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Abstract

Robotic motor control necessitates the ability to predict the dynamics of envi-1

ronments and interaction objects. However, advanced self-supervised pre-trained2

visual representations (PVRs) in robotic motor control, leveraging large-scale3

egocentric videos, often focus solely on learning the static content features of4

sampled image frames. This neglects the crucial temporal motion clues in human5

video data, which implicitly contain key knowledge about sequential interacting6

and manipulating with the environments and objects. In this paper, we present7

a simple yet effective robotic motor control visual pre-training framework that8

jointly performs spatiotemporal prediction with dual decoders, utilizing large-scale9

video data, termed as STP. STP adheres to two key designs in a multi-task learning10

manner. First, we perform spatial prediction on the masked current frame for11

learning content features. Second, we utilize the future frame with an extremely12

high masking ratio as a condition, based on the masked current frame, to conduct13

temporal prediction of future frame for capturing motion features. This asymmet-14

ric masking and decoder architecture design is very efficient, ensuring that our15

representation focusing on motion information while capturing spatial details. We16

carry out the largest-scale BC evaluation of PVRs for robotic motor control to date,17

which encompasses 21 tasks within a real-world Franka robot arm and 5 simulated18

environments. Extensive experiments demonstrate the effectiveness of STP as well19

as unleash its generality and data efficiency by further post-pre-training and hybrid20

pre-training. Our code and weights will be released for further applications.21

1 Introduction22

In NLP and CV, adapting pre-trained foundation models from large-scale data to various downstream23

tasks has seen great success. For example, pre-trained visual representations using self-supervised [38,24

15, 67, 2, 93] or weakly-supervised [71, 25, 55] methods exhibit strong generalization ability for25

visual understanding. However, in robot learning, due to data scarcity and homogeneity, some26

groundbreaking methods [53, 1] resort to training from scratch only using domain-specific data.27

Recently, inspired by the success of transfer learning in CV, many works [69, 73, 65, 58, 59, 19] have28

explored developing a pre-trained visual representation (PVR) using large-scale out-of-domain data29

for various robotic motor control tasks. Currently, one successful paradigm [73, 99, 59, 19] is to use30

large-scale egocentric video datasets [29] and train vanilla vision transformers (ViT) [22] based on31

MAE [38], which exhibits excellent learning efficiency and generalization ability for learning policy32

from raw pixel. Among them, the Ego4D [29] dataset offers numerous first-person human-object33

interaction scenes and good motion clues. We argue that although learning static spatial structure34

priors from task-relevant pre-training data sources is crucial, designing a more relevant self-supervised35

proxy task for motor control should not be overlooked. Therefore, in this paper, we aim to develop a36

more relevant self-supervised proxy task for robotic motor control representation learning.37
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Robotic motor control typically requires fine-grained spatial localization and relatively dense se-38

mantics. With its ability to effectively capture low-level geometry and space structure, MAE [38]39

pre-training excels at this task. However, is dense spatial content sufficient for robotic motor control?40

Some neuroscientific studies [50, 21, 88] suggest the brain’s different areas or cells show special-41

ization. Some are dedicated to processing the information of temporal object motion, while others42

focus on static spatial details. Their combination results in subjective pattern perception. Inspired by43

this finding, we hypothesize that an effective robotic motor control pre-training proxy task should44

require joint learning of spatial content features and temporal motion features. However, current45

methods [73, 59, 19] use MAE pre-training with image frames from human videos, capturing only46

static content features. They overlook the temporal motion clues in human videos, which implicitly47

contain key knowledge about sequential interaction with environment and manipulation of objects.48

Therefore, we aim to bridge this gap by incorporating these motion clues into our proxy task.49

Based on the analysis above, the most critical challenge is the absence of action annotations in human50

video data for modeling object motion. To model interaction and manipulation actions from actionless51

video data, we propose to implicitly capture them by predicting future frame pixels based on current52

frame. However, predicting the future frame without any conditions could contain high uncertainty53

and be extremely difficult. Therefore, we propose to use the future frame with an extremely high54

masking ratio as a prompt condition, specifically 95%, which serves to reveal some behavior and55

dynamic priors, i.e. what to do and how to do it. In the experiments section, we will further explore56

different condition alternatives, including language narration and their combination. Additionally,57

directly and simply executing temporal prediction could lead the model to overlook static spatial58

details, and it is also not efficient enough. Therefore, another technical contribution of STP is to jointly59

perform spatial prediction by masking the current frame with 75% masking ratio. In summary, we60

present STP, a multi-task self-supervised pre-training framework through spatiotemporal predictive61

learning. Our STP asymmetrically mask the current frame and future frame from a video clip, using62

a spatial decoder to conduct spatial prediction for content learning and a temporal decoder to conduct63

temporal prediction for motion learning. This asymmetric masking and decoder architecture design64

ensures that our pre-trained encoder focusing on motion information while capturing spatial details.65

Subsequently, we establish our evaluation scheme. Currently, how to adapt pre-trained visual66

representations for robotic motor control still remain an open question. Considering the expensive67

cost of robot data collection or exploration, we employ a data-efficient paradigm of few-shot behavior68

cloning by learning from demonstrations (Lfd). To demonstrate the generalization ability of visual69

representation, our primary evaluation scheme involves freezing the visual encoder during policy70

training. Additionally, considering that fine-tuning ViT with few demonstrations might lead to71

overfitting and masked modeling exhibits excellent data efficiency [86, 102, 52] in domain-in data,72

we further follow the post-pre-training [7, 93, 59] paradigm to perform STP pre-training with task-73

specific data to achieve better results. It is noteworthy that different tasks do not share representation74

in this setting. Finally, we conduct the largest-scale BC evaluation of PVRs for robotic motor control75

to date to demonstrate the effectiveness of STP, which encompasses 21 tasks ( 2 real-world tasks and76

19 simulation tasks across 5 environments). These simulation tasks are derived from the union of77

manipulation and locomotion tasks from prior works [65, 59].78

We make the following four contributions: (1) We present STP, a self-supervised visual pre-79

training framework for robotic motor control, which jointly conducts spatiotemporal prediction with80

asymmetric masking and decoder architecture design for content and motion features learning. (2)81

