
High Effort, Low Gain: Fundamental Limits of Active
Learning for Linear Dynamical Systems

Nicolas Chatzikiriakos
Institute for Systems Theory and Automatic Control

University of Stuttgart
nicolas.chatzikiriakos@ist.uni-stuttgart.de

Kevin Jamieson
Paul G. Allen School of Computer Science & Engineering

University of Washington, Seattle, WA
jamieson@cs.washington.edu

Andrea Iannelli
Institute for Systems Theory and Automatic Control

University of Stuttgart
andrea.iannelli@ist.uni-stuttgart.de

Abstract

In this work, we consider the problem of identifying an unknown linear dynamical
system given a finite hypothesis class. In particular, we analyze the effect of the
excitation input on the sample complexity of identifying the true system with
high probability. To this end, we present sample complexity lower bounds that
capture the choice of the selected excitation input. The sample complexity lower
bound gives rise to a system theoretic condition to determine the potential benefit
of experiment design. Informed by the analysis of the sample complexity lower
bound, we propose a persistent excitation (PE) condition tailored to the considered
setting, which we then use to establish sample complexity upper bounds. Notably,
the PE condition is weaker than in the case of an infinite hypothesis class and
allows analyzing different excitation inputs modularly. Crucially the lower and
upper bounds share the same dependency on key problem parameters. Finally, we
leverage these insights to propose an active learning algorithm that sequentially
excites the system optimally with respect to the current estimate, and provide
sample complexity guarantees for the presented algorithm. Concluding simulations
showcase the effectiveness of the proposed algorithm.

1 Introduction

The problem of learning a model of an unknown dynamical system from data is important across
domains such as reinforcement learning (RL), data-driven control and robotics. Hereby, it is of
particular interest to obtain an accurate model with high confidence from as few samples as possible,
since data collection is often expensive. Specifically, in online settings such as RL exploration comes
at the cost of loss in performance. Hence, it is of particular interest to understand the mechanisms and
benefits of (active) exploration since this enables finding suitable tradeoffs between exploration and
exploitation. While there exists a large literature on experiment design both in dynamical systems
and learning theory, there are still fundamental challenge in the field that have not been addressed
even in simple settings. Specifically a study of the potential benefit of experiment design algorithms

18th European Workshop on Reinforcement Learning (EWRL 2025).



is lacking in the literature of dynamical systems, raising the question of whether experiment design
algorithms should be applied universally, or whether a more nuanced answer is appropriate.
Motivated by these challenges, we consider the setting where the learner has prior knowledge of
the true system through a finite hypothesis class. This reflects cases where some prior knowledge
is available, e.g., based on first principles, yet certain parameters are hard to model or vary across
different instances. When it comes to dynamical systems, the data is usually collected from a single
trajectory and hence is highly correlated. This poses a key challenge when analyzing learning in
the finite sample regime. In particular, existing works considering the identification of dynamical
systems1 mostly consider the case of an infinite hypothesis class and rely on the least squares estimator.
Early works derived sample complexity upper bounds for Gaussian inputs for linear [20, 23] and
certain classes of non-linear systems [6, 22, 21]. Further, sample complexity lower bounds for
Gaussian excitations and linear systems have been considered in [11, 24]. For the case of a finite
hypothesis class, [3, 17] provide sample complexity upper and lower bounds when the excitation is
Gaussian. The problem of experiment design has a long history in system identification (see [2, 9]).
While these classical works consider the asymptotic case, recent works provided a finite sample
perspective on the topic for linear [27] and certain classes of non-linear systems [15, 16]. While
the underlying principles in the finite-sample analysis are always similar, there exists no modular
framework for this analysis. Further, the benefit of experiment design over random excitations has
not been explicitly considered in dynamical systems. This work addresses these gaps by answering
the following questions to improve our understanding of experiment design and active learning:

Q1) How large is the problem-specific benefit of oracle experiment design over isotropic Gaussian
excitations in terms of the sample complexity?

Q2) How can sample complexity upper bounds be established for general excitation inputs?
Q3) How can active learning algorithms generate excitation inputs to provably outperform

random isotopic excitations?
Q4) How does the finite hypothesis class simplify experiment design compared to an infinite

hypothesis class?
Even though we consider these questions in a linear setup, the improved understanding of key
mechanisms in exploration and experiment design can also be benefical in more complex settings
such as RL. Our primary contributions can be summarized as follows:

1. We provide fundamental instance-dependent lower bounds on the sample complexity of
identifying the true system with high probability. To this end, we leverage tools from
information theory and derive the optimal oracle excitation input during data collection.
We further provide a detailed analysis of the system-theoretic quantities dictating how the
sample complexity lower bounds differ for different excitation inputs.

2. Building on the notion of persistency of excitation (PE), we propose a modular framework to
derive sample complexity upper bounds for different excitation inputs. While the probability
of miss-specification decays exponentially for all excitations satisfying PE, we establish that
the decay rate depends on system theoretic quantities that match the lower bounds.

3. Using the notion of PE we establish an interpretable condition pointing out when experiment
design using certainty equivalence is more efficient than random excitations. Interestingly,
the derived condition can be satisfied even before data-collection, indicating that the addi-
tional knowledge of the finite hypothesis class can be leveraged for experiment design.

4. Notably, our analysis also uncovers cases where the benefit of experiment design is small
even in an oracle setup, indicating that the usefulness of experiment design needs to be
evaluated on a problem-specific level.

Notation: The n-dimensional simplex is denoted by ∆n. We denote the set of symmetric positive
(semi-)definite matrices of dimension n × n by Sn++(Sn+). Given a vector v ∈ Rn and a matrix
M ∈ Sn++ we define ∥v∥M :=

√
v⊤Mv. Given a symmetric matrix M ∈ Rn×n we denote its largest

eigenvalue by λmax(M) and the mean of all eigenvalues by λmean(M) = 1
n tr (M), where tr (M)

indicates the trace of the matrix M . Given a sequence {u(t)}t1t=t0 we denote the stacked collection as

U =
[
u(t0)

⊤ . . . u(t1)
⊤]⊤, where the boundaries of the interval will be clear from the context.

We use diagt(M) to denote a block-diagonal matrix which repeats the matrix M on its diagonal
t-times, i.e., diagt(M) := It ⊗M , where ⊗ denotes the Kronecker product.

1We provide an extended overview of the related literature in Appendix A.
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2 Preliminaries

We consider the unknown discrete-time linear time-invariant (LTI) dynamical system

x(t+ 1) = A∗x(t) +B∗u(t) + w(t), w(t)
i.i.d∼ N (0,Σw), (1)

where x(t) ∈ Rnx , u(t) ∈ Rnu are the state and the input of the system at timestep t, and w(t) is
process noise. While we assume knowledge of the covariance matrix Σw ∈ Snx

++, all the presented
results and the proposed algorithm can be adapted to the case where Σw is unknown and only an
upper bound σwI ⪰ Σw or an informative prior is available. For notational simplicity, we assume
x(0) = 0 unless stated otherwise. Further, we assume the learner has knowledge of a finite set of
systems, which contains the true system, i.e.,

θ∗ = (A∗, B∗) ∈ S := {(A0, B0), . . . , (AN , BN )}, (2)

where S is known to the learner, and we assume (A∗, B∗) = (A0, B0) for notational simplicity.
The goal of the learner is to identify the true system matrices θ∗ ∈ S from a single data trajectory
DT = ({x(t)}Tt=0, {u(t)}T−1

t=0 ), where the excitation input u can be selected by the learner. Thus, in
the context of this work an identification problem is uniquely defined by the tuple (θ∗,S). For our
analysis it is important to understand how predictions using θ∗ compare to predictions using θi, for
some i ∈ [1, N ]. To this end, we denote the sum of one-step prediction errors between θ∗ and θi by

ε̃θi(0, τ) :=

τ−1∑
t=0

∥∆Aix(t) + ∆Biu(t)∥2Σ−1
w
, (3)

where we defined ∆Ai := A∗ −Ai and ∆Bi := B∗ −Bi. Recall that the data Dτ is collected along
a trajectory of the dynamical system (1). Recursively plugging in the dynamics (1) for x(t) yields

ε̃θi(0, τ) =

τ−1∑
t=0

∥∥∥∥∥∆Ai

(
t−1∑
s=0

At−1−s
∗ B∗u(s) +At−1−s

∗ w(s)

)
+∆Biu(t)

∥∥∥∥∥
2

Σ−1
w

, (4)

which reveals that ε̃θi(0, τ) is a random quantity even if the excitation input is deterministic2. This
is due to the process noise affecting the system (1) and hence the data. Taking the expectation and
using w(t)

i.i.d.∼ N (0,Σw) it can be shown that

E [ε̃θi(0, τ)] = E

τ−1∑
t=0

∥∥∥∥∥∆Ai

t−1∑
s=0

At−1−s
∗ B∗u(s) + ∆Biu(t)

∥∥∥∥∥
2

Σ−1
w

+ E

∥∥∥∥∥∆Ai

t−1∑
s=0

At−1−s
∗ w(s)

∥∥∥∥∥
2

Σ−1
w

 .

(5)
To simplify notation we define the Toeplitz matrices

Su(τ) :=


B∗ 0 . . . 0

A∗B∗ B∗ 0
...

...
. . . 0

Aτ−1
∗ B∗ Aτ−2

∗ B∗ . . . B∗

 , Sw(τ) :=


Σ

1/2
w 0 . . . 0

A∗Σ
1/2
w Σ

1/2
w 0

...
...

. . . 0

Aτ−1
∗ Σ

1/2
w Aτ−2

∗ Σ
1/2
w . . . Σ

1/2
w

 , (6)

that can be used to map from the t-step noise and input trajectories to corresponding the state
trajectory. Using (6), computing the expectation in (5) and writing it in matrix form simplifies to

E [ε̃θi(0, τ)] =E
[
U⊤(Ri

Σ−1
w
(τ) + Su(τ)

⊤Qi
Σ−1

w
(τ)Su(τ) (7)

+N i
Σ−1

w
(τ)Su(τ) + (N i

Σ−1
w
(τ)Su(τ))

⊤)U]+ tr
(
Sw(τ)

⊤Qi
Σ−1

w
Sw(τ)

)
,

where U ∈ Rnuτ and we introduced the block-diagonal matrices

Qi
Σ−1

w
(τ) := diagτ (∆A⊤

i Σ
−1
w ∆Ai), Ri

Σ−1
w
(τ) := diagτ (∆B⊤

i Σ−1
w ∆Bi) (8a)

N i
Σ−1

w
(τ) := diagτ (∆B⊤

i Σ−1
w ∆Ai) (8b)

2A detailed derivation, for the general case x(0) ∈ Rnx that includes the case where u(t) consists of both a
deterministic and a random part is presented in Appendix G.
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Note that U⊤Ri
Σ−1

w
(τ)U =

∑τ
t=0 ∥∆Biu(t)∥2Σ−1

w
measures to what extent the difference between B∗

and Bi can be seen in the weighted prediction error when applying the input sequence U . Similarly,
U⊤Su(τ)

⊤Qi
Σ−1

w
(τ)Su(τ)U measures to what extent the difference between A∗ and Ai can be

seen in the weighted prediction error when applying U and tr
(
Sw(τ)

⊤Qi
Σ−1

w
Sw(τ)

)
measures the

influence of the process noise on this quantity. Thus, accounting for the cross term, the matrices

Wi(τ) := Ri
Σ−1

w
(τ)+Su(τ)

⊤Qi
Σ−1

w
(τ)Su(τ)+N i

Σ−1
w
(τ)Su(τ)+(N i

Σ−1
w
(τ)Su(τ))

⊤, ∀i ∈ [1, N ],

(9)
measure the difficulty of distinguishing between θ∗ and θi and the sensitivity of (3) to changes in the
excitation input.

