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Abstract

Data Augmentation (DA) is vital in deep learn-001
ing to improve the generalizability of neural002
networks. Most of existing DA techniques003
in NLP naively add a certain number of aug-004
mented samples without paying attention to005
the quality and added computational cost of006
these samples. Furthermore, state-of-the-art007
DA techniques in the literature usually learn008
to generate or re-weight augmented samples009
more specific to the main task; however, these010
learning-based DA techniques are not sample-011
efficient and they are computationally expen-012
sive. In this work, we propose a universal DA013
technique, called Glitter, for NLP which aims014
at efficiency and performance at the same time.015
In other words, Glitter can be applied to any016
existing DA technique to improve its training017
efficiency and sample efficiency and maintain018
its competitive performance. We evaluate Glit-019
ter on several downstream tasks such as the020
GLUE benchmark, SQuAD, and HellaSwag in021
a variety of scenarios including general single022
network, consistency training, self-distillation023
and knowledge distillation (KD) setups.024

1 Introduction025

Data Augmentation (DA) is shown to be effective026

in improving generalization of deep neural net-027

works (Xie et al., 2019; DeVries and Taylor, 2017)028

and in increasing the number of training samples es-029

pecially in low resource data regimes (Zhang et al.,030

2017; Sennrich et al., 2016). The undeniable impor-031

tance of data in deep learning (Sambasivan et al.,032

2021; Rogers, 2021) and the costly process of data033

annotation has propelled researchers into leverag-034

ing DA in a broad range of applications from com-035

puter vision (Cubuk et al., 2018; Wang et al., 2020)036

to natural language processing (NLP) including037

machine translation (Sennrich et al., 2016; Shen038

et al., 2020), language understanding (Shen et al.,039

2020; Qu et al., 2020; Du et al., 2021; Kamalloo040

et al., 2021), and question answering (Alberti et al.,041

2019; Longpre et al., 2019; Shakeri et al., 2020). 042

In NLP, however, the discrete nature of text poses 043

additional challenges in DA mainly because gener- 044

ating semantically viable text from another text is 045

still formidable (Feng et al., 2021). 046

DA methods in NLP can be broadly categorized 047

into task-aware and task-agnostic methods. Task- 048

agnostic DA methods essentially generate aug- 049

mented text regardless of the task at hand and often 050

do not warrant additional training or fine-tuning. 051

They can be based on some hand-crafted heuristics 052

(Zhang et al., 2015; Wei and Zou, 2019), back- 053

translation (Sennrich et al., 2016; Edunov et al., 054

2018), or token replacement from a pre-trained lan- 055

guage model (Kobayashi, 2018; Wu et al., 2019; 056

Ng et al., 2020). Although employing task-agnostic 057

methods is straightforward, these methods do not 058

take into account any task-specific information, and 059

thus, their performance is usually limited. On the 060

other hand, task-aware DA methods are capable of 061

generating augmented samples, conditioned on the 062

downstream task objective (Hu et al., 2019; Rashid 063

et al., 2021; Xie et al., 2019). These methods adapt 064

augmented examples specifically for a task—i.e., 065

producing augmented examples either partly or 066

fully take place during training. Notwithstanding 067

their advantage over task-agnostic methods, they 068

often incur additional training costs, resulting in 069

prohibitively slow and computationally expensive 070

training. 071

We stipulate the central problems surrounding 072

DA techniques in NLP are as follows: First, DA 073

methods are mostly not sample efficient—i.e. they 074

generate and add arbitrary number of augmented 075

samples to the training data and naively incorpo- 076

rate all of them into training without investigat- 077

ing how many of augmented samples are actually 078

needed. Second, although more effective, task- 079

aware methods are notoriously time-consuming to 080

train. This is especially problematic in large-scale 081

datasets such as SQuAD (Rajpurkar et al., 2016) 082
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and MNLI (Williams et al., 2018). Third, most083