We further expand STP by performing hybrid pre-training with ImageNet-MAE and post-pre-training82

with task-specific data, unleashing its generality and data efficiency. (3) To our best knowledge, we83

conduct the largest-scale BC evaluation of PVRs for robotic motor control to date to demonstrate the84

effectiveness of STP. (4) Our experiments yield some insightful observations. In temporal prediction,85

language does not significantly enhance performance. Instead, single-modality self-supervised86

paradigm achieves the best results. This finding is highly encouraging for self-supervised robotic87

motor control representation learning. Moreover, in the few-shot BC setting, naively scaling up model88

size does not necessarily lead to improved outcomes. Finally, incorporating more diverse data and89

domain-in data into the pre-training can further enhance performance.90

2 Related Work91

Pre-trained Visual Representation Learning. Large-scale visual representation pre-training are92

continually empowering computer vision. The primary supervised learning methods include learning93
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image recognition [40, 87] from ImageNet [20] and learning multi-modal alignment [71] from image-94

text pairs. Currently, self-supervised learning methods are enjoying significant popularity, primarily95

falling into two main categories. The first category utilizes contrastive learning [39, 15, 14] technique96

or joint-embedding architecture [13] to learn view-invariance. The second category performs masked97

modeling [7, 38, 100, 95, 4, 2] and predict the pixel or representation of invisible parts in space. In98

addition, some methods [106, 67, 8] have also proposed to combine different optimization objectives99

in a multi-task learning manner. Recently pre-trained visual representation learning for robotic motor100

control have bee rapidly developing [69, 65, 73, 99, 58, 57, 46, 59, 19]. These methods cover different101

backbones (ResNet [40], ViT [22]), different policy learning methods (reinforcement learning [99],102

behavior cloning [69, 65, 59], reward function [58] and task specification [42]), different adaptation103

schemes (linear probing [69, 65, 46, 59], fine-tuning [19] and designing adapters [78, 56]), and104

different evaluation environments (diverse simulation benchmarks). At present, it is still unclear how105

these factors collectively influence the performance. In this paper, we choose scalable vanilla vision106

transformer [22] as our backbone and data-efficient few-shot behavior cloning paradigm to conduct107

policy learning, while ensuring the backbone is frozen during policy training.108

Temporal Predictive Learning. Early works once explored representation learning through future109

prediction, encompassing image [61], video [35, 80] and audio [66]. VideoMAE [86, 93] extend110

MAE [38] to 3D video architecture. Recently TrackMAE [17] and SiamMAE [33] predict the111

masked future frame based on unmasked current frame, leading to a better capture of temporal112

correspondence and achieving outstanding performance in object tracking and segmentation tasks. In113

robot learning, predicting future visual states primarily serves as a transition dynamic model such as114

World Models [62, 77] and Dreamer [76]. [85, 9] predict the future visual states using goal image in115

robot data. GR-1 [97] conducts language-conditioned video prediction for policy model pre-training116

in a frozen visual representation space. [96] proposed dynamics-aware representation learning,117

and [82, 72] employed forward dynamics for self-supervised pre-training. Some works explored118

to train video prediction models and utilize visual foresight [32], inverse dynamics models [18],119

goal-conditioned policy learning [23], and geometry estimation [51] methods for motor control,120

respectively. [92] fine-tuned pre-trained representations into dynamic and functional distance121

modules for manipulation tasks. Unlike these works, we utilize the public large-scale egocentric122

video data and employ masked spatiotemporal predictive learning as a self-supervised proxy task123

(without any language or action annotations) for robotic motor control representation learning,124

instead of designing elaborate architectures or methods for specific predictive tasks [28, 37].125

Vision-based Robot Learning. Vision-based robot learning plays a crucial role in robotics com-126

munity. Recently some related works focus on studying model architectures [44, 12, 47], observa-127

tion spaces [107], downstream policy learning methods [41], sim-to-real transfer [79], designing128

adapters [78, 56], learning-from-scratch baseline [36], and affordance model [6, 105, 45, 60], in129

visuo-motor representation learning. Other related works [70, 5, 91, 101, 48] attempt to learn ma-130

nipulation skills from small-scale and in-domain human videos. In addition, language-conditioned131

vision robot learning has received significant attention. Some works scale multimodal robotic132

data [42, 11, 34, 90, 24, 68, 84] or introduce Internet data and knowledge [81, 103, 10, 54, 43, 94, 64]133

for end-to-end robot learning. In our study, we pre-train a off-the-shelf visual representation from134

large-scale egocentric video datasets for robotic motor control tasks. Our method is more simple and135

general for different downstream tasks of motor control.136

3 Method137

In this section, we describe our method in details. First, we give an overview of our spatiotemporal138

predictive pretraining (STP) framework. Then, we give a technical description on our core components139

during pre-training: the masked image encoder and dual decoders scheme. Finally, we describe how140

to adapt our pre-trained encoder to downstream robotic motor control tasks.141

3.1 Overiew of STP142

As illustrated in Figure 1, our STP aims to pre-train an image encoder for robotic motor control from143

video datasets. This pre-trained image encoder is subsequently frozen and directly transferred to solve144

motor control tasks. Specifically, given a video dataset D, our goal is to learn an image encoder Φenc,145

that maps images to the visual representations. During pre-training and post-pre-training, D represents146

large-scale out-of-domain videos and task-specific demonstration videos, respectively. After pre-147

training, we reuse Φenc for downstream motor control policy learning. Specifically, the downstream148
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Figure 1: STP framework. Left: During pre-training, we sample the current frame and the future frame
from the video clip, and carry out spatiotemporal predictive pre-training. Right: During motor control tasks
evaluation, we freeze the pre-trained encoder to extract visual state representations and discard the decoders.

task will require an agent to make sequential action decisions based on visual observations O. Instead149

of using the raw observation images as direct input like end-to-end policy learning from pixel, the150

agent will employ the pre-trained Φenc to extract its visual state representation Φenc(O) for the151

subsequent policy learning module.152

3.2 Masked Image Encoder153

We first introduce the pipeline of our image encoder. Our image encoder processes image frames154

using a vanilla vision transformer [22]. Given a image I ∈ RC×H×W , we initially process it by the155

patch embedding layer to obtain its token sequences T, where T = {Pi}Ni=1 and N is the the total156

token number, (e.g., N = 196 for a 224 × 224 image with a patch size of 16 × 16). Then we add the157

fixed 2D sine-cosine positional embeddings for all tokens. Following this, we mask and remove a158

part of tokens, according to a randomly generated masking map M(ρ), where ρ is the masking ratio.159

The encoder applies several transformer blocks (consisting of a global self-attention layer and a FFN160

layer) on all unmasked tokens: Z = Φenc(T
u), where Tu = {Ti}i∈(1−M(ρ)). During this process, a161

