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Summary
A key barrier to deploying reinforcement learning algorithms in real-world systems is the

challenge of hyperparameter selection, particularly when simulators are unavailable or online
interactions are costly. Recent work has proposed using calibration models trained on of-
fline data to simulate environment interactions and support offline hyperparameter selection,
but prior applications have been restricted to simple, simulated domains. In this paper, we
present the first application of calibration models to a real-world industrial setting: the Dray-
ton Valley water treatment plant in Alberta, Canada. We evaluate several calibration models,
including a k-nearest neighbors model with a Laplacian distance metric, on high-dimensional,
non-stationary sensor data for nexting prediction tasks. We demonstrate that these models
can generate realistic long-horizon rollouts and recover meaningful hyperparameter sensitivity
curves. We also explore how calibration models scale to year-long datasets, how they help se-
lect fine-tuning learning rates for pre-trained agents, and how they perform under distribution
shifts. Our results provide a proof of concept for using offline dynamics models to guide RL
deployment in real-world environments, highlighting both its promise and the challenges that
remain.

Contribution(s)
1. We present the first application of calibration models for offline hyperparameter tuning in

a real-world industrial context, focusing specifically on sensor prediction tasks in a water
treatment plant.
Context: The calibration model framework was previously proposed in Wang et al. (2022),
but was only tested in simple, simulated environments. Prediction tasks for a water treat-
ment plant were explored in Janjua et al. (2023), but the authors did not focus on hyperpa-
rameter tuning.

2. We extend empirical evaluation methods for calibration models by introducing analyses of
rollout quality, hyperparameter sensitivity, and the use of dynamic time warping to assess
alignment between model-generated and true trajectories. We use these methods to com-
pare the performance of several calibration model architectures.
Context: Previous work has focused primarily on comparing performance of the best
hyperparameter configuration, but has not examined measures of model accuracy or hyper-
parameter sensitivity.

3. We bridge the gap toward real-world deployment by scaling calibration models to a year-
long offline dataset and investigating their ability to simulate distribution shifts for the fine-
tuning setting.
Context: Prior research has focused on small-scale, simulated domains and has not ad-
dressed the critical challenges of scalability and adaptation under realistic distribution shifts,
both of which are essential for deploying reinforcement learning systems in practice.
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Abstract

A key barrier to deploying reinforcement learning algorithms in real-world systems is
the challenge of hyperparameter selection, particularly when simulators are unavailable
or online interactions are costly. Recent work has proposed using calibration models
trained on offline data to simulate environment interactions and support offline hyper-
parameter selection, but prior applications have been restricted to simple, simulated
domains. In this paper, we present the first application of calibration models to a real-
world industrial setting: the Drayton Valley water treatment plant in Alberta, Canada.
We evaluate several calibration models, including a k-nearest neighbors model with a
Laplacian distance metric, on high-dimensional, non-stationary sensor data for nexting
prediction tasks. We demonstrate that these models can generate realistic long-horizon
rollouts and recover meaningful hyperparameter sensitivity curves. We also explore
how calibration models scale to year-long datasets, how they help select fine-tuning
learning rates for pre-trained agents, and how they perform under distribution shifts.
Our results provide a proof of concept for using offline dynamics models to guide RL
deployment in real-world environments, highlighting both its promise and the chal-
lenges that remain.

1 Introduction

Reinforcement learning (RL) offers adaptive, data-driven control across a range of industrial ap-
plications, including assembly line automation (Tortorelli et al., 2022), thermal power generation
(Zhan et al., 2022), and commercial cooling (Luo et al., 2022). However, deploying RL in real-
world systems remains constrained by numerous practical challenges. Among these, the issue of
hyperparameter selection has received comparatively little attention, despite RL performance being
highly sensitive to hyperparameters such as learning rate, exploration schedule, and model architec-
ture (Andrychowicz et al., 2020; Eimer et al., 2023; Henderson et al., 2018). Standard approaches
either rely on default hyperparameters (Degrave et al., 2022), simulator-based tuning (Levine et al.,
2016; OpenAI et al., 2019), or direct tuning in the real environment (Azuatalam et al., 2020; Luo
et al., 2022), but the latter two are often infeasible when accurate simulators are unavailable or
real-world interactions are costly, risky, or time-intensive.