DA methods are not universal—i.e. they work in084

a particular setup for instance only with a single-085

network (Xie et al., 2019), or only with a teacher-086

student KD (Rashid et al., 2021). Overall, the im-087

portance of both sample efficiency and training088

efficiency for DA has been often overlooked in the089

literature.090

Motivated by the above problems, in this work,091

we introduce a universal DA method, Glitter 1,092

which can be plugged into any DA method to make093

them sample efficient, task-aware, while retaining094

performance (if not improving). Methodology of095

our work involves the minimax approach in which096

first a pool of augmented samples is generated and097

then a subset of them with maximum expected loss098

is selected to be involved in minimizing the corre-099

sponding task objective. Our key contributions in100

this paper can be summarized as follows:101

1. Glitter is a universal solution which can be102

effortlessly applied to most existing DA tech-103

niques to improve upon training and sample104

efficiency while maintaining (or even boost-105

ing) their performance.106

2. We show how Glitter can be adapted to a vari-107

ety of scenarios such as general single net-108

work, consistency training, self-distillation109

and knowledge transfer (Teacher-Student) se-110

tups.111

3. We empirically demonstrate that Glitter ex-112

hibits superior efficiency and performance113

over state-of-the-art DA methods on several114

downstream tasks including GLUE, SQuAD,115

and HellaSwag as well as on out-of-domain116

datasets.117

2 Related Work118

2.1 Task-agnostic DA in NLP119

Contextual augmentation techniques (Kobayashi,120

2018; Wu et al., 2019) use contextual language121

models for DA. Kobayashi (2018) propose bidirec-122

tional language models for word substitution condi-123

tioned on the label of their input text. SSMBA (Ng124

et al., 2020) and TinyBERT (Jiao et al., 2019) per-125

turb the input by masking some parts, and then126

use a pre-trained BERT model to substitute those127

1Inspired by “All that is gold does not glitter” J.R.R.
Tolkien

masked words of the input text to generate aug- 128

mented samples. Back-Translation Sennrich et al. 129

(2016) augments data using two consecutive trans- 130

lation models: the first model to translate input 131

samples from their current language to an arbitrary 132

target language; then, a second model to translate 133

the result back to the original language. Mixed- 134

up (Guo et al., 2019) generates augmented samples 135

based on interpolating word embedding and sen- 136

tence embedding vectors. Shen et al. (2020) intro- 137

duce a set of cut-off techniques (i.e. zeroing out 138

some parts of the embedding matrix) at token level, 139

feature level and span level of the input data. Then, 140

they define a particular loss function to enforce con- 141

sistency of predictions for these set of perturbed 142

inputs. EDA (Wei and Zou, 2019) consists of some 143

simple augmentation operations such as replacing 144

synonyms, deleting, inserting and swapping ran- 145

dom words. 146

2.2 Task-aware DA in NLP 147

While most of DA techniques consider augmented 148

samples uniformly in the training process, (Yi et al., 149

2021) propose a re-weighting technique to take the 150

importance of different augmented samples into 151

account. Although re-weighting is shown to be 152

effective in improving the performance of DA tech- 153

niques, it is not sample efficient. Wu et al. (2019) 154

introduced c-BERT which is a masked input aug- 155

mentation technique obtained by applying a label- 156

aware fine-tuning to a pre-trained BERT model on 157

the task labeled data. Qu et al. (2020), in CODA, 158

combine different label preserving transformations 159

to produce high quality augmented samples. One 160

effective case in point is obtained by applying ad- 161

versarial training over back-translation transforma- 162

tions with a consistency regularized loss. Unsu- 163

pervised DA (UDA) (Xie et al., 2019) uses off- 164

the-shelf DA techniques without modifying them 165

and then adds an auxiliary consistency loss to the 166

training objective. However, UDA is not sample 167

efficient and it is designed for single network aug- 168

mentation setup only (i.e. it is not clear how we 169

can deploy it in scenarios such as the KD setup). 170

Hu et al. (2019) proposed a reinforcement learning- 171

based technique in which the reward function is 172

defined according to whether the data generated by 173

the augmenter network preserves the label of the 174

original training sample. 175
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2.3 DA for KD176

KD (Hinton et al., 2015; Buciluǎ et al., 2006) is177

a promising model compression technique aim-178

ing at transferring the knowledge of an already179

trained network (so-called teacher) to a smaller or180

same-size student network. It is shown that DA181

can boost KD’s performance in NLP significantly;182

for example, TinyBERT (Jiao et al., 2019) uses183

a task-agnostic DA technique for its task specific184

fine-tuning. However, (Kamalloo et al., 2021) and185

(Rashid et al., 2021) showed that DA module can be186

tailored for KD. For example, (Rashid et al., 2021)187

in MATE-KD, tune a separate masked language188

model in order to generate maximum divergence189

augmented samples. (Kamalloo et al., 2021; Du190

et al., 2021) use a KNN retrieval-based technique191

to extract their augmented samples form a large192

sentence bank.193

Our evaluation strategy is to take the best mod-194

els of each category and show that our universal195

Glitter can be applied to them to improve their orig-196

inal performance and at the same time make them197

sample efficient.198

3 Methodology199

In this section, we introduce our task-aware DA200

method, Glitter , that aims at using an efficient201

number of augmented samples without sacrificing202

performance. Our proposed strategy is agnostic to203

DA methods—i.e., it can be plugged into any DA204

method with any training strategy to accomplish205

sample efficiency.206

Existing learning-based DA methods train a sep-207

arate DA model and adapt its output for a particular208

objective function that is entirely task-dependent:209

φ∗ ← min
φ

`DA(M(Ω(x;φ); θ))

x′∗ = Ω(x;φ∗)
(1)210

where `DA() is a loss function, geared towards211

the task objective, Ω(;φ) is the DA model with212

trainable parameters φ, and M(; θ) refers to the213

original model, parameterized by θ.214

In contrast to learning-based DA, we propose215

to generate many augmented candidates using any216

arbitrary DA method prior training, and select most217

suitable candidates during training. This proce-218

dure does not introduce additional trainable pa-219

rameters into training, and more importantly, is220

capable of automatically ignoring unnecessary aug-221

mented examples. Let (xi, yi)
N
i=1 ∈ {(X ,Y)} rep-222

resent training data such that a pair xi ∈ X and223

yi ∈ Y are an input example and its corresponding 224

label. Suppose a pool of K augmented examples, 225

X ′(i) = {x′k(i)}Kk=1, are sampled from some DA 226

model for each training example (xi, yi) ∈ (X ,Y). 227

Note that Glitter imposes no restrictions on how to 228

augment training data; augmented samples can be 229

generated via a single or even multiple DA models. 230

Sample Selection. Given a pool of augmented 231

samples, our approach is to select the best candi- 232

dates among them according to particular defined 233

criteria. Inspired by the minimax approach (Farnia 234

and Tse, 2016; Volpi et al., 2018), our selection 235

mechanism is based on finding top k1 (out of K) 236

worst-case augmented samples from the X ′ set. 237

Minimizing the main model loss function on these 238

worst-case augmented samples will help improv- 239

ing generalization of the model (Volpi et al., 2018). 240

In order to rank augmented samples, we evaluate 241

X ′(i) based on a distance function with respect 242

to the corresponding original training sample, xi, 243

within the model’s latent space: 244

X ′∗(i)← topk1
(
`eval

(
M(xi; θ),M(X ′(i); θ)

