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ABSTRACT

Although deep neural networks have demonstrated significant success due to their
powerful expressiveness, most models struggle to meet practical requirements for
uncertainty estimation. Concurrently, the entangled nature of deep neural net-
works leads to a multifaceted problem, where various localized explanation tech-
niques reveal that multiple unrelated features influence the decisions, thereby un-
dermining interpretability. To address these challenges, we develop a Bayesian
Nonnegative Decision Layer (BNDL), which reformulates deep neural networks
as a conditional Bayesian non-negative factor analysis. By leveraging stochastic
latent variables, the BNDL can model complex dependencies and provide robust
uncertainty estimation. Moreover, the sparsity and non-negativity of the latent
variables encourage the model to learn disentangled representations and decision
layers, thereby improving interpretability. We also offer theoretical guarantees
that BNDL can achieve effective disentangled learning. In addition, we developed
a corresponding variational inference method utilizing a Weibull variational in-
ference network to approximate the posterior distribution of the latent variables.
Our experimental results demonstrate that with enhanced disentanglement capa-
bilities, BNDL not only improves the model’s accuracy but also provides reliable
uncertainty estimation and improved interpretability.

1 INTRODUCTION

Over the last decade, deep neural networks (DNNs) have achieved significant success and have been
widely applied across various research domains (LeCun et al., 2015). As these applications expand,
quantifying uncertainty in their predictions has gained importance, particularly within the realm of
AI safety (Amodei et al., 2016). A key goal of uncertainty quantification is to ensure that neural
networks assign low confidence to test cases poorly represented by training data or prior knowledge
(Gal & Ghahramani, 2016). One approach to this challenge is Bayesian neural networks, which treat
model parameters as random variables. Although progress has been made in developing approximate
inference methods for Bayesian neural networks (Li et al., 2016; Louizos & Welling, 2017; Shi et al.,
2017), computational scalability continues to pose a significant obstacle. Alternatively, deterministic
methods such as deep ensembles (Lakshminarayanan et al., 2017) and dropout (Gal & Ghahramani,
2016) have been proposed. However, these approaches necessitate running full DNNs multiple times
during the testing phase, resulting in high computational costs and increased inference time (FAN
et al., 2021).

In addition to uncertainty evaluation, there is a growing demand for interpretability in DNNs, aimed
at helping users understand the rationale behind model’s decisions through various tools. To address
this need, numerous advanced techniques have been developed to deliver localized explanations,
often by identifying key features or regions of the input that significantly influence the model’s out-
put (Olah et al., 2017; Yosinski et al., 2015). However, a key challenge in this field is that neurons
within well-trained DNNs tend to be multifaceted (Nguyen et al., 2016), meaning they respond to
multiple, often unrelated, features. This phenomenon may arise from the entangled nature of DNNs,
wherein multiple features are utilized for various tasks. To address this challenge, significant efforts
have been made in the literature, including the use of specialized regularizers aimed at promoting
feature disentanglement (Nguyen et al., 2016), and the employment of sparse linear decision layers
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to select the most important features (Wong et al., 2021). While these approaches have led to no-
table advancements, they warrant further exploration from both practical and theoretical standpoints.
Specifically, the method of employing a sparse linear decision layer may impair task performance
due to the loss of essential dimensional information. Furthermore, while empirical results suggest
that sparsity enhances model interpretability and mitigates the challenges posed by multifaceted
neurons (Moakhar et al., 2023), these claims lack rigorous theoretical support.

While DNNs face significant challenges, non-negative factor analysis (NFA), such as Poisson factor
analysis (Zhou et al., 2012), benefits from its sparse stochastic latent variables, exhibiting strong
capabilities in discovering disentangled concepts that enhance model interpretability (Lee & Seung,
1999), as well as performing effective uncertainty evaluation. Thus, a compelling motivation ex-
ists to transfer the good properties of NFA to DNN. However, integrating the two models may be
challenging due to their differing paradigms: NFA typically employs a shallow structure and linear
transformations, whereas DNNs utilize a deep architecture with non-linear functions. Nevertheless,
DNNs can be decomposed into a deep non-linear feature extractor and a linear decision layer, and
recent research indicates that the linear decision layer is sufficient for capturing uncertainty (Kris-
tiadi et al., 2020; Dhuliawala et al., 2023b; Joo et al., 2020; Parekh et al., 2022). Further, Wong et al.
(2021) demonstrates that leveraging a sparse decision layer can enhance a model’s interpretability
through innovative techniques. This line of inquiry motivates the use of NFA as a linear decision
layer, integrated with DNNs as feature extractors, to enhance both uncertainty quantification and
model’s interpretability.

With the considerations above, we developed a Bayesian Nonnegative Decision Layer (BNDL),
designed to empower DNNs with enhanced interpretability and uncertainty estimation capabilities.
Specifically, under the categorical likelihood, the label is factorized into a gamma-distributed factor
score matrix (local latent variables) and a corresponding gamma-distributed factor loading matrix
(global latent variables). The former represents the latent representation of the observation, while the
latter captures the interaction between the latent variables and the label. Given the challenge of in-
tractable posterior distributions for the latent variables, we introduce a deep Weibull variational neu-
ral network to effectively approximate the gamma-distributed latent variables (Zhang et al., 2018).
All parameters are trained using stochastic gradient boosting (SGB) within a variational inference
framework. Furthermore, we provide theoretical guarantees for the model’s disentanglement capa-
bilities, which enhances its interpretability. Additionally, our complexity analysis indicates that
the increase in computational effort is minimal during both the training and uncertainty testing
phases. To assess the efficacy of the proposed model, we conducted evaluations on a wide range
of benchmark datasets using image classification tasks. The experimental results demonstrate that
the proposed approach consistently outperforms standard classification models and offers superior
uncertainty estimation. The main contributions of the paper can be summarized as follows:

• We develop a flexible Bayesian Nonnegative Decision Layer (BNDL) for deep neural net-
works, empower its interpretability and uncertainty estimation capabilities.

• The complexity analysis shows that the computational overhead introduced by BNDL is
minimal compared to DNNs. Further, we take theory analysis to verify its disentangled
properties.

• We assessed the effectiveness of BNDL across multiple datasets, including CIFAR-10,
CIFAR-100, and ImageNet-1k. BNDL not only preserves or even enhances baseline per-
formance but also facilitates uncertainty estimation and improves the interpretability of
neurons.

