
Light Up the Shadows: Enhance Long-Tail Entity Grounding with
Concept-Guided Vision-Language Models

Anonymous ACL submission

Abstract

Multi-Modal Knowledge Graphs (MMKGs)001
are a type of Knowledge Graph (KG) that in-002
tegrates information from various modalities003
and holds significant application value. How-004
ever, the construction of MMKGs often intro-005
duces mismatched images (i.e., noise). Due006
to the power-law distribution of images on the007
internet for entities, a large number of long-008
tail entities have very few images. Existing009
methods struggle to accurately identify images010
of long-tail entities. To address this issue, we011
draw inspiration from the Triangle of Refer-012
ence theory and propose to enhance the pre-013
trained visual-language models with concepts.014
Specifically, we propose a two-stage framework015
containing two modules, i.e., Concept Integra-016
tion and Evidence Fusion. The Concept Inte-017
gration module aims to accurately recognize018
image-text pairs associated with long-tail enti-019
ties, thereby improving MMKG quality. Addi-020
tionally, our Evidence Fusion module can pro-021
vide explainability regarding the results, which022
facilitates human verification, further enhanc-023
ing long-tail entity grounding. Finally, we con-024
struct a dataset of 25k image-text paris of long-025
tail entities. Comprehensive experiments show026
our method outperforms the baseline, achieving027
an average increase of about 20% in Mean Re-028
ciprocal Rank (MRR) in the ranking task and029
approximately 85% in F1 in the classification030
task.031

1 Introduction032

Multi-Modal Knowledge Graphs (MMKGs) are033

knowledge graphs that integrate and align infor-034

mation from diverse modalities (e.g., text and im-035

ages) (Ferrada et al., 2017; Liu et al., 2019a; Wang036

et al., 2020). Due to the growing demand for037

multi-modal intelligence and extensive knowledge038

in various applications, such as visual question039

answering (Marino et al., 2021) and image cap-040

tioning (Hou et al., 2019), MMKGs have received041

increasing attention in recent years.042
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Figure 1: We randomly select 100 entities from a large-
scale KG CN-DBpedia (Xu et al., 2017) and make hu-
man annotations. The blue line represents the change in
the entity’s viewtimes, which reflects the click frequency
of the entity. The red points represents the number of
correct matches for the entity in the top 20 results for a
Google search for images of the entity and the red line
is the result of smoothing the data points.

While the quantity of images within current 043

MMKGs has steadily increased, these collections 044

have restricted coverage and accuracy, particularly 045

concerning less common entities (i.e., long-tail en- 046

tities). As shown in Figure 1, the change trends 047

of the entity’s viewtimes and the number of found 048

matching images are roughly the same, and both 049

show a long-tail distribution. It demonstrates the 050

long-tail entities have rare images. 051

In constructing Multi-Modal Knowledge Graphs 052

(MMKGs), aligning long-tail entities with proper 053

images (i.e., entity grounding (Zhu et al., 2022)) 054

is important. First, incorporating images for long- 055

tail entities significantly bolsters the completeness 056

and breadth of knowledge graphs, ensuring a more 057

comprehensive coverage across diverse subjects 058

and domains. Second, the integration of visual con- 059

tent for long-tail entities in MMKGs enhances user 060

engagement and efficiency in information retrieval, 061

particularly beneficial in visually-driven learning 062

and search contexts. Third, the pairing of images 063

with long-tail entities can serve as valuable training 064

data, aiding in the development and refinement of 065
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robust vision-language models, especially for less066