))
X ′∗(i) = {x′∗j (i)}k1j=1 ⊂ X

′(i)

(2)

245

where topk1() denotes returns top-k1 indices based 246

on the scores returned by `eval, X ′∗(i) is the set of 247

k1 selected augmented samples for xi; `eval() is 248

the evaluation loss which is determined via the task 249

objective. 250

Updating the Model Parameters. After obtain- 251

ing the top k1 augmented samples, we group them 252

with the original training samples, {xi} ∪X ′∗(i), 253

and subsequently, update the model parameters 254

only based on this selected set of augmented sam- 255

ples on the original loss: 256

L(θ) =

N∑
i=1

`task

(
M(xi; θ),M(X ′∗(i); θ), yi

)
θt ← θt−1 − λ∇θ(L(θ))|θt−1

(3)

257

where N is the number of training samples, λ is 258

the learning rate, and `task() is the final task loss— 259

e.g., cross entropy (ce) for classification—that is 260

computed over both original data and selected aug- 261

mented data. In the remainder of this section, we 262
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Figure 1: Illustration of Glitter (from left to right): first, generating augmented samples from different DA
techniques; second, forming a pool of samples X ′(i); third, evaluating the augmented samples using the `eval()
loss; fourth, filtering the top k1 samples based on their corresponding `eval(); fifth, updating the parameters of the
model by minimizing the task loss `task(: θ).

discuss how Glitter can be applied to various sce-263

narios including general DA for single networks,264

and DA for the teacher-student (KD) setups.265

3.1 General DA for Single Networks266

We consider three potential setups for the single267

network scenario: (1) General single network, (2)268

Self-distillation, and (3) Consistency training.269

General Single Network. In this setup, aug-270

mented samples are exploited in a semi-supervised271

manner where we can evaluate them based on the272

divergence of their predicted outputM(x′k(i); θ) =273

p(y|x′k(i); θ) from the ground-truth label or the pre-274

diction of the original corresponding training sam-275

ple M(xi; θ) = p(y|xi; θ) using the cross entropy276

loss, `ce:277

`eval = `ce
(
yi,M(x′k(i); θ)

)
or

`eval = `ce
(
M(xi; θ),M(x′k(i); θ)

)
.

(4)278

Then, for the final task loss, `task we can deploy a279

standard cross entropy loss over both training sam-280

ples and their corresponding selected augmented281

samples:282

`task = `ce
(
yi,M(xi; θ)

)
+

1

k1

∑
x∈X′∗(i)

`ce
(
yi,M(x; θ)

)
. (5)283

Consistency Training (CT; Xie et al. 2019) In284

this configuration, we can employ the same `eval285

introduced in Eq. (4). As a result, our method nat-286

urally selects top k1 most inconsistent augmented287

samples for each training sample. Then, the net-288

work is optimized to make predictions for input289

augmented samples that are consistent with pre- 290

dictions of their corresponding original training 291

samples: 292

`CT
task = `ce

(
yi,M(xi; θt)

)
+

1

k1

∑
x∈X′∗(i)

`ce
(
M(xi; θt−1),M(x; θt)

)
. (6) 293

As stated by Xie et al. (2019), the second term 294

in Eq. (6) leverages the previous prediction of the 295

network for each training example. 296

Self-Distillation (Self-KD) In Self-KD, we first 297

train a model, and then, use it (M(; θ∗)) as a teacher 298

to train an identical model but initialized from 299

scratch using KD (Furlanello et al., 2018). We 300

follow §3.2 to adjust `eval and `task. 301

3.2 DA for Teacher-Student (KD) 302

In this setup, we have a teacher model, T (;ψ∗) 303

with parameters ψ that is already trained on the 304

training data, along with a student model, M(; θ), 305

which we aim to train. The selection criteria for 306

augmented samples is to maximize the divergence 307

between the teacher and the student: 308

`KD
eval = `KL

(
T
(
x′k(i);ψ

∗),M(x′k(i); θ)) (7) 309

where `KL refers to the KL divergence. After se- 310

lecting the maximum divergence augmented sam- 311

ples, then we calculate the KD loss as following: 312

313

`KD
task = α `ce

(
yi,M(xi; θ)

)
+ (1− α)×

1

k1 + 1

∑
x∈{xi}∪X′∗(i)

`KL
(
T (x;ψ∗),M(x; θ)

)
(8)

314
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where α is a hyperparameter.315

