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Abstract—Early stage detection of cognitive decline is crucial
for effective prevention and treatment of dementia. However,
current approaches based on MRI or biomarkers are expensive
and impractical, making them unsuitable for early-stage detection
from daily measurements. A suitable option is the dual-task
paradigm, which involves simultaneously performing two tasks
(typically a physical task combined with a cognitive task). This
approach has proven effective in assessing daily cognitive status.
The underlying principle is that dual-task performance reflects
the maximum cognitive load that can be handled by participants,
which in turn reflects their current cognitive function. However,
a one-time dual-task test cannot predict future changes in
cognitive function. In this study, we present the first attempt
at leveraging long-term observations of dual-task performance
data. Our results show that changes in dual-task performance
over time are associated with future cognitive changes. Our
approach extracts temporal features from six months of dual-
task performance data, and predicts future cognitive decline
over the next two years using a machine learning model. Our
experimental results yielded an accuracy comparable to that
returned by MRI scans, thus demonstrating that the proposed
approach can achieve early detection of future cognitive decline
from routine dual-task measurements.

Index Terms—Dual-task, Dementia, MMSE, Early-stage detec-
tion, Mild cognitive impairment

I. INTRODUCTION

With aging populations, dementia has emerged as a serious
issue in our society. Dementia is a collection of diseases
characterized by the progressive deterioration of memory and
mental abilities, ultimately leading to severe disability in daily
life. Dementia remains incurable with current medical treat-
ments. However, early detection and intervention can impede
progression of this disease, especially when identified at or
before the mild cognitive impairment (MCI) stage, which is
considered an early phase of dementia. Consequently, early
detection of cognitive impairment is critical for preventing
dementia among the elderly [1].
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Detecting early-stage cognitive impairment poses several
challenges, because the initial symptoms are subtle and easily
overlooked by the affected individuals. Paper-based examina-
tions such as the Mini-Mental State Examination (MMSE),
Montreal Cognitive Assessment (MoCA), Alzheimer’s Disease
Assessment Scale-Cognitive Subscale, HDS-R (Hasegawa’s
dementia scale, revised), are commonly employed in clinics
for screening cognitive impairment [2]–[6]. However, the
reliability of these screening tools for early-stage detection
is hampered by the practice effect (PE), wherein individuals
consistently score higher than their true cognitive function as
a result of frequent assessments [7].

The dual-task paradigm represents an effective alternative
to the above methods. This approach involves performing
two tasks simultaneously (typically a physical task combined
with a cognitive task), and has been widely adopted to
detect early-stage cognitive impairment [8]–[15]. Dual-task-
based approaches have proven effective in detecting early-
stage cognitive impairment. However, a one-time dual-task test
cannot predict future changes in cognition: the information
provided by short-term dual-task assessments is insufficient
for predicting the longitudinal changes in cognitive function.

To address the aforementioned issues, we propose a novel
approach for predicting future cognitive decline that leverages
long-term observations of dual-task performance data. To the
best of our knowledge, our study represents the first attempt
at exploiting long-term behavioral cues for predicting future
cognitive function. Our experimental results demonstrate that
there is indeed a correlation between future cognitive decline
and changes in preceding sequential dual-task performance
data. The two main contributions of our research are:

(1) a novel method for predicting future cognitive decline
based on long-term observations of dual-task performance
data. Unlike existing methods that rely on MRI scanning
and biomarkers, our research represents a first attempt at
exploring the correlation between preceding long-term be-



havioral cues and future cognitive changes, thereby offering
valuable insights into cognition trends and potential precursors
of cognitive decline at significantly earlier stages. Furthermore,
the proposed system can be applied to long-term cognitive
monitoring. In our study, it was implemented for both cogni-
tive monitoring and data collection in multiple elderly centers.

(2) a database of long-term observations of dual-task per-
formance data paired with MMSE scores over time. This
database includes data from 39 participants collected over
approximately 5 years, and is essential for evaluating the
effectiveness of the proposed method in predicting future
cognitive decline. This dataset holds significant value for neu-
rologists and researchers, facilitating comprehensive analysis
of cognitive function over extended periods.

II. RELATED WORK

In this section, we present an overview of the latest advance-
ments in cognitive assessment technology, alongside recent
research related to predicting future cognitive decline.

