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Abstract

We establish finite-sample guarantees for efficient proper learning of bounded-1

degree polytrees, a rich class of high-dimensional probability distributions and a2

subclass of Bayesian networks, a widely-studied type of graphical models. Very re-3

cently, Bhattacharyya et al. [2021] obtained finite-sample guarantees for recovering4

tree-structured Bayesian networks, i.e., 1-polytrees. We considerably extend their5

results by providing an efficient algorithm which learns d-polytrees in polynomial6

time and sample complexity when the in-degree d is constant, provided that the un-7

derlying undirected graph (skeleton) is known. We complement our algorithm with8

an information-theoretic lower bound, showing that the dependence of our sample9

complexity is nearly tight in both the dimension and target accuracy parameters.10

1 Introduction11

Distribution learning, or density estimation, is the task of obtaining a good estimate of some unknown12

underlying probability distribution P from observational samples. Understanding which classes of13

distributions could be or could not be learnt efficiently is a fundamental problem in both computer14

science and statistics, where efficiency is measured in terms of sample (data) and computational15

(time) complexities.16

Bayesian networks (or Bayes nets in short) represent a class of high-dimensional distributions that17

can be explicitly described by how each variable is be generated sequentially in a directed fashion.18

Being interpretable, Bayes nets have been used to model beliefs in a wide variety of domains (e.g.19

see [Jensen and Nielsen, 2007, Koller and Friedman, 2009] and references therein). A fundamental20

problem in computational learning theory is to identify families of Bayes nets which can be learned21

efficiently from observational data.22

Formally, a Bayes net is a probability distribution P , defined over some directed acyclic graphs (DAG)23

G = (V,E) on |V | = n nodes that factorizes according to G (i.e. Markov with respect to G) in the24

following sense: P (v1, . . . , vn) =
∏

v1,...,vn
P (v | π(v)), where π(v) ⊆ V are the parents of v in G.25

While it is well-known that given the DAG (structure) of a Bayes net, there exists sample-efficient26

algorithms that output good hypotheses [Dasgupta, 1997, Bhattacharyya et al., 2020], there is no27

known computationally efficient algorithms for obtaining the DAG of a Bayes net. In fact, it has long28

been understood that Bayes net structure learning is computationally expensive, in various general29

settings [Chickering et al., 2004]. However, these hardness results fall short when the goal is learning30

the distribution P in the probabilistically approximately correct (PAC) [Valiant, 1984] sense (with31

respect to, say, KL divergence or total variation distance), rather than trying to recover an exact graph32

from the Markov equivalence class of P .33

Polytrees are a subclass of Bayesian networks where the undirected graph underlying the DAG is34

a forest, i.e., there is no cycle for the undirected version of the DAG; a polytree with maximum35

in-degree d is also known as a d-polytree. With an infinite number of samples, one can recover the36
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DAG of a non-degenerate polytree in the equivalence class with the Chow–Liu algorithm [Chow and37

Liu, 1968] and some additional conditional independence tests [Rebane and Pearl, 1988]. However,38

this algorithm does not work in the finite sample regime. The only known result for learning polytrees39

with finite sample guarantees is for 1-polytrees [Bhattacharyya et al., 2021]. Furthermore, in the40

agnostic setting, when the goal is to find the closest polytree distribution to an arbitrary distribution41

P , the learning problem becomes NP-hard [Dasgupta, 1999].42

In this work, we investigate what happens when the given distribution is a d-polytree, for d > 1. Are43

d-polytrees computationally hard to learn in the realizable PAC-learning setting? One motivation for44

studying polytrees is due to a recent work of Gao and Aragam [2021] which shows that polytrees45

are easier to learn than general Bayes nets due to the underlying graph being a tree, allowing typical46

causal assumptions such as faithfulness to be dropped when designing efficient learning algorithms.47

Contributions. Our main contribution is a sample-efficient algorithm for proper Bayes net learning48

in the realizable setting, when provided with the ground truth skeleton (i.e., the underlying forest).49

Crucially, our result does not require any distributional assumptions such as strong faithfulness, etc.50

Theorem 1. There exists an algorithm which, given m samples from a polytree P over Σn, accuracy51

parameter ε > 0, failure probability δ, as well as its maximum in-degree d and the explicit description52

of the ground truth skeleton of P , outputs a d-polytree P̂ such that dKL(P ∥ P̂ ) ≤ ε with success53

probability at least 1− δ, as long as54

m = Ω̃

(
n · |Σ|d+1

ε
log

1

δ

)
.

