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Abstract

Multi-Modal Knowledge Graphs (MMKGs)
are a type of Knowledge Graph (KG) that in-
tegrates information from various modalities
and holds significant application value. How-
ever, the construction of MMKGs often intro-
duces mismatched images (i.e., noise). Due
to the power-law distribution of images on the
internet for entities, a large number of long-
tail entities have very few images. Existing
methods struggle to accurately identify images
of long-tail entities. To address this issue, we
draw inspiration from the Triangle of Refer-
ence theory and propose to enhance the pre-
trained visual-language models with concepts.
Specifically, we propose a two-stage framework
containing two modules, i.e., Concept Integra-
tion and Evidence Fusion. The Concept Inte-
gration module aims to accurately recognize
image-text pairs associated with long-tail enti-
ties, thereby improving MMKG quality. Addi-
tionally, our Evidence Fusion module can pro-
vide explainability regarding the results, which
facilitates human verification, further enhanc-
ing long-tail entity grounding. Finally, we con-
struct a dataset of 25k image-text paris of long-
tail entities. Comprehensive experiments show
our method outperforms the baseline, achieving
an average increase of about 20% in Mean Re-
ciprocal Rank (MRR) in the ranking task and
approximately 85% in F1 in the classification
task.

1 Introduction

Multi-Modal Knowledge Graphs (MMKGs) are
knowledge graphs that integrate and align infor-
mation from diverse modalities (e.g., text and im-
ages) (Ferrada et al., 2017; Liu et al., 2019a; Wang
et al., 2020). Due to the growing demand for
multi-modal intelligence and extensive knowledge
in various applications, such as visual question
answering (Marino et al., 2021) and image cap-
tioning (Hou et al., 2019), MMKGs have received
increasing attention in recent years.
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Figure 1: We randomly select 100 entities from a large-
scale KG CN-DBpedia (Xu et al., 2017) and make hu-
man annotations. The blue line represents the change in
the entity’s viewtimes, which reflects the click frequency
of the entity. The red points represents the number of
correct matches for the entity in the top 20 results for a
Google search for images of the entity and the red line
is the result of smoothing the data points.

While the quantity of images within current
MMKGs has steadily increased, these collections
have restricted coverage and accuracy, particularly
concerning less common entities (i.e., long-tail en-
tities). As shown in Figure 1, the change trends
of the entity’s viewtimes and the number of found
matching images are roughly the same, and both
show a long-tail distribution. It demonstrates the
long-tail entities have rare images.

In constructing Multi-Modal Knowledge Graphs
(MMKGs), aligning long-tail entities with proper
images (i.e., entity grounding (Zhu et al., 2022))
is important. First, incorporating images for long-
tail entities significantly bolsters the completeness
and breadth of knowledge graphs, ensuring a more
comprehensive coverage across diverse subjects
and domains. Second, the integration of visual con-
tent for long-tail entities in MMKGs enhances user
engagement and efficiency in information retrieval,
particularly beneficial in visually-driven learning
and search contexts. Third, the pairing of images
with long-tail entities can serve as valuable training
data, aiding in the development and refinement of



robust vision-language models, especially for less
common or domain-specific entities.

However, grounding long-tail entities in MMKG
is non-trivial. Existing methods for entity ground-
ing (Wang et al., 2020; Oforo-Rubio et al., 2017;
Liu et al., 2019a) primarily rely on web resources,
particularly search engines. These methods gather
images by matching strings in image captions with
entity names and then ranking them based on click
frequency. While these methods prove effective
for widely-recognized entities (Liu et al., 2019a;
Wang et al., 2020), they face challenges with long-
tail entities. Specifically, existing methods have
several limitations: (1) Search engines are used
for text matching, but entity grounding involves
the matching of images and texts. (2) Although
pre-trained vision-language models (PVLMs) like
CLIP (Radford et al., 2021) and BLIP (Li et al.,
2022) have shown impressive performance in vari-
ous cross-modal tasks, they encounter challenges
in identifying long-tail entities due to their infre-
quent appearance during pre-training. (3) None
of these methods can explain why one image is
chosen over another, which is crucial for further
human verification.