common or domain-specific entities.067

However, grounding long-tail entities in MMKG068

is non-trivial. Existing methods for entity ground-069

ing (Wang et al., 2020; Oñoro-Rubio et al., 2017;070

Liu et al., 2019a) primarily rely on web resources,071

particularly search engines. These methods gather072

images by matching strings in image captions with073

entity names and then ranking them based on click074

frequency. While these methods prove effective075

for widely-recognized entities (Liu et al., 2019a;076

Wang et al., 2020), they face challenges with long-077

tail entities. Specifically, existing methods have078

several limitations: (1) Search engines are used079

for text matching, but entity grounding involves080

the matching of images and texts. (2) Although081

pre-trained vision-language models (PVLMs) like082

CLIP (Radford et al., 2021) and BLIP (Li et al.,083

2022) have shown impressive performance in vari-084

ous cross-modal tasks, they encounter challenges085

in identifying long-tail entities due to their infre-086

quent appearance during pre-training. (3) None087

of these methods can explain why one image is088

chosen over another, which is crucial for further089

human verification.090

To tackle above challenges, we design a holistic091

and explainable two-stage framework aiming at092

enabling PVLMs to effectively leverage concepts093

for long-tail entity grounding.094

First, inspired by the Triangle of Reference the-095

ory shown in Figure 2, we use concepts to guide096

PVLMs in accurately identifying images of long-097

tail entities. Second, we analyze the impact of the098

selection of different concepts on results. Third,099

our two-stage framework contain an Evidence Fu-100

sion module that can provide envidences for re-101

sults. When introducing human verification, these102

evidences can significantly improve labeling accu-103

racy.104

To sum up, the contributions of this paper are as105

follows:106

• We introduce concept guidance to enhance107

PVLMs’ ability to recognize images of long-108

tail entities and develop an effective two-stage109

framework for incorporating concepts.110

• We compare and analyze the impact of select-111

ing different concepts on experimental results112

• Our extensive experiments show that our113

method can effectively improve the accuracy114

of long-tail entity grounding and also offers115

explanation, which is benefical for human ver- 116

ification to further improve performance. 117
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Figure 2: The Triangle of Reference theory (McElvenny,
2014) use the triangle’s three vertices represent symbol,
thought and referent. Thought build an bridge between
symbol and referent. This figure illustrates that for an
entity named Aristoxenus, the search engine retrieves
two images. Deciding which one is correct based solely
on the entity name is challenging because we don’t know
Aristoxenus. However, by utilizing concepts, we can
determine that the target Aristoxenus refers to a person,
not a butterfly.

2 Related Work 118

2.1 Multi-Modal Knowledge Graph 119

Construction 120

A Multi-Modal Knowledge Graph (MMKG) is a 121

unified information representation that integrates 122

data from various sources, such as text, images, and 123

audio, into a single interconnected graph. Existing 124

methods for entity grounding in MMKGs fall into 125

two main categories: 1) Methods based on online 126

encyclopedias (Ferrada et al., 2017; Alberts et al., 127

2020): which link existing encyclopedic multime- 128

dia resources (Wikimedia Commons, Wikipedia, 129

ImageNet (Deng et al., 2009)) associating texts 130

with images to construct MMKGs. 2) Methods 131

based on web search engines (Oñoro-Rubio et al., 132

2017; Wang et al., 2020; Liu et al., 2019a): which 133

directly search for images of entities using web 134

search engines. This method is more flexible than 135

using online encyclopedic multimedia data, and it 136

allows for expansion based on existing filtered and 137

refined KGs. However, due to the constraint that en- 138

tities and the associated images follow a power-law 139

distribution shown in Figure 1, these works often 140

focus on popular entities. Since long-tail entities 141
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may not have images on the web and the search142