3 Can active learning algorithms improve identification?

To analyze the influence of the data collection scheme on the sample complexity, we first derive a
sample complexity lower bound that holds for any reasonable algorithm. This instance-specific lower
bound quantifies the hardness of learning in our setup and provides a nuanced answer on whether
active learning algorithms can significantly reduce the sample complexity. Further, in Section 3.2 we
provide a modular framework for deriving complementary sample complexity upper bounds. In this
work, we assume the excitation input satisfies the following standard assumption (see, e.g., [26])

Assumption 1 (Bounded input power). The expected average power of the (potentially random)
input sequence {u(t)}T−1

t=0 is bounded by γ2
u, i.e., E

[∑T−1
t=0 ∥u(t)∥2

]
≤ γ2

uT .

3.1 Sample complexity lower bounds

To formalize the algorithms that we consider in this section, we define the class of δ-correct algorithms.

Definition 1 (δ-correct algorithms). Consider the setup described in Section 2. An algorithm is
called δ-correct, if for all δ ∈ (0, 1), and any θ∗ and S there exists a finite time T̄ such that for all
t ≥ T̄ the algorithm returns an estimate θ̂t that satisfies P[θ̂t = θ∗] ≥ 1− δ.

Note that by restricting to δ-correct algorithms, we can obtain instance-specific sample complexity
lower bounds that hold for any reasonable algorithm and any input sequence.

Theorem 3.1. Consider the unknown dynamical system (1) with x(0) = 0 and the set S defined
in (2). Then for any (potentially random) excitation input sequence3 U ∈ RnuT̄ and any δ-correct
algorithm it holds that

min
i∈[1,N ]

E
[
U⊤Wi(T̄ )U

]
+ tr

(
Sw(T̄ )

⊤Qi
Σ−1

w
(T̄ )Sw(T̄ )

)
≥ 2 log

(
1

2.4δ

)
. (10)

Furthermore, under Assumption 1 the lower bound is minimized by the excitation input

U∗ ∈ argmax
U⊤U≤γ2

uT̄

min
i∈[1,N ]

U⊤Wi(T̄ )U + tr
(
Sw(T̄ )

⊤Qi
Σ−1

w
(T̄ )Sw(T̄ )

)
, (11)

and when applying U∗ any δ-correct algorithm satisfies

min
p∈∆N

γ2
uT̄ λmax

( N∑
i=1

piWi(T̄ )
)
+ max

i∈[1,N ]
tr
(
Sw(T̄ )

⊤Qi
Σ−1

w
(T̄ )Sw(T̄ )

)
≥ 2 log

(
1

2.4δ

)
. (12)

While using the maximum of the trace term in (12) introduces some conservatism, in practical
applications the noise is often significantly smaller than the input. In these cases (12) is dominated
by the first term and the added conservatism is small. The proof of Theorem 3.1 is presented in
Appendix B.1. Note that while the solution to (11) might not be unique, any optimizer suffices to
achieve the optimal lower bound. As shown in Appendix C, the optimal solution exists.

3Random and deterministic input sequences are denoted identically. The interpretation will be clear from the
context.
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Remark 3.1. Recall from (7)-(9) that, given x(0) = 0, (11) is equivalent to

U∗ ∈ argmax
U⊤U≤γ2

uT̄

min
i∈[1,N ]

E

T̄−1∑
t=0

∥∆Aix(t) + ∆Biu(t)∥2Σ−1
w

 . (13)

Thus, Theorem 3.1 implies that the optimal excitation U∗ maximizes E
[
ε̃θi(0, T̄ )

]
uniformly over all

θi ∈ S \ {θ∗}. Thus, U∗ maximizes the distance between E
[
ε̃θ∗(0, T̄ )

]
= 0 and E

[
ε̃θi(0, T̄ )

]
, to

separate the true system θ∗ from all other systems θi ∈ S \ {θ∗} as clearly as possible.

Theorem 3.1 can be used to obtain a sample complexity lower bound for isotropic Gaussian inputs.
Corollary 3.2. Consider the unknown dynamical system (1) with x(0) = 0 and the set S defined
in (2). Suppose that u(t) i.i.d.∼ N (0,

γ2
u

nu
Inu

). Then for any δ-correct algorithm it holds that

min
i∈[1,N ]

γ2
uT̄ λmean

(
Wi(T̄ )

)
+ tr

(
Sw(T̄ )

⊤Qi
Σ−1

w
(T̄ )Sw(T̄ )

)
≥ 2 log

(
1

2.4δ

)
. (14)

The proof is provided in Appendix B.2. To gain an intuition for the results in this chapter consider the
following example, where S consists of only two systems which eliminates the need for minimization.
Example 3.1. First, consider the identification problem defined by

A∗ =

[
0 0.1
0 0

]
B∗ =

[
0
1

]
A1 =

[
0 0.2
0 0

]
B1 = B∗ (15)

and S = {(A∗, B∗), (A1, B∗)}. A straightforward calculation yields W1(t) = diagt ([0.01]) and
λj(W1(t)) = 0.01, ∀j ∈ [1, t],∀t ≥ 1. Thus, in this case isotropic Gaussian excitations are optimal
in the sense of the sample complexity lower bound. Next, consider S̃ = {(Ã∗, B̃∗), (Ã1, B̃∗)} with

Ã∗ =

[
A∗ 02×d

0d×2 Id

]
B̃∗ =

[
B∗ 02×d

0d×1 Id

]
Ã1 =

[
A1 02×d

0d×2 Id

]
B̃1 = B̃∗, (16)

for some fixed d > 0. Through direct calculations, we obtain W̃1(t) = diagt

([
0.01 01×d

0d×1 0d×d

])
,

∀t ≥ 1 and hence λmean(W̃1(t)) =
1

d+1λmax(W̃1(t)). Hence, when d is large, the sample complexity
lower bound for isotropic Gaussian excitations is significantly larger than for the optimal oracle
excitation. This indicates that using isotropic Gaussian excitations requires more samples to achieve
the same confidence δ if an algorithm that matches the lower bound is used. This can be observed
in the sample complexity upper bounds we present in the next section. Further, under the same
process noise conditions the sample complexity lower bound of the identification problems (θ∗,S)
and (θ̃∗, S̃) is identical given the respective optimal oracle excitation is used for both instances, as
λmax(W1(t)) ≡ λmax(W̃1(t)). Hence, the difficulty of problems (θ∗,S) and (θ̃∗, S̃) is identical.
This is due to the fact that the last d modes of the system (16) are not relevant for the identification
problem since they are decoupled from the unknown part. Confirming this intuition, Ũ∗ only excites
the system with the first input. Crucially, our mathematical formulation enables the analysis of
complex problem setups, where the optimal excitation and hardness cannot be determined intuitively.

3.2 Sample complexity upper bounds

In this section, we establish a modular framework to derive sample complexity upper bounds for
identifying θ∗ with high probability. Our proposed framework builds on the notion of persistency of
excitation which is closely connected to the observations made in the previous section.

3.2.1 Persistency of Excitation

Recall that in Example 3.1, the goal of identifying the true system can be accomplished by exciting
only the first mode of the system using only the first control input. Clearly, this input does not satisfy

E

[
τ−1∑
t=0

[
x(t)
u(t)

] [
x(t)⊤ u(t)⊤

]]
⪰ cInx+nu

, c > 0 (17)
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which is the PE condition required in the case of an infinite hypothesis class [25]. In fact, it is only
necessary to excite the parts of the system which carry uncertainty. Thus, we introduce weaker PE
condition, which has been used as an assumption in a similar form in [17].

Definition 2 (Persistency of excitation (PE)). Consider an input sequence {u(t)}τ−1
t=0 , satisfying

E[
∑τ−1

t=0 ∥u(t)∥2] = γ2
uτ for some γu > 0. We say {u(t)}τ−1

t=0 is persistently exciting for (θ∗,S) if
there exist constants cu(τ) > 0, cw(τ) > 0 such that for any x(0) ∈ Rnx and θi ∈ S \ {θ∗}

1

τ

τ−1∑
t=0

E
[
∥∆Aix(t) + ∆Biu(t)∥2Σ−1

w

]
≥ cu(τ)γ

2
u + cw(τ). (18)

Note that, the constants cu and cw depend on the block length τ . Further they are instance specific, i.e.,
they depend on the set S . By the sample complexity lower bound the excitation input needs to satisfy
Definition 2 for some τ > 0 to guarantee identification of θ∗ with high probability (see Remark 3.1
and Theorem B.1). If not, there exists some θi ̸= θ∗ which yields the same state trajectory and hence
is indistinguishable from θ∗ given the data. Given the PE condition (18), it follows that isotropic
Gaussian excitations and the optimal oracle excitation U∗ defined in (11) satisfy Definition 2.
Lemma 3.3 (PE for isotropic Gaussian inputs). Consider the system (1) and the set S defined in (2).
Then u(t)

i.i.d.∼ N (0, γ2

nu
Inu) is PE for any block length τ > 0 with

crandu (τ) = min
p∈∆N

λmean

( N∑
i=1

piWi(τ)
)
, cw(τ) = min

i∈[1,N ]

1

τ
tr
(
Sw(τ)

⊤Qi
Σ−1

w
(τ)Sw(τ)

)
. (19)

Lemma 3.4 (PE for optimal oracle excitation). Consider the system (1) and let the set S defined
in (2). Then

U∗(x(0)) ∈ argmax
U⊤U≤γ2

uτ

min
i∈[1,N ]

τ∑
t=0

E
[
∥∆Aix(t) + ∆Biu(t)∥2Σ−1

w

]
(20)

is PE for any block length τ with

coptu (τ) = min
p∈∆N

λmax

( N∑
i=1

piWi(τ)
)
, cw(τ) = min

i∈[1,N ]

1

τ
tr
(
Sw(τ)

⊤Qi
Σ−1

w
(τ)Sw(τ)

)
. (21)

The proof of both results is given in Appendices D.1 and D.2, respectively. Importantly, the PE
coefficients crandu (τ) and cw(τ) coincide with the key problem parameters influencing the sample
complexity lower bounds presented in Theorem 3.1 and Corollary 3.2. Further, the optimal excitation
U∗ derived in Theorem 3.1 maximizes the PE coefficients cu(τ), cw(τ) in (18).
Remark 3.2. Lemmas 3.3 and 3.4 also shed light on a tradeoff when selecting the block size τ . The
properties of the dynamical system (1) dictate how fast cu(τ) grows, so that a smaller (larger) block
length τ might provide better guarantees.