A. Cognitive assessment technology

As mentioned previously, paper-based assessments remain
the primary approach for screening cognitive impairment in
clinical settings [2]. For instance, MMSE is a commonly used
assessment tool. It consists of a 30-point questionnaire that
necessitates administration by trained medical professionals,
typically on a one-on-one basis. It contains questions related
to language ability, visual skills, memory, orientation to time
and place, attention, and calculation [3]. Scores between 24
and 27 indicate a relatively high risk of MCI, while scores
below 23 indicate a high probability of dementia. Paper-
based assessments are effective and cost-efficient, however
they are not ideal for frequent measurements because of their
vulnerability to PE. Additionally, the scores returned by these
assessments may vary depending on the evaluator, resulting in
inconsistent performance [3].

To address the above issues, behavior-based methods, such
as dual-task assessments, have garnered significant attention
from researchers. For example, Mancioppi et al. devised a
novel dual-task paradigm for MCI detection involving two
types of dual-tasks: FTAP (fore-finger tapping with cognitive
task) and TTHP (toe-tapping with cognitive task). Despite its
novel features, this approach involves fixed cognitive questions
that remain vulnerable to PE. Furthermore, it requires wearable
sensors that may cause discomfort to the participants [8], [9].
Similarly, Digo et al. introduced a dual-task for screening
cognitive impairment based on human gait features computed
from wearable devices, which is not suitable for long-term
monitoring [11]. Recently, Lillian et al. developed a new dual-
task system involving three phases of walking combined with
a cognitive task, such as counting backwards in 3’s from 100
or reciting the alphabet. This approach has achieved a 81.97%
sensitivity and 67.74% specificity (the sum was 1.4971) [12].
In 2021, Wu et al. were the first to apply STGCN [16] to
dual-task-based cognitive impairment assessment [13]. They
improved overall performance (with the sum of sensitivity and

specificity reaching 1.76) by using spatio-temporal features
from gaits. Subsequently, Liu et al. improved upon Wu et
al.’s work and achieved a value of ≈1.90 for the sum of
sensitivity and specificity [14]. Godo et al. further enhanced
the generalization ability of Liu et al.’s model by leveraging
the periodicity of human gaits [15].

Although these peer-reviewed studies have demonstrated
high performance in detecting current cognitive impairment,
they are incapable of predicting future cognitive decline. The
latter is a significantly more challenging task that cannot be
addressed by a one-time behavioral assessment.

B. Prediction of future cognitive decline

There are several studies that predict future cognitive decline
from MRI data or biomarkers [18]–[23]. Current theories
posit that many types of mental illness, including cognitive
impairment, may arise from pathological changes. For example
Alzheimer’s disease, a typical form of dementia, is associated
with brain changes such as brain atrophy and loss of neurons
and synapses. Therefore, MRI data and biomarkers may re-
flect future cognitive decline caused by pathological diseases
[1]. More recently, CSF (cerebrospinal fluid) has proven an
effective biomarker for predicting future cognition [18]–[20].
Meanwhile, research based on MRI or PET (Positron Emission
Tomography) data have achieved future prediction of cognitive
impairment by detecting subtle pathological changes in brain
structure [21]–[23]. However, MRI, PET, and biomarker tests
are expensive and require medical supervision, making them
unsuitable for frequent assessments.

In summary, previous approaches based on either dual-task
behavioral data or clinical data (MRI, PET, or other biomark-
ers) cannot timely predict future cognitive decline, either as a
consequence of insufficient information, or because of their
unsuitability for frequent measurements. In this study, we
exploit long-term behavioral cues to predict future cognitive
changes. This approach involves daily-oriented measurements,
which enable us to detect the earliest signs of behavioral
changes related to future cognitive decline, even before MCI.

III. METHOD

In this section, we provide a detailed explanation of the
proposed architecture (depicted in Fig. 1) for detecting future
cognitive decline. We define the problem at hand, describe
the data collection system based on dual-task measurements,
detail the feature extraction algorithm, and demonstrate our
method for predicting future cognitive decline.