engine always give ranked results although all the143

images are mismatched, it is easy to return wrong144

images, thus introducing noise. Considering that145

certain long-tail entities may have few available146

images, we propose a framework that leverages147

concepts for reducing the noise and provides expla-148

nation for further huamn verification.149

2.2 Pre-trained Vision-Language Models150

(PVLMs)151

Pre-trained Vision-Language Models (PVLMs)152

are models pre-trained on cross-modal data and153

can process visual and textual information si-154

multaneously. PVLMs aim to align image and155

text data through large-scale cross-modal pre-156

training. CLIP (Radford et al., 2021) employs a157

self-supervised approach, leveraging a dataset of158

400 million image-text pairs collected from the159

internet. This vast dataset significantly enhances160

alignment across diverse modalities. ALIGN (Jia161

et al., 2021), on the other hand, adopts a dual-162

encoder structure and a notably larger dataset, con-163

sisting of over a billion image-text pairs. In con-164

trast, BLIP (Li et al., 2022) takes a different ap-165

proach by filtering out poor-quality data to further166

optimize the performance of multi-modal tasks.167

2.3 Long-Tail Classification168

Some researchers in the field of computer vision fo-169

cus on the long-tailed image classification problem.170

Various datasets (Liu et al., 2019b; Cui et al., 2019)171

are employed to assess the capability of learning172

classification with limited samples. However, our173

objective diverges from the traditional image clas-174

sification. Rather than determining image labels,175

we aim to determine whether an image match a176

specific entity.177

3 Problem Definition178

Multi-Modal Knowledge Graph(MMKG) is a type179

of knowledge graph in which nodes can be entities180

or images and edges represent the relationships be-181

tween them. The triplets in MMKG can be defined182

as (e, has image, i), where e denotes the textual183

entity, i denotes its matching image, thus their rela-184

tionship can be represented as has image.185

To match images for entities in MMKG (i.e. en-186

tity grounding in MMKG), existing methods typ-187

ically follow a two-step process. First, they rank188

the collected images based on their relevance to the189

given entity, which can be modeled as a Ranking 190

task. To formalize this, given a corrupted triplet 191

(e, has image, ?) in MMKG, this sub-task aims to 192

predict the removed images i. Then, they select 193

the top-n images and classify whether the image is 194

related to the given entity, which can be modeled 195

as a Classification task. To formalize this, each 196

triplet (e, has image, i) can be classified as True if 197

the image correctly matches the entity, otherwise 198

the triplet is classified as False. 199

4 Concept Selection 200

To figure out what concepts are suitable for con- 201

cept guidance, we explore the influence of employ- 202

ing various concepts in this section. An entity 203

often contains multiple concepts, and these con- 204

cepts have different granularities. As suggested by 205

(Wang et al., 2015), humans comprehend the world 206

by Basic-level Categorization (BLC), which refers 207

to a mid-level concept that people tend to use in 208

daily cognition. 209

Motivated by this, we compare the performance 210

under BLC concepts and all concepts. Specifi- 211

cally we treat concepts consisting of only one word 212

as Basic-level Categorization (BLC) concepts and 213

compare the performance of using BLC concepts 214

and using all concepts. The experiments in Sec 6 215

demonstrate how different concept selection strate- 216

gies impact the results. 217

5 Concept-guided Method 218

Incorporating concepts is not easy, in order to en- 219

sure both effectiveness and explainability, we de- 220

sign an two-stage framework, as illustrated in Fig- 221

ure 3. 222

During training, we calculate contrastive losses 223

at both entity and concept levels. Then we fine- 224

tune the model through this loss, and the fine-tuned 225

model is used in the inference stage. When infer- 226

encing, we use the trained model as a part of our 227

two-stage framework to predict. The framework 228

contains two modules Concept Integration and Evi- 229

dence Fusion. Concept Integration directly concate- 230

nates entities and concepts to enhance PVLM. The 231

prediction from Concept Integration can be used to 232

ranking and classification. Evidence Fusion mainly 233

processes those pairs that the predictions is not 234

true, because images of long-tail entities are rare 235

and valuable. Evidence Fusion can provide evi- 236

dence by separately predicting whether each con- 237

cept matches the image and the evidence is useful 238
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for human verification.239