To tackle above challenges, we design a holistic
and explainable two-stage framework aiming at
enabling PVLMs to effectively leverage concepts
for long-tail entity grounding.

First, inspired by the Triangle of Reference the-
ory shown in Figure 2, we use concepts to guide
PVLMs in accurately identifying images of long-
tail entities. Second, we analyze the impact of the
selection of different concepts on results. Third,
our two-stage framework contain an Evidence Fu-
sion module that can provide envidences for re-
sults. When introducing human verification, these
evidences can significantly improve labeling accu-
racy.

To sum up, the contributions of this paper are as
follows:

* We introduce concept guidance to enhance
PVLMs’ ability to recognize images of long-
tail entities and develop an effective two-stage
framework for incorporating concepts.

* We compare and analyze the impact of select-
ing different concepts on experimental results

* Our extensive experiments show that our
method can effectively improve the accuracy
of long-tail entity grounding and also offers

explanation, which is benefical for human ver-
ification to further improve performance.

Thought
Man, Philosopher, Ancient Greeks

Aristoxenus
Symbol
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Figure 2: The Triangle of Reference theory (McElvenny,
2014) use the triangle’s three vertices represent symbol,
thought and referent. Thought build an bridge between
symbol and referent. This figure illustrates that for an
entity named Aristoxenus, the search engine retrieves
two images. Deciding which one is correct based solely
on the entity name is challenging because we don’t know
Aristoxenus. However, by utilizing concepts, we can
determine that the target Aristoxenus refers to a person,
not a butterfly.

2 Related Work

2.1 Multi-Modal Knowledge Graph
Construction

A Multi-Modal Knowledge Graph (MMKG) is a
unified information representation that integrates
data from various sources, such as text, images, and
audio, into a single interconnected graph. Existing
methods for entity grounding in MMKGs fall into
two main categories: /) Methods based on online
encyclopedias (Ferrada et al., 2017; Alberts et al.,
2020): which link existing encyclopedic multime-
dia resources (Wikimedia Commons, Wikipedia,
ImageNet (Deng et al., 2009)) associating texts
with images to construct MMKGs. 2) Methods
based on web search engines (Onoro-Rubio et al.,
2017; Wang et al., 2020; Liu et al., 2019a): which
directly search for images of entities using web
search engines. This method is more flexible than
using online encyclopedic multimedia data, and it
allows for expansion based on existing filtered and
refined KGs. However, due to the constraint that en-
tities and the associated images follow a power-law
distribution shown in Figure 1, these works often
focus on popular entities. Since long-tail entities



may not have images on the web and the search
engine always give ranked results although all the
images are mismatched, it is easy to return wrong
images, thus introducing noise. Considering that
certain long-tail entities may have few available
images, we propose a framework that leverages
concepts for reducing the noise and provides expla-
nation for further huamn verification.

2.2 Pre-trained Vision-Language Models
(PVLMs)

Pre-trained Vision-Language Models (PVLMs)
are models pre-trained on cross-modal data and
can process visual and textual information si-
multaneously. PVLMs aim to align image and
text data through large-scale cross-modal pre-
training. CLIP (Radford et al., 2021) employs a
self-supervised approach, leveraging a dataset of
400 million image-text pairs collected from the
internet. This vast dataset significantly enhances
alignment across diverse modalities. ALIGN (Jia
et al., 2021), on the other hand, adopts a dual-
encoder structure and a notably larger dataset, con-
sisting of over a billion image-text pairs. In con-
trast, BLIP (Li et al., 2022) takes a different ap-
proach by filtering out poor-quality data to further
optimize the performance of multi-modal tasks.

2.3 Long-Tail Classification

Some researchers in the field of computer vision fo-
cus on the long-tailed image classification problem.
Various datasets (Liu et al., 2019b; Cui et al., 2019)
are employed to assess the capability of learning
classification with limited samples. However, our
objective diverges from the traditional image clas-
sification. Rather than determining image labels,
we aim to determine whether an image match a
specific entity.

