
Under review as a conference paper at ICLR 2023

DSP: DYNAMIC SEMANTIC PROTOTYPE FOR GENERA-
TIVE ZERO-SHOT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Conditional generative models (e.g., generative adversarial network (GAN)) have
advanced zero-shot learning (ZSL). Studies on the generative ZSL methods typi-
cally produce class-specific visual features of unseen classes to mitigate the issue
of lacking unseen samples based on the predefined class semantic prototypes. As
these empirically predefined prototypes are not able to faithfully represent the
actual semantic prototypes of visual features (i.e., visual prototypes), existing
methods limit their ability to synthesize visual features that accurately represent
real features and prototypes. We formulate this phenomenon as a visual-semantic
domain shift problem. It prevents the conditional generative models from further
improving the ZSL performance. In this paper, we propose a dynamic seman-
tic prototype learning (DSP) method to align the empirical and actual semantic
prototypes for synthesizing accurate visual features. The alignment is conducted
by jointly refining semantic prototypes and visual features so that the conditional
generator synthesizes visual features which are close to the real ones. We utilize a
visual→semantic mapping network (V2SM) to map both the synthesized and real
features into the class semantic space. The V2SM benefits the generator to synthe-
size visual representations with rich semantics. The visual features supervise our
visual-oriented semantic prototype evolving network (VOPE) where the predefined
class semantic prototypes are iteratively evolved to become dynamic semantic pro-
totypes. Such prototypes are then fed back to the generative network as conditional
supervision. Finally, we enhance visual features by fusing the evolved semantic
prototypes into their corresponding visual features. Our extensive experiments on
three benchmark datasets show that our DSP improves existing generative ZSL
methods, e.g., the average improvements of the harmonic mean over four baselines
(e.g., CLSWGAN, f-VAEGAN, TF-VAEGAN and FREE) by 8.5%, 8.0% and 9.7%
on CUB, SUN and AWA2, respectively.

1 INTRODUCTION

Zero-shot learning (ZSL) recognizes the unseen classes, by transferring semantic knowledge from
some known classes to unknown ones. Recently, conditional generative models (e.g., generative
adversarial networks (GANs) Goodfellow et al. (2014) and variational autoencoder (VAE) Kingma &
Welling (2014)) have been successfully applied in ZSL and achieved promising performance. They
synthesize the class-specific images or visual features of unseen classes to mitigate the lack of unseen
samples based on the condition of the predefined class semantic prototypes Arora et al. (2018); Xian
et al. (2018; 2019b); Chen et al. (2021a;b). Because of the high quality synthesis of GAN, studies
arise to generate unseen samples in the CNN features to benefit ZSL Yan et al. (2021); Xian et al.
(2019b).

The class-specific unseen sample generations are conditioned on the semantic prototypes. However,
there is a limitation that the empirically predefined semantic prototypes are not able to faithfully
represent the actual semantic prototypes of visual features (i.e., visual prototypes). As shown in Fig.
1, i) the predefined class semantic prototypes are annotated by human, inevitably resulting in some
inaccurate annotations (e.g., the attribute “bill color orange” in Sample-2 in Fig. 1(a)), and ii) the
visual images are with multi-views, resulting in the phenomenon that some importantly annotated
attributes do not appear in the visual representations (e.g., the attribute “bill color orange” in Sample-3
and attribute “leg color black” in Sample-4 in Fig. 1(a)). That is, some visual representations of one
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Figure 1: Motivation illustration. (a) The fact that some visual representations of one class are
incorrectly mapped with their common predefined semantic prototype. (b) Existing generative
ZSL methods merely generate visual features guided by the predefined class semantic vectors that
fail to accurately represent the semantic prototypes of visual representations (also denoted visual
prototypes), resulting in the synthesized visual features far away from the corresponding real visual
features and real semantic prototypes. (c) Our DSP dynamically evolves the predefined semantic
prototypes as dynamic semantic prototypes that are closer to their visual prototype, enabling the
generator to synthesize reliable visual features and enrich semantic information into visual features
with the dynamic semantic prototypes. (Best viewed in color)

class are incorrectly mapped with their common predefined semantic prototype. As such, the visual
features synthesized by existing generative ZSL methods are far away from their corresponding real
visual features and visual prototypes (as shown in Fig. 1(b)), which heavily limits their classification
performance. We formulate this phenomenon as a problem of Visual-Semantic Domain Shift. There-
fore, it is essential to refine the empirical defined semantic prototype. Using an accurate prototype
benefits the generator supervision to improve the generative ZSL performance.

In light of these observations, we argue that the predefined semantic prototypes can be refined to
become consistent to the actual semantic prototypes (i.e., visual prototypes) according to the visual
information. As such, the refined semantic prototypes can capture the visual samples exactly and
act as an accurate conditional signal for the generator, enabling generative ZSL methods to learn a
desirable semantic→visual mapping (i.e., generator). Targeting this goal, in this paper, we propose
a dynamic semantic prototype learning (DSP) method to align the empirical and actual semantic
prototypes for synthesizing reliable visual features. The alignment is conducted by jointly refining
semantic prototypes and visual features so that the conditional generator synthesizes class-specific
visual features which are close to the real ones, as shown in Fig. 1(c). Accordingly, our DSP well
tackles the visual-semantic domain shift problem and advances the generative ZSL methods.