5.1 Contrastive Learning on Two Levels240

During the training of the Pre-trained Vision-241

Language Model (PVLM), we designate a text as t242

and an image as i. We first input both t and i into243

the PVLM. The model then produces a prediction,244

indicating the degree of alignment between t and i,245

as shown below:246

logit = PV LM(t, i) (1)247

Sigmoid(logit) =
1

1 + e−logit
(2)248

prediction = Sigmoid(logit) (3)249

In this equation, t and i represent the text and250

image inputs, respectively. The prediction value,251

ranging between [0, 1], indicates the model’s pre-252

diction of the match between the image and the253

text. If the prediction exceeds 0.5, we consider it a254

match; otherwise, it is considered a mismatch.255

Next, we train the model using contrastive learn-256

ing with in-batch negative samples. In each batch,257

there are n samples, where n denotes the batch size.258

Each sample is a pair (t, i), representing a text and259

an image. As illustrated in Figure 3, we formulate260

contrastive samples at both entity and concept lev-261

els. We let ti be the concatenation of the i-th entity262

and all concepts of the entity as:263

ti = ei, c1, c2 . . . (4)264

where e represents an entity, and c represents a265

concept.266

At the entity level, we use pta,ib to represent the267

prediction of the concatenation of the i-th concate-268

nated text and the b-th image, and la,b to repre-269

sent the label whether it matches. Then, we obtain270

Lentity in a batch:271

Lentity = −
n∑

a=1

n∑
b=1

BCE(la,b, pta,ib) (5)272

where BCE is binary cross entropy function.273

Similarly, we first obtain concepts related to a-274

th entity ea using C(ea). Assuming there are m275

concepts of ea, pck,ib represents the prediction of276

the k-th concept and the b-th image and Ln×m×n277

represents a matrix where La,k,b is 1 if the b-th278

entity has the k-th concept of the a-th entity; oth-279

erwise, Lakb is 0. The concept loss Lconcept loss is280

calculated as: 281

Lconcept = (6) 282

−
n∑

a=1

n∑
b=1

len(C(ea))∑
k=1

BCE(la,k,b, pck,ib) 283

Finally, we update the model parameters by the 284

loss L below. 285

L = Lentity + Lconcept (7) 286

5.2 Concept-Guided Image-Text Cognition 287

As illustrated in Figure 3, we design a two-stage 288

framework for incorporating concepts. 289

5.2.1 Concept Integration 290

In Concept Integration, we directly concatenate all 291

concepts c related to the entity e as t and input the 292

concatenated text t and image i into the PVLM. For 293

example, take the entity “Jay Chou” associated 294

with concepts like “singer”, “actor”, and “direc- 295

tor”. The resulting concatenated text would be 296

“Jay Chou,singer,actor,director”. 297

While Concept Integration improves perfor- 298

mance in experiments, it acts as a black-box model 299

lacking explanatory capability. Additionally, im- 300

ages of long-tail entities are scarce. The black-box 301

approach’s prediction lack credibility, potentially 302

causing errors or the loss of correct images. There- 303

fore, we introduce Evidence Fusion to re-judge 304

the samples whose prediction is less than 0.5 in 305

Concept Integration. 306

5.2.2 Evidence Fusion 307

In Concept Integration, we leverage the general- 308

ization capability of PVLM, enabling the model to 309

effectively recognize a subset of long-tail entities. 310

During Concept Integration, PVLM produces a pre- 311

diction value prediction. If prediction exceeds 0.5, 312

we regard the text and image matching. If predic- 313

tion is below 0.5, we proceed to Evidence Fusion, 314

where we apply our Evidence Fusion method for 315

re-judgement. 316

For a more comprehensive understanding of Ev- 317

idence Fusion, we define: 318

Definition. P() represents the probability of oc- 319

currence. E and H represent the evidence events 320

and the ultimate conclusion, respectively. P(E) and 321

P(H) are utilized to express the probability of E 322

and H. Additionally, P(E, H) is defined to evaluate 323

the influence of evidence E on conclusion H. 324
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Figure 3: Our framework. During training, we follow the way of contrastive learning to generate samples. In
inference, we initially concatenate entities and concepts and then input the concatenated text and images directly
into the PVLM in Concept Integration. If the prediction is False, proceed to Evidence Fusion. In Evidence Fusion,
we calculate the weighted average of predictions and contribution for each concept and image.