2 RELATED WORK

2.1 UNCERTAINTY EVALUATION

In supervised learning, existing research has focused on modeling conditional distributions beyond
just the conditional mean, particularly in quantifying predictive uncertainty through various ap-
proaches. Ensemble methods (Liu et al., 2021; Lakshminarayanan et al., 2017) quantify uncertainty
by combining multiple neural networks with stochastic outputs. Similarly, bayesian neural networks
achieve this by placing distributions over network parameters, reflecting model plausibility given the
data (Blundell et al., 2015; Hernández-Lobato & Adams, 2015; Kingma et al., 2015; Gal & Ghahra-
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Figure 1: Illustration of the graphical models. 1(a): the predictive process of output Y for the
baseline Deep Neural Network; 1(b): the generative model of DNNs with introducing stochastic
latent variable θ ; 1(c): the generation model of the Bayesian non-negative decision layer; and 1(d):
corresponding approximate inference for latent variables θ.

mani, 2016; Tomczak et al., 2021). While Bayesian Neural Networks (BNNs) are promising, they
often present significant challenges in terms of training and practical application due to their com-
plexity. In contrast, Bayesian Last Layer (BLL) approaches, which consider uncertainty only in the
output layer, offer a simpler and often easier-to-train alternative (Ober & Rasmussen, 2019; Wat-
son et al., 2021; Daxberger et al., 2021; Kristiadi et al., 2020; Harrison et al., 2024). Specifically,
Ober & Rasmussen (2019) mitigates overfitting by marginalizing noise and prior variance, while
Daxberger et al. (2021) employs Laplace Approximations (LA) to approximate the posterior distri-
bution, enabling effective probabilistic predictions. Recent advancements, like efficient retraining
objectives (Weber et al., 2018) and computational improvements via deterministic variational lower
bound (Harrison et al., 2024; Watson et al., 2021), have broadened BLL’s applications, highlighting
its potential in complex uncertainty estimation tasks. Another closely related area is evidential deep
learning (EDL), which parameterizes higher-order conditional distributions over output distribu-
tions, such as the Dirichlet distribution, to address uncertainty estimation challenges (Sensoy et al.,
2018; Malinin & Gales, 2018). For instance, Sensoy et al. (2018) introduced the Dirichlet distribu-
tion over class probabilities for classification, while Malinin et al. (2020) extended this to regression
using the Normal-Wishart distribution as a prior for network parameters. Furthermore, Amini et al.
(2020) proposed training networks to directly infer the hyperparameters of evidential distributions,
combined with prior regularization, enabling efficient and scalable uncertainty learning. These ad-
vancements illustrate EDL’s robust framework for addressing diverse tasks in uncertainty estimation.
Building on BLL principles, BNDL models the last decision layer as a Bayesian generative model
to enable efficient uncertainty estimation. Besides, it distinguishes former works by leveraging a
Gamma prior, which enhances the latent feature’s sparsity and disentanglement, thereby improving
model’s interpretability.

2.2 INTERPRETABILITY TOOLS FOR DEEP NEURAL NETWORK

The goal of neural network interpretability is to identify the mechanisms underlying DNN’s
decision-making processes. The related research ranges from approaches which link abstract con-
cepts to structural network components, such as specific neurons, for example via visualization
(Yosinski et al., 2015; Nguyen et al., 2016), to approaches which aim to trace individual model
outputs on a per-sample basis such as local surrogates (Ribeiro et al., 2016) and salience maps (Si-
monyan et al., 2013). However, as noted by various recent studies, these local attributions can be
easy to fool or may otherwise fail to capture global aspects of model behavior (Adebayo et al.,
2018; Leavitt & Morcos, 2020; Wong et al., 2021). A major confounder for interpretability is that
neurons in a well-trained DNN are often multifaceted (Nguyen et al., 2016; Moakhar et al., 2023),
responding to various, often unrelated, features. In contrast, our approach ensures that the identified
high-level concepts—i.e., the deep features utilized by the sparse decision layer—fully determine
the model’s behavior.

3 BAYESIAN NON-NEGATIVE DECISION LAYER

This section first reformulate the traditional DNNs as a latent variable model (Sec.3.1) and then
provides a detailed description of the proposed Bayesian non-negative decision layer, which consists

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

of the generative model (Sec.3.2) and the variational inference network (Sec.3.3). Followed by the
description of the variational inference (Sec.3.4).

3.1 PRELIMINARIES ON DEEP NEURAL NETWORKS

We first adopt a latent variable model to re-examine the DNNs, which are commonly tackled by
training domain-specific neural networks with a sigmoid or softmax output layer. Dataset samples x
are mapped deterministically by a neural network f to a real vector z = f(x), which is transformed
in the softmax layer to a point on the simplex ∆|y|, a discrete distribution over class labels y ∈ Y:

p(y | x) =
exp{zwT

y + by}∑
y′∈Y exp{zwT

y′ + by′}
(1)

Where the wy and by represent the weights and biases of the final fully connected layer. Thus,
the classification process can be viewed as a generative process for label y, as shown in Fig.1(a).
Previous works (Dhuliawala et al., 2023a; Joo et al., 2020) have shown that a softmax classifier is a
special case of Equation 2:

p(y | x) =
∫
z

p(y | z)p(z | x) (2)

The neural network f , up to the softmax layer, parameterizes p(z|x) as a delta distribution δz−f(x),
with the softmax input as a sample from p(z|x), and p(y|z) defined by the softmax layer.

While the output softmax layer can be viewed as a categorical distribution, the limited randomness
originating solely from the model’s output layer is often inadequate for capturing complex depen-
dencies (Chung et al., 2015). Moreover, DNNs with a softmax layer frequently encounter the issue
of overconfidence (Guo et al., 2017; Kristiadi et al., 2020; Liu et al., 2020), which complicates the
provision of high-quality uncertainty evaluations. Additionally, the data feature z and parameter
wy are often entangled and represented as dense vectors, with multiple features contributing to the
prediction, leading to a multifaceted phenomenon in localized explanations (Nguyen et al., 2016).
These challenges motivate us to develop a Bayesian non-negative decision layer in the following
sections.