A. Problem definition

In this study, we define the problem as predicting cognitive
decline in the β years following a baseline time Tbaseline, as
shown in the right part of Fig. 1. Baseline time is intended to
indicate the current timestamp. To achieve this goal, we used a
fixed period α months preceding the baseline time (left part of
Fig. 1) as input data. Specifically, for each sample i, we define
the baseline time point Tbaseline,i. Dual-task data measured
within the interval [Tbaseline,i−α, Tbaseline,i] is represented as a
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Fig. 1. Architecture of the proposed approach for detecting future cognitive decline

multivariate time series Xi ∈ RC×Ti , where Ti ∈ N represents
the number of dual-task measurements conducted by sample
i within α, and C denotes the number of dimensions of the
dual-task data for each measurement.

The label indicating whether cognitive function declines
within the interval (Tbaseline,i, Tbaseline,i + β] is denoted as
yi ∈ {0, 1}. The determination of label yi is based on overtime
MMSE scores, where 0 indicates cognitive maintenance and 1
indicates cognitive decline. The reason for using MMSE scores
over time to compute the ground truth data is that MMSE
is one of the most widely used cognitive assessment tools
worldwide. Since our proposed architecture is independent
of the tool used to assess cognitive ability, MMSE can be
replaced with other assessments, such as MoCA or HDS-R.

In summary, the problem setting of this study is to predict
the final label yi for sample i using the long-term dual-task
observations Xi as input.

B. Data collection with a dual-task system
In this study, we adopted a dual-task experience system

developed by Okura et al. [24], and extended its use to
obtain long-term measurements of dual-task performance. This
system, as shown in Fig. 2, combines a physical task (stepping)
with a cognitive task (arithmetic question). It includes a 30-
second single calculation task, a 20-second single stepping
task, and a 30-second dual-task (calculation while stepping).
Performance in single-tasks separately is used as reference
for dual-task performance, to mitigate the impact of inter-
individual variability. The arithmetic questions are generated
randomly to address potential issues associated with practice
effects, making this approach suitable for frequent measure-
ments [24]. During the dual-task test, a depth camera records
movements during both single-task and dual-task stepping as

3D skeletons. We simultaneously recorded speed and accuracy
of participant responses to the arithmetic questions in both
single calculation task and dual calculation task. In addition,
our system is designed for automatic measurement to minimize
labor costs. It employs person detection to verify that the entire
body skeleton is properly captured in each frame, ensuring the
quality of the collected data.

Using the system described above, we can acquire long-term
observations of dual-task performance data from each partici-
pant over a period of α months. By analyzing subtle changes in
dual-task performance data over time, we can predict future
cognitive decline as early as possible. The overtime MMSE
scores measured every 6 months, with a duration ranging
between 2 and 5 years, are used to estimate the tendency
towards cognitive decline, which serves as ground truth for
training. MMSE assessments should be conducted at 6-month
intervals to reduce practice effects [7].

Based on this protocol, we developed a real-world appli-
cation for dementia prevention (illustrated in Fig. 3), which
was installed in three different elderly centers for long-term
cognitive monitoring. In this setting, participants must perform
the dual-task test at least once every month. Following each
test, the input data are refreshed monthly, replacing the data
from the oldest month with the most recent data. As a result,
the system can forecast the future risk of cognitive decline on
a monthly basis. The time between tests can be reduced to 10
days or 1 week for more frequent monitoring, facilitating early
detection of potential signs of future cognitive impairment,
thus enabling timely interventions to prevent the onset of
dementia. At the same time, the collected dataset, comprising
paired long-term behavioral observations (dual-task) and clini-
cal records (overtime MMSE scores), provides valuable insight



Fig. 2. Dual-task experience system

TABLE I
NINE-DIMENTIONAL BASIC FEATURES USED IN THIS STUDY [17]

Feature-name Feature-description
Correct-Rate-S correct answer rate in single calculation task
Answer-Time-S mean answer time in single calculation task
Step-Speed-S mean stepping speed in single stepping task
Step-STD-S standard deviation of stepping speed in single task

Correct-Rate-D correct answer rate in dual calculation task
Answer-Time-D mean answer time in dual calculation task
Step-Speed-D mean stepping speed in dual stepping task
Step-STD-D standard deviation of stepping speed in dual task
Thigh-Raise mean thigh raise during single and dual stepping

for identifying new precursors of future cognitive changes.

C. Feature extraction

In this research, we first calculate basic features such as
mean stepping speed, answering speed, correct answer rate,
and related metrics from the captured 3D skeletons, alongside
answering records for each dual-task measurement. Next, for
each sample we record the basic features of all measurements
from a given participant in the order of their timestamps within
α months. Finally, we extract statistical features using the
tstresh [25] algorithm.