In our task, the evidence E refers to the image325

matching a concept of the entity, while the conclu-326

sion H is that the image matches the entity.327

In Evidence Fusion, essentially, we fundamen-328

tally transform the task of matching an entity and an329

image into a comprehensive analysis of the match-330

ing between concepts and the image. In Figure 3,331

Ei represents an image matching a concept. For332

example, we can define evidence E1 as “The ob-333

ject in the image is an animal” and evidence E2334

as “The object in the image is an antelope”. Corre-335

spondingly, H can be “The object in the image is336

Klipspringer”. As a result, we directly utilize the337

prediction of the image and the concept as P(E),338

where each Ei corresponds to a P(Ei).339

The influence of each evidence E on the conclu-340

sion H is different. For example, “Be an antelope”341

provides more information than “Be an animal” for342

judging the image matching “Klipspringer” due to343

its narrower scope. To measure this influence, we344

define CF(Ei, H) for each Ei as follows:345

P(Ei,H) =


1

log(num)
− 1

ents

1− 1
ents

if num ≥ 10

1 if num < 10
(8)346

where num denotes the number of entities which347

contain this concept, ents denotes the number of all348

the entities and the base of log for scaling is 10. 349

Fianlly, the P(H) is calculated as: 350

P (H) =
1

n

n∑
i=1

P(Ei) · P (Ei, H) (9) 351

In this equation, n denotes the number of concepts 352

of the entity. P(H) represents the probability of the 353

conclusion H and we utilize a threshold of 0.5 to 354

determine whether the conclusion H is classified 355

as True or False. 356

5.3 Human Verification 357

Because images of long-tail entities are very valu- 358

able, we introduce human verification to further 359

improve the recall rate. In our method, Evidence 360

Fusion repredicts images discarded in Concept In- 361

tegration and generates evidence as explanations. 362

Due to the rarity of visual representations of long- 363

tail entities on the Internet, it is challenging for an- 364

notators to directly determine if an image matches 365

a long-tail entity. However, the evidence generated 366

in Evidence Fusion effectively compensates for this 367

limitation. So we provide the evidence to aid hu- 368

man verification and the experiments highlights the 369

importance of evidence. 370
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6 Experiments371

Because of the lack of suitable long-tail entity372

image-text pair datasets, we construct a new dataset373

containing 25k long-tail entities. Based on this374

dataset, we conduct two different downstream tasks375

to prove the effectiveness of our framework. We376

also show that human verification with evidence377

can further improve the accuracy of entity ground-378

ing.379

6.1 Data Collection380

Although there are some long-tail image classifica-381

tion datasets (Liu et al., 2019b; Cui et al., 2019), all382

of them have limitations. Because these datasets383

are often assembled from the web and the image384

resources are usually rich, the long-tail is for model385

training rather than real scarcity. However, for our386

research, we need entities with extremely scarce387

images. To meet this requirement, we choose long-388

tail entities from an actual Knowledge Graph (KG).389

Because in a real KG, many long-tail entities face390

difficulty finding corresponding images on the web,391

creating a scenario where PVLMs have not encoun-392

tered such data during pre-training.393

Consequently, we first collect long-tail entities394

from CN-DBpedia (Xu et al., 2017), a large-scale395

structured knowledge graph with millions of enti-396

ties. To ground these entities, we then use entity397

linking (Chen et al., 2018) to collect relevant im-398

ages from the internet. Finally, we obtain a dataset399

with 25,166 image-text pairs of long-tail entities400

and translate them to english.401

6.1.1 Selection of Long-Tail Entities402

For obtaining long-tail entities, we analyze the dis-403

tribution of entity images and we find that entities404

in CN-DBpedia have a property called viewtimes,405

indicating their click frequency on the web.406

To further investigate, we randomly select 100407

entities from the knowledge graph and analyze408

their viewtimes, as shown in Figure 1. We find409

that there’s a positive correlation between an en-410

tity’s viewtimes and the quantity of its images on411

the internet. Therefore, we choose entities with412

viewtimes under 100,000 as long-tail entities.413

6.1.2 Grounding Long-tail Entities through414

Entity Linking415

To address the lack of images for long-tail entities,416

we use the entity linking method to find appro-417

priate images, as depicted in Figure 4. First, we418

search for entity names from CN-DBpedia using419

Precision(%) Recall(%) F1(%)

