaced points from [−5, 5], along
with the number of random samples m used to calculate f ].
Here, like in the first part, each sample xi is sampled according
to the uniform distribution on

[
− 25

2 ,
25
2

]
. From the plot, we

can see that the error decays initially with the increase in the
number of samples; however, after a certain stage, it stagnates.
This may be because the projection error ‖f − Pf‖L2[−5,5]
does not decrease with increasing samples.
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Fig. 2. The test signal f , the quantizer and the quantization alphabet are the
same as in Fig 1. We plot the reconstruction error along with the sample size
m.
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