4 Experiments316

4.1 Setup317

To incorporate unlabelled augmented data into318

training, we adopt CT (Xie et al., 2019) and KD319

(Hinton et al., 2015). To this end, we conduct ex-320

periments under two settings:321

Standalone where we train a single model on the322

augmented data. In this setting, we seek to answer323

two questions: (1) How much is DA capable of324

improving the model generalization? (2) Is our325

proposal on sample efficiency helpful? For this pur-326

pose, we fine-tune RoBERTabase (Liu et al., 2019)327

using CT and Self-KD on augmented data.328

Distilled where we distill DistilRoBERTa (Sanh329

et al., 2019) (student) from RoBERTaLarge (Liu330

et al., 2019) (teacher) using the augmented data.331

Note that DA comes into play only during distill-332

ing the student model and the teacher is trained on333

the original data in advance. Our goal here is to334

investigate whether DA is an effective means in335

knowledge transfer to curb the capacity gap (Cho336

and Hariharan, 2019) between a large model and a337

small one.338

In both settings, we take the best performing339

model on the development set and evaluate it on340

the test set (depicted by Test). Additionally, for341

the standalone model setting, we also report results342

on the development set when models are trained343

only for 5 epochs (depicted by Dev), similar to344

CoDA (Qu et al., 2021), to make a comparison345

with baselines. Our Dev results are an average of346

10 runs with different seeds. The implementation347

details and hyperparameters are provided in §A.348

4.1.1 DA Methods349

We leverage three widely used textual augmenta-350

tion methods:351

1. EDA (Wei and Zou, 2019)2: We randomly352

replace 5% of the tokens with their synonyms353

and randomly delete up to 10%.354

2. Back-Translation (BT) (Sennrich et al.,355

2016): We use fairseq (Ott et al., 2019) to356

translate sentences into German and then back357

into English. We do nucleus sampling (Holtz-358

man et al., 2020) with p = 0.9 for both trans-359

2https://github.com/makcedward/nlpaug

lations. We find that p = 0.6 works better on 360

sentiment classification. 361

3. Mask-and-reconstruct (MR) (Yi et al., 362

2021; Ng et al., 2020): We randomly mask 363

15% of the tokens and construct a new 364

sentence by sampling from a pre-trained 365

BERTLarge for masked tokens. We adopt top- 366

k sampling with k = 20 to select new tokens. 367

For MNLI, we obtain better results with top- 368

10 sampling. 369

For each augmentation method, we generate 12 370

augmented examples per training instance for all 371

datasets, except for large datasets—i.e., MNLI, 372

QQP, and SQuAD—where the number of aug- 373

mented examples are 8 per train example. 374

4.1.2 Baselines 375

Because our settings—i.e., standalone and 376

distilled—are different in nature, we compare 377

Glitter with different baselines for each setting. 378

For both, Vanilla-DA that takes all augmented 379

data into account without reservation is the first 380

baseline. 381

The baselines for the standalone setting are: 382

CoDA (Qu et al., 2021), MMEL (Yi et al., 2021), 383

and HiddenCut (Chen et al., 2021). And for dis- 384

tilled, we consider MATE-KD (Rashid et al., 2021) 385

a distillation strategy that generates suitable aug- 386

mented data on-the-fly during training to maximize 387

the loss. 388

4.2 GLUE 389

The GLUE benchmark (Wang et al., 2019) is a 390

well-known suite of nine3 tasks that aim at evalu- 391

ating natural language understanding models. We 392

present test results in the distilled mode in Table 1. 393

Glitter consistently outperforms Vanilla-DA, while 394

it is faster to train. Specifically, Glitter achieves 395

parity with Vanilla-DA for EDA in terms of the 396

overall average score, while scoring +0.2% and 397

+0.4% higher for BT and MR, respectively. We ob- 398

serve that only in few cases Vanilla-DA negligibly 399

outperforms Glitter—e.g., on MRPC, and STS-B 400

for BT. Nonetheless, Glitter 8x/1x trains 50% faster 401

than Vanilla-DA 8x on average, and 30% faster for 402

8x/2x. Also, Glitter surpasses MATE-KD by +0.2% 403

in the overall score. Unlike Glitter, MATE-KD in- 404

troduces additional parameters to the model during 405

3We excluded WNLI since our DA methods are not essen-
tially designed for this task.
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Method CoLA SST MRPC STS-B QQP MNLI-m/mm QNLI RTE Avg.Mcc Acc Acc/F1 P/S Acc/F1 Acc Acc Acc
RoBLarge (teacher) 63.8 96.8 90.6 92.4 81.5 90.3/89.8 94.8 88.3 87.3
BERTLarge

♣ 60.5 94.9 87.4 87.1 80.7 86.7/85.9 92.7 70.1 82.5
DistilRoB 55.2 93.9 85.9 86.0 80.3 84.0/83.1 90.6 73.6 81.1
KD 54.9 94.0 86.8 87.3 80.5 85.1/83.7 91.9 73.5 81.7

Task-Aware DA
MATE-KD ♣ 56.0 94.9 90.2 88.0 81.2 85.5/84.8 92.1 75.0 82.8

EDA (Wei and Zou, 2019)
Vanilla-DA (8x) 55.5 94.8 87.6 86.1 80.7 85.3/84.7 92.0 72.8 81.8
Glitter 54.5 95.1 87.5 86.5 80.4 85.4/84.8 92.1 73.2 81.8

8x/2x 8x/1x 8x/2x 8x/2x 8x/2x 8x/2x 8x/2x 8x/1x
Back-Translation

Vanilla-DA (8x) 53.4 95.1 88.5 87.5 80.9 85.9/85.9 92.2 73.5 82.1
Glitter 54.9 95.1 88.4 87.3 80.9 86.2/85.3 92.2 73.7 82.3

8x/2x 8x/1x 8x/1x 8x/2x 8x/2x 8x/2x 8x/2x 8x/2x
Mask-and-reconstruct

Vanilla-DA (8x) 58.8 94.5 88.7 87.0 80.9 85.8/84.9 91.8 74.0 82.6
Glitter 59.2 95.1 89.2 87.6 81.0 86.6/84.8 92.4 74.1 83.0

8x/1x 8x/1x 8x/2x 8x/1x 8x/2x 8x/2x 8x/2x 8x/2x

Table 1: Test results of the distilled experiment on GLUE. (♣) denotes results are taken verbatim from: BERTLarge
(Devlin et al., 2019), and MATE-KD (Rashid et al., 2021). Bold and underlined numbers indicate the best and the
second best results across the DA methods.