3 Problem Definition

Multi-Modal Knowledge Graph(MMKG) is a type
of knowledge graph in which nodes can be entities
or images and edges represent the relationships be-
tween them. The triplets in MMKG can be defined
as (e, has image, i), where e denotes the textual
entity, ¢ denotes its matching image, thus their rela-
tionship can be represented as has image.

To match images for entities in MMKG (i.e. en-
tity grounding in MMKG), existing methods typ-
ically follow a two-step process. First, they rank
the collected images based on their relevance to the

given entity, which can be modeled as a Ranking
task. To formalize this, given a corrupted triplet
(e, has image,?) in MMKG, this sub-task aims to
predict the removed images ¢. Then, they select
the top-n images and classify whether the image is
related to the given entity, which can be modeled
as a Classification task. To formalize this, each
triplet (e, has image, i) can be classified as True if
the image correctly matches the entity, otherwise
the triplet is classified as False.

4 Concept Selection

To figure out what concepts are suitable for con-
cept guidance, we explore the influence of employ-
ing various concepts in this section. An entity
often contains multiple concepts, and these con-
cepts have different granularities. As suggested by
(Wang et al., 2015), humans comprehend the world
by Basic-level Categorization (BLC), which refers
to a mid-level concept that people tend to use in
daily cognition.

Motivated by this, we compare the performance
under BLC concepts and all concepts. Specifi-
cally we treat concepts consisting of only one word
as Basic-level Categorization (BLC) concepts and
compare the performance of using BLC concepts
and using all concepts. The experiments in Sec 6
demonstrate how different concept selection strate-
gies impact the results.

5 Concept-guided Method

Incorporating concepts is not easy, in order to en-
sure both effectiveness and explainability, we de-
sign an two-stage framework, as illustrated in Fig-
ure 3.

During training, we calculate contrastive losses
at both entity and concept levels. Then we fine-
tune the model through this loss, and the fine-tuned
model is used in the inference stage. When infer-
encing, we use the trained model as a part of our
two-stage framework to predict. The framework
contains two modules Concept Integration and Evi-
dence Fusion. Concept Integration directly concate-
nates entities and concepts to enhance PVLM. The
prediction from Concept Integration can be used to
ranking and classification. Evidence Fusion mainly
processes those pairs that the predictions is not
true, because images of long-tail entities are rare
and valuable. Evidence Fusion can provide evi-
dence by separately predicting whether each con-
cept matches the image and the evidence is useful



for human verification.

5.1 Contrastive Learning on Two Levels

During the training of the Pre-trained Vision-
Language Model (PVLM), we designate a text as ¢
and an image as i. We first input both 7 and i into
the PVLM. The model then produces a prediction,
indicating the degree of alignment between ¢ and i,
as shown below:

logit = PV LM (t,1) (D
. . . 1
Sigmoid(logit) = T o osit ()

prediction = Sigmoid(logit)  (3)

In this equation, ¢ and i represent the text and
image inputs, respectively. The prediction value,
ranging between [0, 1], indicates the model’s pre-
diction of the match between the image and the
text. If the prediction exceeds 0.5, we consider it a
match; otherwise, it is considered a mismatch.

Next, we train the model using contrastive learn-
ing with in-batch negative samples. In each batch,
there are n samples, where n denotes the batch size.
Each sample is a pair (¢, i), representing a text and
an image. As illustrated in Figure 3, we formulate
contrastive samples at both entity and concept lev-
els. We let ¢; be the concatenation of the ¢-th entity
and all concepts of the entity as:

t; = e;,c1,C2. .. “4)

where e represents an entity, and ¢ represents a
concept.

At the entity level, we use py, ;, to represent the
prediction of the concatenation of the ¢-th concate-
nated text and the b-th image, and [, to repre-
sent the label whether it matches. Then, we obtain
Lentity in a batch:

Lentity = - Z Z BCE(la,b7Pta,ib) (5)

a=1 b=1

where BC'E is binary cross entropy function.
Similarly, we first obtain concepts related to a-
th entity e, using C'(e,). Assuming there are m
concepts of eq, pe, i, represents the prediction of
the k-th concept and the b-th image and Ly, xmxn
represents a matrix where L, is 1 if the b-th
entity has the k-th concept of the a-th entity; oth-
erwise, Lqyp 1 0. The concept 10ss Leoncept 108 is

calculated as:

L concept — (6)

n n len

(C(ea))
Z BCE(la,k,bvka,ib)
k=1

a=1 b=1

Finally, we update the model parameters by the
loss L below.