[CLS] token is added at the beginning.162

Then we describe our encoding process during pre-training. We randomly sample two frames from a163

video clip based on an interval: the current frame Ic and the future frame If . Following the above164

pipeline, we randomly generate two asymmetric masking maps for the current frame and the future165

frame, denoted as Mc = Mc(ρ
c) and Mf = Mf (ρ

f ), respectively. Each of these maps has a166

different masking ratio. We then use these maps to separately process the two frames and obtain their167

features, Zc and Zf . As analyzed above, our STP aims to jointly learn content and motion features168

by spatiotemporal predictive learning. For content feature learning, we follow MAE [38], masking a169

portion of the current frame based on Mc, with ρc = 75%, and predict the masked parts during the170

decoding process. This encourages the model to learn spatial and geometric structure priors from the171

current frame data through spatial reasoning. For motion feature learning, we establish an objective172

to predict the future frame based on the masked current frame. However, predicting the future frame173

without any conditions could be meaningless and extremely challenging. Therefore, we use the future174

frame with an extremely high masking ratio as a condition, specifically ρf = 95%, which reveals175

some behavior and dynamic priors. In the experiments section, we will further discuss different176

condition schemes, including language narration and the combination between them. In summary,177

our encoding process during pre-training can be formally described as follows:178

{
Zc = Φenc(Ic,Mc),

Zf = Φenc(If ,Mf ).
(1)
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Figure 2: Temporal decoder design. (a) Standard joint-self architecture. (b) Our self-cross architecture.

3.3 Dual Decoders179

To jointly capture static content and object motion features for better spatiotemporal understanding,180

our STP present a dual decoders scheme to predict both the pixel of current and future frame181

simultaneously in a multi-task learning manner. As shown in Figure 1, our dual decoder scheme182

includes a spatial decoder Φdec_s for spatial prediction and a temporal decoder Φdec_t for temporal183

prediction. We firstly give a technical description on them, respectively. Then we describe how we184

combine them into our final method.185

Spatial Decoder. To capture static content features, our spatial decoder is solely utilized for pro-186

cessing the current frame visual feature. Specifically, after obtaining the masked current frame187

visual feature Zc, we concatenate it with some learnable masking tokens, leading to the formation188

of Zd
c = Zc ∪ {Mi}i∈Mc

, where Mc is the current frame masking map. Then, each of these tokens189

further adds a corresponding positional embedding. Subsequently, Zd
c undergoes decoding in the190

decoder and is continuously updated. The architecture of the spatial decoder block aligns with the191

standard transformer encoder block, comprised of a global self-attention layer and a FFN layer.192

Finally, with the deocoded token sequence Zd
c , our spatial decoder predicts the invisible tokens of the193

current frame Îdc , operating under the current frame masking map Mc.194

Temporal Decoder. To capture motion features, our temporal decoder jointly processes the current195

frame and the future frame which serves as the temporal prediction condition. To elaborate, we196

firstly obtain the masked current frame feature Zc and the masked future frame feature Zf . We then197

concatenate Zf with the masking tokens that have the positional embedding added, resulting in Zd
f .198

Following this, Zd
f and Zc interact within the temporal decoder for decoding. The architecture of our199

temporal decoder block is in alignment with the standard transformer decoder block [89], consisting200

of a self-attention layer, a cross-attention layer, and a FFN layer, as shown in Figure 2 (b). During201

decoding, the self-attention layer and FFN are solely used to process Zd
f . For the cross-attention202

layer, Zd
f is continuously updated as the query, while Zc, acting as the key and value, is kept constant.203

Compared to standard architecture, it ensures that the past frame representation space will not be204

updated in the temporal decoder and are specifically used for temporal correlation and prediction.205

This asymmetric interact architecture not only achieves more efficient training but also produces better206

results. Finally, with the decoded token sequence Zd
f , our temporal decoder predicts the invisible207

tokens of the future frame Îdf , operating under the future frame masking map Mf .208

Multi-task Predictive Learning. As mentioned above, our STP jointly conducts spatiotemporal209

prediction by asymmetric masking ratio and dual decoders scheme, the whole decoding pipeline can210

be formally described as follows:211 {
Îdc = Φdec_s(Z

d
c),

Îdf = Φdec_t(Zc,Z
d
f ).

(2)

Our loss function is the mean squared error (MSE) loss between the normalized masked pixels and212

the predicted pixels. So our loss function ℓ is as follows:213

ℓ = MSE(Îc, Ic) +MSE(Îf , If ). (3)

3.4 Downstream Policy Learning214

To enable data and computation efficiency during the policy learning process, we adopt the paradigm215

of few-shot behavior cloning by learning from demonstrations (Lfd), and we keep the image encoder216
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Figure 3: The evaluation demonstrations of our real-world tasks. For picking, the robot arm needs to pick up
the bowl on the desktop. For pouring, the robot arm needs to pour the ingredients from the bowl into the pot.

frozen. Concretely, for each task, we are given offline expert demonstrations S = {τ1, ..., τn}, where217

each τi is a trajectory of robot observations and actions, denoted as τi = [(o0, a0), . . . , (oT , aT )].218

Based on the S, we train a policy mdoel, πθ(a|C(Φenc(o))), parameterized by θ, which maps from219

robot’s state representations to actions. Here, C represents an optional concatenation operation that220

effectively fuses multi-view and multi-frame visual features, along with the robot’s proprioceptive221

state in the channel dimension. We optimize the πθ through a standard behavior cloning MSE loss:222

min
θ

∑
(o,a)∼SMSE(a, πθ(C(Φenc(o)))). (4)

4 Experiments223

4.1 Implementation on Pre-training224

We execute pre-training with data from EgoVLP [55] for comprehensive ablation and fair comparison.225

It processes untrimmed videos of Ego4D and filters out that miss language narrations and belong226

to validation or test sets, resulting in a total of 3.8 million clips, called as Egoclip. In pre-training,227

we sample a frame pair from each clip for training. As for all experiments, we employ ViT [22] as228

backbone. Additionally, we maintain consistency with prior works [73, 59], directly using the [CLS]229

token as the global representation. The pre-training hyperparameters can be found in section A.3.230

4.2 Implementation on Downstream Policy231

Evaluation Scheme. Following popular settings on PVRs for robotic motor control [65, 46, 59], for232

each task, we learn a single policy π which is structured as a MLPs network. The policy models233

utilize both the history of visual observation embeddings and optional robot proprioceptive as inputs,234

subsequently generating executable actions as outputs.235

Simulation Tasks. We select the union of manipulation and locomotion tasks from prior236

works [65, 59] for evaluation, encompassing 19 tasks across 5 simulated environments. These inclue237

Meta-World [104] (Assembly, Bin-Picking, Button-Press, Drawer-Open, and Hammer), Franka-238