3.2 BAYESIAN NON-NEGATIVE DECOMPOSITION LAYER

Building on the latent variable model of the softmax classification task, we can further reformu-
late DNNs as a Non-negative Factor Analysis, referred to as the Bayesian Non-negative Decision
Layer (BNDL). Firstly, to better capture complex dependence and aleatoric uncertainty, referring to
the inherent randomness in the data that cannot be explained away, we can intuitively extend the gen-
erative model of original DNNs with stochastic latent variables θ by modeling latent representation
z with a distribution. Thus, as illustrated in Fig.1(b), the Eq. 2 is improved to

p(y | x) =
∫
θ

p(y | θ)p(θ | x) (3)

To further account for epistemic uncertainty, which refers to the uncertainty inherent in the model
itself, we treat the weights of the final fully connected layer as stochastic latent variables. The
generative model is then defined as follows, and its graphical model is shown in Fig.1(c):

p(y | x) =
∫
θ,Φ

p(y | θ)p(θ | x)p(Φ) (4)

This formulation bears similarities to factor analysis (Yu et al., 2008), where both θ and Φ in clas-
sical DNNs are commonly sampled from a Gaussian distribution, making the generative model akin
to Gaussian factor analysis. However, while Gaussian factor analysis can effectively evaluate uncer-
tainty, it struggles to achieve disentangled representation learning with dense latent variables (Moran
et al., 2021), which is crucial for model interpretability(Nguyen et al., 2016).

Considering the Gamma distribution possesses both non-linearity and non-negativity, we use the
Gamma distribution as the prior distribution for θ and Φ. This choice allows for a more comprehen-
sive capture of complex relationships within the model (Zhou et al., 2015; Duan et al., 2021; 2024),
while also accommodating the characteristics of sparse non-negative variables, thereby enhancing
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the disentanglement and interpretability of the learned representations θ and corresponding decision
layers Φ (Lee & Seung, 1999). Specifically, given data samples xj and their corresponding one-hot
label yj ∈ RC

+, where C is the number of classes, we can factorize yj under the category likelihood
as follows:

yj |θj ∼ Category (θjΦ) , θj |xj ∼ Gamma (fθ(xj), 1) , Φ ∼ Gamma (1, 1) . (5)

where θj ∈ RK
+ is the factor score matrix, each column of which encodes the relative importance

of each atom in a sample xj ; and Φ ∈ RK×C
+ is the factor loading matrix, each column of which

is a factor encoding the relative importance of each term. Intuitively, in a classification problem,
the k-th column of Φ ∈ RK×C

+ , denoted as ϕk ∈ RC
+, represents the k-th distribution across all

classes. Although in our formulation the prior of the latent variable θj is modulated by the input
xj , the constraint can be easily relaxed to allow the latent variable to be statistically independent
of the input variable (Sohn et al., 2015; Kingma et al., 2014). Therefore, we can simply define the
data-independent prior of the latent variable θ as fθ(xj) = 1.

3.3 VARIATIONAL INFERENCE NEURAL NETWORK

We have constructed the generative process of y, which includes the parameters θ and Φ, in Section
3.2. Due to the intractable posterior in BNDL, we build a Weibull variational inference to approxi-
mate the posterior of θ and Φ.

Weibull Approximate Posterior: While the gamma distribution appears suitable for the posterior
distribution due to its encouragement of sparsity and adherence to the nonnegative condition, directly
reparameterizing the Gamma distribution can result in high noise (Zhang et al., 2018; Kingma &
Welling, 2014; Knowles, 2015; Ruiz et al., 2016; Naesseth et al., 2017), and using the REINFORCE
method for gradient estimation may lead to large variance (Williams, 1992). Hence, we use the
reparameterizable Weibull distribution (Zhang et al., 2018) to approximate the posterior for the
gamma latent variables, mainly due to the following considerations: i), the Weibull distribution has
a simple reparameterization so that it is easier to optimize; ii) the Weibull distribution is similar to
a gamma distribution, capable of modeling sparse, skewed and positive distributions. Specifically,
the latent variable x ∼ Weibull(k, λ) can be easily reparameterized as:

x = λ(− ln(1− ε))1/k, ε ∼ Uniform(0, 1). (6)

Where λ and k are the scale and shape parameter of Weilbull distribution respectively; iii), The KL
divergence from the gamma to Weibull distributions has an analytic expression as:

KL (Weibull(k, λ)∥Gamma(α, β)) =
γα

k
− α log λ+ log k + βλΓ

(
1 +

1

k

)
− γ − 1− α log β + log Γ(α)

(7)

where γ is the Euler-Mascheroni constant.

Local latent variables Inference Network: As shown in Fig. 1(d), the variational inference net-
work construct the variational posterior:

q (θj |xj) = Weibull (kj ,λj) (8)

where the inference network can be defined as :

kj = Softplus (fk(hj)) , λj = ReLu (fλ(hj)) /exp (1 + 1/kj) , hj = fNN (xj). (9)

where hj is an extracted feature with deep neural networks, such as ResNet, which can be seen as
a deep feature extractor; Let f·(·) denotes the neural network, where fNN is the feature extractor,
encompassing all layers from the input layer to the penultimate layer, and fλ and fk are the network
to infer the scale and shape parameters of Weibull distribution, respectively. The Softplus function,
defined as log(1 + exp(·)), is applied element-wise non-linearity to ensure positive Weibull shape
parameters. The Weibull distribution is used to approximate the gamma-distributed conditional pos-
terior, and its parameters k(l)

j ∈ RKl
+ and λ

(l)
j ∈ RKl

+ are inferred by the bottom-up data information
using the neural networks.

5
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Global latent variables inference Network: For the same reason, we also use Weibull distributions
to approximate the posteriors of global latent variables Φ ∈ RK×C

+ , formulated as

q(Φ | −) = Weibull (kΦ,λΦ) (10)

where the inference network can be expressed as:

k
(l)
Φ = Softplus(W1), λ

(l)
Φ = Relu(W2)/exp (1 + 1/kΦ) . (11)

Note that W1 and W2 are randomly initialized matrices with dimensions matching Φ.

Connection with Non-Negative Matrix Factorization: Equations 8 and 11 ensure that E[θj ] = λj

and E[Φ] = λΦ. Therefore, instead of sampling θj and Φ from their respective distributions,
substituting their expectations makes the mapping equivalent to that of standard non-negative matrix
factorization, resulting in yj = λjλΦ. In other words, if we let the shape parameter k of the Weibull
distribution approach infinity—implying that the variance of the latent variables approaches zero,
and the distribution collapses into a point mass concentrated at the expectation, then the proposed
stochastic decision layer reduces to non-negative matrix factorization. For further discussions on
NMF, please refer to Appendix A.3.