Remark 3.3. If Σw is unknown and instead an estimate Σ̂w is used to solve (20), the corresponding
input sequence is PE, although with potentially suboptimal coefficients. The degree of sub-optimality
is instance-dependent and can be analyzed by computing and comparing the coefficients.

3.2.2 High probability identification with finite samples

Having established PE, we now show that PE guarantees fast identification of the true system θ∗
with high probability. To do so, we introduce a sequential estimation algorithm for general input
sequences. In particular, we derive a sample complexity upper bound for Algorithm 1 that holds
for any PE input sequence. For estimation, the algorithm evaluates the sum of weighted one-step
prediction errors of θi up to time t defined as

εθi(t) :=

t−1∑
t=0

∥x(t+ 1)−Aix(t)−Biu(t)∥2Σ−1
w
. (22)

Clearly, εθi(t) can be interpreted as the negative log-likelihood of system i given the data collected
from time 0 to t. Thus, the termination criterion of Algorithm 1 is equivalent to a log-likelihood test.
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Algorithm 1 Sequential identification algorithm
Require: S , episode length τ , desired confidence δ

1: for k = 1, 2, . . . do
2: Collect data using PE excitation input {u(t)}kτ−1

t=(k−1)τ with coefficients cuk
(τ), cwk

(τ)

3: Compute εθi(kτ) for all i ∈ [0, N ]

4: if ∃θ̂ ∈ S : εθi(kτ)− εθ̂(kτ) > log
(
N
δ

)
for all θi ∈ S \ θ̂ then

5: Stop and return estimate θ̂

While related works considering this setup [3, 17] only analyze the case where the data is generated
by Gaussian excitations, the results in this work hold for any input satisfying PE. In particular this
allows to reason about how learning can be accelerated trough particular choices of the excitation
input. To formalize this, we propose the following result.
Theorem 3.5. Consider the unknown system (1), set S as defined in (2). Then Algorithm 1 yields an
estimate θ̂ satisfying P

[
θ̂ ̸= θ∗

]
≤ δ and terminates no later than when k satisfies

τ
k∑

j=1

cuj
(τ)γ2

u + cwj
(τ) ≥ c′ log

(
N

δ

)
, (23)

where c′ is a constant influenced by the variance in ε̃θi .

The proof of Theorem 3.5 is presented in Appendix E.1, where we also present the full version of
the result. If the PE coefficients are similar throughout the episodes Theorem 3.5 guarantees that
the risk of miss-specification decays exponentially in k. Further, Theorem 3.5 establishes a modular
framework to derive sample complexity upper bounds for different excitations. That is, to provide a
sample complexity upper bound for Algorithm 1 it is only necessary to show the excitation satisfies
Definition 2. Given the PE coefficients cu(τ), cw(τ) the sample complexity upper bound then follows
immediately. Hence, for the input sequences analyzed previously, the following result holds.

Corollary 3.6. Consider the same setup as in Theorem 3.5. If u(t) i.i.d.∼ N (0,
γ2
u

nu
Inu

) then Algorithm 1

yields an estimate θ̂ satisfying P
[
θ̂ ̸= θ∗

]
≤ δ and terminates at the latest when T = kτ first satisfies

T

(
γ2
u min
p∈∆N

λmean

( N∑
i=1

piWi(τ)
)
+ min

i∈[1,N ]

1

τ
tr
(
Sw(τ)

⊤Qi
Inx

Sw(τ)
))

≥ c′ log

(
N

δ

)
. (24)

Further, if the optimal oracle excitation input U∗ defined in (20) is applied the estimate θ̂ satisfies
P[θ̂ ̸= θ∗] ≤ δ, and Algorithm 1 terminates at the latest when T = kτ first satisfies

T

(
γ2
u min
p∈∆N

λmax

( N∑
i=1

piWi(τ)
)
+ min

i∈[1,N ]

1

τ
tr
(
Sw(τ)

⊤Qi
Inx

Sw(τ)
))

≥ c′′ log

(
N

δ

)
. (25)

where c′ and c′′ are constants influenced by the variance in ε̃θi .

After leveraging PE, Corollary 3.6 follows directly from Theorem 3.5. We provide the proof and
the full version in Appendix E.3. Clearly, the level of PE of the excitation dictates the speed of
identification of the true system. Since the PE coefficients coincide with the key parameters entering
the sample complexity lower bounds we observe the same dependency in the sample complexity
upper bounds, as well. The block parameter τ can be used as a degree of freedom to optimize the
bounds. As discussed in Remark 3.2 the optimal choice of τ depends on the problem setup.

4 Sequential input design algorithm

In the previous section we established that the matrices Wi(τ) are the key quantities that determine the
degree of sub-optimality of random excitations compared to the optimal oracle excitation. However,
since the optimal oracle excitation input depends on θ∗ it cannot be computed in practice. This
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Algorithm 2 Input design subroutine
Require: S , episode length τ , prediction errors εθi((k − 1)τ), state x, scaling ρk ∈ [0, 1]

1: Compute weights using exponential weighting wk+1(i) = exp (−ηεθi((k − 1)τ))

2: Sample îk ∼ pk(i), where pk(i) = wk(i)/
∑N

j=0 wk(j)

3: Set θ̂k = θîk and compute optimal input sequence U∗
θ̂k
(x) by solving (26)

4: Define excitation according to ρk: u∗
k(t) =

√
1− ρku

∗
θ̂k
(t)+

√
ρkuη(t), uη(t)

i.i.d.∼ N (0,
γ2
u

nu
Inu)

return excitation sequence u∗
k

phenomenon is well known in the literature of experiment design and is usually tackled by using
sequential algorithms to generate excitations that are close to optimal. In line with these approaches,
our proposed input design subroutine, which is presented as Algorithm 2, can be called by Algorithm 1
in each episode and returns an excitation input sequence. To derive the excitation, the subroutine
draws an estimate θ̂k using exponential weights and solves the optimization (20) using certainty
equivalence (CE), i.e., using θ̂k as if it were the true system. Thus, after sampling θ̂k = (Âk, B̂k)

and defining ∆Âi := Âk −Ai and ∆B̂i := B̂k −Bi the excitation input is computed by solving

U∗
θ̂k
(x(kτ)) ∈ argmax

U⊤U≤γ2
uτ

min
θi ̸=θ̂k

E

τ(k+1)−1∑
t=kτ

∥∆Âix(t) + ∆B̂iu(t)∥2Σ−1
w

 . (26)

Due to the uncertainty in the estimate, we add random excitations to the optimal excitation input
according to a scaling parameter ρk, which can be adapted over time. We will analyze the choice
of ρk and its consequences on the speed of identification throughout this section. Note that any
ρk ∈ [0, 1] yields excitation inputs satisfying Assumption 1. As shown above, establishing sample
complexity upper bounds reduces to showing that Algorithm 2 produces PE inputs.
Lemma 4.1. Consider the system (1), set S as defined in (2). Consider the excitation input sequence
u∗
k generated by Algorithm 2 at some fixed iterate k and let P[θ̂k ̸= θ∗] ≤ pk ∈ [0, 1], where θ̂k is the

estimate drawn using exponential weights in round k. Then u∗
k satisfies PE with

cAlg
uk

(τ) = (1− pk)(1− ρk)c
opt
u (τ) + ρkc

rand
u (τ), (27a)

cwk
(τ) = min

i∈[1,N ]

1

τ
tr
(
Sw(τ)

⊤Qi
Σ−1

w
(τ)Sw(τ)

)
, (27b)

where coptu (τ) is the PE coefficient for optimal excitation as defined in (21) and crandu (τ) is the PE
coefficient for isotropic Gaussian excitations as defined in (19).

The proof of Lemma 4.1 can be found in Appendix D.3. Note that while it might seem intuitive that
any convex combination of two PE inputs is also PE this is not necessarily true. Given the setup in
Example 3.1 with d = 1 it is easy to see that u⊤

1 (t) = [1 0], ∀t ≥ 0 and u⊤
2 (t) = [−1 0], ∀t ≥ 0

are both PE. However, u(t) = 0.5(u1(t) + u2(t)) = 0 is clearly not PE. With Lemma 4.1 we can
directly obtain the following sample complexity upper bound.
Theorem 4.2. Let Algorithm 1 be used with the excitation input derived by Algorithm 2. Then, the
estimate θ̂ of Algorithm 1 satisfies P

[
θ̂ ̸= θ∗

]
≤ δ and terminates no later than when k satisfies

τ
( k∑
j=1

cAlg
uj

(τ) + cwj (τ)
)
≥ c′ log

(
N

δ

)
, (28)

where cAlg
uj

(τ), cwj (τ) are defined in (27) and c′ is a constant influenced by the variance in ε̃θi .

The full version of Theorem 4.2 and its proof are presented in Appendix E.4. In essence, Lemma 4.1
specifies that whenever the uncertainty is small enough compared to the expected benefit in PE from
the optimal excitation CE will provably improve the PE coefficients compared to random Gaussian
excitations. Theorem 4.2 then shows that experiment design using CE provably improves the sample
complexity of identification in these cases. Ideally, ρk is selected to maximize (27a) which results in

ρk =

{
0, if (1− pk)c

opt
u ≥ crandu

1, else.
(29)
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By (29) the optimal choice for ρk switches from one to zero once the confidence in the estimates is
large enough relative to the expected benefit in PE. When ρk = 1, the learner relies only on isotropic
Gaussian excitations to gain some initial knowledge from PE data. Since this might not be true for
U∗
θ̂k

, depending on the particular problem setup, the learner only switches to the CE-based excitation
once the confidence is large enough. Since pk decays to zero exponentially as shown in Theorem F.1,
thus, the excitation selected by Algorithm 2 approaches the optimal oracle excitation as k grows.
Example 3.1 (continued). Recall that in Example 3.1 knowledge of the true system is not necessary
to select the optimal excitation input sequence. This is due to the structure in S , which yields greedy
CE-based experiment design be optimal (see numerical evaluation in Appendix H.1). Deriving
properties of S resulting in this characteristic is an interesting topic for future research.