Moreover, the algorithm runs in time polynomial in m, |Σ|d, and nd.55

We remark that our result holds when even given only an upper bound on the true in-degree d.56

In particular, our result provides, for constant |Σ|, d, an upper bound of Õ(n/ε) on the sample57

complexity of learning O(1)-polytrees. Note that this dependence on the dimension n and the58

accuracy parameter ε are optimal, up to logarithmic factors: indeed, we establish in Theorem 15 an59

Ω(n/ε) sample complexity lower bound for this question, even for d = 2 and |Σ| = 2.160

We also state sufficient conditions on the distribution that enable recovery of the ground truth skeleton.61

Informally, we require that the data processing inequality hold in a strong sense with respect to the62

edges in the skeleton graph. Under these conditions, combining with our main result in Theorem 1,63

we obtain a polynomial-time PAC algorithm to learn bounded-degree polytrees from samples.64

Other related work. Structure learning of Bayesian networks is an old problem in machine learning65

and statistics that has been intensively studied; see, for example, Chapter 18 of Koller and Friedman66

[2009]. Many of the early approaches required faithfulness, a condition which permits learning67

of the Markov equivalence class, e.g. Spirtes and Glymour [1991], Chickering [2002], Friedman68

et al. [2013]. Finite sample complexity of such algorithms assuming faithfulness-like conditions has69

also been studied, e.g. Friedman and Yakhini [1996]. An alternate line of more modern work has70

considered various other distributional assumptions that permits for efficient learning, e.g., Chickering71

and Meek [2002], Hoyer et al. [2008], Shimizu et al. [2006], Peters and Bühlmann [2014], Ghoshal72

and Honorio [2017], Park and Raskutti [2017], Aragam et al. [2019], with the latter three also showing73

analyzing finite sample complexity. Specifically for polytrees, Rebane and Pearl [1988], Geiger et al.74

[1990] studied recovery of the DAG for polytrees under the infinite sample regime. Gao and Aragam75

[2021] studied the more general problem of learning Bayes nets, and their sufficient conditions76

simplified in the setting of polytrees. Their approach emphasize more on the exact recovery, and thus77

the sample complexity has to depend on the minimum gap of some key mutual information terms. In78

contrast, we allow the algorithm to make mistakes when certain mutual information terms are too79

small to detect for the given sample complexity budget and achieve a PAC-type guarantee. As such,80

once the underlying skeleton is discovered, our sample complexity only depends on the d, n, ε and81

not on any distributional parameters.82

There are existing works on Bayes net learning with tight bounds in total variation distance, with a83

focus on sample complexity (and not necessarily computational efficiency); for instance, [Canonne84

et al., 2020]. Acharya et al. [2018] consider the problem of learning (in TV distance) a bounded-degree85

causal Bayesian network from interventions, assuming the underlying DAG is known.86

1We remark that [Bhattacharyya et al., 2021, Theorem 7.6] implies an Ω(n
ε
log n

ε
) sample complexity lower

bound for the analogous question when the skeleton is unknown and d = 1.