A promising alternative is to leverage large offline datasets, which are commonly available in in-
dustrial systems, to support hyperparameter selection for RL agents deployed online — a setting
referred to as Data2Online. Recent work suggests that calibration models trained on offline logs can
approximate environment dynamics well enough for hyperparameter selection (Wang et al., 2022).
However, this approach has so far been explored only in simple simulated domains, leaving open
questions about its effectiveness in real-world systems.
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In this work, we extend the calibration model framework to sensor prediction tasks in a water treat-
ment plant (WTP) in Alberta, Canada. Our contributions are threefold: (1) we present the first
application of calibration models for offline hyperparameter selection in a real industrial system; (2)
we extend evaluation methods of calibration models, incorporating rollout quality analysis, hyperpa-
rameter sensitivity, and dynamic time warping to assess trajectory similarity; and (3) we investigate
scalability to large offline datasets and robustness under distribution shifts, addressing challenges
critical to real-world RL deployment.

2 Background

This section introduces the core framework and methods underlying our approach to offline hy-
perparameter selection with calibration models. We begin by formalizing the problem setting and
calibration objective, then outline the k-nearest neighbors (KNN) calibration model used to approxi-
mate environment dynamics. We describe the nexting prediction framework as the primary learning
task in our experiments and conclude with a brief overview of dynamic time warping as a method
for evaluating calibration model rollouts.

2.1 Problem Formulation

Let D = {(si, ai, ri, s′i)}Ni=1 be a dataset of N transitions sampled from a Markov decision process
(MDP) under a behavior policy πβ , where si ∈ S is a state, ai ∈ A is an action, ri ∈ R is a reward,
and s′i ∈ S is a next state. A dynamics model p̂(s′, r|s, a) is trained on D to approximate the envi-
ronment’s transition function p(s′, r|s, a). The purpose of the model is not to plan or learn a policy,
but to evaluate hyperparameter configurations by simulating environment interactions. Accordingly,
we refer to the model as a calibration model.

Let A be a learning algorithm, Λ the hyperparameter space, and λ ∈ Λ a hyperparameter configura-
tion. For each λ, we define a sequence of policies {πλ

t }∞t=0 as the result of running A interactively
in the environment p, i.e. {πλ

t } = A(λ; p). The expected return in the true environment is defined
as:

Jenv(λ) = Ep

[ ∞∑
t=0

γtrt

∣∣∣ at ∼ πλ
t (·|st), (st+1, rt) ∼ p(·|st, at)

]
,

where γ ∈ [0, 1] is the discount factor. Similarly, the expected return using a calibration model
is Jmodel(λ) = Ep̂

[∑∞
t=0 γ

trt

∣∣∣ at ∼ πλ
t (·|st), (st+1, rt) ∼ p̂(·|st, at)

]
, where the policy sequence

{πλ
t } is now learned via interaction with p̂, {πλ

t } = A(λ; p̂).

We define the optimal hyperparameters in each case as λ⋆env = argmaxλ∈Λ Jenv(λ) and λ⋆model =
argmaxλ∈Λ Jmodel(λ), and aim to learn a calibration model p̂ such that λ⋆model = λ⋆env.

2.2 KNN Calibration Model

A good calibration model must be stable under long horizon rollouts, since hundreds or thousands of
steps are typically necessary to evaluate a hyperparameter configuration. However, typical dynamics
models are known to suffer from compounding errors, which can lead to significant divergence from
the true environment over long horizons (Talvitie, 2017; Lambert et al., 2022). In order to mitigate
this, Wang et al. (2022) propose using a non-parametric KNN model to estimate p by predicting next
states and rewards using only transitions within the dataset, avoiding extrapolation into unobserved
regions.

The KNN model samples transitions from D to find the k nearest neighbors of a given state-action
pair according to some distance metric. Instead of using distance in the raw state-action space to
find neighbors, an approximate Laplacian representation (Wu et al., 2018) can be used to construct
a distance metric that is sensitive to the underlying structure of the MDP. We refer to a model that
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uses this distance metric as a Laplacian KNN model, and a model that uses distance in the raw
state-action space as a Euclidean KNN model.

To address epistemic uncertainty, we use a bootstrapped ensemble of KNN models, where each
model is trained on a different subset of D; we use five bootstraps in our experiments. Results
across models are aggregated by taking the worst rank of a given hyperparameter configuration
across all models, providing a conservative estimate of hyperparameter performance.