While these findings improve the understanding of the learning problem and the underlying mecha-
nisms, the selection rule (29) cannot be implemented without oracle knowledge. In our numerical
studies, selecting ρk = 0, i.e., greedily using CE, yielded the best results. In practice, ρk can be
thought of as a safety feature to ensure PE. Thus, setting ρ0 = c > 0 and decreasing it as k grows is
a practical option to ensure PE (see Appendix H.2 for an evaluation of different selections of ρk).

5 Numerical experiments

To gain additional insights, we consider a problem which is only slightly more complicated than
the setup in Example 3.1 but provides and reinforces some fundamental insights4. Specifically, we
consider the set S = {(A∗, B∗), (A1, B∗), (A2, B∗), (A3, B∗)} with B⊤

∗ = [02×1 I2]

A∗ =

[
0 0.1 0
0 0 0
0 0 0.9

]
A1 =

[
0 0 0.1
0 0 0
0 0 0.9

]
A2 =

[
0 0 0.1
0 0 0
0 0 0.8

]
A3 =

[
0 0.1 0
0 0 0
0 0 0.8

]
.

The noise variance and input power are given by Σw = Inx
and γu = 1, respectively. For

the numerical evaluation, we consider Algorithm 1 where the excitation input is computed us-
ing Algorithm 2 with ρk ≡ 0 and η = 0.01, and compare it to the following data collection
strategies used with Algorithm 1: 1) Algorithm 2 with oracle knowledge (in each episode (26)
is solved using θ∗), 2) the optimization criterion in [26] with oracle knowledge, 3) Oracle opti-
mal excitation for the considered data length (fully offline), and 4) u(t)

i.i.d.∼ N (0, 1
2Inu

). We
conduct 100 Monte Carlo simulations with 5 episodes and an episode length of 15 time steps.

0 1 2 3 4 5

0.4

0.6

0.8

1

Episode

L
ik

el
ih

oo
d

of
θ ∗

Alg. 2 with ρk ≡ 0
Alg. 2 with oracle
[26] with oracle
Optimal oracle excitation

u(t)
i.i.d.∼ N (0,

γ2
u

nu
Inu

)

Figure 1: Mean and σ
2 -band of the likelihood of θ∗

given the data for several data collection strategies.

In Figure 1 we display the mean and σ
2 -

band of the likelihood of θ∗ given the data
over the episodes for the different data col-
lection procedures. It is easy to see that
the optimal oracle excitation performs best.
Further, since the setup is constructed in
a way that input design yields significant
benefits, isotropic Gaussian excitations per-
form significantly worse compared to all
other input sequences. Interestingly, Algo-
rithm 2 with ρk ≡ 0 performs almost as
good as the offline oracle excitation and on
par with the online oracle approach, even
though it lacks the knowledge of the true
system and relies on CE. This means that,
even though Algorithm 2 does not neces-
sarily plan with the correct system initially,
the obtained data is still informative, and
in particular significantly more informative
than data that is collected using isotropic Gaussian excitations. Capturing this effect mathematically
and understanding how it depends on the structure of the set S is an interesting direction for future

4All experiments are carried out in Python using a standard notebook. Additional numerical evaluations
including a larger problem„ are provided in Appendix H. The code for the numerical example can be accessed at:
https://github.com/col-tasas/2025-high-effort-low-gain
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research. While the active learning criterion in [26], which does not account for the finite hypothesis
class, outperforms isotropic Gaussian excitations, it falls short of the criterion presented in this work.
This highlights the importance of using the knowledge of the finite hypothesis class in input design.

6 Conclusion

In this work, we analyze the problem of identifying an unknown linear dynamical system from a finite
hypothesis class. We present sample complexity lower bounds for isotropic Gaussian and arbitrary
excitation, which can be used to determine the instance specific benefit of experiment design. We
introduce the notion of PE which gives rise to a modular framework to establish sample complexity
upper bounds for any excitation input that satisfies PE. Based on the findings we propose a CE-based
algorithm for experiment design and derive sample complexity upper bounds. Numerical studies
showcase that the proposed algorithm is highly competitive and achieves a performance close to the
optimal oracle excitation. Numerically, it was observed that for hypothesis classes with a certain
structure the algorithm was able to match the optimal oracle performance. It is an interesting direction
for future research to investigate this further.
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A Related Works

Finite Sample System Identification Novel results in high-dimensional statistics [1, 28] have
sparked an increased interest in the finite sample analysis of system identification. Hereby the
sample complexity of identification is of particular importance and has been analyzed mostly for
random excitations and for an infinite hypothesis class using the closed-form solution of the ordinary
least squares estimator (OLS) estimator. Since the data collected from dynamical systems is highly
correlated, first works [5] only provided sample complexity upper bounds for the case where the data
was collected from multiple trajectories. Subsequent works were able to overcome this restrictive
assumption and provided sample complexity upper bounds for marginally stable [23] and also
unstable linear dynamical systems [20] for trajectory data. Hereby it has been shown that the
OLS is statistically inconsistent when the data is collected from certain classes of unstable systems.
Additional works extended these works to certain classes of nonlinear dynamical systems such as
bilinear systems [22] generalized linear systems [6, 21]. While sample complexity upper bounds are
valuable since they establish identification error guarantees, sample complexity lower bounds are
important to understand the hardness of the identification problem and to judge the tightness of the
upper bounds. Building on information theoretic tools [11] provide sample complexity lower bounds
that hold independently of the used algorithm. Similar tools have been used in [24] to understand
when learning is hard with isotropic Gaussian excitations. All previous works consider the case
where the hypothesis class is infinite. However, in many applications there might exist some prior
knowledge restricting the hypothesis class to be finite, i.e., there exists a finite set of systems the true
system belongs to. This setup has been previously considered in [3, 17] where it has been observed
that stability of the true system does not seem to influence learning negatively as is the case for the
infinite hypothesis class. While, the previously mentioned works consider several system classes and
setups, they all assume the data is collected using (sub-)Gaussian inputs, which might be suboptimal
in many cases.

Experiment Design: The design of optimal experiments has a long history in learning theory
[4, 12, 13] where a large body of works exists concerning the question of how data should be sampled
to obtain the most accurate estimate of an unknown quantity. One particular field of interest for
experiment design is the identification of unknown dynamical systems, where compared to the
classical setup in learning theory the data cannot be sampled arbitrarily but rather the unknown
dynamical system governs the way the data can be collected (see [2, 9] for surveys on the topic). One
key difficulty introduced by the dynamics of the unknown system is that the Fisher-information matrix
naturally depends on the unknown system parameters. To tackle this problem, several algorithms have
been proposed which can be broadly categorized into robust approaches that optimize for the worst-
case using minmax objectives (see [19] and the references therein) and sequential approaches that rely
on a running estimate [8]. While classical works, only consider the asymptotic case, recently several
works considered the problem of experiment design for the identification of an unknown dynamical
system under a finite sample perspective. In particular [26, 27] consider LTI systems and provide
finite sample guarantees by leveraging sequential algorithms. The proposed algorithm optimizes
over periodic excitation signals using the CE principle and augments the input with exploratory
noise. Extending previous works [15, 16] consider certain classes of non-linear systems and provide
finite sample guarantees for them. While optimality of the proposed experiment design algorithms is
considered in the respective works, they do not analyze how large the benefit of experiment design is
compared isotropic Gaussian excitations. Furthermore, the input space is restricted to periodic inputs,
which although shown to be sufficient [26] is restrictive.

B Proofs for sample complexity lower bounds

Before we proceed with presenting the proofs of the sample complexity lower bound results in
Section 3.1 we first provide the following input-dependent sample complexity result, which serves as
the starting point for the subsequent results and is akin to [10, Theorem 2] which considers the case
of an infinite hypothesis class instead of the finite hypothesis class considered in this work.
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Theorem B.1 (Input-dependent sample complexity lower bound). Consider the unknown dynamical
system (1) and the hypothesis class S as defined in (2). Then any δ-correct algorithm satisfies

E

T̄−1∑
t=0

∥∆Aix(t) + ∆Biu(t)∥2Σ−1
w

 ≥ 2 log

(
1

2.4δ

)
(30)

for any excitation input sequence {u(t)}T̄−1
t=0 .

Proof. Define the data as DT̄ := {x(0), u(0), . . . , u(T̄ − 1), x(T̄ )} and the probability of the
observing DT̄ under system θi as Pθi(DT̄ ). Then, we define the log-likelihood ratio of the first T̄
observations under θ∗ and some θi ∈ S \ {θ∗} as LT̄ = log

(
Pθ∗ (DT̄ )
Pθi

(DT̄ )

)
. Following the change of

measurement argument in [10], we use the generalized data processing inequality [7, Lemma 1] to
obtain the lower bound

E [LT̄ ] = KL(Pθ∗(DT̄ )∥Pθi(DT̄ ))

≥ sup
E∈FT̄

kl(Pθ∗(E)∥Pθi(E)),

where kl(x∥y) is the KL-divergence of two Bernoulli distributions of means x and y, respectively.
Since we analyze δ-correct algorithms we define the event E := {θ̂T̄ = θ∗} which yields Pθ∗(E) ≥
1− δ and Pθi(E) ≤ δ and hence

kl(Pθ∗(E)∥Pθi(E)) ≥ (2δ − 1) log

(
1− δ

δ

)
≥ log

(
1

2.4δ

)
. (31)

Further, we follow [10, Section IV.A] to obtain

E [LT̄ ] =
1

2
E

T̄−1∑
t=0

[
x(t)⊤ u(t)⊤

] [∆A⊤
i

∆B⊤
i

]
Σ−1

w [∆Ai ∆Bi]

[
x(t)
u(t)

]
=

1

2
E

T̄−1∑
t=0

∥∆Aix(t) + ∆Biu(t)∥2Σ−1
w

 ,

which concludes the proof.