Specifically, DSP consists of a visual→semantic mapping network (V2SM) and visual-oriented
semantic prototype evolving network (VOPE). Cooperated with the generator, V2SM maps visual
features into the class semantic space, enabling the conditional generator to synthesize class-specific
visual samples with rich semantic information and convey visual information into the VOPE. Under
the supervision of visual information, VOPE iteratively evolves and refines the predefined class
semantic prototypes to become dynamic semantic prototypes, which are fed back to the generative
network as a conditional supervision to encourage the generator for reliable visual feature synthesis.
Finally, DSP concatenates the evolved semantic prototypes into visual features for enhancement,
enabling the visual features to be closer to their corresponding semantic prototypes and alleviate
the cross-dataset bias problem Chen et al. (2021a). Extensive experimental results demonstrate
consistent performance gains over the state-of-the-art generative ZSL methods on three challenging
benchmark datasets, i.e., CUB Welinder et al. (2010), SUN Patterson & Hays (2012) and AWA2 Xian
et al. (2019a). For example, the average improvements of harmonic mean over four baselines (e.g.,
CLSWGAN Xian et al. (2018), f-VAEGAN Xian et al. (2019b), TF-VAEGAN Narayan et al. (2020)
and FREE Chen et al. (2021a)) are 8.5%, 8.0% and 9.7% on CUB, SUN and AWA2, respectively.
Notably, our DSP is flexible and effective to be entailed in any generative ZSL method.
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2 RELATED WORK

Embedding-based Zero-Shot Learning. Embedding-based ZSL methods were popular early, they
learn a visual→semantic projection on seen classes that is further transferred to unseen classes Akata
et al. (2016; 2015); Huynh & Elhamifar (2020a); Chen et al. (2022); Huynh & Elhamifar (2020b),
Considering the cross-dataset bias between ImageNet and ZSL benchmarks Chen et al. (2021a),
embedding-based methods were recently proposed to focus on learning the region-based visual
features to enhance the holistic visual features1 using attention mechanism Yu et al. (2018); Zhu et al.
(2019); Xie et al. (2019); Huynh & Elhamifar (2020a); Xu et al. (2020). However, these methods
depends on the attribute features for attribute localization. As such, Wang et al. (2021) introduces
DPPN to iteratively enhance visual features using the category/visual prototype as supervision.
Differently, we jointly and mutually refine the visual features and semantic prototype, enabling
significant visual-semantic interactions in generative ZSL.

Generative Zero-Shot Learning. Since embedding-based methods learn the ZSL classifier only
on seen classes, inevitably resulting in the models overfitting seen classes. To tackle this challenge,
generative ZSL methods employ the generative models (e.g., VAE and GAN) to generate the unseen
visual features for data augmentation Arora et al. (2018); Xian et al. (2018); Shen et al. (2020), ZSL
is then converted to a supervised classification task further. As such, the generative ZSL methods
have shown significant performance and become very popular recently. However, there are lots
of challenges that need to be tackled in generative ZSL. To improve the optimization process of
ZSL methods, Skorokhodov & Elhoseiny (2021) introduces class normalization for the ZSL task.
Çetin et al. (2022) introduces closed-form sample probing for generative ZSL. To avoid ZSL models
overfitting to seen classes, Liu et al. (2021) introduces an isometric propagation network to strengthen
the relation between classes within the visual and semantic spaces. Chou et al. (2021) designs
a generative scheme to simultaneously generate virtual class labels and their visual features. To
enhance the visual feature in generative ZSL methods, Felix et al. (2018), Narayan et al. (2020)
and Chen et al. (2021a) refine the holistic visual features by learning a visual→semantic projection,
which encourages conditional generator to synthesize visual features with more semantic information.
Orthogonal to these methods, we propose a novel dynamic semantic prototype learning method to
tackle the visual-semantic domain shift problem and advance generative ZSL further.

Visual-Semantic Domain Shift vs Projection Domain Shift. ZSL learns a projection between
visual and semantic feature space on seen classes, and then the projection is transferred to the
unseen classes for classification. However, data samples of the seen classes (source domain) and
unseen classes (target domain) are disjoint, unrelated for some classes, and their distributions can
be different, resulting in a large domain shift Fu et al. (2015); Wan et al. (2019); Pourpanah et al.
(2022). This challenge is the well-known problem of projection domain shift. To tackle this challenge,
inductive-based methods incorporate additional constraints or information from the seen classes
Zhang et al. (2019); Jia et al. (2020); Wang et al. (2021). Besides that, several transductive-based
methods have been developed to alleviate the projection domain shift problem Fu et al. (2015); Xu
et al. (2017); Wan et al. (2019). We should note that the visual-semantic domain shift is different from
the projection domain shift. Visual-semantic domain shift denotes that the two domains (visual and
semantic domains) share the same categories and only the joint distribution of input and output differs
between the training and test stages. In contrast, the projection domain shift can be directly observed
in terms of the projection shift, rather than the feature distribution shift Pourpanah et al. (2022).
As shown in Fig. 1, we demonstrate that visual-semantic domain shift is a bottleneck challenge in
generative ZSL and is neglected by existing methods.