Here we adopt the approach proposed by Matsuura et al.
[17] to calculate the basic features listed in Table I. Then,
the basic features from all dual-task measurements of sample
i during an α-month period can be organized sequentially
as X̂i =

{
X̂1

i , X̂
2
i , . . . X̂

t
i, . . . X̂

Ni
i

}
, where X̂t

i ∈ R9 is
calculated from Xt

i ∈ RC using Matsuura et al.’s method.
Here i and t represent the indices of sample and measurement,
respectively, C is the number of dimensions of the collected
dual-task data from single measurement, and Ni is the number
of measurements of sample i during an α-month period. These
basic features X̂t

i encompass detailed performance metrics
from both physical and cognitive tasks in each dual-task
measurement. Consequently, it becomes feasible to quantita-
tively evaluate performance changes during long-term frequent
measurements.

The number Ni and frequency of dual-task measurements
vary from sample to sample because, in real-world application
scenarios, participants conduct the test at their discretion
(we establish a minimum frequency of once every month,
however, some participants opt for daily assessments, while
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Fig. 3. Cognitive monitoring system based on our approach

others choose to undergo weekly evaluations). Because vary-
ing feature durations across samples can pose challenges
for machine learning approaches, we employed the tsfresh
algorithm, which is capable of extracting statistical features
from distributions even in cases of missing data points [25].
The tsfresh algorithm is designed to extract statistical features
from time series data, providing comprehensive functionality
for calculating statistics such as the number of peaks and lag
features. Additionally, it offers the capability to select statistics
related to a label, such as the presence or absence of future
cognitive decline in this study [25]–[27].

Given X̂i =
{
X̂1

i , X̂
2
i , . . . X̂

t
i, . . . X̂

Ni
i

}
, where X̂t

i ∈ R9

is the input provided to the tsfresh algorithm, and the length
of the sequence Ni varies for each sample i. The statistical
features F̂i are then calculated according to the following
expression:

F̂i =
{
fj(X̂i)

}M

j=1
, (1)

where fj is the j-th characterization function related to the
data distribution, and M is the number of characterization
functions. Here, a characterization function refers to the math-
ematical operation or transformation applied to time series data
to extract relevant features, such as moving averages, Fourier
transforms, wavelet transforms, and so on. When implement-
ing the above transformation, the basic features of long-term
observations of dual-task performance data X̂i ∈ R9×Ni for
sample i are transformed into F̂i ∈ RS , where S represents
the dimension of the output feature from the tsfresh algorithm,
which is common across all samples. While Eq. (1) generates
M features, we further refine the feature set through feature
selection based on supervised learning, ensuring that S ≤ M
and retaining only the most effective features. We emphasize
that feature selection is conducted solely on the training data.
During prediction, the selected feature names identified during
training are used for filtering.

D. Prediction of future cognitive decline

In this subsection, we begin by clarifying the definition of
the label yi ∈ {0, 1}, indicating whether cognitive decline
occurs over a future β-year period, used as the ground truth
for training our model. The labeling procedure is fundamental
for assessing the efficacy of the proposed approach, and for
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understanding the significance of this study. Next, we will
introduce the machine learning model designed to predict
future cognitive decline.

For labeling, we adopt a method based on the rate of change
in overtime MMSE scores [2] for each participant associated
with the samples used in this study. Let Mp

t denote the MMSE
score for participant p at time t. The set of all MMSE scores
measured overtime for participant p can then be defined as:

Mp
D = {Mp

1,M
p
2, . . .M

p
t , . . .M

P
T }. (2)

We can choose any t with (t + β) ≤ T as the base-
line time. Consequently, long-term observations of dual-task
performance data can be defined using all dual-task mea-
surements during the period [(t − α months), t]. Finally,
we can generate one sample for each time t of participant
p. At the same time, we can extract all MMSE scores
Mp

τ =
{
Mp

t ,M
p
t+0.5, . . . ,M

p
t+β−0.5,M

p
t+β

}
during the pe-

riod [t, (t + β) years]. As mentioned previously, MMSE
scores are measured every six months. A simple way to
detect whether cognitive decline has occurred is to compare
MMSE scores at the start and end time points. However, bias
inherent in the MMSE itself may influence the accuracy of
the prediction. To enhance robustness against MMSE bias
(MMSE scores may be either overestimated or underestimated
depending on the rater’s discretion [7]), we implement linear
regression for Mp

τ to obtain the rate of cognitive change
γ (points per year). If γ is less than a threshold ϵ (points

per year), we set the label as positive; otherwise, we set it
as negative. Figs. 4 and 5 show the positive and negative
examples after linear regression, respectively. In Fig. 4, the
rate of cognitive change γ is about −1.5, which is lower than
the threshold (ϵ = −0.6), we regard this sample as a positive
one. In contrast, the rate of cognitive change γ is larger than
the threshold, we regard it as a negative sample in Fig. 5.