3.4 VARIATIONAL INFERENCE

For BNDL, given the model parameters referred to as Ω, which consist of the parameters in the
generative model and inference network, the marginal likelihood of the dataset (X,Y ) is defined as:

p (Y |X) =

∫ ∫ J∏
j=1

p (yj | θj ,Φ)p (θj)dθ
J
j=1dΦ (12)

The inference task is to learn the parameters of the generative model and the inference network. Sim-
ilar to VAEs, the optimization objective of the BNDL can be achieved by maximizing the evidence
lower bound (ELBO) of the log-likelihood as:

L(Y ) =

J∑
j=1

Eq(θj |xj) [ln p (yj | θj ,Φ)]

−
J∑

j=1

Eq(θj |xj)

[
ln

q (θj | xj)

p (θj )

]
− Eq(Φ | −)

[
ln

q (Φ | −)

p (Φ )

] (13)

where the first term is the expected log-likelihood of the generative model, which ensures reconstruc-
tion performance, and the last two term is the Kullback–Leibler (KL) divergence that constrains the
variational distribution q(−) to be close to its prior p(−). The parameters in the Generalized GBN
can be directly optimized by advanced gradient algorithms, like SGD (Kingma & Ba, 2015).

Complexity analysis Modifying the last layer of base deep neural networks minimally
increases parameter count, resulting in negligible space complexity. The time com-
plexity of ResNet is dominated by its convolutional layers and can be expressed as:
O
(∑L

l=1 C
(l)
in × C

(l)
out ×H(l) ×W (l) ×K(l) ×K(l)

)
, where H , W , K × K, Cin and Cout are

the input height, width, kernel size, input channels, and output channels, respectively. In BNDL,
the added time complexity from KL divergence computations for local and global latent variables
is O(C

(L)
out ) and O(C

(L)
out × C), respectively, which are negligible compared to ResNet’s overall

complexity. Unlike traditional ensemble methods and dropout approaches, which require multiple
full-network runs to assess uncertainty, BNDL performs a single forward pass to infer the variational
posterior, followed by sampling for uncertainty estimation, greatly reducing computational costs.

4 THEORETICAL GUARANTEES FOR BNDL

We provide theoretical guarantees for BNDL from the perspective of identifiable features. As de-
scribed in Sec.3.3, BNDL can be viewed as a Non-negative Matrix Factorization (NMF) problem.
From this perspective, its objective function p (Y | {Φ,θ, X}) can be further reformulated as:

min
θ≥0,Φ≥0

∥Y − θΦ∥2F (14)
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In the realm of non-negative matrix factorization, many studies have aimed to establish the identi-
fiability and uniqueness of a decomposition θΦ, up to permutation and scaling. Recently, (Gillis
& Rajkó, 2023) demonstrated that a subset of the columns of θ and Φ can be identified and made
unique under more relaxed conditions. We will show how BNDL adheres to the criteria set forth in
(Gillis & Rajkó, 2023), thereby enabling the learning of partially identifiable features.
Proposition 1. (Gillis & Rajkó, 2023) The k-th column of θ is identifiable under the two assump-
tions:

• Selective Window: There exists a row of Φ, say the j-th, such that Φ(j, :) = αeT(k) for
α > 0, where eT(k) represents the k-th standard row vector in vector space.

• Sparsity Constrain: The k-th column of Φ contains at least r − 1 entries equal to zero,
where r is the rank of Y .

The selective window assumption states that the column in θ corresponding to Φ(j, :) is unique
in the dataset, which is reasonable in many applications (Gillis, 2020), e.g., θ can represent latent
classes in a classification task, where (Wang et al., 2024) achieves full identifiability by assuming
each latent class corresponds to a unique sample. Under this assumption, it suffices to have a single
latent class with a unique sample, making it more feasible and easier to satisfy. For the sparsity
constraint, the use of a Gamma prior and a ReLU activation function in Φ within the BNDL frame-
work, as outlined in 5 and 11, enforces sparsity during the training process. Moreover, instead of
relying on the parameter norm (Wong et al., 2021), which often leads to performance degradation,
we propose a more scalable and effective adaptive activation function to achieve sparsity. Specifi-
cally, we employ f(x) = ReLU(x − α), where α is a predefined constant, set as a hyperparameter.
This approach offers a more flexible mechanism for inducing sparsity without sacrificing model per-
formance. Similarly, we can demonstrate the partial identifiability of Φ, as it is often considered
to be the transpose of θ(Fu et al., 2017; HaoChen et al., 2021). In conclusion, BNDL follows the
aforementioned assumptions, and its optimization objective promotes the partial identifiability of
the learned features and decision layer, thereby enhancing their disentanglement capability. We val-
idated our theoretical guarantees through experiments presented in Section 5.2. More details for the
theoretical guarantees can be found in Appendix A.2.

5 EXPERIMENTS

Experiment Setup Following (Wong et al., 2021), we analyze the following models: (a) ResNet
classifiers—ResNet-50 trained on ImageNet-1k (Deng et al., 2009; Russakovsky et al., 2015) and
Places-10 (a subset of Places365 (Zhou et al., 2017)), and ResNet-18 trained on CIFAR-10/100
(Krizhevsky, 2009); (b) a ViT-based model (Dosovitskiy et al., 2021) with pretrained weights from
Hugging Face1. Baselines are detailed in Section 5.1. We evaluate accuracy and uncertainty for
quantitative analysis and use LIME for qualitative insights into BNDL predictions. Setup details,
including hyperparameters and datasets, are provided in Appendix A.1.

Uncertainty evaluation metric. We estimate uncertainty using a hypothesis testing approach
(FAN et al., 2021). This method provides interpretable p-values, enabling practical deployment
for binary uncertainty decisions. A prediction’s certainty is determined by comparing its p-value
against a threshold. To evaluate uncertainty estimates, we use the Patch Accuracy vs. Patch Un-
certainty (PAvPU) metric (Mukhoti & Gal, 2018), which defined as PAvPU = (nac + niu )/(nac +
nau + nic + niu), where nac, nau, nic, and niu represent the counts of accurate-certain, accurate-
uncertain, inaccurate-certain, and inaccurate-uncertain samples, respectively. Higher PAvPU values
indicate that the model reliably produces accurate predictions with high certainty and inaccurate
ones with high uncertainty.

Sparsity Measurement We measure the sparsity of the final decision layer weights. Since the
weights in our method are non-negative, we follow the approach of (Wong et al., 2021) and (Wang
et al., 2024), considering weights greater than 1 × 10−5 as non-sparse (denoted as lnon) and the
remaining values as sparse (denoted as lsparse ). The sparsity is calculated as nnz = lnon/(lnon +
lsparse), where a smaller value indicates a higher level of sparsity.

1https://huggingface.co/google/vit-base-patch16-224
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Table 1: Overall model accuracy across different datasets, with BNDL being our method. We
use ResNet-50 as the baseline for ImageNet-1k, and ResNet-18 as the baseline for CIFAR-10 and
CIFAR-100. Vit refers to vit-base-patch16-224.