3 DYNAMIC SEMANTIC PROTOTYPE LEARNING

Problem Setting: The problem setting of ZSL is formulated as follows. Assume that we have seen
class data Ds = {(xsi , ysi )} with Cs seen classes, where xsi ∈ X denotes the i-th visual feature with
2048-dim extracted from a CNN backbone (e.g., ResNet101 He et al. (2016)), and ysi ∈ Ys is the
corresponding class label. Note that Ds is divided into training set Ds

tr and test set Ds
te according to

Xian et al. (2019a). Another set of unseen classes Cu is Du
te = {(xui , yui )}, where xui ∈ X are the

visual features of unseen classes, and yui ∈ Yu are the corresponding labels. A set of class semantic
vectors (semantic values annotated by humans according to attributes) of the class c ∈ Cs ∪ Cu with

1Holistic visual features directly extract from a CNN backbone (e.g., ResNet101 He et al. (2016)) pretrained
on ImageNet.
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Figure 2: Framework of the dynamic semantic prototype learning (DSP). Traning Phase (Top): DSP
includes a visual→semantic mapping network (V2SM) and a visual-oriented semantic prototype
evolving network (VOPE). V2SM maps visual features into the class semantic space, enabling the
conditional generator synthesizes visual samples with rich semantic information and conducts visual
information into the VOPE. VOPE iteratively evolves the predefined class semantic prototype under
the supervision of visual information. Our DSP is jointly trained with the generative model. Inference
Phase (Bottom):DSP extracts the evolved semantic prototypes z̃s/u for seen/unseen classes using
the pretrained VOPE, and take the dynamic semantic prototypes

...
z u = αzu + (1− α)z̃u as input of

the conditional generator to synthesize class-specific visual feature samples x̂usyn for unseen classes.
Then, DSP concatenates visual features with their corresponding z̃s/u to enhance visual feature
representations, which are utilized for classification.

|A| attributes, denoted as zc = [zc(1), . . . , zc(A)]
> ∈ R|A|. In the conventional zero-shot learning

(CZSL) setting, we aim to learn a classifier for unseen classes, i.e., fCZSL : X → Y U . In contrast,
we aim to learn a classifier for seen and unseen classes in the generalized zero-shot learning (GZSL)
setting, i.e., fGZSL : X → Y U ∪ Y S .

In the following, we first briefly introduce the generative ZSL model. Then, we specifically demon-
strate our dynamic semantic prototype learning method, its framework is shown in Fig. 2).

3.1 GENERATIVE ZSL MODEL

In our work, we focus on generative ZSL Xian et al. (2018; 2019b). The main goal of generative ZSL
is to learn a conditional generator G: Z ×O → X̃ , which takes the class semantic vectors/prototypes
z ∈ Z and Gaussian noise vectors o ∈ O as inputs, and synthesizes the class-specific visual feature
samples x̃ ∈ X̃ . Once such a conditional generative model is learned, we can take it to synthesizes a
large number of class-specific visual feature samples for unseen classes based on the semantic vector
zu, and the final classifier over y ∈ Y can be obtained using any standard supervised classifier (e.g.,
softmax).

3.2 VISUAL→SEMANTIC MAPPING NETWORK

To encourage the conditional generator (G) to synthesize class-specific visual samples with enriched
semantic information and conduct visual information for evolving the semantic prototype, we design
a Visual→Semantic Mapping Network (V2SM) that is entailed on the G of the conditional generative
model. V2SM is a multilayer perceptron (MLP), which has a residual block to avoid too much
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information loss when mapping visual features of 2048-dim to semantic features of |A|-dim. The
network details are presented in Appendix A. Specifically, V2SM maps the real/synthesized visual
features x/x̂ as semantic vectors ẑreal/ẑsyn, respectively, formulated as:

ẑreal = V2SM(x) or ẑsyn = V2SM(x̂), (1)

where ẑreal ∪ ẑsyn = ẑ, and ẑ ∈ R|A|. We can find that the conditional generator (i.e.,
semantic→visual mapping) and V2SM conduct a semantic cycle network, i.e., z → G(o, z) = x̂
and x̂→ V2SM(x̂) = ẑ, where o is a random Gaussian noise vector with |A|-dim. As such, V2SM
encourages the conditional generator to synthesize visual features with more semantic information.
To enable V2SM to map visual features into semantic space effectively, we employ the semantic
cycle-consistency loss (LScyc) during training. This loss can be written as:

LScyc = E [‖ẑreal − zk‖1] + E [‖ẑsyn − zk‖1] , (2)
where zk is the dynamic semantic prototype learned by VOPE at the k-th step, which will be
introduced in the next subsection. This is different from TF-VAEGAN Narayan et al. (2020) and
FREE Chen et al. (2021a) that use the predefined semantic prototypes as semantic supervision in
their semantic decoders. Since the dynamic semantic prototype is more close to its corresponding
visual prototype, it provides more accurate supervision signals for the V2SM and generative models.
As such, DSP can significantly improve the performance of TF-VAEGAN and FREE .

We find that z, ẑ and zk are closely affected by each other. ẑ = V2SM(x) is mapped from the visual
features in V2SM and used to convey visual signal to supervise VOPE, enabling z to be progressively
evolved as dynamic semantic prototype zk = αz+(1−α)VOPE(zk−1) (zk = z when k=0). As such,
zk IS closer to its corresponding visual prototype, and serves as the accurate condition information
that encourages generator to synthesize reliable visual features.