The choice of threshold ϵ = −0.6 is based on previous
research, which predicts the conversion from mild cognitive
impairment (MCI) to dementia with an accuracy of 82%. This
value of threshold was chosen as default value because it
serves as a clinically useful indicator of cognitive decline [31].
However it can be adjusted flexibly to fit different objectives.
For example, setting it lower than -0.6 points per year would
detect slight cognitive decline, while setting it higher than -0.6
points per year would detect severe cognitive decline.

After determining the label for each sample, we can train
a machine learning model using the feature F̂i calculated in
Eq. (1) as the input, and the assigned label as the output. Here
we use LightGBM, an enhanced version of gradient boosting
decision trees that leverages histogram-based features [28]–
[30]. LightGBM efficiently completes the optimization process
by excluding non-important instances and bundling exclusive
features, a strategy that has proven particularly effective in
scenarios involving small-sized databases [28]. Hence, we
used LightGBM in our study to predict the presence of future
cognitive decline.

After training LightGBM model, the prediction of cognitive
decline can be computed by the trained model as follows:

ŷ l+1
i = ŷ l

i + λĥ l(F̂i), (3)

where i is sample index, and l is the index of iteration in
the LightGBM optimization process. Here ĥ l represents the
output of the regression trees at iteration l.

IV. EXPERIMENTS

A. Experimental settings

In this section, we describe the dataset utilized in this
research and the experimental settings required to validate the
effectiveness of the proposed method.

Our data were collected from three different elderly fa-
cilities where the dual-task system was installed to enable
frequent measurements for long-term cognitive monitoring.
MMSE scores required for labeling were measured every
six months by professional staff at the same facilities. Since
the purpose of our research is to detect early stages before
conditions like Alzheimer’s disease develop, we excluded
samples with baseline MMSE scores (MMSE scores of the first
measurement) below 24 points to focus solely on individuals
initially with mild cognitive impairment or those who are
healthy. However, MMSE scores below 24 points from the
second measurement were retained for linear regression in
determining labels. Then we had access to a total of 100
samples from 39 participants. A given participant could be
associated with multiple samples, because participants were



TABLE II
PARTICIPANT CHARACTERISTICS FOR THIS STUDY

Minimum Maximum Median Mean STD
Age 68 96 86 85.8 5.6

MMSE 15 30 27 26.3 3.3
Rate of change
points per year -4.38 2.23 -0.39 -0.71 1.37

No. of tests 18 150 39 54.5 36.9

TABLE III
COMPARISON WITH RELATED WORK USING MRI DATA

Methods Acc Sens Spec Sens + Spec
Peer work 0.71 0.71 0.70 1.41

Our method 0.71 0.65 0.75 1.41

monitored over many years, encompassing multiple cycles (α
months + β years).

Table II presents the basic characteristics of the samples
used in this study. This study was approved by the Re-
search Ethics Committee, Institute of Scientific and Industrial
Research, Osaka University (Approval Number: R6-01), and
informed consent was obtained from all participants prior to
data collection.

The proposed method addresses a binary classification prob-
lem. We therefore used accuracy, sensitivity, and specificity
(defined by the following equations) as evaluation metrics.
We carried out training and evaluation using a cross-validation
technique called Leave-One-Group-Out Cross-Validation (LO-
GOCV), and computed evaluation metrics accordingly. LO-
GOCV assigns samples from one participant to testing, and
uses the remaining samples for training.

Acc =
TP + TN

TP + TN + FP + FN
. (4)

Sens =
TP

TP + FN
, Spec =

TN
TN + FP

. (5)

In Eqs. (4) and (5), TP, FP, TN, and FN represent the
numbers of true positive, false positive, true negative, and
false negative, respectively. The parameters α and β, which
denote the periods for dual-task measurements and future
cognitive decline prediction, are set as 6 months and 2 years,
respectively.