Model CIFAR-10 CIFAR-100 ImageNet-1k
ACC PAvPU ACC PAvPU ACC PAvPU

ResNet 94.98 ± 0.12 - 74.62 ± 0.23 - 75.33 ± 0.14 -
MC Dropout 94.54 ± 0.03 78.83 ± 0.12 78.12 ± 0.06 64.41 ± 0.22 75.98 ± 0.08 76.50 ± 0.02

BM 94.07 ± 0.07 93.98 ± 0.3 75.81 ± 0.34 77.13 ± 0.67 - -
CARD 90.93 ± 0.02 91.11 ± 0.04 71.42 ± 0.01 71.48 ± 0.03 76.20 ± 0.00 76.29 ± 0.01

ResNet-BNDL 95.54 ± 0.08 95.58 ± 0.20 79.82 ± 0.13 81.1 ± 0.21 77.01 ± 0.14 77.66 ± 0.03

ViT-Base 95.51 ± 0.03 - 84.15 ± 0.03 - 80.33 -
ViT-BNDL 96.34 ± 0.04 97.01 ± 0.02 85.16 ± 0.03 86.37 ± 0.11 81.29 ± 0.02 82.50 ± 0.03

5.1 CLASSIFICATION PERFORMANCE

Specifically, for each dataset, we conducted the following experiments:

(a) Performance and Uncertainty Evaluation We replaced the decision layers in the network with
BNDL and performed supervised training from scratch. The results are shown in Table 1. The
baseline models are grouped into two categories: 1) Uncertainty estimation networks, including
Bernoulli MC Dropout(Gal & Ghahramani, 2016), BM (Joo et al., 2020) and CARD (Han et al.,
2022) 2) Dense decision layer baselines: including ViT-Base (Dosovitskiy et al., 2021) (We used
the pretrained weights for the vit-base-patch16-224 only, modifying the decision layer for continued
training.) and ResNet (He et al., 2016). It is important to note that the goal of BNDL is not to
achieve a substantial improvement in the model’s performance, but rather to preserve the model’s
performance while enhancing its interpretability and uncertainty estimation capabilities.

(b) Impact of Sparsity. We replaced the decision layers of a pre-trained model with BNDL, froze
the existing feature layers, and fine-tuned only the parameters of the BNDL. The results across
different datasets are illustrated in Figure 3, where we compare BNDL (shown in blue) with the
Debuggable Network(Wong et al., 2021) (shown in orange), both of them utilize the same backbone
with different sparse decision layers.

5.1.1 PERFORMANCE AND UNCERTAINTY EVALUATION

In Table 1 , we show accuracy and PAvPU. Our model reports the mean and variance across 5 differ-
ent random seeds, while the results of other models are reported from previous papers if available.
Since we directly used 1 to test on ImageNet-1k, the variance term is not provided in the table.
We can observe that: 1) By leveraging stochastic latent variables to capture complex dependencies,
BNDL consistently outperformed all datasets and demonstrated improved performance across vari-
ous widely-used architectures, including ResNet and ViT. 2) The integration of BNDL endowed the
model with the capability for uncertainty estimation, as evidenced by the improvements in PAvPU
metrics when compared to several strong baselines. 3) BNDL exhibits scalability and can be ex-
tended to larger datasets, such as ImageNet-1k, as demonstrated by the complexity analysis.

Relation between Uncertainty and Accuracy We conducted an ablation study to explore the re-
lationship between prediction uncertainty and downstream performance. Using ResNet-BNDL, we
sorted the ImageNet test set by evaluation uncertainty into 10 subsets. For each subset, we calculated
the average accuracy and uncertainty, then plotted the results in Figure 2. We also selected images
from the highest and lowest uncertainty subsets and visualized their LIME explanations, showing
the most influential features of the activations on the right side of the figure. The line chart illustrates
a clear negative correlation between uncertainty and accuracy: higher uncertainty corresponds to
lower accuracy. This suggests that the model provides reliable uncertainty estimates, helping to
avoid potential misclassifications. In the visualization, we observe that the model made correct pre-
dictions for images with low uncertainty, while for images with high uncertainty, the visualizations
reveal the causes of misclassification, e.g., in the image of a wine bottle, the model primarily focused
on the wine glass filled with red wine in the background, leading to a misclassification as red wine.
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High Uncertainty

Coral Reef Red Wine Mobile Home

Sea Urchin Wine Bottle Pickup Truck

Low Uncertainty

Pill Pen Magpie

Pill Pen Pill Pen

Pill Pen

Magpie

Figure 2: The leftmost line chart illustrates the average uncertainty and accuracy across subsets of
the ImageNet test set. The middle and right panels sample images from the subsets with the highest
and lowest uncertainty, as defined by the curve. The top row shows the original images with ground
truth labels, while the bottom row displays the model’s predictions alongside LIME visualizations.

The Uncertainty Vs Acc results for additional datasets and ViT-BNDL are provided in the Appendix
A.3.

5.1.2 IMPACT OF SPARSITY
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Figure 3: Sparsity-accuracy trade-offs for BNDL and Debuggable Network (Wong et al., 2021).
Each point on the curve represents a BNDL classifier. Horizontal dashed lines indicate the fully
dense accuracy for each network. The x-axis shows the proportion of non-sparse weights, with
higher values indicating denser distributions, while the y-axis represents test accuracy on each
dataset.

The results of fine-tuning on the original model are shown in Figure 3. For each dataset, we control
the sparsity according to the activation function mentioned in Eq.11, resulting in the Sparsity vs.
accuracy curve. The blue lines represent our method, while the orange lines represent the Debug-
gable Network (Wong et al., 2021), which also employs the idea of a sparse decision layer. It can be
observed that at the same level of sparsity, our model overall outperforms the Debuggable Network
across different datasets. Additionally, across different datasets, the decision layer can be made
substantially sparser—by up to two orders of magnitude—with minimal impact on accuracy (cf.
Figure 3(a)). For instance, when the sparsity of the ImageNet-1k classifier is 0.0024, the network’s
classification accuracy still reaches 75.7%.

5.2 INTERPRETABILITY EVALUATION

Disentangled representation learning To validate the disentanglement on real-world data, we
adopt an unsupervised disentanglement metric SEPIN@k (Do & Tran, 2019). SEPIN@k measures
how each feature θi is disentangled from others θ ̸=i by computing their conditional mutual informa-
tion with the top k features, i.e., SEPIN@k = 1/k

∑k
i=1 I(x,θri |θ ̸=ri), which are estimated with

InfoNCE lower bound (Oord et al., 2018) implemented following (Wang et al., 2024).