3.3 VISUAL-ORIENTED SEMANTIC PROTOTYPE EVOLVING NETWORK

We further introduce a visual-oriented semantic prototype evolving network (VOPE) to refine the
semantic prototype under the supervision of visual information. As such, the dynamic semantic
prototype can be closer to its corresponding visual prototype and the visual-semantic domain shift
can be alleviated, as shown in Fig. 1(c). Considering that the predefined semantic prototypes have
rich accurate information annotated by humans, we progressively update it progressively based on
the visual information guidance. Targeting this goal, VOPE is designed as an MLP network with a
residual block that acts as a routing gate mechanism implemented by channel attention, which evolves
the specific attribute value of semantic prototypes according to the corresponding visual information.
The network details are presented in Appendix B.

Specifically, VOPE iteratively evolves the initialized semantic prototype zk (zk is the predefined
semantic prototype z annotated by humans when k=0) to another semantic prototype space z̃,
formulated as:

z̃k+1 = VOPE(zk) (3)
To encourages z̃k+1 evolved with visual supervision information, we conduct the visual signals from
V2SM, e.g., ẑ. We formulate ẑ as supervision using a visual-to-semantic loss:

LV 2S = E [1− cosine(ẑ, z̃k+1)] . (4)
Here, we use cosine similarity as a weak constraint for VOPE to conduct the information transfer from
the visual domain to the semantic domain. The reason is that we do not desire the visual information
to be over strong, helping the semantic prototype evolve progressively. Simultaneously, we also use
the semantic reconstruction loss to constrain VOPE, defined as:

LS2S = E [‖z̃k+1 − zk‖1] , (5)
where zk+1 is the dynamic semantic prototype at the k + 1-th step, formulated as follows:

zk+1 = αzk + (1− α)z̃k+1, (6)
where α is a combination coefficient for fusing the dynamic semantic prototype zk evolved in the
previous step and the mapped semantic vectors z̃k+1 of the current step in VOPE. Thus, zk is
dynamically evolved for each training step and fed back to VOPE as input. Considering that the
empirically predefined semantic prototype provides rich semantic priori, α is set to relatively large
(i.e., α = 0.9) for preserving its original information. Such a setting i) encourages the dynamic
semantic prototype to evolve progressively under the supervision of visual information, and ii)
facilitates model optimization .
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3.4 OPTIMIZATION

Our DSP is jointly optimized with the generative model, e.g., CLSWGAN Xian et al. (2018), f-
VAEGAN Xian et al. (2019b), TF-VAEGAN Narayan et al. (2020) and FREE Chen et al. (2021a),
with the following objective function:

Ltotal = LG + λScycLScyc + λV 2SLV 2S + λS2SLS2S , (7)

where LG is the loss of generative model, λScyc, λV 2S , λS2S are the weights that control the
importance of the related loss terms. Since λScyc and λS2S are semantic reconstruction losses, we
set λScyc = λS2S . With the similar measurement loss terms and model components designed for
DSP, we empirically observe that our model is robust and easy to train on various ZSL benchmarks
when it is entailed on various generative models.

3.5 INFERENCE PHASE

Synthesizing Visual Features for Unseen Classes: After training, we first take the pre-trained
VOPE to update the predefined semantic prototypes to be dynamic semantic prototypes for unseen
classes using Eq. 3 and Eq. 6, i.e.,

...
z u = αzu + (1 − α)VOPE(zu). Then, we take the dynamic

semantic prototypes of unseen classes as conditional supervision in generator (G) to synthesize
class-specific visual features for unseen classes:

x̂usyn = G(o,
...
z u), (8)

where o is a random Gaussian noise vector with |A|-dim.

Enhancing Visual Features for All Classes: Finally, we concatenate visual features (including the
real visual features of seen classes and real/synthesized visual features of unseen classes) and their
corresponding evolved semantic prototypes z̃ = VOPE(z) to enhance them, enabling the visual
features to be closer to their corresponding semantic prototypes and alleviate the cross-dataset bias
Chen et al. (2021a). It is formulated as:

Seen Classes : x̃str = xstr ⊕ z̃s; x̃ste = xste ⊕ z̃s, (9)
Unseen Classes : x̃usyn = x̂usyn ⊕ z̃u; x̃ute = xute ⊕ z̃u, (10)

where z̃s ∪ z̃u = z̃, xtr is the real visual feature in the training set Ds
tr, xte is the real visual feature

in the test sets Ds
te and Du

te. As such, the enhanced visual features are closer to their corresponding
semantic prototypes, and they are more discriminative as the cross-dataset bias is alleviated. These
enhanced visual features are used for classification later.

ZSL Classification: We employ x̃str and x̃usyn to lean a classifier (e.g., softmax), i.e., fczsl : X̃ →
Ys ∪Yu or fgzsl : X̃ → Ys ∪Yu. Once the classifier is trained, we use x̃ste and x̃ute to test the model
further. Note that our DSP is an inductive method as we do not use the real visual features of unseen
classes for model optimization.