2



Outline of paper. We begin with some preliminary notions and related work in Section 2. Section 387

then shows how to recover a polytree close in KL divergence, assuming knowledge of the skeleton88

and maximum in-degree. Section 4 gives sufficient conditions to recover the underlying skeleton from89

samples, while Section 5 provides our sample complexity lower bound. We conclude in Section 690

with some open directions and defer some full proofs to the appendix.91

2 Preliminaries and tools from previous work92

2.1 Preliminary notions and notation93

We write the disjoint union as ∪̇. For any set A, let |A| denotes its size. We use hats to denote94

estimated quantities, e.g., Î(X;Y ) will be the estimated mutual information of I(X;Y ). We employ95

the standard asymptotic notation O(·), Ω(·) Θ(·), and write Õ(·) to omit polylogarithmic factors.96

Throughout, we identify probability distributions over discrete sets with their probability mass97

functions (pmf). We use d∗ to denote the true maximum in-degree of the underlying polytree.98

2.2 Probability distribution definitions99

We begin by defining KL divergence and squared Hellinger distances for a pair of discrete distributions100

with the same support.101

Definition 2 (KL divergence and squared Hellinger distance). For distributions P,Q defined on102

the same discrete support X , their KL divergence and squared Hellinger distances are defined as103

dKL(P ∥ Q) =
∑

x∈X P (x) log P (x)
Q(x) and d2H(P,Q) = 1−

∑
x∈X

√
P (x) ·Q(x) respectively.104

Abusing notation, for a distribution P on variables X = {X1, . . . , Xn}, we write PS to mean the105

projection of P to the subset of variables S ⊆ X and PG to mean the projection of P onto a graph G.106

More specifically, we have PG(x1, . . . , xn) =
∏

x∈X P (x | πG(x)) where πG(x) are the parents of x107

in G. Note that PG is the closest distribution2 on G to P in dKL, i.e. PG = argminQ∈G dKL(P ∥ Q).108

By Chow and Liu [1968], we also know that109

dKL(P, PG) = −
n∑

i=1

I(Xi;πG(Xi))−H(PX) +

n∑
i=1

H(PXi
) , (1)

where H is the entropy function. Note that only the first term depends on the graph structure of G.110

By maximizing the sum of mutual information (the negation of the first term in (1)), we can obtain an111

ε-approximated graph G such that dKL(P ∥ PG) ≤ ε. In the case of tree-structured distributions, this112

can be efficiently solved by using any maximum spanning tree algorithm; a natural generalization to113

bounded degree bayes nets remains open due to the hardness of solving the underlying optimization114

problem [Höffgen, 1993]. If any valid topological ordering of the target Bayes net P is present, then115

an efficient greedy approach is able to solve the problem.116

Definition 3 ((Conditional) Mutual Information). Given a distribution P , the mutual information of117

two random variables X and Y , supported on X and Y respectively, is defined as118

I(X;Y ) =
∑

x∈X ,y∈Y
P (x, y) · log

(
P (x, y)

P (x) · P (y)

)
.

Conditioning on a third random variable Z, supported on Z , the conditional mutual information is119

defined as:120

I(X;Y | Z) =
∑

x∈X ,y∈Y,z∈Z
P (x, y, z) · log

(
P (x, y, z) · P (z)

P (x, z) · P (y, z)

)
.

121

By adapting a known testing result from [Bhattacharyya et al., 2021, Theorem 1.3], we can obtain the122

following corollary, which we will use. We provide the full derivation in the supplementary materials.123

2One can verify this using Bhattacharyya et al. [2021, Lemma 3.3]: For any distribution Q defined on graph
G, we have dKL(P ∥ Q)− dKL(P ∥ PG) =

∑
v∈V P (πG(v)) · dKL(P (v | πG(v)) ∥ Q(v | πG(v))) ≥ 0.
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Corollary 4 (Conditional Mutual Information Tester, adapted from [Bhattacharyya et al., 2021, Theo-124

rem 1.3]). Fix any ε > 0. Let (X,Y, Z) be three random variables over ΣX ,ΣY ,ΣZ respectively.125

Given the empirical distribution (X̂, Ŷ , Ẑ) over a size N sample of (X,Y, Z), there exists a universal126

constant 0 < C < 1 so that for any127

N ≥ Θ

(
|ΣX | · |ΣY | · |ΣZ |

ε
· log |ΣX | · |ΣY | · |ΣZ |

δ
· log |ΣX | · |ΣY | · |ΣZ | · log(1/δ)