Method CoLA SST MRPC STS-B QQP MNLI-m QNLI RTE Avg.Mcc Acc Acc/F1 P/S Acc/F1 Acc Acc Acc
RoBERTa 61.9 95.4 88.6 89.3 80.4 87.6 93.0 81.6 84.7
Self-KD 61.7 95.7 89.0 89.0 80.8 88.3 93.0 81.7 84.9
+ Vanilla-DA 61.5 96.1 88.9 89.7 81.0 88.0 92.9 81.1 84.9

8x 8x 8x 8x 8x 8x 8x 12x
+ Glitter 62.5 96.0 89.8 89.5 81.1 88.1 93.5 82.3 85.4

8x/1x 8x/2x 8x/2x 8x/2x 8x/2x 8x/2x 8x/2x 12x/1x
CT + Vanilla-DA 59.4 95.6 89.0 85.8 80.3 82.5 92.0 80.2 83.1

8x 8x 8x 10x 8x 8x 8x 10x
CT + Glitter 62.7 95.8 89.2 87.9 80.9 84.1 92.9 81.8 84.4

8x/1x 8x/1x 8x/1x 10x/1x 8x/2x 8x/2x 8x/2x 10x/1x

Table 2: Test result of the standalone experiments on GLUE using RoBERTabase.

training and also, it trains drastically slower be-406

cause it generates augmented examples on-the-fly.407

Moreover, Table 1 illustrates that MR yields the408

best test results across the three DA methods ex-409

cept for SST that BT leads to better results. Based410

on this observation, we report results on MR aug-411

mented data for all GLUE datasets except for SST412

in the remainder of our experiments.413

For the standalone mode, Tables 2 and 3 present414

the results on test and dev, respectively. Similar to415

distilled, Glitter outperforms Vanilla-DA by +0.5%416

for both self-KD and CT. Self-KD yields better re-417

sults than CT on all GLUE tasks except CoLA. CT418

falls short on most GLUE tasks, compared to no419

DA results—i.e., top-2 rows in Table 2. This is why,420

we only evaluated Glitter with self-KD on the dev421

data. Glitter achieves superior performance gains,422

compared to all three baselines on all datasets ex-423

cept QNLI. The key advantage of Glitter is that the424

training procedure remains intact since our method 425

is data-centric. 426

4.2.1 Out-of-Domain Generalization 427

We also evaluate Glitter on OOD datasets. To this 428

end, we test our models, already trained on GLUE 429

tasks, on OOD datasets whose data distribution 430

differs from the original data. In particular, here 431

are our selected OOD datasets: 432

• SST: IMDb (Maas et al., 2011), IMDb- 433

Cont. (Gardner et al., 2020), and IMDb- 434

CAD (Kaushik et al., 2020), as done in 435

Chen et al. (2021). Although both SST and 436

IMDb datasets are collected on movie reviews, 437

IMDb reviews tend to be substantially longer 438

than SST sentences. 439

• STS-B: SICK (Marelli et al., 2014), a seman- 440

tic relatedness dataset, created from image 441
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Method SST MRPC MNLI-m QNLI RTE IMDb-Con. A-NLI HANS
Acc F1 Acc Acc Acc Acc Acc Acc

RoB♠ 94.8 90.2 87.6 92.8 78.7 - - -
CoDA♠ 95.3 91.7 88.1 93.6 82.0 - - -
HiddenCut♠ 95.8 92.0 88.2 93.7 83.4 87.8 32.8 71.2
MMEL† 94.6 ± 0.8 91.9 ± 0.4 88.1 ± 0.1 93.2 ± 0.1 85.3 ± 1.0 90.5 ± 0.7 31.4 ± 0.6 74.5 ± 0.6

RoB† 94.3 ± 0.1 91.6 ± 0.5 87.7 ± 0.1 92.8 ± 0.2 84.5 ± 0.8 90.0 ± 0.4 30.8 ± 0.9 73.6 ± 0.7
Self-KD 94.3 ± 0.2 91.5 ± 0.3 87.9 ± 0.1 92.9 ± 0.2 84.0 ± 0.6 90.3 ± 0.5 30.9 ± 0.4 73.5 ± 0.7

+ Vanilla-DA 95.4 ± 0.5 92.0 ± 0.3 88.2 ± 0.1 93.4 ± 0.1 84.4 ± 0.7 90.2 ± 0.4 31.3 ± 0.5 73.9 ± 0.4

+ Glitter 95.7 ± 0.2 92.2 ± 0.5 88.2 ± 0.1 93.4 ± 0.1 85.6 ± 0.7 90.6 ± 0.2 31.8 ± 0.4 74.6 ± 0.3

Table 3: Dev results of the standalone experiment on GLUE using RoBERTabase. (♠) denotes results are taken
verbatim from: RoB and CoDA (Qu et al., 2021), and HiddenCut (Chen et al., 2021). (†) indicates the results are
obtained from our implementation of MMEL (Yi et al., 2021).