Kitchen [31] (Sliding Door, Turning Light On, Opening Door, Turning Knob, and Opening Mi-239

crowave), Adroit [74] (Relocate and Reorient-Pen), DMControl [83] (Finger-Spin, Reacher-Hard,240

Cheetah-Run, Walker-Stand, and Walker-Walk), and Trifinger [98] (Reach-Cube and Push-Cube).241

More detailed simulation evaluation details can be found in section A.4.242

Real-World Tasks. In our real-world experiments, we evaluate contact-rich picking and pouring243

tasks using a Franka Emika Research 3 robot arm in a tabletop environment, ensuring no duplication244

with simulation Franka-Kitchen [31]. For each task, we collect 100 noise demonstrations for training,245

and we conduct 20 trials per task during evaluation phase. The robotic arm and objects have different246

initial pose between training and testing. The evaluation demonstrations of our real-world tasks is247

shown in Figure 3. Please see section A.5 for more real-world setup details.248
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MAE

Assembly Sliding Door Reorient-Pen Reacher-Hard Walker-Stand

STP

Figure 4: Attention Visualization. We use the [CLS] token as query, average the attention of all heads at the
last layer of the frozen ViT encoder, and perform min-max normalization. We then upsample the attention map
and overlay it on the original image, where the size of the attention value is directly proportional to the intensity
of the yellow light. Top: MAE pre-training. Bottom: STP pre-training.

4.3 Performance on Downstream Simulation Tasks249

In this section, we mainly analyze the performance of some pre-trained image representations on250

reproducible simulation tasks. Specifically, we first evaluate the following models: (1) public251

DINOv2 [67] that combines masked image modeling with self-distillation on large-scale image252

datasets; (2) public CLIP [71] that conducts contrastive learning on large-scale image-text pairs;253

(3) R3M trained based on Egoclip [55]; (4) public VC-1 [59]; (5) MAE trained based on Egoclip;254

(6) STP trained based on Egoclip. (7) STP that conducts hybrid pre-training with initialization255

using ImageNet-MAE [59]. Among them, (1) and (2) achieve excellent performance on core visual256

understanding tasks using zero-shot or linear probing evaluation settings. (3) and (4) utilize egocentric257

videos for robotic motor control. (5), (6) and (7) are used for fair comparison and exploring the258

potential benefits of STP from more diverse image data, respectively. The experimental results are259

presented in Table 1. Consistent with prior findings [41, 59], there is not a universal foundation model260

that performs optimally across all benchmarks. However, on the whole, the MAE method is superior261

due to its effective modeling of low-level geometry and spatial structure, especially for the MetaWorld262

tasks that demand fine-grained control. Another intriguing observation is that MAE underperforms263

in the Franka-Kitchen and Adroit tasks. We believe that this could be due to its relatively weaker264

semantic representation. Under a fair comparison, our STP outperforms MAE by 4.1 (59.6 → 63.7),265

and additionally benefits from a more diverse image data, improving by 0.5 (63.7 → 64.2). This is266

attributed to that our STP not only captures static content features but also effectively models motion267

information by extracting temporal clues from videos of interactions and manipulations with the268

environment and objects. Additionally, we provide the visualization of the attention maps (model (5)269

and (6)) of several specific tasks in Figure 4. The results indicate that, on top of effectively capturing270

spatial information, our method further encourages the model to focus on motion areas or objects,271

thereby providing a more sparse and compact representation for downstream low-data BC paradigm.272

Next, we also evaluate and compare the adaptation results of our representations to downstream motor273

control tasks. Specifically, we evaluate following settings: (a) The MAE pre-trained representation274

undergoes further MAE post-pre-training with task-specific data, and is frozen during policy training;275

(b) The STP pre-trained representation undergoes further STP post-pre-training with task-specific276

data, and is frozen during policy training; (c) The STP pre-trained representation undergoes end-to-277

end fine-tuning with task-specific data; (d) STP pre-training is performed directly using task-specific278

data and the resulting representation is frozen during policy training. The results show that end-to-end279

fine-tuning fails to yield the best results, suggesting that naively fine-tuning VIT-base could still lead280

to overfitting under few-shot behavior cloning scheme. Conversely, (a) and (b) achieve competitive281

results, with our STP achieving a 3.9 (72.5 → 76.4) improvement on the weight average success rate282

than MAE, further demonstrating the effectiveness and data efficiency of our STP for in-domain data.283

In addition, the comparison between (a) and (d) also proves the effectiveness of pre-training with284

out-of-domain data. Finally, we also scale up both MAE and our STP to ViT-L/16, and the results285

still demonstrate the superiority of STP. Among them, compared to ViT-B/16, ViT-L/16 brings a286

smaller performance improvement, which may be due to the task’s performance saturation. However,287

the ViT-L/16 of STP does not show improvement in Meta-World and Trifinger, indicating that simply288
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Table 1: Performance comparations of visual representations on simulation benchmarks. We report the average
score across all tasks for each simulation environment. DINOv2 uses ViT-B/14, CLIP uses ViT-B/32, and unless
otherwise specified, others use ViT-B/16. Mt-Wd, Fr-Ki, DMC, Adro, Tr-fi, and WA respectively represent
MetaWorld, Franka-Kitchen, DMControl, Adroit, Trifinger, and weight average. * denotes that public VC-1
samples image frmaes form full Ego4D dataset.

Pre-training Data Mt-Wd Fr-Ki DMC Adro Tr-fi WA
DINOv2 [67] LVD-142M 77.9 41.2 59.4 50.7 69.0 59.6

CLIP [71] Image-text pairs 75.5 39.8 52.2 51.3 57.7 55.6
R3M [65] Ego 81.3 30.6 52.2 46.7 64.7 54.9
VC-1 [59] Ego*+MNI 88.8 38.4 60.9 46.0 70.5 61.8
MAE [38] Ego 85.1 36.7 59.2 43.4 70.6 59.6

STP Ego 92.0 40.9 62.1 48.0 69.3 63.7
STP Ego+I 94.1 42.5 61.6 47.3 66.7 64.2

MAE (Post PT) Ego+Demo 93.6 46.9 81.1 58.0 76.8 72.5
STP (Post PT) Ego+Demo 97.3 53.6 82.8 63.3 78.0 76.4
STP (E2E FT) Ego 87.2 52.4 55.2 40.0 70.4 62.9

STP Demo 70.3 30.4 52.5 38.0 70.8 51.8
MAE-L/16 (Post PT) Ego+Demo 95.7 54.7 83.5 66.0 77.6 76.7
STP-L/16 (Post PT) Ego+Demo 97.3 57.4 85.0 70.0 75.4 78.4

Table 2: The ablation experiment results. Me, Fra, DMC, Adr, Tri, and WA respectively represent MetaWorld,
Franka-Kitchen, DMControl, Adroit, Trifinger, and weight average. All models use ViT-B/16.