2.3 Nexting Prediction

The nexting prediction problem involves an agent predicting the sum of a future observation signal
framed as a general value function (GVF) (Modayil et al., 2012). This formulation enables tempo-
rally extended predictions about scalar signals (often called cumulants) in an environment, providing
a foundation for learning and adaptation. Following Janjua et al. (2023), in this work we focus on
the nexting prediction problem for sensors in a water treatment plant. For a signal oit at time t,
associated with channel or sensor i, the nexting value function is defined as:

vit(s) = E
[
Gi

t | st = s
]
, Gi

t =

∞∑
k=0

γkoit+k+1, (1)

where γ ∈ [0, 1] is the discount factor controlling the timescale of the prediction. Predictive accuracy
is often assessed using the root mean squared error (RMSE) between the predicted value v̂it and the
empirical Monte Carlo return Gi

t from data trajectories across all time steps t ∈ {0, 1, . . . , T}.

2.4 Dynamic Time Warping

Dynamic time warping (DTW) is a technique for measuring similarity between time series that may
differ in speed, timing, or phase, making it widely useful in tasks like speech recognition and time
series analysis (Kruskal & Liberman, 1983). Given two sequences, DTW uses warping functions
ϕx and ϕy to flexibly align elements along a common time axis, allowing sections to “stretch”
or “compress” for better matching, even when sequences are out of sync or unevenly sampled.
Alignment is guided by constraints collectively defined by a step pattern, which shapes allowable
warping paths. We apply DTW to compare calibration model rollouts against dataset rollouts, since
long-horizon rollouts are rarely perfectly aligned. We also use four common DTW step patterns
(Giorgino, 2009) in our analysis, to mitigate sensitivity to a single step pattern choice.

3 Real-World Application: Water Treatment Plant

To move beyond simulation environments, we test our calibration models on a working membrane-
filtration pilot at the Drayton Valley water treatment plant (WTP) in Alberta, Canada. Here, we
face high-dimensional, non-stationary, and noisy sensor data that are typical of real-world systems.
Moreover, the absence of a simulator — combined with safety and sampling constraints — makes
calibration models a practical and necessary tool for offline evaluation in this setting.

3.1 Dataset

The offline dataset consists of over two years of sensor logs (collected between 2022 and 2024)
from the WTP, with 480 sensor channels sampled at 1 Hz. For our initial experiments, we use a
one-week slice of the dataset, which contains ∼ 3.5 × 105 transitions. We discard sensors with
consistent missing data and constant values, leaving us with a 142-dimensional feature vector for
our prediction agents and calibration models. In general, we leverage the data processing pipeline
outlined in Janjua et al. (2023).

For our experiments, we consider three sensors that are both critical for control of the plant and pro-
vide variety in dynamics to predict. These are the membrane pressure (PIT300), influent temperature
(TIT101), and influent turbidity (TUIT101) sensors.
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3.2 Experimental Setup

We train four calibration models: a bootstrapped Euclidean KNN, a bootstrapped Laplacian
KNN, a feedforward neural network (NN), and a gated recurrent unit neural network (GRU).
The NN and GRU architectures are trained to minimize the one-step next-state prediction loss
L = E(st,at,st+1)∼D ∥ŝt+1 − st+1∥2, and serve as baselines, illustrating the limitations of mod-
els prone to compounding errors when rolled out over many steps. We evaluate each model based
on its ability to (1) generate realistic long-horizon rollouts and (2) support hyperparameter selection
for a TD(0) (Sutton & Barto, 2018) prediction agent. The evaluation strategies can be summarized
as follows:

• Rollout Quality: We visualize 30k-step trajectories from the dataset and compare them to model
rollouts starting from the same initial state. We opt for a qualitative approach to evaluating rollout
quality here, as time series comparisons are made tricky by the fact that there may exist temporal
offsets or changes in frequency between two otherwise similar time series. While we explore
using DTW in Section 4 to tackle these issues, we find that a single scalar metric is limited in its
ability to convey information.

• Hyperparameter Selection: We evaluate how well each calibration model supports offline hy-
perparameter tuning by sweeping Adam learning rates for a TD(0) prediction agent. The agent
learns from scratch using either a calibration model or the true environment, which is used as
a ground-truth for comparison. We measure performance using RMSE normalized by average
return (NRMSE) or, for bootstrapped KNNs, hyperparameter rank. We then compare the result-
ing hyperparameter curves to those from the true environment to assess how well each model
preserves hyperparameter sensitivity.