4 EXPERIMENTS

Datasets. We evaluate the effectiveness of our DSP on three well-known ZSL benchmark datasets,
i.e., two fine-grained datasets ( CUB Welinder et al. (2010), SUN Patterson & Hays (2012) and
FLO Nilsback & Zisserman (2008)) and one coarse-grained dataset (AWA2 Xian et al. (2019a)).
CUB consists of 11,788 images of 200 bird classes (seen/unseen classes = 150/50) captured by
312 attributes. SUN includes 14,340 images of 717 scene classes (seen/unseen classes = 645/72)
described by 102 attributes. AWA2 contains 37,322 images of 50 animal classes (seen/unseen classes
= 40/10) captured by 85 attributes. FLO inludes 8,189 images of 102 flower classes (seen/unseen
classes = 82/20) captured by 1024 attributes.

Implementation Details. We use the training splits proposed in Xian et al. (2019a). Meanwhile,
the visual features of images (input size 224×224) are extracted from the 2048-dimensional top-layer
pooling units of a CNN backbone (i.e., ResNet-101 He et al. (2016)) pre-trained on ImageNet. The
V2SM and VOPE are MLPs with residual blocks, network details of which can be found in Appendix
A and Appendix B, respectively. Since f-VAEGAN Xian et al. (2019b) is a popular generative
ZSL method, we take it as a baseline and entail our DSP on it for conducting the ablation study,
qualitative experiment and hyper-parameter analysis. Following Xian et al. (2019a), we also use the
same validation split on each dataset to conduct the hyperparameter setting. We synthesize 150, 800
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Table 1: Compared our DSP with the state-of-the-arts on CUB, SUN, AWA2 and FLO benchmark
datasets in the GZSL setting. ♣ denotes embedding-based methods, while ♠ denotes generative
methods. The best and second-best results are marked in Red and Blue, respectively.

Methods CUB SUN AWA2 FLO
U S H U S H U S H U S H

♣
SGMA Zhu et al. (2019) 36.7 71.3 48.5 – – – 37.6 87.1 52.5 – – –
AREN Xie et al. (2019) 38.9 78.7 52.1 19.0 38.8 25.5 15.6 92.9 26.7 – – –
APN Xu et al. (2020) 65.3 69.3 67.2 41.9 34.0 37.6 56.5 78.0 65.5 – – –
DAZLE Huynh & Elhamifar (2020a) 56.7 59.6 58.1 52.3 24.3 33.2 60.3 75.7 67.1 – – –
CN Skorokhodov & Elhoseiny (2021) 49.9 50.7 50.3 44.7 41.6 43.1 60.2 77.1 67.6 – – –
I2DFormer Naeem et al. (2022) 35.3 57.6 43.8 – – – 66.8 76.8 71.5 35.8 91.9 51.5

♠

f-VAEGAN Xian et al. (2019b) 48.7 58.0 52.9 45.1 38.0 41.3 57.6 70.6 63.5 56.8 74.9 64.6
TF-VAEGAN Narayan et al. (2020) 53.7 61.9 57.5 48.5 37.2 42.1 58.7 76.1 66.3 62.5 84.1 71.7
LsrGAN Vyas et al. (2020) 48.1 59.1 53.0 44.8 37.7 40.9 54.6 74.6 63.0 – – –
AGZSL Chou et al. (2021) 48.3 58.9 53.1 29.9 40.2 34.3 65.1 78.9 71.3 – – –
FREE Chen et al. (2021a) 54.9 60.8 57.7 47.4 37.2 41.7 60.4 75.4 67.1 67.4 84.5 75.0
GCM-CF Yue et al. (2021) 61.0 59.7 60.3 47.9 37.8 42.2 60.4 75.1 67.0 – – –
HSVA Chen et al. (2021b) 52.7 58.3 55.3 48.6 39.0 43.3 59.3 76.6 66.8 – – –
FREE+ESZSL Çetin et al. (2022) 51.6 60.4 55.7 48.2 36.5 41.5 51.3 78.0 61.8 65.6 82.2 72.9
TF-VAEGAN+ESZSL Çetin et al. (2022) 51.1 63.3 56.6 44.0 39.7 41.7 55.2 74.7 63.5 63.5 83.2 72.1
f-VAEGAN Xian et al. (2019b)+DSP 62.5 73.1 67.4 57.7 41.3 48.1 63.7 88.8 74.2 66.2 86.9 75.2

and 3400 visual features per unseen class to train the classifier for SUN, CUB and AWA2 datasets,
respectively. The combination coefficient for updating semantic prototypes is set to 0.9 for all datasets.
The loss weight of λScyc = λS2S is set to 0.1, 0.01 and 0.001 for CUB, SUN and AWA2, respectively.
The loss weight of λV 2S is set to 0.6/0.6 and 1.0 for CUB/AWA2 and SUN, respectively. The specific
hyper-parameter settings of our DSP entailed on other baselines are in Appendix C.

Evaluation Protocols. During testing (ZSL classification), we follow the unified evaluation pro-
tocols proposed in Xian et al. (2019a). We calculate the top-1 accuracy of the unseen class for
the CZSL setting (denoted as Acc). In the GZSL setting, we measure the top-1 accuracy on
seen and unseen classes, denoted as S and U , respectively. Their harmonic mean (defined as
H = (2× S ×U)/(S +U)) are a better protocols in the GZSL setting. As such, we typically take
the H to discuss the performance of ZSL methods in the GZSL setting.