(a) Current Frame Masking and Spatial Prediction.

ρc Predict Me Fra DMC Adr Tri WA

75% ✓ 92.0 40.9 62.1 48.0 69.3 63.7
75% 84.5 34.7 55.4 43.3 65.3 57.4
50% ✓ 82.1 36.0 60.3 48.0 66.8 59.0
0% 79.2 39.7 54.8 44.0 63.1 57.0

(b) Temporal Prediction Condition Design.

Condition Me Fra DMC Adr Tri WA

L-E 82.1 30.7 55.5 42.0 63.8 55.4
95% 92.0 40.9 62.1 48.0 69.3 63.7
90% 91.2 42.5 62.8 44.7 65.9 63.4

L-E + 95% 91.0 37.7 64.1 46.7 70.8 63.1
L-D + 95% 88.0 34.3 62.6 46.7 69.3 60.9

(c) Temporal Decoder Architecture Design.

Decoder Me Fra DMC Adr Tri WA

8 joint-self 87.7 36.9 55.7 46.0 71.3 59.8
12 joint-self 88.5 35.0 55.7 46.0 67.0 59.1
8 self-cross 92.0 40.9 62.1 48.0 69.3 63.7

(d) Frame Sampling Strategy.

Frame interval Me Fra DMC Adr Tri WA

8 89.6 39.9 58.4 46.0 67.0 61.3
16 92.0 40.9 62.1 48.0 69.3 63.7
24 89.1 41.1 61.5 46.0 68.1 62.5

8, 24 92.3 37.1 57.3 42.0 68.4 60.8

scaling up model capacity does not necessarily lead to performance gains. In the few-shot BC setting,289

there is a risk of overfitting in both policy and backbone training.290

4.4 Ablation on Downstream Simulation Tasks291

In this section, we perform extensive ablation studies to further demonstrate the effectiveness of our292

joint spatial and temporal prediction, as well as temporal prediction condition design. In addition, we293

also study the influence of temporal decoder architecture design and future frame sampling strategy.294

Current frame masking. The design of the current frame masking is crucial. On one hand, similar295

to MAE [38], masking some patches and predicting the missing parts can effectively promote the296

learning of image content features. On the other hand, the visible patches of the current frame need297

to interact with the condition to predict the future frame. Specifically, we mask the current frame at298

masking rates of 75%, 50%, and 0%, respectively, and optionally predict the missing parts through299

the spatial decoder. The results are shown in Table 2 (a). From results, we see that the masking ratio300

of 75% and performing spatial prediction still lead to the best performance. This demonstrates the301

importance of retaining MAE [38] for content features learning, especially for low-level manipulation302

in Meta-World, while a current frame with a high masking ratio (75%) is sufficient to interact with303

other conditions to predict the future frame.304

Temporal prediction condition design. Subsequently, we discuss the influence of temporal predic-305

tion condition design. We implicitly model motion in actionless video data by predicting the pixels of306

the future frame. A direct and simple idea is to use language narration as a condition. The text tokens307

can be flexibly utilized as inputs to ViT [22], forming a multimodal encoder. Language narration308
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provides a high-level behavior description, but lacks low-level visual dynamic priors for pixel-level309

prediction. However, leaking part of the future frame can effectively provide these priors. In order310

to explore how to construct a more meaningful temporal prediction proxy task, we compare the311

following schemes: (1) only language narration, (2) masking 95% of the future frame, (3) masking312

90% of the future frame, (4) masking 95% of the future frame and language narration, and (5) masking313

95% of the future frame and language narration, but the language is added in the temporal decoder,314

instead of being fused with the visible image patches in the multimodal encoder. We tokenize all315

language narration by pre-trained DistilBERT [75]. The results are shown in Table 2 (b). From316

results, we see that using only language as a prediction condition leads to a significant decline in317

performance, while leaking a small amount of future frame (masking 95%) in the temporal decoder318

can achieve competitive results. As for joint conditions of language and future frame with 95%319

masking ratio, adding language in the encoder is better than in the decoder. Additionally, adding320

language performs better on DMControl (64.1 vs. 62.1) and Trifinger (70.8 vs. 69.3), while not321

adding language performs better on Meta-World (92.0 vs. 91.0), Franka-Kitchen (40.9 vs. 37.7) and322

Adroit (48.0 vs. 46.7). We speculate the reasons for language hurts performance are as follows: (i)323

The input gap (multi-modal and single-modal) between upstream and downstream; (ii) Extra language324

in ViT may result in the loss of some fine-grained information capture. Furthermore, the latter does325

not require language supervision, and can provide a more scalable self-supervised solution.326

Temporal decoder design. We also investigate the impact of the temporal decoder design. Specifi-327

cally, we consider two types of decoder blocks. One is the joint-self architecture, as shown in Figure 2328

(a), and similar joint architecture are adopted in [26, 102]. The other is the self-cross architecture, as329

shown in Figure 2 (b), and similar cross architecture are adopted in [3, 33]. We consider the following330

settings: (1) 8 joint-self decoder blocks, (2) 12 joint-self decoder blocks, (3) 8 self-cross decoder331

blocks. Among them, setting (2) and (3) have similar amounts of parameters for a fairer comparison.332

The results are shown in Table 2 (c). The results demonstrate the importance of maintaining a fixed333

representation space of the past frame during temporal prediction.334

Frame sampling strategy. Finally, we investigate the impact of the sampling strategy between the335

current frame and future frame. The difficulty of temporal prediction is directly proportional to the336

frame interval values. We establish four settings where we fix the sampling intervals at 8, 16, and 24337

respectively, and for the fourth setting, we randomly select an interval within the range of [8, 24].338

The results are shown in Table 2 (d). The results show that an interval of 16 achieves the best balance339

for building temporal prediction proxy task.340

4.5 Performance on Downstream Real-world Tasks341

Table 3: Performance comparations on real-world
tasks.