As shown in Table 2, BNDL features exhibit much better disentanglement than ResNet-50 across all
top-k dimensions. The advantage is more pronounced when considering the top features, as learned
features also contain noise dimensions. This verifies the disentanglement of learned features, as
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Table 2: Feature disentanglement score on Imagenet-1k, where @k denotes the top-k dimensions.
Values are scaled by 102, we use ResNet-50 as the baseline for BNDL

SEPIN@1 SEPIN@10 SEPIN@100 SEPIN@1000 SEPIN@all

ResNet50 1.50 ± 0.02 1.03 ± 0.01 0.60 ± 0.01 0.31 ± 0.01 0.23 ± 0.01
ResNet50-BNDL 2.59 ± 0.03 2.12 ± 0.01 1.30 ± 0.01 0.65 ± 0.01 0.44 ± 0.01

ResNet 50
BNDL

ResNet 50

Arctic Fox Candle Labrador Drake Payphone Trolleybus Egyptian Cat

Figure 4: The LIME visualizations for BNDL and ResNet-50, focusing on the largest θ for each
image, show that BNDL’s features align more closely with the semantic meaning of true labels, sug-
gesting more disentangled representations. As we selected the top-10 super-pixels for visualization,
the results may include some less significant super-pixels; this issue is alleviated when we reduce
the number of top-k super-pixels.

analyzed in Sec.4. BNDL indeed provides better feature disentanglement on real-world data. The
disentanglement results on other datasets can be found in Appendix A.3.

Visualization We visualized the feature representation θ of BNDL and the baseline model
(ResNet-50) for the same images in ImageNet-1k, as illustrated in Figure 4. Specifically, we se-
lected the feature θ with the highest activation for each image and applied the LIME visualization,
in line with the approach used in Figure 2. The top row of Figure 4 shows the true categories of the
corresponding images, the second row presents our visualization results, and the third row displays
the visualization results of the baseline model. Overall, the visualization results of BNDL are more
semantically meaningful compared to those of ResNet-50. For instance, in the image of a candle,
BNDL successfully captures parts of the candle, while ResNet-50 only identifies the cake. Similar
observations occur in other categories, and we provide additional visualization results in Appendix
A.3. This finding aligns with the conclusions drawn in 4, suggesting that BNDL has learned more
identifiable features through the constraint of sparsity.

6 CONCLUSION

We introduce BNDL as a simple and scalable Bayesian decision layer that excels in both uncertainty
estimation and interpretability, while maintaining or improving accuracy across a range of tasks, in-
cluding large-scale applications. With an efficient parameterization of the covariance-dependent
variational distribution, BNDL enhances the flexibility of DNNs with only a slight increase in mem-
ory and computational cost. We demonstrate the broad applicability of BNDL on both ResNet-based
and ViT-based models and show that BNDL achieves superior performance compared to these base-
lines. Notably, we provide both practical and theoretical guarantees for BNDL’s ability to learn
more disentangled and identifiable features. Based on these results, we believe BNDL can serve as
an efficient alternative to decision layer in the versatile tool box of modules.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 REPRODUCILTLY STATEMENT

The novel methods introduced in this paper are accompanied by detailed descriptions ( Sec.3), and
their implementations are provided as anonymous downloadable source code in the supplementary
materials.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 EXPERIMENTAL SETTING

All experiments are conducted on Linux servers equipped with 32 AMD EPYC 7302 16-Core Pro-
cessors and 2 NVIDIA 3090 GPUs. Models are implemented in PyTorch version 1.12.1, scikit-learn
version 1.0.2 and Python 3.7. The CIFAR-10, CIFAR-100, and ImageNet-1k datasets we used are
all publicly available standard datasets. As for Places-10, it is a subset of Places365 (Zhou et al.,
2017) containing the classes “airport terminal”, “boat deck”, “bridge”, “butcher’s shop”, “church-
outdoor”, “hotel room”, “laundromat”, “river”, “ski slope” and “volcano”. We chose this dataset to
ensure a fair comparison with DebuggableNetworks (Wong et al., 2021), as they also selected this
subset.

• Training from scratch setup For ResNet-18 on CIFAR-10 and CIFAR-100, we set the
batch size to 128, learning rate to 0.1, training epochs to 150, and weight decay to 5e-4.
For ResNet-50 on ImageNet-1k, we set the batch size to 256, weight decay to 1e-4, epochs
to 200, and learning rate to 0.1. For the calculation of PAvPU, we sampled 20 times to
obtain 20 different logits, and then selected the top-2 classes based on their mean logits,
performing a two-sample t-test to obtain the p-value. Following the approach used by
CARD and MC Dropout models, we set the p-value threshold to 0.05 to determine whether
a sample is classified as certain.

• Fine-tuning setup For Places-10, we set the learning rate to 0.1, batch size to 128, and
epochs to 100. For ImageNet-1k, CIFAR-10, and CIFAR-100, we set the learning rate to
0.001 and epochs to 200.

• Sparsity Vs Accuracy in Sec. 5.1.2 We follow the default settings of (Wong et al., 2021)
when running the Debuggable baselines, and we run BNDL using the settings from the
fine-tuning setup. It is worth mentioning that in Debuggable Networks, the sparsity of
the decision layer is controlled via the elastic net, which adjusts the sparsity of decision
layer weights through the regularization path, this kind of parameter norm often leads to
performance degradation. In contrast, BNDL increases the sparsity of the decision layer
by using a Gamma distribution as the prior. Additionally, we control the sparsity of the
weights by applying an activation function to the weights, w′ = ReLU(w−α), where α is
a predefined constant set as a hyperparameter.

Visualization tool (LIME) Traditionally, LIME is used to obtain instance-specific explana-
tions—i.e., to identify the super-pixels in a given test image that are most responsible for the model’s
prediction. In our setting, we follow this intuition and use the following two step-procedure to obtain
LIME-based feature interpretations: (i) We randomly select an image category and then randomly
choose K images from that category. For each image, we identify the feature with the maximum
activation for visualization. Among them, our definition of maximum activation is that we select
the maximum weight of the category index corresponding to the image in Φ, and select the feature
neuron multiplied by this weight. (ii) Run LIME on each of these examples to identify relevant
super-pixels. At a high level, this involves performing linear regression to map image super-pixels
to the (normalized) activation of the deep feature (rather than the probability of a specific class as is
typical).