and video captions. SICK and STS-B are col-442

lected on roughly identical domains, but from443

different sources.444

• QQP: PAWSQQP (Zhang et al., 2019), anal-445

ogous to Chen et al. (2021), and MQP (Mc-446

Creery et al., 2020), a medical question simi-447

larity dataset.448

• MNLI: SciTail (Khot et al., 2018), collected449

from school-level science questions, and sim-450

ilar to Chen et al. (2021), A-NLI (Nie et al.,451

2020), and HANS (McCoy et al., 2019).452

• RTE: HANS (McCoy et al., 2019).453

Table 9 in §B.1 showcases the OOD results for454

the distilled mode. Glitter outperforms Vanilla-DA455

in most cases, and is on par with it for virtually the456

rest. The only exceptions are IMDb-Cont., MQP,457

and PAWSQQP where Vanilla-DA outperforms Glit-458

ter by almost 1% on average. Also, all models459

do not generalize well to PAWSQQP and A-NLI460

because their performance is below a majority-461

class performance. Moreover, a fine-tuned Distil-462

RoBERTa achieves the best OOD performance on463

HANS, highlighting that DA is not actually helpful464

for OOD accuracy on HANS.465

Table 3 (the right side) reports the OOD results466

for standalone models. The complete results are467

presented in §B.2—i.e., Table 10 on test and Ta-468

ble 11 on dev. Glitter overwhelmingly outperforms469

all the baselines with a few exceptions. In the dev470

results, the fine-tuned model with no DA achieves471

the best OOD generalization on IMDb, and Sci-472

Tail, while HiddenCut scores the highest on A-NLI473

with a 1% margin. Similarly, in the test results,474

Self-KD with no DA outperform Glitter on IMDb,475

IMDb-CAD, and SciTail.476

Method SQuAD HellaSwag
EM/F1 Acc

RoBLarge 88.9/94.6 85.2
DistilRoB 80.9/87.9 42.9
KD 81.1/88.2 42.5
+ Vanilla-DA (8x) 81.8/89.1 41.8
+ Glitter (8x/2x) 83.6/90.3 44.1

Table 4: Dev results of the distilled experiment on two
downstream tasks.

4.3 HellaSwag 477

HellaSwag (Zellers et al., 2019) is a dataset for situ- 478

ated commonsense reasoning that involves picking 479

the best ending given a context. We augment con- 480

texts in HellaSwag using only BT to ensure that 481

the choices remain meaningful for the augmented 482

contexts. Because our standalone results have been 483

consistent with the distilled results, we report our 484

results only in the distilled mode. According to our 485

results demonstrated in Table 4, Glitter comfortably 486

surpasses Vanilla-DA by a +2.3% margin. 487

4.4 SQuAD 488

SQuAD (Rajpurkar et al., 2016) is a crowd-sourced 489

reading comprehension benchmark that consists of 490

more than 100K questions, derived from Wikipedia 491

passages. The task objective is to extract an an- 492

swer span from a given question/passage pair. We 493

augment questions in SQuAD v1.1 using only BT 494

to ensure that the answer can still be found in the 495

given passage for the augmented questions. Anal- 496

ogous to HellaSwag, we report our results only in 497

the distilled mode. As shown in Table 4, Glitter 498

outperformas Vanilla-DA by +1.8% in exact-match 499

accuracy on the development set. 500

We also evaluate our trained models under dis- 501

tribution shift by testing them on QA datasets 502

from four different domains: Wikipedia, New 503
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York Times, Reddit, and Amazon product reviews504

(Miller et al., 2020). The OOD results are pre-505

sented in Table 5. Glitter is consistently superior to506

Vanilla-DA in all four domains.507

5 Ablation Study and Discussion508

In this section, we aim to answer the following509

questions:510

• How does training time of Glitter fare against511

Vanilla-DA varying the number of augmenta-512

tions?513

• Does pre-processing augmented data to dis-514

pense with unnecessary examples affect DA515

performance?516

• How many augmented examples are required517

for Glitter to work? (studied in §D)518

• Is our selection strategy based on sorting of519

`eval in Glitter important? (studied in §D)520

For this purpose, we conduct a detailed analy-521

sis on 4 GLUE tasks—i.e., SST, MRPC, QNLI,522

and RTE. We trained models based on Vanilla-DA523

and Glitter using Self-KD and tested them on the524

development set (the dev setting).525

Runtime Analysis. Throughout our experiments526

in §4, we compare Glitter with Vanilla-DA when527

number of augmentations are similar for both528

methods—i.e., 8x. A natural question is whether529

Vanilla-DA with fewer data can achieve parity with530

Glitter. To this end, we vary augmentation size531

from 1x to 8x and train different Vanilla-DA mod-532

els on each augmented dataset. We measure av-533

erage training time per epoch for all models. Fig-534

ure 2 in §C illustrates dev accuracy as training time535

increases. The training speed of Glitter 8x/2x is536

slightly faster than Vanilla-DA 6x on SST, MRPC,537

and QNLI and for Glitter 8x/1x, is faster than538

Vanilla-DA 4x on RTE. Glitter is superior of the539

two on all datasets.540

Effect of Pre-processing Augmented Data. We541

conjecture that Glitter does not need any data en-542

gineering on augmented examples to obtain prefer-543

able performance gains. However, Vanilla-DA544

may require some pre-processing by weeding out545

potentially noisy data to become more effective.546

To investigate this, we exploit two pre-processing547

techniques: (1) Confidence-based filtering: Aug-548

mented examples for which the model’s confidence549

Method Wiki NYT Reddit Amzn
EM EM EM EM

RoBLarge 84.4 85.9 76.6 74.4
DistilRoB 76.6 78.1 66.2 62.9
KD 76.5 78.7 65.7 63.0
+ Vanilla-DA 77.3 79.0 65.9 63.3
+ Glitter 79.3 80.7 68.1 64.7

Table 5: OOD results for models trained on SQuAD
and tested on QA datasets from four different domains
(Miller et al., 2020).

Method SST MRPC QNLI RTE
Acc F1 Acc Acc

Vanilla-DA 95.1 92.2 93.3 84.8
β = 0.7 95.1 92.5 93.4 84.8
β = 0.9 95.0 92.2 93.3 83.8
LP 94.8 92.4 93.3 84.8

Glitter 95.8 92.8 93.4 85.9
β = 0.7 95.0 91.5 93.5 85.2
β = 0.9 95.0 92.5 93.3 84.1
LP 95.1 92.2 93.5 85.9

Table 6: Dev results of self-KD exhibiting the effective-
ness of different pre-processing techniques to filter aug-
mented examples on 4 GLUE tasks. β and LP depict
a minimum confidence threshold, and label preserving,
respectively.