Method Picking Pouring Average

MAE 65.0 45.0 55.0
STP 65.0 65.0 65.0

In this section, we report our experiment results on342

real-world picking and pouring tasks. We report the343

average success rate for each task. Specifically, we344

compare STP with the baseline MAE, both of which345

are trained on out-of-domain videos and kept frozen346

during policy training. The results are shown in Ta-347

ble 3. From the results, it can be seen that STP has348

achieved significant advantages in the pouring task.349

It can more accurately align with the moving bowl350

and the pot. In addition, although MAE and STP have a same success rate in picking tasks, STP tends351

to execute grasping in a better position. This indicates that the trend and conclusion of our STP are352

consistent in both simulation and the real-world, which also aligns with the findings of [79].353

5 Conclusion354

In this work, we have proposed the STP, a simple, efficient and effective self-supervised visual repre-355

sentation pre-training framework for robotic motor control. Our STP jointly performs spatiotemporal356

predictive learning on large-scale videos within a multi-task learning manner. Our STP captures357

content features by predicting the invisible areas within the masked current frame, and simultaneously358

captures motion features by using a future frame with an extremely high masking ratio as a condition359

to predict the invisible areas within that future frame. We carry out the largest-scale BC evaluation of360

PVRs for robotic motor control to date to demonstrate the effectiveness of STP. Furthermore, as for361

pre-training data, we also prove that extending STP to hybrid pre-training and post-pre-training could362

further unleash its generality and data efficiency.363
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A Appendix660

A.1 Limitations and Discussion661

Although STP has demonstrated superior performance in extensive experiments, there remain some662

challenges and future works. From the perspective of pre-training data, Ego4D provides numerous663

human-object interaction scenes and good motion clues. Building larger-scale and more diverse664

potential datasets such as [63, 30] to scale up STP is worth exploring. Regarding pre-training methods,665

exploring predictive targets outside of pixel space and more effective sampling and masking strategies666

present intriguing research directions. From an evaluation standpoint, we utilize a frozen ViT to667

extract agent state representations and adopt the paradigm of few-shot behavior cloning, other policy668

learning methods (reinforcement learning, visual reward function, visual task specification), have not669

been explored. In conclusion, as the first method of performing temporal prediction on large-scale670

videos for self-supervised visual representation learning intended for robotic motor control tasks, we671

hope STP can be taken as a strong baseline and facilitate further research along this direction.672

A.2 The influence of the loss weight ratio between temporal prediction and spatial prediction673

In this section, we further explore the influence of the loss weight ratio between temporal prediction674

and spatial prediction. Specifically, taking five tasks from Franka-Kitchen as examples, we load the675

pre-trained STP and perform post-pre-training with three different loss weight ratios (temporal to676

spatial). The results, as shown in Figure 5, are 54.7, 55.2, and 57.4 for the average results of the ratios677

3:1, 1:3, and 1:1, respectively. The results indicate that due to the different attributes of the tasks, the678

trends are not consistent. However, overall, the 1:1 ratio achieves the best balance and results. We679

chose it as a universal setting.680

A.3 Pre-training Details681

In this section, we describe the details of our STP pre-training. Specifically, we list some key training682

and architectural hyperparameters of STP in Table 4. In addition, as for our MAE [38] baseline, we683

mainly follow the publicly available code of MAE1. Additionally, we train MAE and STP using the684

same data and number of epochs to ensure that the comparison between them is completely fair.685

Finally, we also provide some STP prediction results in Figure 6.686

A.4 Simulation Environments Details687

In this section, we first present further details of the STP post-pre-training on downstream simula-688

tion environments. Subsequently, we delineate the specific hyperparameters used in the behavior689

cloning policy training within these simulation environments. Finally, we provide the comprehensive690

evaluation scheme for each simulation environment.691

1https://github.com/facebookresearch/mae
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Figure 5: The results of different loss weight ratios between temporal prediction and spatial prediction.

Table 4: Training and architectural hyperparameters for STP pre-training.

Hyperparameter Value
STP Pre-training

optimizer AdamW [49]
base learning rate 0.00015
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.95
effective batch size 4096
learning rate schedule cosine decay
total epochs 50
warmup epochs 5
augmentation RandomResizedCrop (0.8, 1)

Encoder ViT-base Architecture
patch size 16
#layers 12
#MHSA heads 12
hidden dim 768
positional embedding sin-cos initialization and fix

Dual Decoder ViT-base Architecture
#layers 8
#MHSA heads 16
hidden dim 512
positional embedding sin-cos initialization and fix
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In regards to the STP post-pre-training, we utilize data that aligns with the policy training, and the692

specific architecture hyperparameters correspond to those listed in Table 4. Depending on the specific693

demonstration data, we adjust the values of total epochs, warmup epochs, effective batch size, and694

the frame interval, as shown in Table 5.695

As for policy training and evaluation schemes, we primarily refer to the publicly available code2696

and training data of VC-1 [59] for Metaworld [104], DMControl [83], Adroit [74] and Trifinger [98].697

Similarly, for Franka-Kitchen [31], we follow the public code3 and training data of R3M [65].698

Specifically, the policy training hyperparameters and evaluation schemes are shown in Table 6 and699

Table 7, respectively. About policy training, we completely follow the setting of prior works [65, 59]700

when freezing the encoder; when performing end-to-end fine-tuning, we make appropriate adjustments701

to the batch size and learning rate. About evaluation details, similar to prior works[65, 59], we702

establish all evaluation details such as the number of expert demonstrations and test trajectories,703

environmental viewpoints, optimization hyperparameters, base seeds, history windows size, and704

the use of robot proprioceptive. In Table 7, the term ‘prop.’ stands for whether proprioceptive705

information is used or not, and ‘history window size’ signifies the number of frames received by706

the policy model at each step, with features between frames being fused through concatenation.707

‘Number of trajectories’ represents the quantity of trajectories evaluated. For tasks in Meta-World,708

Franka-Kitchen, Adroit, and Trifinger, we report the maximum success rate, whereas for tasks in709

DMControl, we report the maximum reward score, rescaling to be in the range of [0, 100] by dividing710

by 10. We report the average metric across tasks for each environment. In addition, it is worth noting711

that the metrics we report are the average value across all base seeds and camera viewpoints.712

Finally, we also report the results of our post-pre-training STP (ViT-B/16) on each task in Table 8.713

In addition, we emphasize that different random seeds primarily affect the rendering of the initial714

frame in the sampled trajectories, as shown in Figure 7. During evaluation, the seed value we provide715

serves as the base seed, and the trajectory sampling process is depicted in Algorithm 1. Therefore,716

the actual number of trajectories we evaluate is the number of trajectories multiplied by the717

number of base seeds. For instance, for MetaWorld, we evaluate 25 × 3 = 75 trajectories, with718

random seeds for rendering being 100-124, 200-224, and 300-324.719

Finally, for Franka-Kitchen, we utilize MuJoCo210, while all other simulation environments are720

based on MuJoCo200. Our policy training and evaluation environments are conducted on Cuda 11.3,721

NVIDIA TITAN Xp GPUs, and OpenGL 3.1.722

Figure 6: Some examples of our STP prediction result on Ego4D videos. For each six tuple, we show the
ground-truth (left), masked frames (middle), STP prediciton results (right), current frames (top), and future
frames (bottom). We simply overlay the output with the visible patches to improve visual quality.