B.1 Proof of Theorem 3.1

The first statement of the theorem follows directly from the derivations in Section 2. To derive the
optimal excitation input we leverage that by Theorem B.1 for any δ-correct algorithm it holds that

E

T̄−1∑
t=0

∥∆Aix(t) + ∆Biu(t)∥2Σ−1
w

 ≥ 2 log

(
1

2.4δ

)
∀i ∈ [1, N ], (32)

where x(t) is generated by (1). Since (32) needs to hold for all i ∈ [1, N ] is follows immediately that
it suffices to consider

min
i∈[1,N ]

E

T̄−1∑
s=0

∥∆Aix(t) + ∆Biu(t)∥2Σ−1
w

 ≥ 2 log

(
1

2.4δ

)
. (33)

Since we seek a result that holds for all possible input sequences that satisfy 1
T̄

∑T̄−1
t=0 u(t)⊤u(t) ≤ γ2

u
we maximize the l.h.s. of (40) over all admissible input sequences. This yields

max
U⊤U≤γ2

uT
min

i∈[1,N ]
E

[
t−1∑
s=0

∥∆Aix(t) + ∆Biu(t)∥2Σ−1
w

]
≥ 2 log

(
1

2.4δ

)
. (34)

Now, using Lemma G.1 with ρ = 0 and M = Σ−1
w we can equivalently rewrite the l.h.s. of (34) as

max
U⊤U≤γ2

uT̄
min

i∈[1,N ]
U⊤Wi(T̄ )U + tr

(
Sw(T̄ )

⊤Qi
Σ−1

w
(T̄ )Sw(T̄ )

)
(35)
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and U∗ is the corresponding optimizer. For the last result, consider that

max
U⊤U≤γ2

uT̄
min

i∈[1,N ]
U⊤Wi(T̄ )U + tr

(
Sw(T̄ )

⊤Qi
Σ−1

w
(T̄ )Sw(T̄ )

)
(36)

≤ max
U⊤U≤γ2

uT̄
min

i∈[1,N ]
U⊤Wi(T̄ )U + max

j∈[1,N ]
tr
(
Sw(T̄ )

⊤Qj

Σ−1
w
(T̄ )Sw(T̄ )

)
(37)

= max
U⊤U≤γ2

uT
min
p∈∆N

U⊤

(
N∑
i=1

piWi(T̄ )

)
U + max

j∈[1,N ]
tr
(
Sw(T̄ )

⊤Qj

Σ−1
w
(T̄ )Sw(T̄ )

)
(38)

= min
p∈∆N

max
U⊤U≤γ2

uT
U⊤

(
N∑
i=1

piWi(T̄ )

)
U + max

j∈[1,N ]
tr
(
Sw(T̄ )

⊤Qj

Σ−1
w
(T̄ )Sw(T̄ )

)
.

(39)

Selecting U∗ in the direction of vmax

(∑N
i=1 piWi(T̄ )

)
yields the result.

B.2 Proof of Corollary 3.2

By Theorem B.1 for any δ-correct algorithm it holds that

E

T̄−1∑
t=0

∥∆Aix(t) + ∆Biu(t)∥2Σ−1
w

 ≥ 2 log

(
1

2.4δ

)
∀i ∈ [1, N ], (40)

where x(t) is generated by (1). Applying Lemma G.1 with ρ = 1, M = Σ−1
w and σ2

u =
γ2
u

nu
we obtain

that for any δ-correct algorithm

γ2
u

nu
tr
(
Wi(T̄ )

)
+ tr

(
Sw(T̄ )

⊤Qi
Σ−1

w
(T̄ )Sw(T̄ )

)
≥ 2 log

(
1

2.4δ

)
∀i ∈ [1, N ]. (41)

After noting that 1
nuT̄

tr
(
Wi(T̄ )

)
= λmean(Wi(T̄ )) the result follows immediately after realizing

that it suffices to consider the minimum of the l.h.s. of (41).

C Existence of the optimal solution to (11)

For clarity of exposition for each i ∈ [1, N ] we define

Wi := Ri
Σ−1

w
(T̄ ) + Su(T̄ )

⊤Qi
Σ−1

w
(T̄ )Su(T̄ ) + 2N i

Σ−1
w
(T̄ )Su(T̄ ), (42)

ci := tr
(
Sw(T̄ )

⊤Qi
Σ−1

w
(T̄ )Sw(T̄ )

)
, (43)

where Wi ⪰ 0 and ci ≥ 0, for all i ∈ [1, N ]. To show that the optimal solution to (11) exits we
consider the equivalent optimization problem

min
U,ξ

− ξ (44a)

s.t. U⊤U − γ2
uT̄ ≤ 0 (44b)

ξ − U⊤WiU − ci ≤ 0 ∀i ∈ [1, N ], (44c)
− ξ ≤ 0 (44d)

where ξ is a slack variable. Now we can leverage the following theorem due to Weierstrass.
Theorem C.1. Consider the constrained optimization problem minx∈X f(x). If the objective function
f is continuous and the feasible region X is closed and bounded, then there exists a global optimum.

Clearly f(ξ, U) = −ξ is continuous. Further, the set of feasible input sequences U is closed and
bounded by (44b). The feasible region of ξ is defined by the constraints (44c). Clearly, for a given
T̄ under (44b) ξ is upper bounded by a finite, non-negative value. Combining this with (44d) the
feasible region of ξ is bounded and closed, from which we can conclude that the optimal solution to
(44) and hence also of (11) exists.
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D Proving PE for different excitations

In this section we present all proofs related to PE in the same order the results are presented in the
main part of the paper.

D.1 Proof of Lemma 3.3

Proof. Applying Lemma G.1 with ρ = 1 and M = Σ−1
x for any i ∈ [1, N ] yields

1

τ

τ∑
t=0

E
[
∥∆Aix(t) + ∆Biu(t)∥2Σ−1

w

]
≥ γ2

u

nuτ
tr (Wi(τ)) +

1

τ
tr
(
Sw(τ)

⊤Qi
Σ−1

w
(τ)Sw(τ)

)
.

Since we require a lower bound that hold uniformly over i ∈ [1, N ] we consider

min
i∈[1,N ]

γ2
u

nuτ
tr (Wi(τ)) +

1

τ
tr
(
Sw(τ)

⊤Qi
Σ−1

w
(τ)Sw(τ)

)
(45)

≥ min
i∈[1,N ]

γ2
u

nuτ
tr (Wi(τ)) + min

j∈[1,N ]

1

τ
tr
(
Sw(τ)

⊤Qj

Σ−1
w
(τ)Sw(τ)

)
(46)

= min
p∈∆N

γ2
u

nuτ
tr

(
N∑
i=1

piWi(τ)

)
+ min

j∈[1,N ]

1

τ
tr
(
Sw(τ)

⊤Qj

Σ−1
w
(τ)Sw(τ)

)
(47)

= min
p∈∆N

λmean

(
N∑
i=1

piWi(τ)

)
γ2
u + min

j∈[1,N ]

1

τ
tr
(
Sw(τ)

⊤Qj

Σ−1
w
(τ)Sw(τ)

)
. (48)

Comparing terms with (18) yields the result.

D.2 Proof of Lemma 3.4

Proof. Applying Lemma G.1 with ρ = 0 and M = Σ−1
w for any i ∈ [1, N ] yields

τ−1∑
t=0

E
[
∥∆Aix(t) + ∆Biu(t)∥2M

]
= U⊤Wi(τ)U + 2U⊤mi (x(0))

+ ci (x(0)) + tr
(
Sw(τ)

⊤Qi
M (τ)Sw(τ)

) (49)

for any U ∈ Rnuτ . Thus, defining c̄i = tr
(
Sw(τ)

⊤Qi
M (τ)Sw(τ)

)
by our choice of the excitation

input we obtain

max
U⊤U≤γ2

uτ
min

i∈[1,N ]
U⊤Wi(τ)U + 2U⊤mi(x0) + ci (x(0)) + c̄i (50)

≥ max
U⊤U≤γ2

uτ
min

i∈[1,N ]
U⊤Wi(τ)U + c̄i (51)

≥ max
U⊤U≤γ2

uτ
min

i∈[1,N ]
U⊤Wi(τ)U + min

j∈[1,N ]
c̄j , (52)

where the first inequality holds since ci (x(0)) is non-negative by definition and U⊤mi(x0) is non-
negative when U is selected to maximize the expression. Similar to the proof of Theorem 3.1, solving
the optimization yields the result.

D.3 Proof of Lemma 4.1

This proof is carried out for the case k = 0 without loss of generality. To obtain the result we analyze
the expected excitation of the optimal control input based on true system and the expected excitation
of a suboptimal control input based on a faulty estimate separately. We start with

τ−1∑
t=0

E[∥∆Aix(t) + ∆Biu
∗
k(t)∥2Σ−1

w
] = P[θ̂0 = θ∗]

τ−1∑
t=0

E[∥∆Aix(t) + ∆Biu
∗
θ∗(t)∥

2
Σ−1

w
]

+ P[θ̂0 ̸= θ∗]

τ−1∑
t=0

E[∥∆Aix(t) + ∆Biu
∗
θ̄(t)∥

2
Σ−1

w
].

(53)
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The first terms in (53) represents the excitation due to the optimal input sequence and hence after
applying Lemma G.1 with ν = ρ0 and M = Σ−1

w we obtain
τ−1∑
t=0

E
[∥∥∆Aix(t) + ∆Biu

∗
θ∗(t)

∥∥2
Σ−1

w

]
≥ tr

(
Sw(τ)

⊤Qi
Σ−1

w
Sw(τ)

)
+ (1− ρ0)(U

∗
θ∗)

⊤Wi(τ)U
∗
θ∗ +

ρ0γ
2
u

nu
tr (Wi(τ)) .

(54)

To tackle the second term in (53) we follow the same steps to obtain
τ−1∑
t=0

E
[∥∥∆Aix(t) + ∆Biu

∗
θ̄(t)

∥∥2
Σ−1

w

]
≥ tr

(
Sw(τ)

⊤Qi
Σ−1

w
Sw(τ)

)
+ (1− ρ0)(U

∗
θ̄ )

⊤Wi(τ)U
∗
θ̄ +

ρ0γ
2
u

nu
tr (Wi(τ)) .

(55)

Plugging (54) and (55) into (53) and collecting terms we obtain
τ−1∑
t=1

E[∥∆Aix(t) + ∆Biu
∗
k(t)∥2Σ−1

w
]

≥ tr
(
Sw(τ)

⊤Qi
Σ−1

w
Sw(τ)

)
+

ρ0γ
2
u

nu
tr (Wi(τ))

+ P[θ̂0 = θ∗](1− ρ0)(U
∗
θ∗)

⊤Wi(τ)U
∗
θ∗ + P[θ̂0 ̸= θ∗](1− ρ0)(U

∗
θ̄ )

⊤Wi(τ)U
∗
θ̄ .