3.3 Results

In Figure 1, we compare the rollouts of the four calibration models to the true environment (i.e.
offline test set) for PIT300. We find that the KNN models produce sensor trajectories that resemble
the true environment for PIT300, with the Laplacian KNN showing closer alignment overall. For
other sensors, rollouts are less accurate across all models, but the KNN models still outperform NN
and GRU baselines, which tend to collapse after ∼50–100 timesteps.

Figure 2 shows learning rate sensitivity curves for each model. KNN results are plotted on a separate
rank axis in accordance with the bootstrapping strategy described in Section 2 — similarity in shape
of the sensitive curves is what we use to determine agreement. Both KNN models generally recover
the correct hyperparameter rankings, with the Euclidean KNN aligning most closely with the ground
truth for TIT101 and TUIT101. The weaker performance of the Laplacian KNN may stem from
using a representation tuned for PIT300, highlighting the need for more robust Laplacian selection.
As expected, the NN and GRU models show poor hyperparameter sensitivity, consistent with their
low-quality rollouts.

4 Towards Real-World Deployment

There is often a significant gap between an algorithm working within the context of a controlled
research experiment and in the increased complexity of real-world application. In this section, we
hope to bridge the gap towards application by exploring several modifications to the setting that was
introduced in Section 3. These modifications are broken down into three categories:

Scaling Up: In industrial settings like water treatment, years of offline sensor logs are available,
presenting an opportunity to train models that capture non-stationarity, seasonality, and rare events.
We extend the KNN calibration model to a full year of water treatment data, amounting to ∼32M
samples at 1 Hz, which we sub-sample by a factor of 10 to yield a more manageable ∼3.2M samples.
The model is built in two phases—KD-tree construction and neighbor table generation—resulting in
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Figure 1: PIT300 sensor (membrane pressure) rollouts in the true environment and calibration mod-
els. Each model is rolled out for 30k steps, beginning from the same start state.

Figure 2: Learning rate sensitivity curves for a TD(0) prediction agent in the true (Online) environ-
ment and calibration models using the 1-week WTP dataset. From left to right, prediction targets are
the PIT300, TIT101 (influent temperature), and TUIT101 (influent turbidity) sensors. Normalized
root mean squared error (NRMSE) with 95% confidence intervals is shown for non-bootstrapped
models, while worst rank is used for bootstrapped models (i.e. KNN models), which is plotted
against the right rank y-axis. Wider, dotted lines are used for the Euclidean KNN to distinguish it
from the Laplacian KNN line, which often overlap.

a total complexity of O((d+ k)n log n) (Brown, 2015), which takes approximately 10 hours on a 2
GHz Quad-Core Intel Core i5 processor for d = 142, k = 3, and n = 3.2M. While computationally
intensive, this process is a one-time cost, and can be further accelerated via dimensionality reduc-
tion (e.g., PCA or autoencoders), prototype selection (Wilson & Martinez, 2000), or approximate
nearest-neighbor methods (Indyk & Motwani, 1998; Arya et al., 1998).

Agent Pre-training: In real-world settings where no simulator exists, we aim to maximize the
utility of offline data. This typically involves pre-training an agent to avoid learning from scratch at
deployment, after which the agent can continue to adapt online. We refer to this as the fine-tuning
setting, and shift our focus to selecting the fine-tuning learning rate. Since the same offline data is
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also used to construct a calibration model, we adopt a simple partitioning strategy to separate data
for pre-training and calibration, reducing overlap and better simulating a realistic transfer scenario.

Distribution Shift: System dynamics in real-world settings like the water treatment plant can vary
significantly over time due to factors such as rainfall, temperature, filter condition, and sensor drift.
To evaluate how well calibration models handle such changes, we construct test sets that begin one
week, one month, and three months after the training period, which correspond to April 2023, May
2023, and July 2023 respectively. These test sets are meant to capture different distribution shifts
from the training data, and are used to evaluate the generalization capabilities of the calibration
model. As illustrated in Figure 3, sensor patterns such as those from TIT101 change meaningfully
across time, posing a challenge for generalization.

Figure 3: TIT101 sensor values across several time periods in the water treatment plant (WTP)
dataset. Each plot shows roughly 3.5 days of data.