B. Comparison experiment with peer study

In this experiment, we evaluate the performance of our
model using default threshold ϵ = −0.6 for labeling. Since
there is no existing research that uses dual-task data to predict
future cognitive decline, we compare our method with a well-
established study that uses MRI for this purpose [31]. In this
peer study, cognitive decline prediction is performed using
a single MRI scan measured at baseline time Tbaseline. The
definition of cognitive decline is similar to ours, determined
by the rate of change in MMSE scores over time. However,
there is a significant difference in dataset sizes: the peer study
relied on data from 698 individuals obtained from ADNI [32].

Table III presents the results obtained by the peer study, and
the classification results obtained using the proposed method

TABLE IV
COMPARISON RESULTS WITH DIFFERENT DUAL-TASK DURATIONS AND

LABELING THRESHOLDS

α value metrics Labelling threshold ϵ (points/year)
0.0 -0.2 -0.4 -0.6 -0.8 -1.0

six months Acc 0.79 0.76 0.71 0.71 0.72 0.74
Sens 0.92 0.88 0.74 0.65 0.62 0.60
Spec 0.57 0.59 0.68 0.75 0.79 0.82

Sens+Spec 1.49 1.47 1.42 1.41 1.40 1.42
single time Acc 0.71 0.73 0.66 0.64 0.64 0.69

Sens 0.79 0.80 0.69 0.57 0.41 0.39
Spec 0.59 0.63 0.63 0.69 0.76 0.82

Sens+Spec 1.38 1.43 1.32 1.26 1.16 1.21

with our database. The proposed algorithm achieves a level
of performance comparable to the peer study that used MRI
images, however, it is superior for the following three reasons:
(1) the cost of implementing our system is much lower than
the cost associated with MRI scanning;
(2) Our system is better suited for early detection as it can be
deployed in numerous elderly care centers for daily measure-
ments. In contrast, MRI is impractical for early-stage detection
due to the challenges of conducting frequent scans, especially
when symptoms of cognitive impairment are not yet evident.
MRI scans are typically performed only when symptoms
appear and medical attention is sought, often indicating that
the disease has already progressed to a more advanced stage.
Therefore, from this perspective, our proposed approach is
more suitable for dementia prevention than the peer study.
(3) the peer study relied on a database that is approximately
seven times larger than ours, implying that the performance
of our approach would be higher if we used a database size
similar to that used in the peer study.

C. Comparison experiment for sensitivity analysis

In this experiment, we implement comparisons with differ-
ent values of the dual-task period α and labelling threshold ϵ.
Firstly, we compare the performance of models using a one-
time measurement of dual-task performance data with models
using multiple dual-task measurements over a 6-month period.
The two compared models use the same labeling rule; the
only difference being whether long-term observations of dual-
task performance data are used as input. During comparison,
we evaluate the performance of the two models using not
only the default labeling threshold of −0.6 but also thresholds
ranging from 0.0 to -1.0. Table IV presents detailed results of
the performance comparison. Table IV shows that the overall
performance of the model with an extended monitoring period
(6 months) outperforms that of the model with a one-time dual-
task measurement for all labeling threshold values. This result
is consistent with our initial analysis, which indicates that
long-term observations of dual-task performance data contain
clues related to future cognitive decline. When comparing
performance across different values of the labeling threshold,
we found that ϵ > −0.4 yields slightly better results than
ϵ ≤ −0.4. This finding, which results from an issue with data
imbalance, will be discussed in the next section.



Fig. 6. Numbers of positive and negative samples as a function of different
values for the labeling threshold

Fig. 7. Classification performance as a function of different values of the
labeling threshold

V. DISCUSSION

In this section, we consider relevant limitations of our study
and explore potential solutions to address those limitations.
There are primarily two limitations of our research, discussed
separately below.

A. Data imbalance issue

To illustrate the influence of data imbalance more clearly,
we investigate the ratio of positive and negative samples for
cases with different values of the labeling threshold (Fig. 6).
Fig. 7 shows classification performance for different values of
the labeling threshold.