L= Lentity + Lconcept (N

5.2 Concept-Guided Image-Text Cognition

As illustrated in Figure 3, we design a two-stage
framework for incorporating concepts.

5.2.1 Concept Integration

In Concept Integration, we directly concatenate all
concepts c related to the entity e as ¢ and input the
concatenated text t and image i into the PVLM. For
example, take the entity “Jay Chou” associated
with concepts like “singer”, “actor”, and “direc-
tor”. The resulting concatenated text would be
“Jay Chou,singer,actorn,director”.

While Concept Integration improves perfor-
mance in experiments, it acts as a black-box model
lacking explanatory capability. Additionally, im-
ages of long-tail entities are scarce. The black-box
approach’s prediction lack credibility, potentially
causing errors or the loss of correct images. There-
fore, we introduce Evidence Fusion to re-judge
the samples whose prediction is less than 0.5 in
Concept Integration.

5.2.2 Evidence Fusion

In Concept Integration, we leverage the general-
ization capability of PVLM, enabling the model to
effectively recognize a subset of long-tail entities.
During Concept Integration, PVLM produces a pre-
diction value prediction. If prediction exceeds 0.5,
we regard the text and image matching. If predic-
tion is below 0.5, we proceed to Evidence Fusion,
where we apply our Evidence Fusion method for
re-judgement.

For a more comprehensive understanding of Ev-
idence Fusion, we define:

Definition. P() represents the probability of oc-
currence. E and H represent the evidence events
and the ultimate conclusion, respectively. P(E) and
P(H) are utilized to express the probability of £
and H. Additionally, P(E, H) is defined to evaluate
the influence of evidence E on conclusion H.
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Figure 3: Our framework. During training, we follow the way of contrastive learning to generate samples. In
inference, we initially concatenate entities and concepts and then input the concatenated text and images directly
into the PVLM in Concept Integration. If the prediction is False, proceed to Evidence Fusion. In Evidence Fusion,

we calculate the weighted average of predictions and contribution for each concept and image.

In our task, the evidence E refers to the image
matching a concept of the entity, while the conclu-
sion H is that the image matches the entity.

In Evidence Fusion, essentially, we fundamen-
tally transform the task of matching an entity and an
image into a comprehensive analysis of the match-
ing between concepts and the image. In Figure 3,
FE; represents an image matching a concept. For
example, we can define evidence E; as “The ob-
ject in the image is an animal” and evidence E5
as “The object in the image is an antelope”. Corre-
spondingly, H can be “The object in the image is
Klipspringer”. As a result, we directly utilize the
prediction of the image and the concept as P(E),
where each F; corresponds to a P(E;).

The influence of each evidence E on the conclu-
sion H is different. For example, “Be an antelope”
provides more information than “Be an animal” for
judging the image matching “Klipspringer” due to
its narrower scope. To measure this influence, we
define CF(E;, H) for each E; as follows:

1 1
log(num) _ ents if num > 10
P(EZ,H) — 1ients B (8)
1 if num < 10

where num denotes the number of entities which
contain this concept, ents denotes the number of all

the entities and the base of log for scaling is 10.
Fianlly, the P(H) is calculated as:

1 n
P(H) =~ P(E) P(E,H) ()
=1

In this equation, n denotes the number of concepts
of the entity. P(H) represents the probability of the
conclusion H and we utilize a threshold of 0.5 to
determine whether the conclusion H is classified
as True or False.

5.3 Human Verification

Because images of long-tail entities are very valu-
able, we introduce human verification to further
improve the recall rate. In our method, Evidence
Fusion repredicts images discarded in Concept In-
tegration and generates evidence as explanations.
Due to the rarity of visual representations of long-
tail entities on the Internet, it is challenging for an-
notators to directly determine if an image matches
a long-tail entity. However, the evidence generated
in Evidence Fusion effectively compensates for this
limitation. So we provide the evidence to aid hu-
man verification and the experiments highlights the
importance of evidence.