In general, it is not guaranteed that the calibration model will be able to simulate an arbitrary deploy-
ment period, since the distribution shift may be too large. However, we hypothesize that selecting a
rollout start state that is representative of a deployment period can encourage the calibration model
to simulate the dynamics of that period. There are a variety of possible strategies for selecting rollout
start states S0 = {s[0]0 , . . . , s

[r]
0 }, where r is the number of rollouts we perform:

(i) Randomly selecting S0 from the entire dataset (baseline method).

(ii) Selecting S0 from the same calendar month in a previous year (e.g., July 2022 for a July 2023
deployment), if available.

(iii) Using samples from the online deployment period and find their most similar neighbors in the
offline dataset.

In our experiments, we focus on (iii) with (i) as a baseline, as (ii) assumes seasonal consistency that
may not hold due to sensor drift or evolving plant conditions. Our use of bootstrapping also means
that each individual start state will not exist in all bootstrap models, further complicating (ii).

4.1 Experiments

To put the preceding ideas into practice, we evaluate our Laplacian KNN calibration model through
two key questions: (1) does scaling to a year-long dataset improve generalization, and (2) can the
model simulate distribution shifts to support fine-tuning learning rates? We combine qualitative
rollout analysis and quantitative metrics to assess the model’s utility for offline hyperparameter
selection.
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Does scaling up the KNN calibration model improve its generalization capabilities? We com-
pare a KNN model trained on one year of data (12-month KNN), with one trained on the one-week
dataset from Section 3 (1-week KNN). For each test period (April, May, and July 2023), we sample
30 random states and use their nearest neighbors under the Laplacian distance metric as rollout start
states, following technique (iii) from Paragraph 4. We evaluate rollouts both qualitatively (visual
inspection) and quantitatively using DTW, where a lower DTW score indicates closer resemblance
to the ground-truth sequence.

Figure 4 shows a subset of PIT300 rollouts using start states from the April 2023 test set. While it
is challenging to qualitatively compare rollouts, we note that the 12-month KNN is able to capture
a broader range of dynamics than the 1-week KNN, with similar results for TIT101 and TUIT101.
Quantitative results using DTW (Table 1) show mostly consistent rankings across step patterns, but
mixed results across models: the 12-month KNN performs best on TIT101, the 1-week KNN on
TUIT101, and mixed results on PIT300. Overall, these findings suggest that while the 12-month
model may offer broader behavioral coverage, its generalization advantage is not conclusive. While
DTW was preferable over mean squared or absolute error due to alignment issues, alternate metrics
may be needed for clearer assessment (Coblin, 2024).
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Figure 4: PIT300 rollouts for the 12-month and 1-week WTP KNN calibration models using start
states t0 from the April 2023 dataset. True rollouts from those start states are shown in the leftmost
plots.

Can the KNN calibration model simulate distribution shifts to support fine-tuning learning
rate selection? To simulate a fine-tuning scenario, we pre-train a TD(0) prediction agent on the
first six months of data and use the remaining six months to construct a KNN calibration model. We
then use this model to guide selection of the fine-tuning learning rate for the pre-trained agent, with
start states selected using technique (iii) from Paragraph 4 (Month Start States), and using random
start states as described in technique (i) (Year Start States) for comparison.

The ground truth (Online) curves in Figure 5 show that small learning rates yield good performance
given a small distribution shift in the April 2023 test set. However, as the deployment period gets



Dynamics Models for Offline Hyperparameter Selection in Water Treatment

PIT300 TIT101 TUIT101
1-Week 12-Month 1-Week 12-Month 1-Week 12-Month

Symmetric2 414.02 ± 0.02 483.24 ± 0.02 910.20 ± 0.05 782.05 ± 0.04 154.78 ± 0.01 194.86 ± 0.01
Asymmetric 224.0 ± 0.02 283.38 ± 0.03 523.05 ± 0.05 431.87 ± 0.04 100.92 ± 0.01 153.81 ± 0.02

SymmetricP1 805.51 ± 0.04 782.79 ± 0.04 1031.66 ± 0.05 898.61 ± 0.04 199.55 ± 0.01 268.24 ± 0.01
RabinerJuang 339.87 ± 0.03 367.87 ± 0.04 521.66 ± 0.05 447.82 ± 0.04 100.43 ± 0.01 154.09 ± 0.02

Table 1: Dynamic time warping distances computed between rollouts from KNN models (1-Week
and 12-Month) and true rollouts, averaged over three test sets with 30 rollouts each for each model
and sensor combination. Smaller distance is better, and the best model for a specific sensor is
presented in bold font. The leftmost column shows the step pattern used for the DTW algorithm.