Because the number of people with severe cognitive decline
(involving 1-point decline per year, as shown on the left side
of Fig. 6) is much smaller than the number of those with mild
cognitive decline or no decline (involving a 0.0-point decline
per year, as shown on the right side of Fig. 6), the number
of positive samples for training becomes insufficient when the
threshold is set to −1.0 (ϵ = −0.1 means that samples with
an MMSE score change rate lower than −1.0 will be regarded
as positive).

This reduction in the number of positive samples results
in a degradation of sensitivity. Fig. 7 demonstrates that the

best accuracy, sensitivity, and specificity are achieved when
the ratio of positive to negative samples is approximately 2:1,
with the labeling threshold set to 0.0 (ϵ = 0.0 means that
samples with an MMSE score change rate lower than 0.0 will
be regarded as positive).

To address the sensitivity degradation caused by data im-
balance, a promising solution is to design a weighted loss
function that balances contributions from both positive and
negative training samples. We will investigate the design of
this type of loss function in future work.

B. Labeling uncertainty issue

Another limitation of this study is the uncertainty in data
labeling. This uncertainty stems from the possible measure-
ment errors in MMSE [7] and the possibility of non-linear
changes in cognitive function. Although we used simple linear
regression to estimate the slope (the change rate per year of the
overtime MMSE scores), we did not account for uncertainty
in the regression procedure, which could lead to incorrect
labeling. These incorrect labels may negatively impact model
performance and the accuracy of its evaluation. There are sev-
eral solutions for this problem, such as employing soft labels
during training and excluding samples with high uncertainty.
Here, we propose a novel idea related to quantifying and
minimizing this kind of uncertainty.

Given n measurements of MMSE taken over the labeling
period, mi denotes the MMSE score at the i-th measurement,
m̂i represents the predicted score of the MMSE at the ith
measurement, xi denotes measurement date of the i-th mea-
surement, and x̄ is the average value of the measurement dates.
Labelling uncertainty can then be calculated as follows:

σslope =

√
1

n−2

∑n
i=1(mi − m̂i)2∑n

i=1(xi − x̄)2
. (6)

When this uncertainty is small, labeling becomes more reli-
able. When this uncertainty is large, the likelihood of labeling
errors increases, resulting in low-quality labels. Therefore, one
potential solution is to use a machine learning model for
MMSE change regression instead of linear regression and to
minimize this uncertainty during the training of the model.
Because this procedure involves the design of an alternative
approach diverging from the main paradigm proposed in this
study, we will explore it in future work.

C. Dataset size issue

Our dataset includes 100 samples from 39 subjects, which
is smaller than the dataset used in the MRI-based study
[31]. Collecting data for long-term observation is challenging,
particularly when persuading elderly individuals to participate
over extended periods. However, our database is comparable
to those used in other dual-task-based studies [8], [9], [11],
[12]. To address the issue of data insufficiency, We utilized
statistical features extracted by Tsfresh, which represents fea-
tures from a distribution rather than from a single sample,
and employed leave-one-out cross-validation (LOOCV) for
evaluation to mitigate bias from the data.



VI. CONCLUSION

In this study, we proposed an approach for predicting
cognitive decline over the two years following baseline time,
based on changes in dual-task observations over a period of
six months preceding baseline time. In the proposed method,
long-term observations of dual-task performance data are
represented as a multivariate time series, and feature selection
was performed using the tsfresh [25]. The selected features
were used as input to the LightGBM machine learning model
[28]. When trained, this model classified data as indicating the
presence or absence of future cognitive decline.

The experimental results have shown that the performance
of the proposed model is equivalent to the performance re-
ported by a well-known MRI-based study [31]. However, the
proposed approach outperforms the MRI-based method when
considering the cost of examination and the impact of early-
stage detection of cognitive decline. This study represents
the first attempt at exploiting long-term behavioral cues for
predicting future cognitive decline. The comparison results
between a model using a one-time measurement of dual-task
performance on the one hand, and a model using multiple
measurements over a 6-month period on the other hand, val-
idate the effectiveness of long-term observations of dual-task
performance. This research facilitates the regular use of dual-
task measurements in real world, for monitoring cognition and
the early-stage detection of future cognitive decline.

The primary challenges for future work involve addressing
the uncertainty mentioned in the Discussion section, as well
as expanding the dataset and refining the loss function to solve
the data imbalance problem. Moving forward, our objective is
to develop a framework for predicting changes in future cogni-
tive function with high precision, using regular measurements
of dual-task performance.
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