is below a minimum threshold β are discarded, 550

(2) Label-preserving augmentation (LP): Aug- 551

mented examples for which the model predicts a 552

different label than the original example are dis- 553

carded. The results, reported in Table 6, show 554

no meaningful performance gains by these pre- 555

processing techniques. For Vanilla-DA, minimum 556

confidence threshold of 0.7 performs slightly better 557

as it brings minor improvements on MRPC (+0.3%) 558

and QNLI (+0.1%), but is still lower than Glit- 559

ter. On the other hand, applying these techniques 560

slightly deteriorates the performance of Glitter in 561

almost all cases. The only improvements are +0.1% 562

on QNLI for LP and β=0.7. 563

6 Conclusion 564

In this work, we highlighted the importance of train- 565

ing efficiency and sample efficiency of DA tech- 566

niques in NLP. We proposed Glitter and showed 567

that it is a universal DA technique which can be 568

applied to any DA technique to make them sample 569

efficient and training efficient without requiring to 570

train the main DA model. We evaluated Glitter 571

on different NLU tasks and in different scenarios 572

such as general single network, consistency train- 573

ing, self-distillation and KD setups and demon- 574

strated their promising results. 575
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A Implementation Details924

A.1 Fine-tuning details925

We adopted the publicly available pre-trained926

RoBERTa (Liu et al., 2019) and DistilRoBERTa927

(Sanh et al., 2019)—using the Huggingface Trans-928

formers library (Wolf et al., 2020) and the Pytorch929

Lightning library4.930

For the test settings, the model is evaluated on931

the development data once per epoch for small932

datasets and twice per epoch for large ones—i.e.,933

SST-2, MNLI, QNLI, SQuAD, and HellaSwag.934

The best performing model is chosen for testing.935

Our learning rate schedule follows a linear de-936

cay scheduler with a warm-up, specified as a ra-937

tio of the total number of training steps. Maxi-938

mum number of epochs is set to 20 for all tasks939

except SQuAD, following (Mosbach et al., 2021).940

For large datasets, we early stop with a patience941

of 10. The learning rate, and the batch size are942

tuned for each task separately. The details of hy-943

perparameters are summarized in Table 8. We ran944

RoBERTabase experiments with the similar hyper-945

parameters, but with these exceptions: On QNLI,946

learning rate, batch size, and weight decay are set947

to 3e-5, 64, and 0.1; warmup ratio is set to 0.06 on948

QQP.949

For dev experiments, we follow CoDA (Qu et al.,950

2021) on the GLUE tasks. Specifically, we train951

the model for 5 epochs with a batch size of 32,952

learning rate 1e-5, warmup ratio 0.06, weight decay953

0.1, and linear learning rate decay. For SQuAD,954

and HellaSwag, the hyperparameters are detailed955

in Table 7.956

All experiments were conducted on two Nvidia957

Tesla V100 GPUs.958

Hyperparam. SQuAD HellaSwag
Learning rate 1.5e-5 1.5e-5
Batch size 16 32
Max length 512 512
Max epochs 3 20
Warmup ratio 0.06 0.06
Grad. acc. steps 4 1
Weight Decay 0.01 0.01
temp. τ (for KD) 5.0 10.0

Table 7: Hyperparameters of DistilRoBERTa on two
downstream tasks.

4https://github.com/PyTorchLightning/
pytorch-lightning

A.2 Knowledge distillation details 959

We implemented knowledge distillation by caching 960

the teacher’s logits prior training. We performed 961

grid search to find the best softmax temperature τ 962

from {5.0, 10.0, 12.0, 20.0, 30.0}. The value of τ 963

used in our experiments are reported in Tables 7 964

and 8 for DistilRoBERTa and RoBERTabase; with 965

the exception τ = 20.0 on MRPC for RoBERTabase. 966

Loss weight α, in Eq. (8), is set to 0.5 for all tasks 967

except CoLA in which α = 0.75. 968

B OOD results 969

B.1 Distilled Mode 970

OOD results for models trained in the distilled 971

mode are presented in Table 9. 972

B.2 Standalone Mode 973

Table 10 presents OOD results for models trained 974

using test settings, and Table 11 (complementary 975

to Table 3 in §4.2.1) presents OOD results for dev 976

experiments. 977

C Runtime Analysis 978

Due to space constraint, the runtime plots are pro- 979

vided in Figure 2. The discussion of these results 980

are given in §5. 981

D More Ablation Study 982

Effect of Augmentation Size in Glitter. We ex- 983

plore how augmentation size affects the perfor- 984

mance of Glitter. Throughout our experiments, we 985

fix the augmentation size to 8x, but now, we reduce 986

augmentation size K to 6x and 4x, while retaining 987

selection size k1 as before—i.e., 1 for RTE, and 2 988

for the rest. Our results, shown in Table 12, reveal 989

that when K becomes close to k1, Glitter’s per- 990

formance declines. Nonetheless, for a sufficiently 991

large augmentation, Glitter starts to shine. For SST, 992

and MRPC, the magic number is 8x, whereas for 993

QNLI, and RTE, Glitter performs best on 6x. 994

Effect of Selection Strategy in Glitter. In this 995

section, our objective is to assess whether our pro- 996

posed selection algorithm is crucial in Glitter. To 997

this end, we sample random augmented examples 998

at each iteration, namely Glitter-Rnd, instead of 999

selecting worst-case examples. As illustrated in 1000

Table 12 (the bottom two rows), the performance 1001

drops on all datasets—i.e.,0.2% on QNLI, and 1002

more than 1% on the rest, confirming the effec- 1003

tiveness of our selection algorithm. 1004
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Hyperparam. CoLA SST MRPC STS-B QQP MNLI-m/mm QNLI RTE
Learning rate 1e-5 1e-5 1e-5 1e-5 1e-5 3e-5/1e-5 5e-5∗ 1e-5
Batch size 32 64 16 32 64 64 128∗ 32
Max length 128 256 128 128 256 256 256 256
Warmup ratio 0.1 0.06 0.06 0.06 0.1∗ 0.08/0.06 0.08 0.06
Gradient acc. steps 1 4 1 1 4 4 4 1
Weight Decay 0.1 0.1 0.1 0.1 0.1 0.0/0.1 0.0∗ 0.1
Softmax temp. τ (for KD) 30.0 20.0 12.0∗ 12.0 20.0 12.0 12.0 12.0

Table 8: Hyperparameters of DistilRoBERTa on the GLUE benchmark. We used the same configuration for
RoBERTabase albeit with a few exceptions marked by (∗).