6 Experiments

Because of the lack of suitable long-tail entity
image-text pair datasets, we construct a new dataset
containing 25k long-tail entities. Based on this
dataset, we conduct two different downstream tasks
to prove the effectiveness of our framework. We
also show that human verification with evidence
can further improve the accuracy of entity ground-
ing.

6.1 Data Collection

Although there are some long-tail image classifica-
tion datasets (Liu et al., 2019b; Cui et al., 2019), all
of them have limitations. Because these datasets
are often assembled from the web and the image
resources are usually rich, the long-tail is for model
training rather than real scarcity. However, for our
research, we need entities with extremely scarce
images. To meet this requirement, we choose long-
tail entities from an actual Knowledge Graph (KG).
Because in a real KG, many long-tail entities face
difficulty finding corresponding images on the web,
creating a scenario where PVLMs have not encoun-
tered such data during pre-training.

Consequently, we first collect long-tail entities
from CN-DBpedia (Xu et al., 2017), a large-scale
structured knowledge graph with millions of enti-
ties. To ground these entities, we then use entity
linking (Chen et al., 2018) to collect relevant im-
ages from the internet. Finally, we obtain a dataset
with 25,166 image-text pairs of long-tail entities
and translate them to english.

6.1.1 Selection of Long-Tail Entities

For obtaining long-tail entities, we analyze the dis-
tribution of entity images and we find that entities
in CN-DBpedia have a property called viewtimes,
indicating their click frequency on the web.

To further investigate, we randomly select 100
entities from the knowledge graph and analyze
their viewtimes, as shown in Figure 1. We find
that there’s a positive correlation between an en-
tity’s viewtimes and the quantity of its images on
the internet. Therefore, we choose entities with
viewtimes under 100,000 as long-tail entities.

6.1.2 Grounding Long-tail Entities through
Entity Linking

To address the lack of images for long-tail entities,

we use the entity linking method to find appro-

priate images, as depicted in Figure 4. First, we

search for entity names from CN-DBpedia using

Precision(%) Recall(%) F1(%)
98 62 75

Table 1: The results of using the entity linking method
to determine 100 long-tail entity image-text pairs.

a search engine. Then, we apply short text entity
linking (Chen et al., 2018) to the caption of the
first search result image to link it with the relevant
entity. If the entity name is in the linking results,
we consider the image to be a match for the entity.
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Figure 4: The process of obtaining an accurate image
through short text entity linking (Chen et al., 2018). The
entity linking method can establish a connection be-
tween a piece of text and the entity within CN-DBpedia.
If the linking result includes the queried entity, the im-
age is matching.

We select 100 entities with viewtimes under
100,000, search for image using the Google search
engine, and manually annotate whether the first
image matches the entity. These images are used
to assess the entity linking method, with the re-
sults shown in Table 1. The results indicate that
our method achieves a high accuracy rate of 98%,
enabling us to create a dataset of image-text pairs
for long-tail entities with great precision.

We split the dataset into training, validation, and
test sets in an 8:1:1 ratio, yielding 20,132 training,
2,517 validation, and 2,517 test samples. Each
training sample follows the (entity, image, label)
format, with all labels set to 1. For the ranking
task, both validation and test sets contain samples
with an entity and 50 candidate images, only one
of which is correct. For the classification task, we
expand the validation and test sets with an equal
number of negative samples by replacing the image
in a sample with one from a different entity. As
a result, our classification dataset includes 20,132
training samples, 5,034 testing samples, and 5,034
validation samples.



Statistics Quantity
Entities 25166
BLC Concepts 1278
Concepts 10702
BLC Concepts per entity (Avg) 2.78
Concepts per entity (Avg) 4.45

Models MR MRR Hit@l Hit@5 Hit@10
CLIP 1322 27.10 1545 27.25 52.36
w/ Stagel 551 50.14 33.65  58.72 84.51
ALIGN 13.04 2772 1597  28.29 52.88
w/ Stagel 547 4981 33.73  57.37 84.74
BLIP 1421 21.09 8.34 21.37 49.30
w/ Stagel 7.04 38.00 19.39 46.60 7791

Table 2: Number of entities, number of concepts, and
average number of concepts per entity in the dataset.