2https://github.com/facebookresearch/eai-vc/tree/main/cortexbench
3https://github.com/facebookresearch/r3m/tree/eval/evaluation
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Figure 7: The visualization of initial frame rendering under different random seeds.
Algorithm 1 Trajectories Sampling Pseudocode

# num_traj: the number of evaluation trajectories
# base_seed: base seed for rollouts

# rollout to sample trajectories
for ep in range(num_traj ):

seed = base_seed + ep
env.set_seed(seed)
o = env.reset ()

A.5 Real-World Environments Details723

In this section, we outline the details of our real-world setup and evaluation scheme. As depicted724

in Figure 8, our real-world scenario includes four camera viewpoints: top, left, right, and wrist. It725

includes two Kinect DK and two RealSense cameras. An example of four views is shown in Figure 9.726

Specifically, we utilize four different camera views and resize their resolution uniformly to 224× 224.727

To effectively model the complex and multimodal action distribution in our real-world tasks, we728

select diffusion policy [16] as our policy model. In accordance with this approach, we concatenate729

the visual embeddings of all views from two sequential frames. Following the approach in [27], we730

collect robot data using a VR tele-operation setup. In this way, we collect 100 continuous trajectories731

for each task. It is worth noting that the quality of these demonstrations leaves room for improvement732

and contains a lot of noise. During the evaluation phase, we primarily evaluate two contact-rich733

tasks that have not appeared in Franka-Kitchen [31] benchmark: (1) Picking. It requires the robot734

arm to pick up the transparent bowel off the table; (2) Pouring. It requires the robot arm to pour735

at least three-quarter of the ingredients from the transparent bowl into the black pot. For each task,736

we change the initial pose of the robot arm and objects within a certain range as well as conduct 20737

trials. In addition, there are different distractors on the desktop during training and testing, which738

also evaluates the robustness of the model to distractors. Throughout the process, we use ROS and739

MoveIt for hardware communication and motion planning.740
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Figure 8: Our real-world scene with four cameras and a Franka Emika robot arm.
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Figure 9: An example of four views.

Table 5: STP post-pre-training hyperparameters on simulation environments.

MetaWorld Franka-Kitchen DMControl Adroit Trifinger
total epochs 50 100 50 50 50

warmup epochs 5 5 5 5 5
effective batch size 1024 128 2048 1024 1024

number of demonstrations 25 25 100 100 100
frame interval 4 4 4 4 16

Table 6: Policy training hyperparameters on simulation environments.
MetaWorld Franka-Kitchen DMControl Adroit Trifinger

epochs 100 480 100 100 100 / 1000

batch size frozen 256 32 256 256 32
fine-tuning 64 32 64 64 16

learning rate frozen 0.001 0.001 0.001 0.001 0.0001
fine-tuning 0.00005 0.0001 0.00005 0.00005 0.0001
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Table 7: Evaluation schemes on simulation environments.

Benchmark Observation
Space

History
Window Size

Camera
ViewPoints Base Seeds Number of

Trajectories

Metaworld RGB + prop. 3 top_cap2 100, 200, 300 25
Franka-Kitchen RGB + prop. 1 left, right 123, 124, 125 50

DMControl RGB 3 0 100, 200, 300 25
Adroit RGB + prop. 1 vil_camera 100, 200, 300 25

Trifinger RGB + prop. 1 default 10 25

Table 8: The success rate for each task on simulation bechmarks.

Assembly Bin-Picking Button-Press Drawer-Open Hammer
94.7 97.3 94.7 100.0 100.0

Sliding Door Turning Light on Opening Door Turning Knob Opening Microwave
96.0 72.7 39.0 31.3 29.0

Relocate Reorient-Pen Finger-Spin Cheetah-Run Reacher-Hard
49.3 77.3 69.6 71.9 87.7

Walker-Stand Walker-Walk Reach-Cube Push-Cube
95.9 89.0 85.3 70.6
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NeurIPS Paper Checklist741

The checklist is designed to encourage best practices for responsible machine learning research,742

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove743

the checklist: The papers not including the checklist will be desk rejected. The checklist should744

follow the references and follow the (optional) supplemental material. The checklist does NOT count745

towards the page limit.746

Please read the checklist guidelines carefully for information on how to answer these questions. For747

each question in the checklist:748

• You should answer [Yes] , [No] , or [NA] .749

• [NA] means either that the question is Not Applicable for that particular paper or the750

relevant information is Not Available.751

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).752

The checklist answers are an integral part of your paper submission. They are visible to the753

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it754

(after eventual revisions) with the final version of your paper, and its final version will be published755

with the paper.756

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.757

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a758

proper justification is given (e.g., "error bars are not reported because it would be too computationally759

expensive" or "we were unable to find the license for the dataset we used"). In general, answering760

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we761

acknowledge that the true answer is often more nuanced, so please just use your best judgment and762

write a justification to elaborate. All supporting evidence can appear either in the main paper or the763

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification764

please point to the section(s) where related material for the question can be found.765

IMPORTANT, please:766

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",767

• Keep the checklist subsection headings, questions/answers and guidelines below.768

• Do not modify the questions and only use the provided macros for your answers.769

1. Claims770

Question: Do the main claims made in the abstract and introduction accurately reflect the771

paper’s contributions and scope?772

Answer: [Yes]773

Justification: Yes, the main claims made in the abstract and introduction accurately reflect774

the paper’s contributions and scope.775

Guidelines:776

• The answer NA means that the abstract and introduction do not include the claims777

made in the paper.778

• The abstract and/or introduction should clearly state the claims made, including the779

contributions made in the paper and important assumptions and limitations. A No or780

NA answer to this question will not be perceived well by the reviewers.781

• The claims made should match theoretical and experimental results, and reflect how782

much the results can be expected to generalize to other settings.783

• It is fine to include aspirational goals as motivation as long as it is clear that these goals784

are not attained by the paper.785

2. Limitations786

Question: Does the paper discuss the limitations of the work performed by the authors?787

Answer: [Yes]788
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Justification: Yes, the paper discusses the limitations of the work performed by the authors.789

Guidelines:790

• The answer NA means that the paper has no limitation while the answer No means that791

the paper has limitations, but those are not discussed in the paper.792

• The authors are encouraged to create a separate "Limitations" section in their paper.793