4.1 EXPERIMENTAL RESULTS

Comparing with the SOTA. We first compare our f-VAEGAN+DSP with the state-of-the-art meth-
ods in the GZSL setting. Table 1 shows the performance of various ZSL methods, including non-
generative methods (e.g., SGMA Zhu et al. (2019), AREN Xie et al. (2019), APN Xu et al. (2020),
DAZLE Huynh & Elhamifar (2020a), CN Skorokhodov & Elhoseiny (2021), I2DFormer Naeem
et al. (2022)) and generative methods (e.g., f-VAEGAN Xian et al. (2019b), TF-VAEGAN Narayan
et al. (2020), AGZSL Chou et al. (2021), GCM-CF Chou et al. (2021), HSVA Chen et al. (2021b),
ESZSL Çetin et al. (2022)). Compared to the popular non-generative methods, our f-VAEGAN+DSP
achieves the best results on all datasets, i.e., CUB (H = 67.4), SUN (H = 48.1), AWA2 (H = 74.2)
and FLO (H = 75.2). Thus, our DSP effectively helps generative ZSL methods beat the embedding-
based methods. Our method also achieves the best results with significant improvements compared to
the other generative methods. For instance, our f-VAEGAN+DSP outperforms the latest generative
method (i.e., TF-VAEGAN+ESZSL Çetin et al. (2022)) by a large-margin, resulting in the improve-
ments of harmonic mean by 10.8%, 6.4% and 10.7% on CUB, SUN and AWA2, respectively. These
results consistently demonstrate the superiority and great potential of our DSP in generative ZSL.

Table 2: Compared our method with the gener-
ative ZSL methods in the CZSL setting.

Methods CUB SUN AWA2
acc acc acc

CLSWGAN Xian et al. (2018) 57.3 60.8 68.2
f-VAEGAN Xian et al. (2019b) 61.0 64.7 71.1
CADA-VAE Schönfeld et al. (2019) 59.8 61.7 63.0
Composer Narayan et al. (2020) 69.4 62.6 71.5
FREE Chen et al. (2021a) 64.8 65.0 68.9
HSVA Chen et al. (2021b) 62.8 63.8 70.6
f-VAEGAN + DSP 62.8 68.6 71.6

Furthermore, we also compare our DSP with the
popular generative methods in the CZSL setting,
as shown in Table 2. f-VAEGAN+DSP achieves
competitive performances of harmonic mean with
62.8, 68.6 and 71.6 on CUB, SUN and AWA2, re-
spectively. These results indicate that DSP also
effectively tackles the semantic-visual domain shift
problem of the generative ZSL in the CZSL setting.

Ablation Study. Based on the baseline (i.e., f-VAEGAN Xian et al. (2019b)), we conduct ablation
studies to evaluate the effectiveness of our DPS in terms of the LScyc, LV 2S , LS2S , semantic
prototype evolution (i.e., Eq. 6) and enhancing visual feature (i.e., Eq. 9 and Eq. 10). Our results
are shown in Table 3. When DSP is without the constraints of LScyc, its performance is dropped
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Table 3: Ablation studies for different components of DSP. The baseline is the popular generative
ZSL model, i.e., f-VAEGAN Xian et al. (2019b).

Method CUB SUN
U S H U S H

baseline 48.7 58.0 52.9 45.1 38.0 41.3
baseline+DSP (w/o LScyc) 60.0 63.9 61.9 57.4 38.4 46.0
baseline+DSP (w/o LS2S) 61.9 69.6 65.5 58.1 37.2 45.4
baseline+DSP (w/o LV 2S) 58.8 61.0 59.9 55.1 34.8 42.7
baseline+DSP (w/o Eq. 6) 54.4 55.3 54.8 50.3 36.2 42.1
baseline+DSP (w/o Eq. 9 and Eq. 10) 52.4 53.9 53.1 54.2 35.0 42.5
baseline+DSP (full) 62.5 73.1 67.4 57.7 41.3 48.1

as the generator in the generative model lacks semantic cycle-consistency supervision. Meanwhile,
the performance of DSP is dropped slightly without the optimization of LS2S . In contrast, if DSP
can not be evolved under the supervision of visual information using LV 2S , DSP achieves very poor
results compared to its full model, i.e., the harmonic mean drops by 7.5% and 5.4% on CUB and
SUN, respectively. These results demonstrate that evolving semantic prototypes according to the
visual information is effective for refining the predefined semantic prototypes aligned to the visual
prototypes, helping DSP tackle the visual-semantic domain shift problem in generative ZSL. Notably,
if DSP does not dynamically evolve the predefined semantic prototypes for generative learning,
i.e., DSP w/o Eq. 6, it almost loses its effectiveness and only achieves little improvement for the
baseline with additional constraints (i.e., LScyc, LV 2S and LS2S). For instance, its performance of
harmonic mean drops by 12.6% and 6.0% on CUB and SUN, respectively, compared to its full model.
Enhancing visual feature also effectively improves the performance of DSP. These results show that
the dynamic semantic prototype is effective to tackle the visual-semantic domain shift.

Table 4: Evaluation of DSP with multiple popular generative ZSL models on three benchmark
datasets. Each row pair shows the effect of adding DSP to a particular generative ZSL model.