98 62 75

Table 1: The results of using the entity linking method
to determine 100 long-tail entity image-text pairs.

a search engine. Then, we apply short text entity 420

linking (Chen et al., 2018) to the caption of the 421

first search result image to link it with the relevant 422

entity. If the entity name is in the linking results, 423

we consider the image to be a match for the entity. 424

Eric Johnson 
(guitarist) 

- Wikipedia

Query

Match

Eric Johnson

Image

Caption

Short Text
Entity Linking

[Eric Johnson, Wikipedia]

Figure 4: The process of obtaining an accurate image
through short text entity linking (Chen et al., 2018). The
entity linking method can establish a connection be-
tween a piece of text and the entity within CN-DBpedia.
If the linking result includes the queried entity, the im-
age is matching.

We select 100 entities with viewtimes under 425

100,000, search for image using the Google search 426

engine, and manually annotate whether the first 427

image matches the entity. These images are used 428

to assess the entity linking method, with the re- 429

sults shown in Table 1. The results indicate that 430

our method achieves a high accuracy rate of 98%, 431

enabling us to create a dataset of image-text pairs 432

for long-tail entities with great precision. 433

We split the dataset into training, validation, and 434

test sets in an 8:1:1 ratio, yielding 20,132 training, 435

2,517 validation, and 2,517 test samples. Each 436

training sample follows the (entity, image, label) 437

format, with all labels set to 1. For the ranking 438

task, both validation and test sets contain samples 439

with an entity and 50 candidate images, only one 440

of which is correct. For the classification task, we 441

expand the validation and test sets with an equal 442

number of negative samples by replacing the image 443

in a sample with one from a different entity. As 444

a result, our classification dataset includes 20,132 445

training samples, 5,034 testing samples, and 5,034 446

validation samples. 447
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Statistics Quantity

Entities 25166
BLC Concepts 1278

Concepts 10702
BLC Concepts per entity (Avg) 2.78

Concepts per entity (Avg) 4.45

Table 2: Number of entities, number of concepts, and
average number of concepts per entity in the dataset.