A.2 THEORETICAL GUARANTEES FOR BNDL

Problem Formulation As described in Sec.3.3, BNDL can be viewed as a Non-negative Matrix
Factorization (NMF) problem. From this perspective, its objective function p (Y | {Φ,θ, X}) can
be further reformulated as:

min
θ≥0,Φ≥0

∥Y − θΦ∥2F (15)

This property enables NMF to accurately recover the ground truth factors that generated the data.
Following the definition in (Gillis & Rajkó, 2023), we first define an exact NMF (that is, an errorless
reconstruction) as follows:
Definition 1. (Excat NMF of size r) Given a nonnegative matrix Y ∈ Rm×n, the decomposition θΦ
where θ ∈ Rm×r

+ and Φ ∈ Rr×n
+ is an exact NMF of Y of size r if Y = θΦ.
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The formally defined identifiability of an Exact NMF is as follows:
Definition 2. (Identifiability of Exact NMF) The Exact NMF of Y = θ∗Φ∗ of size r is identifiable
if and only if for any other Exact NMF of Y = θΦ of size r, there exists a permutation matrix
Π ∈ {0, 1}r×r and a nonsingular diagonal scaling matrix D such that:

θ = θ∗ΠD and Φ = D−1ΠΦ∗ (16)

Intuitively, Definition 2 indicates that all columns of θ and Φ must be identifiable. Achieving this
typically requires very stringent conditions, such as the requirement for both θ and Φ to satisfy the
so-called sufficiently scattered condition (SSC) (Huang et al., 2013). Therefore, we concentrate on
the partial identifiability of BNDL, which similarly ensures the identifiability and uniqueness of a
subset of columns of θ and Φ under more relaxed conditions.

Partially Identifiable Features To demonstrate that BNDL is partially identifiable, we first
present the definition of partial identifiability in exact NMF.
Definition 3. (Partial identifiability in Exact NMF) Let Y = θ∗Φ∗ be an exact NMF of Y of size r.
The k-th column of θ∗ is identifiable if and only if for any other Exact NMF of Y = θΦ of size r,
there exits an index set j and a scalar α > 0 such that:

θ(:, j) = αθ∗(:, k) (17)

Similarly, we can define the identifiability of the kth column of Φ∗ using symmetry.

Previous work (Gillis & Rajkó, 2023) has shown that Definition 3 can hold under two relatively
relaxed assumptions.
Proposition 2. (Gillis & Rajkó, 2023) Let Y = θ∗Φ∗ where θ∗ ∈ Rm×r

+ and Φ∗ ∈ Rr×n
+ with

rank(Y) = r. Without loss of generality, assume Y,Φ∗ and θ are column stochastic. The k-th column
of θ∗ is identifiable if it satisfies the following two conditions:

• (Selective Window) There exists a row of Φ∗, say the j-th, such that Φ∗(j, :) = αeT(k) for
α > 0.

• (Sparsity Constrain) There exists a subset J of r − 1 columns of Y , namely Y (:,J ), such
that rank(Y (:,J )) = r − 1 and for all j ∈ J :

Fθ∗(θ∗(:, k)) ∩ Fθ∗(R(:, j)) = ∅ (18)

which means that the minimal face containing the k-th column of θ∗ does not intersect with
the minimal faces containing the columns of Y (:,J ).

i)For the Selective Window assumption: Intuitively, this assumption means that the column in θ
(latent class) corresponding to the Φ∗(j, :) appears uniquely in the dataset, which is reasonable in
many applications (Gillis, 2020). E.g., in classification tasks (Wang et al., 2024), the authors achieve
full identifiability by positing that each latent class has a unique sample. In the context of selective
window assumption, we only need to assume the presence of a single latent class with a unique
sample to satisfy the selective window assumption, which makes it more feasible and easier to
achieve. ii)For the Sparsity Constrain: This condition implies that the k-th column of Φ∗ contains
at least r − 1 entries equal to zero, namely, Φ∗(J , k) = 0. Due to the use of a Gamma prior
and a ReLU function in Φ within BNDL, as shown in 5 and 11 respectively, Φ is enforced to be
sparse during the training process. Additionally, in Section 5.1.1, we demonstrate the high sparsity
of BNDL, for instance, the 1-sparsity of decision weights for ImageNet is only 0.04. Only a small
portion of the weights have a decisive impact on the final results, indicating that BNDL satisfies the
sparsity constraint.

In summary, our theory demonstrates that BNDL satisfies the assumptions outlined in 2, facilitating
the partial identifiability of the learned features.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

Uncertainty Evaluation We provide additional ablation study results on Figure 5, with experi-
mental settings consistent with Sec.5.1.1. For plotting the curves, we used B-spline interpolation
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to generate smooth curves, setting k = 3 (cubic spline). The line charts illustrate a clear negative
correlation between uncertainty and accuracy: higher uncertainty corresponds to lower accuracy.
This suggests that the model provides reliable uncer- tainty estimates, helping to avoid potential
misclassifications.
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Figure 5: Uncertainty Vs Test Acc Curve on other datasets and model.

Table 3: Feature score on Cifar-100, where @k denotes the top-k dimensions. Values are scaled by
102

Cifar-100 SEPIN@1 SEPIN@10 SEPIN@100 SEPIN@1000 SEPIN@all
ResNet18 3.17 ± 0.06 2.40 ± 0.03 1.79 ± 0.03 1.21 ± 0.01 1.21 ± 0.01

BM 3.19 ± 0.05 2.53 ± 0.02 1.17 ± 0.02 1.28 ± 0.02 1.24 ± 0.01
ResNet18-NMF 3.21 ± 0.03 2.95 ± 0.02 1.87 ± 0.03 1.33 ± 0.02 1.23 ± 0.03

BNDL 3.91 ± 0.06 3.43 ± 0.03 2.77 ± 0.03 1.69 ± 0.03 1.69 ± 0.02

Disentangled Measurement Disentanglement Result on BNDL, BM, ResNet-NMF and
ResNet18. Among them, ResNet-NMF represents a framework where non-negativity constraints are
applied to both the weights of the decision layer and the input features, transforming the problem
into one of non-negative matrix factorization. It can be observed that BNDL consistently achieves
the best disentanglement metrics, aligning with the conclusions drawn in Section 5.2 of the paper.
This suggests that BNDL has successfully learned more identifiable features through the constraint
of sparsity.

Table 4: Accuracy and weight sparsity results of Cifar-100, where ResNet-NMF applied non-
negativity constraints to both the input features and weights of decision layer.

Cifar-100 Accurarcy 1-Sparsity
ResNet18 74.62 ± 0.23 0.97 ± 0.02

ResNet18-NMF 76.73 ± 0.16 0.23 ± 0.01
ResNet18-BNDL 79.82 ± 0.13 0.12 ± 0.01

Additional Discussion on the relation of BNDL and Non-negative Matrix Factorization We
now provide a more detailed explanation of the relationship between NMF and interpretability.
Specifically, the non-negativity constraint in NMF ensures that the decomposition of the data ma-
trix can be interpreted as an ”additive combination” rather than a complex mathematical operation
involving cancellations between positive and negative terms. This characteristic aligns more closely
with how humans naturally understand patterns in real-world data. Therefore, both BNDL and Wang
et al. (2024) leverage the principles of NMF by modeling the final layer of the network as an NMF
problem, employing non-negativity constraints to enhance interpretability.