(56)

The last term in (56) is non-negative. Hence, we obtain that
τ−1∑
t=1

E[∥∆Aix(t) + ∆Biu
∗
k(t)∥2Σ−1

w
]

≥ tr
(
Sw(τ)

⊤Qi
Σ−1

w
Sw(τ)

)
+

ρ0γ
2
u

nu
tr (Wi(τ)) + (1− p0)(1− ρ0)(U

∗
θ∗)

⊤Wi(τ)U
∗
θ∗ ,

(57)

where we used that P[θ̂0 = θ∗] ≥ 1− p0. Dividing by τ > 0 yields

1

τ

τ−1∑
t=1

E[∥∆Aix(t) + ∆Biu
∗
k(t)∥2Σ−1

w
]

≥ 1

τ
tr
(
Sw(τ)

⊤Qi
Σ−1

w
Sw(τ)

)
+

ρ0γ
2
u

τnu
tr (Wi(τ)) + (1− p0)(1− ρ0)

1

τ
(U∗

θ∗)
⊤Wi(τ)U

∗
θ∗

≥ min
i∈[1,N ]

1

τ
tr
(
Sw(τ)

⊤Qi
Σ−1

w
Sw(τ)

)
+

ρ0γ
2
u

τnu
tr (Wi(τ)) + (1− p0)(1− ρ0)

1

τ
(U∗

θ∗)
⊤Wi(τ)U

∗
θ∗ .

(58)
Following similar steps as in the previous proofs yields the result.

E Proofs for sample complexity upper bounds

This section contains the proofs related to the sample complexity upper bounds and related intermedi-
ate results.

E.1 Proof of Theorem 3.5

We provide the full version of Theorem 3.5 and its proof.
Theorem E.1. Consider the unknown system (1), set S as defined in (2). Then Algorithm 1 yields an
estimate θ̂T satisfying P

[
θ̂T ̸= θ∗

]
≤ δ and terminates at the latest for the first k satisfying

τ

k∑
j=1

cuj
(τ)γ2

u + cwj
(τ) ≥ 8

(
1 +

1

2η

)
log

(
N

δ

)
, (59)
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where

η =
1

16τ
min

 1

λmax

(
Σ

1
2

∆i
(τ)⊤Σ−1

w Σ
1
2

∆i
(τ)
) , cuj

(τ)γ2
u + cwj

(τ)

2λmax

(
Σ

1
2

∆i
(τ)⊤Σ−1

w Σ
1
2

∆i
(τ)
)
 (60)

and Σ
1
2

∆i
(τ) is defined in (86b).

Proof. This proof consists of two parts. First we show that if the algorithm terminates it holds that
P
[
θ̂T ̸= θ∗

]
≤ δ, i.e., we show the algorithm is δ-correct. Then derive the upper bound on the

stopping time and hence on the sample complexity.

Correctness: For the remainder of this proof we use Pθi and Eθi to denote probability and expectation
of an event under the hypothesis that θ∗ = θi. To analyze correctness of the algorithm we analyze the
likelihood-ratio

Lθi,θ0(t) =
Pθi [Dt]

Pθ0 [Dt]
=

exp
(
− 1

2εθi(t)
)

exp
(
− 1

2εθ0(t)
) . (61)

It can easily be shown that the likelihood-ratio is a martingale sequence (see, e.g., [28, Example
2.18]). By the termination rule the algorithm terminates under the event

E =

{
∃θ̂ : log(Lθi,θ̂

(t)) < log

(
δ

N

)
, ∀θi ∈ S \ {θ̂}

}
(62)

=

{
∃θ̂ : Lθ̂,θi

(t) >
N

δ
, ∀θi ∈ S \ {θ̂}

}
. (63)

Thus, θ̂ ̸= θ∗ requires Lθi,θ0(t) ≥ N
δ for at least one θi ̸= θ∗ and some t ∈ Z+. Thus

P
[
θ̂ ̸= θ∗

]
≤ Pθ0

[
N⋃
i=1

∃t ∈ Z+ : Lθi,θ0(t) ≥
N

δ

]
. (64)

Thus,

P
[
θ̂ ̸= θ∗

]
≤ Pθ0

[
N⋃
i=1

∃t ∈ Z+ : Lθi,θ0(t) ≥
N

δ

]
(65)

≤
N∑
i=1

Pθ0

[
∃t ∈ Z+ : Lθi,θ0(t) ≥

N

δ

]
≤

N∑
i=1

δ

N
= δ, (66)

where the second inequality uses a union bound, and the last inequality follows from [14, Theorem
3.9].

Stopping Time: Since in each epoch, the input is PE with coefficients cuj
(τ) and cwj

(τ) we can use
Proposition E.2 to show that under the choice of η the sequence

Si(k) = exp

−η

εθi(kτ)− εθ∗(kτ)−
τ

4

k∑
j=1

cuj
(τ)γ2

u + cwj
(τ)

 (67)

with Si(0) = 1 is a super-martingale. Hence, again using the maximal inequality [14, Theorem 3.9]
we obtain

P
[
∃k : Si(k) ≥

N

δ

]
≤ δ

N
(68)

Thus using union bound arguments we obtain

P

[
N⋃
i=1

∃k : Si(k) ≥
N

δ

]
≤

N∑
i=1

P
[
∃k : Si(k) ≥

N

δ

]
≤ δ (69)

Note that Si(k) ≥ N
δ is equivalent to

εθ∗(kτ)− εθi(kτ) ≥
1

η
log

(
N

δ

)
− τ

4

k∑
j=1

cuj
(τ)γ2

u + cwj
(τ). (70)
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Thus by (69) it holds with probability at least 1− δ that

εθ∗(kτ)− εθi(kτ) ≤
1

η
log

(
N

δ

)
− τ

4

k∑
j=1

cuj
(τ)γ2

u + cwj
(τ). (71)

Thus, as soon as

8

(
1

2η
+ 1

)
log

(
N

δ

)
≤ τ

k∑
j=1

cuj (τ)γ
2
u + cwj (τ) (72)

we obtain

log (Lθi,θ∗(kτ)) =
1

2
(εθ∗(kτ)− εθi(kτ)) (73)

≤ 1

2η
log

(
N

δ

)
− τ

8

k∑
j=1

cuj (τ)γ
2
u + cwj (τ) (74)

≤ 1

2η
log

(
N

δ

)
−
(

1

2η
+ 1

)
log

(
N

δ

)
(75)

= log

(
δ

N

)
(76)

Thus, (72) is satisfied Algorithm 1 terminates at the latest when (59) is satisfies and yields θ̂ = θ∗
with probability at least 1− δ.

E.2 Intermediate results used in the proof of Theorem 3.5

In the following, we intermediate results which are use in the proof of Theorem 3.5.
Proposition E.2. Consider the unknown system (1), set S as defined in (2) and Algorithm 1 where
the excitation input in each episode is PE with coefficients cuj

(τ) and cwj
(τ). Then the sequence

Si(k) = exp

−η

εθi(kτ)− εθ∗(kτ)−
τ

4

k∑
j=1

cuj (τ)γ
2
u + cwj (τ)

 (77)

with Si(0) = 1 is a supermartingale5 for any

η ≤ 1

16τ
min

 1

λmax

(
Σ

1
2

∆i
(τ)⊤Σ−1

w Σ
1
2

∆i
(τ)
) , cuj

(τ)γ2
u + cwj

(τ)

2λmax

(
Σ

1
2

∆i
(τ)⊤Σ−1

w Σ
1
2

∆i
(τ)
)
 , (78)

where Σ
1
2

∆i
(τ) is defined in (86b).

Proof. For the proof of this result, we overload notation and define

εθi(t0, t1) :=

t1−1∑
t=t0

∥x(t+ 1)−Aix(t)−Biu(t)∥2Σ−1
w
. (79)

Define tk = τk and the filtration Ftk consisting of all random variables at the start of block k, i.e.,
Ftk = {x(0), u(0), . . . , u(τk − 1), x(τk)}. To show Si(k) is a supermartingale we consider

E [Si(k + 1)|Fk] = Si(k)E

[
e−η
(
εθi (tk,tk+τ)−εθ∗ (tk,tk+τ)− τ

4 (cuk
(τ)γ2

u+cwk
(τ))
)∣∣∣∣Ftk

]
. (80)

Thus, to show the result requires showing that

E

[
e−η
(
εθi (tk,tk+τ)−εθ∗ (tk,tk+τ)− τ

4 (cuk
(τ)γ2

u+cwk
(τ))
)∣∣∣∣Ftk

]
≤ 1. (81)

5A supermartingale is a sequence X(0), X(1), . . . , of integrable random variables satisfying
E [X(k + 1)|Fk] ≤ X(k).
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To this end, we define
ξθi(t) := ∥x(t+ 1)−Aix(t)−Biu(t)∥2Σ−1

w
. (82)

Using Lemma E.3 and (22) we obtain

E

[
e−η
(
εθi (tk,tk+τ)−εθ∗ (tk,tk+τ)

)∣∣∣∣Ftk

]
= E

[
e−η

∑tk+τ
t=tk

(ξθi (t)−ξθ∗ (t))
∣∣∣∣Ftk

]
(83)

≤
tk+τ∏
t=tk

(
E
[
e−ητ(ξθi (t)−ξθ∗ (t))

∣∣∣∣Ftk

]) 1
τ

(84)

≤
tk+τ∏
t=tk

(
E
[
e
− η

2 τ∥∆Aix(t)+∆Biu(t)∥2

Σ
−1
w

∣∣∣Ftk

]) 1
τ

. (85)

where the first inequality holds by Hölder’s inequality and the second inequality holds by Lemma E.3.
To keep the result general we split the input into a deterministic part ud(t) and an isotropic Gaus-
sian part ur(t)

i.i.d.∼ N (0,
γ2
u

nu
Inu

) and define u(t) =
√
1− ρkud(t) +

√
ρkur(t). Now note that

conditioning on Ftk we have ∆Aix(t) + ∆Biu(t) ∼ N (µ∆i
(t),Σ∆i

(t)), where

µ∆i(tk, t) = ∆Ai

(
At

∗x(tk) +
√
1− ρk

t−1∑
s=0

At−sBud(s+ tk)

)
+
√
1− ρk∆Biud(t) (86a)

Σ
1
2

∆i
(t) = ∆Ai

(
t−1∑
s=0

γu√
nu

√
ρkA

t−sB +At−sΣ
1
2
w

)
+

γu√
nu

√
ρk∆Bi, (86b)

and t ∈ [0, τ ]. Thus by Proposition E.4 we have 1
2∥∆Aix(t) +∆Biu(t)∥2Σ−

w1
∼ subExp (ν), where

ν = 16λmax

(
Σ

1
2

∆i

⊤
(t)Σ−1

w Σ
1
2

∆i
(t)

)
. (87)

Observe that, Σ
1
2

∆i
(t) does not decrease as t increases. Thus, given that ητ ≤

1
16λmax

(
Σ

1
2

∆i

⊤
(τ)Σ−1

w Σ
1
2

∆i
(τ)

)−1

we can use the definition of sub-exponential random variables

to obtain
tk+τ∏
t=tk

(
E
[
e
− η

2 τ∥∆Aix(t)+∆Biu(t)∥2

Σ
−1
w

∣∣∣Ftk

]) 1
τ

(88)