6.1.3 Statistical Analysis448

We use CN-Probase (Chen et al., 2019) to obtain449

the concepts related to the entities. CN-Probase450

is a comprehensive Chinese concept graph with451

about 17 million entities, 270,000 concepts, and 33452

million isa relations.453

Then, we conduct a statistical analysis of the454

entity concepts, with the results shown in Table 2.455

There are about 10k concepts for 25k entities and456

each entity owns 4.45 concepts. BLC concepts457

accounts for only a small portion of concepts, but458

on average there are nearly 3 BLC concepts per459

entity.460

6.2 Experiment Setup461

We conduct our experiments using a single462

RTX3090 GPU and set the batch size to 64 for463

CLIP (Radford et al., 2021), 4 for ALIGN (Jia464

et al., 2021), and 16 for BLIP (Li et al., 2022). We465

use AdamW optimizer and set the learning rate as466

1e-5.467

Metrics For classification, we evaluate the per-468

formance of our model using accuracy, precision,469

recall and F1 score. For ranking, we use various470

metrics, including Mean Reciprocal Rank (MRR),471

Mean Rank (MR), and Hit@k metrics.472

Models We conduct our framework on 3473

PVLMs, including CLIP (Radford et al., 2021),474

ALIGN (Jia et al., 2021), and BLIP (Li et al., 2022).475

6.3 Results476

Concept Selection Table 5 shows the performance477

of using different concepts in the classification task,478

the results show that using all concepts is 1.4%479

higher than using BLC concepts on f1, and us-480

ing BLC concepts is 9.77% higher than using no481

concepts on f1, indicating that (1) BLC concepts482

are helpful for recognizing unfamiliar entities. (2)483

Some fine-grained concepts are equally important484

because PVLMs can capture the knowledge of fine-485

grained concepts. Richer concepts have a better486

Models MR MRR Hit@1 Hit@5 Hit@10

CLIP 13.22 27.10 15.45 27.25 52.36
w/ Stage1 5.51 50.14 33.65 58.72 84.51

ALIGN 13.04 27.72 15.97 28.29 52.88
w/ Stage1 5.47 49.81 33.73 57.37 84.74

BLIP 14.21 21.09 8.34 21.37 49.30
w/ Stage1 7.04 38.00 19.39 46.60 77.91

Table 3: Stage1 repersents Concept Integration in our
framework. We compared the effects of three PVLMs
on ranking tasks, and the results show the advantages of
our method.

Models Accuracy Precision Recall F1

CLIP 67.44 62.37 88.37 73.13
w/ Stage1 83.63 81.67 87.10 84.30
w/ Stage1+2 83.87 80.92 88.64 84.60

ALIGN 68.12 63.12 89.38 73.99
w/ Stage1 83.19 77.82 92.84 84.67
w/ Stage1+2 83.13 77.84 92.67 84.68

BLIP 68.55 61.58 91.30 71.30
w/ Stage1 79.41 76.61 84.70 80.45
w/ Stage1+2 79.42 76.42 85.10 80.53

Table 4: Results for the classification task. Stage1 and
Stage2 repersents Concept Integration and Evidence
Fusion in our framework separately.

performance on enhancing PVLMs so that we use 487

all the concepts for other experiments. 488

Ranking Table 3 displays the performance of 489

various models, including CLIP (Radford et al., 490

2021), ALIGN (Jia et al., 2021), and BLIP (Li 491

et al., 2022). We first compare results using PVLM 492

to evaluate only entity names and images, without 493

concepts. Then, we compare these with outcomes 494

from the concept-guided approach (using only Con- 495

cept Integration). Our method shows significant 496

improvements in all evaluation metrics, notably a 497

20.68% average increase in Mean Reciprocal Rank 498

(MRR). This highlights the effectiveness of our 499

concept-guided method in accurately ranking the 500

correct images. 501

Classification Table 4 reports performance 502

across three settings: without using concepts, us- 503

ing only Concept Integration, and employing both 504

Concept Integration and Evidence Fusion. The re- 505

sults show that incorporating concepts significantly 506

boosts effectiveness, leading to an average accu- 507

racy rate increase of around 14% and an average 508

F1 score increase of about 10%. 509

We observe that integrating concepts directly 510

aids PVLMs in aligning image and text modalities. 511
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Concepts Accuracy Precision Recall F1

Not using concepts 67.44 62.37 88.37 73.13

BLC concepts 81.87 78.20 88.20 82.90
All concepts 83.87 80.92 88.64 84.60

Table 5: Not using concepts represents using only entity
names. Both BLC concepts and All concepts use

Methods Accuracy Precision Recall F1

ours 80.00 76.78 86.00 81.13

w/o Evidence 75.00 68.38 93.00 78.81
w/ Evidence 83.00 77.50 93.00 84.54

Table 6: In this table, ours represents the results from
our method. w/o Evidence and w/ Evidence respectively
represent the results after human verification without
evidence and with evidence.