Methods CUB SUN AWA2
U S H U S H U S H

CLSWGAN Xian et al. (2018) 43.7 57.7 49.7 42.6 36.6 39.4 57.9 61.4 59.6
CLSWGAN Xian et al. (2018)+DSP 51.4 63.8 56.9↑7.2 48.3 43.0 45.5↑6.1 60.0 86.0 70.7↑11.1

f-VAEGAN Xian et al. (2019b) 48.7 58.0 52.9 45.1 38.0 41.3 57.6 70.6 63.5
f-VAEGAN Xian et al. (2019b)+DSP 62.5 73.1 67.4↑14.5 57.7 41.3 48.1↑6.8 63.7 88.8 74.2↑10.7

TF-VAEGAN Narayan et al. (2020) 53.7 61.9 57.5 48.5 37.2 42.1 58.7 76.1 66.3
TF-VAEGAN Narayan et al. (2020)+DSP 58.7 67.4 62.8↑5.3 60.3 45.3 51.7↑9.6 65.6 87.1 74.8↑8.5

FREE Chen et al. (2021a) 54.9 60.8 57.7 47.4 37.2 41.7 60.4 75.4 67.1
FREE Chen et al. (2021a)+DSP 60.9 68.7 64.6↑6.9 60.3 44.1 51.0↑9.3 65.3 89.2 75.4↑8.3

Generative ZSL Methods with DSP. To evaluate our dynamic semantic prototype learning method
as a general technique to improve generative model, we entail it into four recent popular gen-
erative ZSL methods, i.e., CLSWGAN Xian et al. (2018), f-VAEGAN Xian et al. (2019b), TF-
VAEGAN Narayan et al. (2020) and FREE Chen et al. (2021a). We use the official repositories shared
by respective authors of these works to implement experimental results. Since TF-VAEGAN and
FREE have the semantic decoder, we only add the VOPE with LV 2S and S2S to enable them to learn
dynamic semantic prototypes. The specific hyper-parameter settings of our DSP entailed on these
baselines are in Appendix C. As shown in Table 4, DSP consistently improves the performances of
all baselines on all benchmark datasets by a large-margin. For example, the average performance
gains of harmonic mean are 8.5%, 8.0% and 9.7% on CUB, SUN and AWA2, respectively. These
results demonstrate that i) the visual-semantic domain shift is an important bottleneck challenge
and neglected by existing generative ZSL, and ii) our dynamic semantic prototype learning method
effectively tackles this problem.

Qualitative Performance. To intuitively show the effectiveness of our DSP, we qualitatively inves-
tigate the improvements over baseline (i.e., f-VAEGAN Xian et al. (2019b)). We conduct t-SNE
visualization Maaten & Hinton (2008) of the real/synthesized visual features learned by the f-
VAEGAN and f-VAEGAN+DSP on 10 classes randomly selected from CUB. As shown in Fig.
3(Left), the visual features synthesized by f-VAEGAN Xian et al. (2019b) are far away from their
corresponding real visual features, caused by the visual-semantic domain shift problem. Meanwhile,
since the cross-dataset bias problem Chen et al. (2021a), the real visual features directly extracted
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Figure 3: t-SNE visualizations of visual features learned by the f-VAEGAN Xian et al. (2019b) (Left)
and f-VAEGAN+DSP (Right). The 10 colors denote 10 different classes randomly selected from
CUB. The “◦” and “?” indicate the real and synthesized visual features, respectively. The t-SNE
visualizations on SUN and AWA2 are in Appendix D. (Best viewed in color)
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Figure 4: The effects of (a) combination coefficient α, (b) synthesizing number of per unseen classes
Nsyn, (c) loss weights λScyc and (d) loss weights λV 2S . We take CUB as an example.

from the CNN backbone are poor quality. In contrast, our DSP dynamically evolves the predefined
semantic prototypes to accurately represent the visual representations, enabling the generator to
synthesize reliable visual features for all classes (as shown in Fig. 3(Right)). Furthermore, DSP
enhances the real/synthesize visual features by enriching semantic information into visual represen-
tations. As such, DSP obtains significant performance gains over f-VAEGAN Xian et al. (2019b),
i.e., considerable improvements of harmonic mean with 14.5%, 6.8% and 10.7% on CUB, SUN and
AWA2, respectively.

Hyper-Parameter Analysis. We conduct extensive experiments to investigate the effects of various
hyper-parameter on CUB, i.e., combination coefficient α in Eq. 6, synthesizing number of per
unseen classes Nsyn, the loss weights λScyc and λV 2S . Since LScyc and LS2S are the semantic
reconstruction loss, we set λScyc = λS2S and take one loss weight into the analysis. From the results
in Fig. 4(a), DSP is not insensitive to the combination coefficient for dynamic semantic prototypes
evolution, and DSP achieves better results with a relatively large value of α (i.e., 0.9). The reason
is that the dynamic semantic prototypes can adapt to the evolution according to the visual-semantic
interactions during optimization. The results shown in Fig. 4(b) indicate our DSP is robust to the
Nsyn when Nsyn is not set too large. Results in Fig. 4(c) and Fig. 4(d) show the best effects of
our f-VAEGAN+DSP can be achieved when λScyc and λV 2S is set to 0.1 and 0.6, respectively.
Additionally, we find that λV 2S should be set to larger than λScyc and λS2S . This is because the
dynamic semantic prototypes should mainly depend on the visual information during evolution.
Overall, our model is robust to all hyper-parameters and easy to optimize.