≤

(
tk+τ∏
t=tk

e
ν2η2τ2

2 e
− ητ

2 E
[
∥∆Aix(t)+∆Biu(t)∥2

Σ
−1
w

]) 1
τ

(89)

=

(
e
∑tk+τ

t=tk

ν2η2τ2

2 e
− ητ

2

∑tk+τ
t=tk

E
[
∥∆Aix(t)+∆Biu(t)∥2

Σ
−1
w

]) 1
τ

(90)

≤
(
e

ν2η2τ3

2 e−
ητ2

2 (cu(τ)γ
2
u+cw(τ))

) 1
τ

(91)

where the last inequality uses PE of the input. Thus, if

ητ ≤ 1

32

cu(τ)γ
2
u + cw(τ)

λmax

(
Σ

1
2

∆i
(τ)⊤Σ−1

w Σ
1
2

∆i
(τ)
) (92)

we obtain

E

[
e−η
(
εθi (tk,tk+τ)−εθ∗ (tk,tk+τ)

)∣∣∣∣Ftk

]
≤
(
e

ητ2

4 (cuk
(τ)γ2

u+cwk
(τ))− ητ2

2 (cuk
(τ)γ2

u+cwk
(τ))

) 1
τ

(93)

= e−
ητ
4 (cuk

(τ)γ2
u+cwk

(τ)). (94)
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Hence, we have that

E

[
e−η
(
εθi (tk,tk+τ)−εθ∗ (tk,tk+τ)− τ

4 (cuk
(τ)γ2

u+cwk
(τ))
)∣∣∣∣Ftk

]
≤ 1 (95)

Plugging this into (80) yields the result.

Lemma E.3. Define
ξθi(t) := ∥x(t+ 1)−Aix(t)−Biu(t)∥2Σ−1

w
(96)

and let Fk be a filtration containing all random variables up to time k. Then, if η ≤ 1
4 we have

E
[
e−η(ξθi (t)−ξθ∗ (t))

∣∣∣Fk

]
≤ E

[
exp

(
−η

2

∥∥∥∆Aix(t)−∆Biu(t)
∥∥∥2
Σ−1

w

) ∣∣∣Fk

]
∀k = 1, 2, . . . , t.

(97)

Proof. By the definition of ξθi(t) we have

ξθi(t) = ∥∆Aix(t)−∆Biu(t) + w(t)∥2
Σ−1

w
(98)

= ∥∆Aix(t)−∆Biu(t)∥2Σ−1
w

+ 2w(t)⊤Σ−1
w (Aix(t)−∆Biu(t)) + w(t)⊤Σ−1

w w(t) (99)

and hence

ξθi(t)− ξθ∗(t) = ∥∆Aix(t)−∆Biu(t)∥2Σ−1
w

+ 2w(t)⊤Σ−1
w (Aix(t)−∆Biu(t)). (100)

Conditioning on x(t), u(t) the randomness in ξθi(t) − ξθ∗(t) is due to 2w(t)⊤Σ−1
w (Aix(t) −

∆Biu(t)). Realize that w(t)⊤Σ− 1
2

w
i.i.d.∼ N (0, Inx

). Recall that the definition of the moment generat-
ing function for a random variable w ∼ N (0, Inx

) is given by

Mw(λ) = E
[
ew

⊤λ
]
= exp

(
1

2
λ⊤λ

)
. (101)

Using this definition with λ = 2ηΣ
− 1

2
w

⊤
(Aix(t)−∆Biu(t)) we obtain

E [exp(−η(ξθi(t)− ξθ∗(t)))|x(t), u(t)]

= exp
(
−η∥∆Aix(t) + ∆Biu(t)∥2Σ−1

w

)
E
[
exp

(
−2ηw(t)⊤Σ−1

w (Aix(t) + ∆Biu(t))
)
|x(t), u(t)

]
= exp

(
−η∥∆Aix(t) + ∆Biu(t)∥2Σ−1

w
+ 2η2∥∆Aix(t) + ∆Biu(t)∥2Σ−1

w

)
= exp

(
−η∥∆Aix(t) + ∆Biu(t)∥2Σ−1

w
(1− 2η)

)
.

Taking η ≤ 1
4 the desired bound holds.

Proposition E.4. Consider the random Gaussian vector z ∼ N (µz,Σz) of dimension nz and a
symmetric matrix M ∈ Snz

++. Then 1
2

(
∥z∥2M − E

[
∥z∥2M

])
is sub-exponential6 with parameter ν,

where

ν = 16λmax

(
Σ

1
2
z

⊤
MΣ

1
2
z

)
. (102a)

Proof. Define ζ = Σ
− 1

2
z

⊤
(z − µz), yielding ∥z∥M = ∥ζ+Σ

− 1
2

z

⊤
µz∥

Σ
1
2
z

⊤
MΣ

1
2
z

with ζ ∼ N (0, Inz
).

Note that the f(ζ) = 1√
2
∥ζ+µz∥M is Lipschitz continuous with Lipschitz constant L =

√
λmax(M).

Thus, by [28, Theorem 2.26]

∥ζ + µz∥M ∼ subG

(
λmax

(
Σ

1
2
z

⊤
MΣ

1
2
z

))
. (103)

Applying [18, Lemma 1.12] we obtain the result.
6A random variable X is said to be sub-exponential with parameter ν (denoted by X ∼ subG (ν)) if

E[X] = 0 and its moment generating function satisfies E
[
esX

]
≤ e

s2ν2

2 , ∀|s| ≤ 1
ν

.
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E.3 Sample complexity Upper bounds for isotropic Gaussian and oracle excitations

In the following, we present the full version of Corollary 3.6 along with its proof.

Corollary E.5. Consider the same setup as in Theorem 3.5. If u(t) i.i.d.∼ N (0,
γ2
u

nu
Inu

) then Algorithm 1

yields an estimate θ̂ satisfying P
[
θ̂ ̸= θ∗

]
≤ δ and terminates no later than when T = kτ satisfies

T

(
γ2
u min
p∈∆N

λmean

( N∑
i=1

piWi(τ)
)
+ min

i∈[1,N ]

1

τ
tr
(
Sw(τ)

⊤Qi
Inx

Sw(τ)
))

(104)

≥ 8

(
1 +

1

2η

)
log

(
N

δ

)
. (105)

Further, if the optimal oracle excitation input U∗ defined in (20) is applied the estimate θ̂ satisfies
P[θ̂ ̸= θ∗] ≤ δ, and Algorithm 1 terminates no later than when T = kτ satisfies

T

(
γ2
u min
p∈∆N

λmax

( N∑
i=1

piWi(τ)
)
+ min

i∈[1,N ]

1

τ
tr
(
Sw(τ)

⊤Qi
Inx

Sw(τ)
))

(106)

≥ 8

(
1 +

1

2η

)
log

(
N

δ

)
. (107)

For both results we have

η =
1

16τ
min

 1

λmax

(
Σ

1
2

∆i
(τ)⊤Σ−1

w Σ
1
2

∆i
(τ)
) , cu(τ)γ

2
u + cw(τ)

2λmax

(
Σ

1
2

∆i
(τ)⊤Σ−1

w Σ
1
2

∆i
(τ)
)
 , (108)

where Σ
1
2

∆i
(τ) is defined in (86b) and cu(τ) and cw(τ) are the PE coefficients of the respective

excitation inputs.

Proof. The result follows directly by using Theorem E.1 with the PE coefficients derived in Lem-
mas 3.3 and 3.4.

E.4 Sample complexity upper bound for Algorithm 2

In the following, we present the full version of Theorem 4.2 along with its proof. Note that, the
Theorem is presented in full generality, to provide theoretical insights. Depending on the update rule
for ρk corollaries can be derived directly.

Theorem E.6. Let Algorithm 1 be used with the excitation input derived by Algorithm 2. Then, the
estimate θ̂ of Algorithm 1 satisfies P

[
θ̂ ̸= θ∗

]
≤ δ and terminates no later than when k satisfies

τ

( k∑
j=1

cAlg
uj

(τ) + cwj
(τ)

)
≥ 8

(
1 +

1

2η

)
log

(
N

δ

)
, (109)

where

η =
1

16τ
min

 1

λmax

(
Σ

1
2

∆i
(τ)⊤Σ−1

w Σ
1
2

∆i
(τ)
) , cAlg

uj
(τ)γ2

u + cwj
(τ)

2λmax

(
Σ

1
2

∆i
(τ)⊤Σ−1

w Σ
1
2

∆i
(τ)
)
 , (110)

where Σ
1
2

∆i
(τ) is defined in (86b) and cAlg

uj
(τ) and cwj (τ) are defined in (27).

Proof. The result follows directly by using Theorem E.1 and the PE coefficients derived in Lemma 4.1.

23



F Convergence of Algorithm 2 to the optimal excitation

Theorem F.1. Consider the unknown system (1), set S as defined in (2) and Algorithm 2, where the
input applied in round k is PE with cuj (τ) and cwj (τ). Let η chosen to satisfy

η ≤ 1

16τ
min

 1

λmax

(
Σ

1
2

∆i
(τ)⊤Σ−1

w Σ
1
2

∆i
(τ)
) , cuj

(τ)γ2
u + cwj

(τ)

2λmax

(
Σ

1
2

∆i
(τ)⊤Σ−1

w Σ
1
2

∆i
(τ)
)
 , (111)

where Σ
1
2

∆i
(τ) is defined in (86b). Then the estimate θ̂k drawn in Line 2 of Algorithm 2 satisfies

P
[
θ̂k = θi

]
≤ N exp

−ητ

4

k∑
j=1

cuj
(τ)γ2

u + cwj
(τ)

 . (112)

Proof. For the proof of this result, we overload notation and define

εθi(t0, t1) :=

t1−1∑
t=t0

∥x(t+ 1)−Aix(t)−Biu(t)∥2Σ−1
w
. (113)

First note, that by similar arguments as in [17, Lemma B.1] we have

P
[
θ̂k = θi

]
≤ E

[
e−η
(
εθi (0,kτ)−εθ∗ (0,kτ)

)]
. (114)

By using Proposition E.2 we obtain

P
[
θ̂k = θi

]
≤ E

[
e−η
(
εθi (0,kτ)−εθ∗ (0,kτ)

)]
≤ exp

−ητ

4

k∑
j=1

cuj
(τ)γ2

u + cwj
(τ)

 . (115)

Taking a union bound for all i ∈ [1, N ] and solving for δ yields the result.

Note that the result can also be used to derive a similar result for the estimation of the true system
using the softmax maximum likelihood estimator (MLE), similar to the results in [17].