further away, the performance of the smallest learning rates deteriorates, indicating that the agent
requires more adaptation. We find that the 12-month KNN model is able to simulate some kind of
distribution shift, as shown by the learning rate curves giving best performance around 1× 10−4 to
1 × 10−5. However, it struggles to capture specific shifts, as seen by its mismatch with the ground
truth sensitivity curves. Additionally, performance between the month start states and full year start
states is similar, suggesting limited benefit from our targeted start state rollout strategy. While these
experiments offer a first step toward using calibration models under distribution shift, further work
is needed to understand how to prompt the model to simulate dynamics from a specific deployment
period, or even a period within its training data.
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Figure 5: Fine-tuning learning rate sensitivity curves for the true (Online) environment and calibra-
tion models for PIT300 using a full year of data. Left to right: April 2023, May 2023, and July 2023
test sets. Root mean squared error (RMSE) with 95% confidence intervals is shown for the Online
environment, while worst rank is used for bootstrapped KNN models, which is plotted against the
rank axis.

5 Conclusion

This work extends the calibration model framework for offline hyperparameter selection to a real-
world industrial setting, focusing on sensor prediction tasks in a water treatment plant. We show that
KNN-based calibration models, particularly those using Laplacian distance metrics, can support re-
alistic rollouts and accurate hyperparameter selection. By investigating key extensions such as scal-
ing to large datasets, fine-tuning, and non-stationarity, we provide a proof of concept for leveraging
offline data to guide online RL deployment. However, important open questions remain: for what
kinds of environments do extrapolating models perform poorly? How should we approach simulat-
ing distribution shifts? To what extent is model accuracy necessary for hyperparameter selection?
And are there better metrics than DTW for assessing rollout quality? Tackling these questions will
help advance our understanding of calibration models and learned dynamics models more generally,
particularly in their application to real-world systems.
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Supplementary Materials
The following content was not necessarily subject to peer review.

A Laplacian Distance Metric

Laplacian representations involve the graph Laplacian matrix L, which is defined as L = D − A,
where D is the degree matrix and A is the adjacency matrix of the MDP. Laplacian representations
have proved useful in RL for value-function approximation (Mahadevan & Maggioni, 2007), option
discovery (Machado et al., 2017), and reward shaping (Wu et al., 2018), among other applications.

Let u1, . . . ,ud be the first d eigenvectors of the graph Laplacian L. These define the representation

ψ : S −→ Rd, ψ(s) =
[
u1(s), . . . ,ud(s)

]⊤
,

where ui(s) is the value of the i-th eigenvector evaluated at state s. The distance metric is then
defined as

d(si, ai, sj , aj) = ∥ψ(si, ai)− ψ(sj , aj)∥22

Analytically computing the eigenvectors of L is typically not feasible for large graphs with an un-
known transition function. Hence, we use an approximate method following the work in Wu et al.
(2018) and Wang et al. (2022), which leverages spectral graph drawing to stochastically approxi-
mate the eigenfunctions of the Laplacian. Given a dataset D, the graph drawing objective can be
expressed as

∑
st∼D

∥∥ψθ(st)− ψθ(st+1)
∥∥2
2
+

∑
si,sj∼D

(
(ψθ(si)

Tψθ(sj))
2 −

∥∥ψθ(si)
∥∥2
2
−

∥∥ψθ(sj)
∥∥2
2

)
,

where ψθ : S → Rd is the representation learned via a neural network with parameters θ. Intuitively,
we can view this objective as being comprised of an attractive term and a repulsive term. The first
term is attractive insofar as it encourages ψθ to map states st and their successors st+1 closely in
the representation space — this roughly captures temporal distance within an MDP. Conversely,
the second term encourages independently sampled state pairs from the dataset to have orthogonal
representations.

B Calibration Model Training Details

KNN and Laplacian Models The KNN calibration models were trained using a two-step proce-
dure. First, a KD-tree was constructed over all transitions in the dataset, enabling efficient nearest-
neighbor searches. For the Laplacian KNN, an additional learning step was applied to produce
a learned representation that incorporates graph-structured distances between states, guided by a
dynamics awareness score. Candidate Laplacian representations were validated using dynamics
awareness (Wang et al.) to match rollout similarity to the true environment. Once the distance met-
ric was selected, a fixed neighbor table was built to allow constant-time next-state predictions during
rollouts.