5 CONCLUSION

In this work, we are the first to discuss that the predefined semantic prototype results in the visual-
semantic domain shift problem in generative ZSL. To tackle this problem and advance generative
ZSL, we propose a dynamic semantic prototype learning method, which jointly and mutually refines
the semantic prototypes and visual features enabling the generator to synthesize reliable visual
features. Our DSP is plug-and-play to be entailed on various baselines and consistently achieves large-
margin improvements on three ZSL benchmark datasets. We believe that our work will facilitate the
development of stronger zero-shot systems and motivate their deployment in real-world applications.
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Reproducibility statement. We discuss the problem of visual-semantic domain shift in generative
ZSL and propose dynamic semantic prototype learning to tackle it. We intuitively demonstrate that it
is an important bottleneck problem in generative ZSL. We also clearly introduce our model details,
implementation details and hyper-parameter settings, which we use in our experiments. We will
provide our source code on a public repository once our paper is accepted.
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APPENDIX
Appendix organization:

• Appendix A: Network details of V2SM.
• Appendix B: Network details of VOPE.
• Appendix C: The hyper-parameter settings of our DSP entailed on four baselines.
• Appendix D: t-SNE Visualization on SUN and AWA2.

A NEWORK DETAILS OF V2SM

As shown in Fig. 5, the network of V2SM is an MLP with a residual block, which avoids too much
information loss when mapping the visual feature of 2048-dim into semantic space with |A|-dim.
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Figure 5: Network details of V2SM.

B NEWORK DETAILS OF VOPE

As shown in Fig. 6, the network of VOPE is an MLP with a residual block (fusing with Hardamad
Product). Essentially, the network of VOPE is a routing gate mechanism implemented by channel
attention, which is effective in selectively evolving the specific attribute value of semantic prototypes
according to the corresponding visual information. As such, the predefined semantic prototypes can
be progressively evolved and aligned to the visual prototypes.
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Figure 6: Network details of VOPE.

C THE HYPER-PARAMETER SETTINGS OF OUR DSP ENTAILED ON VARIOUS
BASELINES

We present the hyper-parameter settings of our DSP entailed on various baselines (i.e.,
CLSWGAN Xian et al. (2018), f-VAEGAN Xian et al. (2019b), TF-VAEGAN Narayan et al. (2020)
and FREE Chen et al. (2021a)) on CUB, SUN and AWA2. Including the synthesizing number of
per unseen classes Nsyn, the loss weights λScyc, λV 2S and combination coefficient α in Eq. 6. We
empirically observe that our DSP is robust and easy to train when it is entailed on various generative
models. Based on these hyper-parameter settings, our DSP achieves significant performance gains
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Table 5: The hyper-parameter settings of our DSP entailed on various baselines (i.e., CLSWGAN Xian
et al. (2018), f-VAEGAN Xian et al. (2019b), TF-VAEGAN Narayan et al. (2020) and FREE Chen
et al. (2021a)) on CUB, SUN and AWA2. Including the synthesizing number of per unseen classes
Nsyn, the loss weights λScyc, λV 2S and combination coefficient α in Eq. 6.

Methods CUB SUN AWA2
Nsyn λScyc λV 2S α Nsyn λScyc λV 2S α Nsyn λScyc λV 2S α

clswGAN Xian et al. (2018) + DSP 300 0.15 1.0 0.9 300 0.005 1.0 0.9 3400 0.1 1.0 0.9
f-VAEGAN Xian et al. (2019b)+DSP 800 0.1 0.6 0.9 150 0.01 1.0 0.9 3400 0.001 0.6 0.9
TF-VAEGAN Narayan et al. (2020) + DSP 400 0.01 1.0 0.9 500 0.05 1.5 0.9 5300 0.09 1.4 0.9
FREE Chen et al. (2021a) + DSP 600 0.1 0.6 0.9 150 0.01 1.0 0.9 4000 0.001 2.0 0.9

over the various popular generative models on all datasets. For instance, the average performance
gains of harmonic mean are 8.5%, 8.0% and 9.7% on CUB, SUN and AWA2, respectively. Please
refer to Table 4.

D T-SNE VISUALIZATION ON SUN AND AWA2

As shown in Fig. 7, t-SNE visualizations of visual features learned by the f-VAEGAN Xian et al.
(2019b) (Left) and f-VAEGAN+DSP (Right) on SUN and AWA2. Analogously, the visual features
generated by f-VAEGAN are also far away from their corresponding real ones, and the discrimination
of these real/synthesized visual features is undesirable. In contrast, our DSP help f-VAEGAN
synthesize visual features close to their corresponding real ones and enhance these real visual features.
As such, our DSP significantly improves the performances of f-VAEGAN Xian et al. (2019b) on
SUN and AWA2.
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Figure 7: t-SNE visualizations of visual features learned by the f-VAEGAN Xian et al. (2019b) (Left)
and f-VAEGAN+DSP (Right) on (a) SUN and (b) AWA2. The “◦” and “?” indicate the real and
synthesized visual features, respectively. (Best viewed in color)
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