• The paper should point out any strong assumptions and how robust the results are to794

violations of these assumptions (e.g., independence assumptions, noiseless settings,795

model well-specification, asymptotic approximations only holding locally). The authors796

should reflect on how these assumptions might be violated in practice and what the797

implications would be.798

• The authors should reflect on the scope of the claims made, e.g., if the approach was799

only tested on a few datasets or with a few runs. In general, empirical results often800

depend on implicit assumptions, which should be articulated.801

• The authors should reflect on the factors that influence the performance of the approach.802

For example, a facial recognition algorithm may perform poorly when image resolution803

is low or images are taken in low lighting. Or a speech-to-text system might not be804

used reliably to provide closed captions for online lectures because it fails to handle805

technical jargon.806

• The authors should discuss the computational efficiency of the proposed algorithms807

and how they scale with dataset size.808

• If applicable, the authors should discuss possible limitations of their approach to809

address problems of privacy and fairness.810

• While the authors might fear that complete honesty about limitations might be used by811

reviewers as grounds for rejection, a worse outcome might be that reviewers discover812

limitations that aren’t acknowledged in the paper. The authors should use their best813

judgment and recognize that individual actions in favor of transparency play an impor-814

tant role in developing norms that preserve the integrity of the community. Reviewers815

will be specifically instructed to not penalize honesty concerning limitations.816

3. Theory Assumptions and Proofs817

Question: For each theoretical result, does the paper provide the full set of assumptions and818

a complete (and correct) proof?819

Answer: [Yes]820

Justification: The paper does not include theoretical results.821

Guidelines:822

• The answer NA means that the paper does not include theoretical results.823

• All the theorems, formulas, and proofs in the paper should be numbered and cross-824

referenced.825

• All assumptions should be clearly stated or referenced in the statement of any theorems.826

• The proofs can either appear in the main paper or the supplemental material, but if827

they appear in the supplemental material, the authors are encouraged to provide a short828

proof sketch to provide intuition.829

• Inversely, any informal proof provided in the core of the paper should be complemented830

by formal proofs provided in appendix or supplemental material.831

• Theorems and Lemmas that the proof relies upon should be properly referenced.832

4. Experimental Result Reproducibility833

Question: Does the paper fully disclose all the information needed to reproduce the main ex-834

perimental results of the paper to the extent that it affects the main claims and/or conclusions835

of the paper (regardless of whether the code and data are provided or not)?836

Answer: [Yes]837

Justification: The paper fully disclose all the information needed to reproduce results.838

Guidelines:839

• The answer NA means that the paper does not include experiments.840
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• If the paper includes experiments, a No answer to this question will not be perceived841

well by the reviewers: Making the paper reproducible is important, regardless of842

whether the code and data are provided or not.843

• If the contribution is a dataset and/or model, the authors should describe the steps taken844

to make their results reproducible or verifiable.845

• Depending on the contribution, reproducibility can be accomplished in various ways.846

For example, if the contribution is a novel architecture, describing the architecture fully847

might suffice, or if the contribution is a specific model and empirical evaluation, it may848

be necessary to either make it possible for others to replicate the model with the same849

dataset, or provide access to the model. In general. releasing code and data is often850

one good way to accomplish this, but reproducibility can also be provided via detailed851

instructions for how to replicate the results, access to a hosted model (e.g., in the case852

of a large language model), releasing of a model checkpoint, or other means that are853

appropriate to the research performed.854

• While NeurIPS does not require releasing code, the conference does require all submis-855

sions to provide some reasonable avenue for reproducibility, which may depend on the856

nature of the contribution. For example857

(a) If the contribution is primarily a new algorithm, the paper should make it clear how858

to reproduce that algorithm.859

(b) If the contribution is primarily a new model architecture, the paper should describe860

the architecture clearly and fully.861

(c) If the contribution is a new model (e.g., a large language model), then there should862

either be a way to access this model for reproducing the results or a way to reproduce863

the model (e.g., with an open-source dataset or instructions for how to construct864

the dataset).865

(d) We recognize that reproducibility may be tricky in some cases, in which case866

authors are welcome to describe the particular way they provide for reproducibility.867

In the case of closed-source models, it may be that access to the model is limited in868

some way (e.g., to registered users), but it should be possible for other researchers869

to have some path to reproducing or verifying the results.870

5. Open access to data and code871

Question: Does the paper provide open access to the data and code, with sufficient instruc-872

tions to faithfully reproduce the main experimental results, as described in supplemental873

material?874

Answer: [Yes]875

Justification: We will release all codes and model weights on github.876

Guidelines:877

• The answer NA means that paper does not include experiments requiring code.878

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/879

public/guides/CodeSubmissionPolicy) for more details.880

• While we encourage the release of code and data, we understand that this might not be881

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not882

including code, unless this is central to the contribution (e.g., for a new open-source883

benchmark).884

• The instructions should contain the exact command and environment needed to run to885

reproduce the results. See the NeurIPS code and data submission guidelines (https:886

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.887

• The authors should provide instructions on data access and preparation, including how888

to access the raw data, preprocessed data, intermediate data, and generated data, etc.889

• The authors should provide scripts to reproduce all experimental results for the new890

proposed method and baselines. If only a subset of experiments are reproducible, they891

should state which ones are omitted from the script and why.892

• At submission time, to preserve anonymity, the authors should release anonymized893

versions (if applicable).894
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• Providing as much information as possible in supplemental material (appended to the895

paper) is recommended, but including URLs to data and code is permitted.896

6. Experimental Setting/Details897

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-898

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the899

results?900

Answer: [Yes]901

Justification: The paper specify all the training and test details.902

Guidelines:903

• The answer NA means that the paper does not include experiments.904

• The experimental setting should be presented in the core of the paper to a level of detail905

that is necessary to appreciate the results and make sense of them.906

• The full details can be provided either with the code, in appendix, or as supplemental907

material.908

7. Experiment Statistical Significance909

Question: Does the paper report error bars suitably and correctly defined or other appropriate910

information about the statistical significance of the experiments?911

Answer: [No]912

Justification: In our experiments, different seeds are primarily used for rendering different913

initial frames. Therefore, our evaluatation is comprehensive and sufficient, while our914

comparisons are absolutely fair.915

Guidelines:916

• The answer NA means that the paper does not include experiments.917

• The authors should answer "Yes" if the results are accompanied by error bars, confi-918

dence intervals, or statistical significance tests, at least for the experiments that support919

the main claims of the paper.920

• The factors of variability that the error bars are capturing should be clearly stated (for921

example, train/test split, initialization, random drawing of some parameter, or overall922

run with given experimental conditions).923
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