NN Calibration Models The NN calibration models used a two-layer feedforward neural net-
work architecture with a shared set of hyperparameters across sensors. Models were trained on a
one-step-ahead prediction objective, mapping the current state (and optionally action) to the next
state. A grid search over learning rates, hidden sizes, and batch sizes was conducted, and the best
hyperparameters were selected based on performance on a validation set — see Table 3. Although
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multi-step prediction targets were explored, one-step predictions yielded better rollout performance
in practice.

GRU Calibration Models The GRU calibration models employed a two-layer recurrent archi-
tecture designed to capture temporal dependencies in the sensor data. Models were trained on one-
step-ahead prediction using sequences of historical states, with a burn-in period and sequence length
tuned for each dataset — see Table 4. Dropout and other regularization techniques were tested to im-
prove long-horizon stability, but simple GRU models with tuned hidden sizes and sequence lengths
produced the best results. As with the NN models, hyperparameters were selected via grid search,
focusing on validation performance — see Table 4.

Hyperparameter Symbol Water 1-Week (Online) Water 12-Month (Pre-training)
Optimizer - Adam Adam

Learning Rate α - 1 × 10−5

Discount Factor γ 0.99 0.9
Batch Size B 256 256

Hidden Layers - 2 2
Hidden Units - 256 512

Replay Buffer Size - 1M 3M
Train/Validation Split - - 0.9/0.1

Epochs - - 1000

Table 2: Hyperparameters used for the TD(0) prediction agent in water treatment experiments.

Hyperparameter Symbol Water 1-Week
Optimizer - Adam

Learning Rate α 1 × 10−3

Batch Size B 256
Hidden Layers - 2

State Model Hidden Size - 512
Epochs - 100

Table 3: NN calibration model training hyperparameters for water treatment.

Hyperparameter Symbol Water 1-Week
Optimizer - Adam

Learning Rate α 1 × 10−3

Batch Size B 256
Hidden Layers - 2

State Model Hidden Size - 512
Burn-in Length - 0

Sequence Length - 20
State Model Epochs - 100

Table 4: GRU calibration model training hyperparameters for water treatment.

Hyperparameter Symbol Water 1-Week Water 12-Month
Optimizer - Adam Adam

Learning Rate α 3 × 10−4 1 × 10−5

Batch Size B 256 256
Hidden Layers - 2 2
Hidden Units - 256 256

Output Dimension - 64 64
Training Steps - 100,000 200,000

Train/Validation Split - 0.8/0.2 0.8/0.2
Sequence Length - 20 20

Kappa κ 0.95 0.95
Beta β 5 5
Zeta ζ 0.05 0.05

Table 5: Laplacian representation training hyperparameters for water treatment.

C Experiment Details for Scaled Up Generalization Capabilities

We compare a KNN model trained on one year of data between March 31, 2022 and March 31,
2023 (12-month KNN), with one trained on the one-week dataset from Section 3 (1-week KNN).
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For each test period (April, May, and July 2023), we sample 30 random states and use their nearest
neighbors under the Laplacian distance metric as rollout start states, following technique (iii) from
Paragraph 4. Each rollout spans 10k steps. Hyperparameters are provided in Table ??.

D Experiment Details for Fine-Tuning Learning Rate Selection

To simulate a fine-tuning scenario, we pre-train a TD(0) prediction agent on the first six months
of data and use the remaining six months to construct a KNN calibration model (i.e. an equal
partitioning strategy). We then use this model to guide selection of the fine-tuning learning rate.
Hyperparameters for the TD(0) prediction agent are provided in Table 2.

For each learning rate, we perform 30 runs in the online environment and 10 per bootstrap for the
calibration model, resulting in 50 total runs per α in the bootstrapped setting. We report RMSE
averaged over the final 25% of each run, so that early training error does not dominate the metric.

E Additional Results

Figure 6: TIT101 sensor (influent temperature) rollouts in the true environment and calibration
models. Each model is rolled out for 30k steps, beginning from the same start state.
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Figure 7: TUIT101 sensor (influent turbidity) rollouts in the true environment and calibration mod-
els. Each model is rolled out for 30k steps, beginning from the same start state.

Figure 8: TIT101 rollouts for the 12-month and 1-week WTP KNN calibration models using start
states t0 from the May 2023 dataset. True rollouts from those start states are shown in the leftmost
plots.