However, there remain key differences between BNDL and Wang et al. (2024), which include the
following: 1) NCL remains a point-estimation model that enforces non-negativity constraints by
applying a ReLU activation function to the features. In contrast, BNDL probabilistically models the
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features as non-negative distributions, which enables uncertainty estimation—something that NCL
does not accommodate; 2) Although NMF naturally provides some degree of disentanglement, it is
often insufficient for handling complex data (Hoyer, 2004), necessitating additional constraints to
improve this effect. Unlike NCL, which does not introduce such extra constraints, BNDL applies a
Gamma prior to the factors in matrix decomposition, further enhancing the sparsity and non-linearity
of these factors. This additional constraint strengthens both the disentanglement and interpretability
of the model.

Regarding (Duan et al., 2024), it also recognizes the additive property introduced by non-negativity,
which aids in the disentanglement of the network. It leverages the non-negativity and sparsity of the
Gamma distribution to design a Variational Autoencoder (VAE) generative model, achieving better
disentanglement performance compared to Gaussian-VAE. In general, while BNDL shares some
similar tools with (Wang et al., 2024) and (Duan et al., 2024), there are notable differences in their
network designs and architectures, as well as the distinct objectives they serve in different tasks.

we incorporated NMF into a supervised learning framework and conducted experiments on CIFAR-
100. Consistent with the experimental settings in the paper, ResNet-NMF adopts the ResNet18
baseline model. The experiments were performed on an NVIDIA 3090 GPU. We ran five exper-
iments with different random seeds and computed the mean and variance of the results. The ex-
perimental outcomes are presented in the Table 3 and 4. From the experiments on accuracy and
disentanglement, the following observations can be made: (1) Incorporating NMF into the network
enhances its performance. By introducing non-negativity constraints on both weights and features,
ResNet-NMF achieves more sparse weights and improved disentanglement performance. (2) BNDL
consistently achieves the best results on the CIFAR-100 dataset. This can be attributed to its prob-
abilistic modeling and the additional sparsity and nonlinear constraints introduced by the Gamma
prior. These factors lead to greater weight sparsity and further improved disentanglement, aligning
with our discussion.

Additional Visualization Results We visualized the feature representation θ of BNDL and the
baseline model (ResNet-50) for the same images in ImageNet-1k, as illustrated in Figures 8 to 12.
Specifically, we selected the feature θ with the highest activation for each image and applied the
LIME method using the top-10 super-pixels for visualization, in line with the approach used in Fig-
ure 2. We have added comparative visualization results of BNDL and several models on ImageNet-
1k, including the uncertainty estimation model BM (Joo et al., 2020) and the sparse decision-layer
model Debuggable Networks (Wong et al., 2021), the result is shown in Fig.6. The top row of
Figures shows the true categories of the corresponding images, the second row presents our visual-
ization results, and the third row displays the visualization results of the baseline model. Overall, the
visualization results of BNDL are more semantically meaningful compared to those of ResNet-50.

We also included the results of post-hoc explanations using GradCAM(Selvaraju et al., 2017), which
is based on the concept of Class Activation Mapping. It aims to generate heatmaps by exploiting the
relationship between the feature maps of specific layers in the neural network and the final prediction
of the classification task, visually highlighting the regions that contribute the most to the prediction
of a particular class. In our experiment, we used the most activated class for each image to generate
explanations, with the results shown in Figure 7. It can be observed that BNDL tends to generate
more focused heatmaps. For example, in the first image, BNDL only focuses on the region of the
dog, while ResNet50 also attends to the surrounding ground. These results further demonstrate that
BNDL is inclined to generate more disentangled features.
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BNDL

ResNet 50

Debuggable

BM

Argiope 
aurantia Hay Lampshade Egyptian catWater ouzelLorikeet

Figure 6: The LIME visualization results for BNDL ,ResNet-50 Debuggable Networks and BM,
focusing on the largest θ for each image, demonstrate that BNDL’s feature visualization aligns more
closely with the semantic meaning of the true labels. This suggests that BNDL has learned more
identifiable features.

ResNet 50

ResNet 50
BNDL

Figure 7: We applied GradCAM to visualize ResNet50 and BNDL, and the corresponding heatmaps
are shown above. The ground truth label for the visualized image is ”Saint Bernard.” It can be
observed that the BNDL visualization is more focused, while ResNet exhibits multifaceted behavior.
For instance, in the fourth image, ResNet attends to both the person and the dog, whereas BNDL is
more disentangled, focusing solely on the dog.
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ResNet 50
BNDL

ResNet 50

Arctic fox, white fox, Alopex lagopus

Figure 8: The LIME visualization results for BNDL and ResNet-50, focusing on the largest θ for
each image, demonstrate that BNDL’s feature visualization aligns more closely with the semantic
meaning of the true labels compared to ResNet-50. This suggests that BNDL has learned more
identifiable features.

ResNet 50
BNDL

ResNet 50

Egyptian cat

Figure 9: The LIME visualization results for BNDL and ResNet-50, focusing on the largest θ for
each image, demonstrate that BNDL’s feature visualization aligns more closely with the semantic
meaning of the true labels compared to ResNet-50. This suggests that BNDL has learned more
identifiable features.
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ResNet 50
BNDL

ResNet 50

loupe, jeweler's loupe

Figure 10: The LIME visualization results for BNDL and ResNet-50, focusing on the largest θ for
each image, demonstrate that BNDL’s feature visualization aligns more closely with the semantic
meaning of the true labels compared to ResNet-50. This suggests that BNDL has learned more
identifiable features.

ResNet 50
BNDL

ResNet 50

Redbone

Figure 11: The LIME visualization results for BNDL and ResNet-50, focusing on the largest θ for
each image, demonstrate that BNDL’s feature visualization aligns more closely with the semantic
meaning of the true labels compared to ResNet-50. This suggests that BNDL has learned more
identifiable features.
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ResNet 50
BNDL

ResNet 50

trolleybus, trolley coach, trackless trolley

Figure 12: The LIME visualization results for BNDL and ResNet-50, focusing on the largest θ for
each image, demonstrate that BNDL’s feature visualization aligns more closely with the semantic
meaning of the true labels compared to ResNet-50. This suggests that BNDL has learned more
identifiable features.
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