Trained On → SST SST SST STS QQP QQP MNLI MNLI RTE

Method
IMDb IMDb-Con. IMDb-CAD SICK MQP PAWSQQP SciTail A-NLI HANS

Acc Acc Acc P/S Acc/F1 Acc Acc Acc Acc

RoBLarge 93.7 92.0 94.0 84.3 71.6 43.6 82.0 45.9 81.8
DistilRoB 90.2 87.6 92.5 79.6 67.3 36.3 74.8 27.8 71.3
KD 90.6 87.4 93.2 79.9 65.6 33.1 77.3 28.9 70.6

EDA (Wei and Zou, 2019)
Vanilla-DA 91.8 87.2 92.9 80.0 59.9 38.0 75.8 27.3 66.6
Glitter 91.2 87.1 94.0 80.0 64.0 36.6 75.6 28.8 65.6

Back-Translation
Vanilla-DA 92.2 87.9 92.1 80.3 69.6 35.0 76.5 27.9 68.0
Glitter 92.4 87.9 92.8 81.2 68.7 35.2 77.6 30.4 70.5

Masked-and-reconstruct
Vanilla-DA 91.8 88.8 92.9 80.4 68.5 33.7 77.4 28.5 69.3
Glitter 92.0 88.0 92.5 80.7 68.8 35.3 78.2 29.9 70.9

Table 9: OOD results of models whose in-domain test results are reported in Table 1 for the distilled mode. Bold
numbers indicate the best result across DistilRoB models.

Trained On → SST SST SST STS QQP QQP MNLI MNLI RTE

Method
IMDb IMDb-Con. IMDb-CAD SICK MQP PAWSQQP SciTail A-NLI HANS

Acc Acc Acc P/S Acc/F1 Acc Acc Acc Acc

RoBBase 92.2 89.1 94.3 80.6 70.7 38.6 78.5 31.4 78.5
Self-KD 92.6 89.1 95.0 80.2 70.9 37.6 79.4 32.1 79.5
+ Vanilla-DA 91.8 88.8 94.8 81.5 71.4 38.8 78.4 31.5 79.3
+ Glitter 92.0 89.6 94.8 81.7 72.1 39.4 79.1 32.7 80.1

CT + Vanilla-DA 90.6 88.1 92.1 76.6 70.6 38.3 76.6 30.3 78.4
CT + Glitter 92.2 88.6 93.7 79.4 70.7 38.8 77.0 31.6 80.2

Table 10: OOD results of models whose in-domain test results are reported in Table 2 for the standalone experiment.
Bold numbers indicate the best result.
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Trained On → SST SST SST MNLI MNLI MNLI RTE

Method
IMDb IMDb-Con. IMDb-CAD SciTail A-NLI HANS HANS

Acc Acc Acc Acc Acc Acc

RoBBase 91.9 ± 0.3 90.0 ± 0.4 94.1 ± 0.4 80.1 ± 0.4 31.0 ± 0.6 73.7 ± 0.7 78.3 ± 0.4

HiddenCut♠ - 87.8 90.4 - 32.8 71.2∗ -
MMEL† 91.6 ± 0.1 90.5 ± 0.7 94.5 ± 0.4 79.7 ± 0.3 31.4 ± 0.6 74.5 ± 0.6 78.3 ± 0.3

Self-KD 91.9 ± 0.3 90.3 ± 0.5 94.4 ± 0.4 79.9 ± 0.3 30.9 ± 0.4 73.5 ± 0.7 78.2 ± 0.4

+ Vanilla-DA 91.6 ± 0.4 90.2 ± 0.4 94.3 ± 0.3 79.3 ± 0.4 31.3 ± 0.5 73.9 ± 0.4 77.8 ± 0.3

+ Glitter 91.7± 0.2 90.6± 0.2 94.8± 0.2 79.4 ± 0.1 31.8 ± 0.4 74.6 ± 0.3 78.4 ± 0.2

Table 11: OOD results of models with dev settings in the standalone mode, same models whose results are reported
in Table 3. (♠) denotes results are taken verbatim from: HiddenCut (Chen et al., 2021). (†) indicates the results are
obtained from our implementation of MMEL (Yi et al., 2021). Bold numbers indicate the best result.
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Figure 2: Runtime Analysis of DA when training RoBERTabase using self-KD. The red point signifies Glitter and
the grey area highlights a desirable area where accuracy is higher while training time is faster, compared to Glitter.
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Method SST MRPC QNLI RTE
Acc F1 Acc Acc

Glitter (8x) 95.8 92.8 93.4 85.9
Glitter (6x) 94.7 92.7 93.7 86.3
Glitter (4x) 95.0 92.1 93.3 85.7
Glitter-Rnd (8x/2x) 94.3 91.4 93.2 85.2
Glitter-Rnd (8x/1x) 94.3 91.8 93.2 84.5

Table 12: Dev results of self-KD for studying the effect
of augmentation size and the selection algorithm for 4
GLUE tasks.
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