In the pre-training phase, PVLMs often associate512

images with a range of concepts related to entities,513

extending beyond entity names alone. Concept514

Integration improves the recall of knowledge ac-515

quired during pre-training. However, relying solely516

on this black box method is inadequate. Therefore,517

we introduced an Evidence Fusion module, utiliz-518

ing concepts as evidence. This explicit imitation of519

the cognitive process maintains performance simi-520

lar to the black-box method while crucially gener-521

ating evidence, essential for human verification.522

6.4 Explainability523

Since images of long-tail entities are extremely524

rare, we do not readily discard images deemed525

incorrect by Concept Integration. Instead, we use526

Evidence Fusion to provide explanations. These527

explanations, consisting of evidence, significantly528

aid human judgment, as shown in Figure 5.529

As shown in Figure 5, two entities share the530

name “Alexander Hamilton”. When aiming to531

ground an image for the musician “Alexander532

Hamilton” but accidentally retrieving an image of533

the politician with the same name, evidence fusion534

clarifies the mismatch. It indicates that while “The535

person in the image is a man” is true, “The person536

in the image is a musician” and “The person in the537

image is an English actor” are false. The evidence538

explains why the retrieved image does not match539

the musician “Alexander Hamilton”.540

6.5 Human Verification541

Evidence not only makes predictions more credible542

but also assists human annotators in verification.543

Alexander Hamilton
(Politician) Man

Musician

Evidence

British actor

Alexander Hamilton
(Musician)

He is not a musician and 
british actor so he's not the 

musician hamilton !

Is this man the
musician Hamilton? I

do not recognize!

Figure 5: The light green color signifies that the evi-
dence is true, indicating a match between the image and

“man”. However, the contribution of this evidence is rel-
atively low. On the other hand, the red color indicates
that the images do not correspond to “Musician” and

“British Actor”. These instances possess a higher discrim-
inatory power and thus appear darker. By aggregating
and comprehensively analyzing the aforementioned evi-
dence, we can infer that the image is mismatching.

Since it’s challenging for labelers to directly judge 544

image-text pairs of long-tail entities, we provide 545

explanations to assisit labelers. 546

Specifically, we select 200 image-text pairs with 547

a 1:1 ratio of positive and negative samples. First, 548

we use our two-stage method with fine-tuned CLIP 549

to classify samples and calculate f1 score. Concur- 550

rently, Evidence Fusion outputs evidence for sam- 551

ples judged as mismatching. To prevent discarding 552

potentially correct images, we hire annotators to re- 553

label samples deemed mismatched. Following this, 554

we recalculate the accuracy and F1 score and then 555

compare the performance after annotation, both 556

with and without evidence. 557

As Table 6 indicates, we engage five students as 558

annotators and report the average score. The results 559

demonstrate that the explainability provided by our 560

method is necessary. For long-tail entity grounding 561

tasks, human verification can be introduced when 562

necessary to ensure the recall rate. 563

7 Conclusion 564

To ground long-tail entities effectively in a multi- 565

modal knowledge graph (MMKG), we propose a 566

solution utilizing PVLMs with concept guidance. 567

In order to ensure both effectiveness and explain- 568

ability, we introduce a two-stage framework. We 569

define two tasks that simulate the real-world entity 570

grounding process, showcasing that our approach 571

enhances results and provides explainability. 572
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Limitation573

Throughout our method, we utilize concepts from574

CN-Probase. Both the quantity and quality of these575

concepts play a crucial role in determining the per-576

formance of our method. Exploring alternative577

concept generation methods can serve as a poten-578

tial reaserch question for future research. The im-579

provement of concepts in the future is expected to580

contribute to the enhancement of our methods for581

more accurate entity grounding.582

Ethical Considerations583

We provide details of our work to address potential584

ethical considerations.585

Use of Human Annotations All raters have586

been paid above the local minimum wage and con-587

sented to use the evaluation dataset for research588

purposes in our paper. Human annotations are only589

utilized in the early stages of methodological re-590

search to assess the feasibility of the proposed so-591

lution. To guarantee the security of all annotators592

throughout the annotation process, they are justly593

remunerated according to local standards. Human594

annotations are not employed during the evaluation595

of our method.596

Use of Human Annotations The datasets used597

in this paper are obtained from public sources and598

anonymized to protect against any offensive infor-599

mation.600
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