G Auxiliary results

The following result is a consequence of the superposition principle in LTI systems and leverages that
all random quantities are independent. It is a core ingredient in the proofs of the sample complexity
lower and upper bounds.
Lemma G.1. Consider the system (1) with x(0) ∈ Rnx . Let u(t) = (1 − ρ)ud(t) + ρup(t), with

ρ ∈ [0, 1], up(t)
i.i.d.∼ N (0, σ2

uInu) and a deterministic control input ud(t). Then for any fixed matrix
M ∈ Snx

++, any i ∈ [1, N ], and any τ ≥ 0 it holds that
τ∑

t=0

E
[
∥∆Aix(t) + ∆Biu(t)∥2M

]
= (1− ρ)2U⊤

d Wi(τ)Ud + 2(1− ρ)U⊤
d mi(x0) + ci(x(0))

+ σ2
uρ

2tr (Wi(τ)) + tr
(
Sw(τ)

⊤Qi
M (τ)Sw(τ)

)
,

(116)
where

Wi(τ) := Ri
M (τ) + Su(τ)

⊤Qi
M (τ)Su(τ) +N i

M (τ)Su(τ) + (N i
M (τ)Su(τ))

⊤

mi(x(0)) :=
(
Su(T )

⊤Qi
M (τ)Sw(τ)X(0) +N i

M (τ)Sw(τ)X(0)
)

ci(x(0)) :=

τ∑
t=0

(
∆Ai

t−1∑
s=0

As
∗x(0)

)⊤

M

(
∆Ai

t−1∑
s=0

As
∗x(0)

)
X(0)⊤ :=

[
(Σ

− 1
2

w x)⊤ 0 . . . 0

]
.

Furthermore,
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• If x(0) = 0 then it holds for all ρ ∈ [0, 1] that

τ∑
t=0

E
[
∥∆Aix(t) + ∆Biu(t)∥2M

]
≥ (1− ρ)2U⊤

d Wi(τ)Ud + σ2
uρ

2tr (Wi(τ))

+ tr
(
Sw(τ)

⊤Qi
M (τ)Sw(τ)

) (117)

• If ρ = 1 then it holds for all x(0) ∈ Rnx that

τ∑
t=0

E
[
∥∆Aix(t) + ∆Biu(t)∥2M

]
≥ σ2

utr (Wi(τ)) + tr
(
Sw(τ)

⊤Qi
M (τ)Sw(τ)

)
(118)

Proof. By recursively plugging in the x(t) = A∗x(t− 1) +Bu(t− 1) + w(t− 1) we obtain

∆Aix(t) + ∆Biu(t) = ∆Aix(t) + (1− ρ)∆Biud(t) + ρ∆Biup(t) (119)

= ∆Ai

(
t−1∑
s=0

(1− ρ)As−t−1
∗ B∗ud(s) +As

∗x(0)

)
+ (1− ρ)∆Biud(t)︸ ︷︷ ︸

deterministic
(120)

+ ρ∆Ai

t−1∑
s=0

As−t−1
∗ B∗up(t) + ρ∆Biup(t)︸ ︷︷ ︸
rand. vec., dep. on up

+∆Ai

t−1∑
s=0

As−t−1
∗ w(t)︸ ︷︷ ︸

rand. vec., dep. on w

.

Using that all, random vectors are independent and zero mean, and thus, cross terms are zero, it
follows by plugging in (120) that

τ∑
t=0

E[∥∆Aix(t) + ∆Biu(t)∥2M ]

=

τ∑
t=0

E
[
(∆Aix(t) + ∆Biu(t))

⊤
M (∆Aix(t) + ∆Biu(t))

]

=

τ∑
t=0

(∥∥∥∥∥∆Ai

(
(1− ρ)

t−1∑
s=0

As−t−1
∗ B∗ud(s) +As

∗x(0)

)
+ (1− ρ)∆Biud(t)

∥∥∥∥∥
2

M

+ ρ2E

∥∥∥∥∥∆Biup(t) + ∆Ai

t−1∑
s=0

As−t−1
∗ B∗up(s)

∥∥∥∥∥
2

M


+ E

∥∥∥∥∥∆Ai

t−1∑
s=0

As−t−1
∗ w(s)

∥∥∥∥∥
2

M

).

(121)

We carry on by rewriting the first term in (121)

τ∑
t=0

∥∥∥∆Ai

(
(1− ρ)

t−1∑
s=0

As−t−1
∗ B∗ud(s) +As

∗x(0)

)
+ (1− ρ)∆Biud(t)

∥∥∥2
M

= (1− ρ)2U⊤
d Wi(τ)Ud +

τ∑
t=0

(
∆Ai

t−1∑
s=0

As
∗x(0)

)⊤

M

(
∆Ai

t−1∑
s=0

As
∗x(0)

)
︸ ︷︷ ︸

:=ci(x(0))≥0

+ 2(1− ρ)U⊤
d

(
Su(τ)

⊤Qi
M (τ)Sw(τ)X(0) +N i

M (τ)Sw(τ)X(0)
)︸ ︷︷ ︸

:=mi(x0)

,

(122)
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where X(0)⊤ =
[
(Σ

− 1
2

w x)⊤ 0 . . . 0

]
. Let us first consider x(0) = 0. Then we can use the

matrices defined in (6) and (8) and plug them into (122) to obtain
τ∑

t=0

E
[
∥∆Aix(t) + ∆Biu(t)∥2M

]
= (1− ρ)2U⊤

d Wi(τ)Ud + 2(1− ρ)U⊤
d mi(x0) + ci(x(0))

+ ρ2E [UpWi(τ)Up] + E
[
W⊤Sw(τ)

⊤Qi
M (τ)Sw(τ)W

]
(123)

Finally, we use E[x⊤Mx] = tr
(
ME

[
xx⊤]) and tr (A) =

∑n
j=1 λj(A), where λj(A) is the j-th

eigenvalue of the matrix A ∈ Rn×n to obtain
τ∑

t=0

E
[
∥∆Aix(t) + ∆Biu(t)∥2M

]
= (1− ρ)2U⊤

d Wi(τ)Ud + 2(1− ρ)U⊤
d mi(x0) + ci(x(0))

+ σ2
uρ

2tr (Wi(τ)) + tr
(
Sw(τ)

⊤Qi
M (τ)Sw(τ)

)
(124)

which proves the first statement of the Lemma. The second statement follows by the fact that
mi(0) = 0 and ci(0) = 0. The last statement follows, plugging in ρ = 1 and using ci(x(0)) ≥ 0,
∀x(0) ∈ Rnx .

H Additional numerical examples

In this section we provide some additional numerical examples. First we provide a numerical
evaluation of Example 3.1. Then we numerically study how the choice of the tradeoff parameter ρk
influences the performance of the algorithm.

H.1 Numerical evaluation of Example 3.1

In this section, we consider a variant of the setup considered in Example 3.1. To be precise, consider
S̃ = {(Ã∗, B̃∗), (Ã1, B̃∗)} with

Ã∗ =


0 0.1 0 0 0 0
0 0 0 0 0 0
0 0 0.9 0 0 0
0 0 0 0.9 0 0
0 0 0 0 0.9 0
0 0 0 0 0 0.9

 , B̃∗ =


0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

Ã1 =


0 0.2 0 0 0 0
0 0 0 0 0 0
0 0 0.9 0 0 0
0 0 0 0.9 0 0
0 0 0 0 0.9 0
0 0 0 0 0 0.9

 , B̃1 = B̃∗.

Further, we fix γu = 1 and consider the process noise w(t)
i.i.d.∼ N (0, σ2

wI6), with σw = 0.1.
Following the steps outlined in Example 3.1 we obtain λmax(W̃1(t)) = 5λmean(W1(t)). Since we
initialize Algorithm 2 with equal weights for both systems we immediately obtain δ0 = 1

2 . Thus, by
the results in Section 4 we expect CE to perform well. To highlight the effectiveness of Algorithm 2
we compare P[θ̂k = θ∗] for three different setups, where we select η = 0.1:

• Algorithm 2 with ρk ≡ 0, i.e., greedily using CE with the current estimate

• Algorithm 2 with ρk ≡ 1, i.e., isotropic Gaussian excitations

• Algorithm 2 with ρk ≡ 0 and oracle knowledge, i.e., computing the optimal excitation with
θ∗

We select τ = 10 and run 20 Monte Carlo simulations. The mean and σ-bands of the likelihood of
θ∗ given the data are displayed in Figure 2. It is immediately apparent that oracle knowledge does
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not provide any advantage in this setup, since the current estimate θ̂k does not influence the solution
of (26) due to the structure of the problem. Further, as expected, the experiment design algorithm
significantly outperforms the random excitations by allocating all input energy to the first input.
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Figure 2: Mean and σ-band of the likelihood of θ∗ given the data for different data collection strategies
for the motivating example.

H.2 Identification for a random candidate set

In this section, we present the setup where the set S is generated randomly. To be precise, we consider
the case where S consists of 20 additional systems, where the parameters are drawn from a Gaussian
around the true parameters

A∗ =

[
0 0.1 0
0 0 0
0 0 0.9

]
B∗ =

[
0 0
1 0
0 1

]
. (125)

Furthermore, we consider different time-varying choices of the weighting parameter ρk and analyze
how they influence the speed of identification. In particular we consider, ρk = 1

1+ρ , ρk = 1
(1+k)2 and

ρk = e−k. Further, as for the numerical example in Section 5 we compare our algorithm to the active
learning criterion proposed in [26] for the case of an infinite hypothesis class. Since the algorithm in
[26] can not directly be compared to ours, since it has an exponentially increasing episode length,
we use Algorithm 1 with the input defined by the objective in [26] with oracle knowledge. The
resulting mean and σ-band of the likelihood of θ∗ given the data over [25 monte carlo] simulations
are displayed in Figure 3. It can be seen from the results that using CE in Algorithm 2 performs at
least as good as the other time-varying selections for ρk. In particular, the performance is comparable
to the performance of Algorithm 2 with oracle knowledge. Again, isotropic Gaussian excitations
perform worse than all other excitation sequences. Notice that compared to the numerical example in
Section 5 the gap is significantly smaller. This is due to the fact that the set S consists of randomly
generated systems. Hence, the set exhibits less structure, and uniform exploration is closer to optimal
than in the previous example. This is in accordance with our theoretical results and indicates that
there exist non-trivial cases where experiment design provides only a small benefit over isotropic
random excitations. Finally, the criterion presented in [26] again outperforms random excitations but
does perform worse than our approach. This is the case because the criterion in [26] does not take
into account the finiteness of the hypothesis class since it was not designed for this setup.
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Figure 3: Mean and σ-band of the likelihood of θ∗ given the data for different data collection strategies
for the randomly generated set S.
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