6.1.3 Statistical Analysis

We use CN-Probase (Chen et al., 2019) to obtain
the concepts related to the entities. CN-Probase
is a comprehensive Chinese concept graph with
about 17 million entities, 270,000 concepts, and 33
million isa relations.

Then, we conduct a statistical analysis of the
entity concepts, with the results shown in Table 2.
There are about 10k concepts for 25k entities and
each entity owns 4.45 concepts. BLC concepts
accounts for only a small portion of concepts, but
on average there are nearly 3 BLC concepts per
entity.

6.2 Experiment Setup

We conduct our experiments using a single
RTX3090 GPU and set the batch size to 64 for
CLIP (Radford et al., 2021), 4 for ALIGN (Jia
et al., 2021), and 16 for BLIP (Li et al., 2022). We
use AdamW optimizer and set the learning rate as
le-5.

Maetrics For classification, we evaluate the per-
formance of our model using accuracy, precision,
recall and F1 score. For ranking, we use various
metrics, including Mean Reciprocal Rank (MRR),
Mean Rank (MR), and Hit@k metrics.

Models We conduct our framework on 3
PVLMs, including CLIP (Radford et al., 2021),
ALIGN (Jiaet al., 2021), and BLIP (Li et al., 2022).

6.3 Results

Concept Selection Table 5 shows the performance
of using different concepts in the classification task,
the results show that using all concepts is 1.4%
higher than using BLC concepts on f1, and us-
ing BLC concepts is 9.77% higher than using no
concepts on f1, indicating that (1) BLC concepts
are helpful for recognizing unfamiliar entities. (2)
Some fine-grained concepts are equally important
because PVLMs can capture the knowledge of fine-
grained concepts. Richer concepts have a better

Table 3: Stagel repersents Concept Integration in our
framework. We compared the effects of three PVLMs
on ranking tasks, and the results show the advantages of
our method.

Models Accuracy Precision Recall F1
CLIP 67.44 62.37 88.37 73.13
w/ Stagel 83.63 81.67 87.10 84.30
w/ Stagel+2 83.87 80.92 88.64 84.60
ALIGN 68.12 63.12 89.38 73.99
w/ Stagel 83.19 77.82 92.84 84.67
w/ Stagel+2 83.13 77.84 92.67 84.68
BLIP 68.55 61.58 91.30 71.30
w/ Stagel 79.41 76.61 84.70  80.45
w/ Stagel+2 79.42 76.42 85.10 80.53

Table 4: Results for the classification task. Stagel and
Stage2 repersents Concept Integration and Evidence
Fusion in our framework separately.

performance on enhancing PVLMs so that we use
all the concepts for other experiments.

Ranking Table 3 displays the performance of
various models, including CLIP (Radford et al.,
2021), ALIGN (Jia et al., 2021), and BLIP (Li
et al., 2022). We first compare results using PVLM
to evaluate only entity names and images, without
concepts. Then, we compare these with outcomes
from the concept-guided approach (using only Con-
cept Integration). Our method shows significant
improvements in all evaluation metrics, notably a
20.68% average increase in Mean Reciprocal Rank
(MRR). This highlights the effectiveness of our
concept-guided method in accurately ranking the
correct images.

Classification Table 4 reports performance
across three settings: without using concepts, us-
ing only Concept Integration, and employing both
Concept Integration and Evidence Fusion. The re-
sults show that incorporating concepts significantly
boosts effectiveness, leading to an average accu-
racy rate increase of around 14% and an average
F1 score increase of about 10%.

We observe that integrating concepts directly
aids PVLMs in aligning image and text modalities.



Concepts Accuracy Precision Recall F1

Not using concepts 67.44 62.37 88.37 73.13
BLC concepts 81.87 78.20 88.20  82.90
All concepts 83.87 80.92 88.64 84.60

Table 5: Not using concepts represents using only entity
names. Both BLC concepts and All concepts use

Methods Accuracy Precision Recall F1

ours 80.00 76.78 86.00 81.13
w/o Evidence 75.00 68.38 93.00 78.81
w/ Evidence 83.00 77.50 93.00 84.54

Table 6: In this table, ours represents the results from
our method. w/o Evidence and w/ Evidence respectively
represent the results after human verification without
evidence and with evidence.

In the pre-training phase, PVLMs often associate
images with a range of concepts related to entities,
extending beyond entity names alone. Concept
Integration improves the recall of knowledge ac-
quired during pre-training. However, relying solely
on this black box method is inadequate. Therefore,
we introduced an Evidence Fusion module, utiliz-
ing concepts as evidence. This explicit imitation of
the cognitive process maintains performance simi-
lar to the black-box method while crucially gener-
ating evidence, essential for human verification.

6.4 Explainability

Since images of long-tail entities are extremely
rare, we do not readily discard images deemed
incorrect by Concept Integration. Instead, we use
Evidence Fusion to provide explanations. These
explanations, consisting of evidence, significantly
aid human judgment, as shown in Figure 5.

As shown in Figure 5, two entities share the
name “Alexander Hamilton”. When aiming to
ground an image for the musician “Alexander
Hamilton” but accidentally retrieving an image of
the politician with the same name, evidence fusion
clarifies the mismatch. It indicates that while “The
person in the image is a man” is true, “The person
in the image is a musician” and “The person in the
image is an English actor” are false. The evidence
explains why the retrieved image does not match
the musician “Alexander Hamilton”.

6.5 Human Verification

Evidence not only makes predictions more credible
but also assists human annotators in verification.

Is this man the
musician Hamilton? |
do not recognize!

Alexander Hamilton Evidence
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Figure 5: The light green color signifies that the evi-
dence is true, indicating a match between the image and
“man”. However, the contribution of this evidence is rel-
atively low. On the other hand, the red color indicates
that the images do not correspond to “Musician” and
“British Actor”. These instances possess a higher discrim-
inatory power and thus appear darker. By aggregating
and comprehensively analyzing the aforementioned evi-

dence, we can infer that the image is mismatching.

Since it’s challenging for labelers to directly judge
image-text pairs of long-tail entities, we provide
explanations to assisit labelers.

Specifically, we select 200 image-text pairs with
a 1:1 ratio of positive and negative samples. First,
we use our two-stage method with fine-tuned CLIP
to classify samples and calculate f1 score. Concur-
rently, Evidence Fusion outputs evidence for sam-
ples judged as mismatching. To prevent discarding
potentially correct images, we hire annotators to re-
label samples deemed mismatched. Following this,
we recalculate the accuracy and F1 score and then
compare the performance after annotation, both
with and without evidence.

As Table 6 indicates, we engage five students as
annotators and report the average score. The results
demonstrate that the explainability provided by our
method is necessary. For long-tail entity grounding
tasks, human verification can be introduced when
necessary to ensure the recall rate.

7 Conclusion

To ground long-tail entities effectively in a multi-
modal knowledge graph (MMKG), we propose a
solution utilizing PVLMs with concept guidance.
In order to ensure both effectiveness and explain-
ability, we introduce a two-stage framework. We
define two tasks that simulate the real-world entity
grounding process, showcasing that our approach
enhances results and provides explainability.



Limitation

Throughout our method, we utilize concepts from
CN-Probase. Both the quantity and quality of these
concepts play a crucial role in determining the per-
formance of our method. Exploring alternative
concept generation methods can serve as a poten-
tial reaserch question for future research. The im-
provement of concepts in the future is expected to
contribute to the enhancement of our methods for
more accurate entity grounding.

Ethical Considerations

We provide details of our work to address potential
ethical considerations.

Use of Human Annotations All raters have
been paid above the local minimum wage and con-
sented to use the evaluation dataset for research
purposes in our paper. Human annotations are only
utilized in the early stages of methodological re-
search to assess the feasibility of the proposed so-
lution. To guarantee the security of all annotators
throughout the annotation process, they are justly
remunerated according to local standards. Human
annotations are not employed during the evaluation
of our method.

Use of Human Annotations The datasets used
in this paper are obtained from public sources and
anonymized to protect against any offensive infor-
mation.
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