ε

)
,

the following statements hold with probability 1− δ:128

(1) If I(X;Y | Z) = 0, then Î(X;Y | Z) < C · ε.129

(2) If Î(X;Y | Z) ≥ C · ε, then I(X;Y | Z) > 0.130

(3) If Î(X;Y | Z) ≤ C · ε, then I(X;Y | Z) < ε.131

Unconditional statements involving I(X;Y ) and Î(X;Y ) hold similarly by choosing |ΣZ | = 1.132

2.3 Graph definitions133

Let G = (V,E) be a graph on |V | = n vertices and |E| nodes where adjacencies are denoted with134

dashes, e.g. u− v. For any vertex v ∈ V , we use N(v) ⊆ V \ {v} to denote the neighbors of v and135

d(v) = |N(v)| to denote v’s degree. An undirected cycle is a sequence of k ≥ 3 vertices such that136

v1 − v2 − . . .− vk − v1. For any subset E′ ⊆ E of edges, we say that the graph H = (V,E′) is the137

edge-induced subgraph of G with respect to E′.138

For oriented graphs, we use arrows to denote directed edges, e.g. u→ v. We denote π(v) to denote139

the parents of v and din(v) to denote v’s incoming degree. An interesting directed subgraph on three140

vertices is the v-structure, where u→ v ← w and u\−w; we say that v is the center of the v-structure.141

In this work, we study a generalized higher-degree version of v-structures: we define the notion142

of deg-ℓ v-structure as a node v with ℓ ≥ 2 parents u1, u2 . . . , uℓ. We say that a deg-ℓ v-structure143

is said to be ε-strong if we can reliably identify them in the finite sample regime. In our context,144

it means that for all k ∈ [ℓ], I(uk; {u1, u2 . . . , uℓ} \ uk | v) ≥ C · ε, for the universal constant145

0 < C < 1 appearing in Corollary 4. A directed acyclic graph (DAG) is a fully oriented graph146

without any directed cycles (a sequence of k ≥ 3 vertices such that v1 → v2 → . . .→ vk → v1) and147

are commonly used to represent the conditional dependencies of a Bayes net.148

For any partially directed graph, an acyclic completion or consistent extension refers to an assignment149

of edge directions to unoriented edges such that the resulting fully directed graph has no directed150

cycles; we say that a DAG G is consistent with a partially directed graph H if G is an acyclic151

completion of H . Meek rules are a set of 4 edge orientation rules that are sound and complete with152

respect to any given set of arcs that has a consistent DAG extension Meek [1995]. Given any edge153

orientation information, one can always repeatedly apply Meek rules till a fixed point to maximize154

the number of oriented arcs. One particular orientation rule (Meek R1) orients b → c whenever155

a partially oriented graph has the configuration a → b − c and a\−c so as to avoid forming a new156

v-structure of the form a→ b← c. In the same spirit, we define Meek R1(d∗) to orient all incident157

unoriented edges away from v whenever v already has d∗ parents in a partially oriented graph.158

The skeleton skel(G) of a graph G refers to the resulting undirected graph after unorienting all edges159

in G, e.g. see Fig. 1. A graph G is a polytree if skel(G) is a forest. For d ≥ 1, a polytree G is a160

d-polytree if all vertices in G have at most d parents. Without loss of generality, by picking the161

minimal d, we may assume that d-polytrees have a vertex with d parents. When we freely orient a162

forest, we pick arbitrary root nodes in the connected components and orient to form a 1-polytree.163

3 Recovering a good orientation given a skeleton and degree bound164

In this section, we describe and analyze an algorithm for estimating a probability distribution P that165

is defined on a d∗-polytree G∗. We assume that we are given skel(G∗) and d as input.166

Note that for some distributions there could be more than one ground truth graph, e.g. when the167

Markov equivalence class has multiple graphs. In such situations, for analysis purposes, we are free168

to choose any graph that P is Markov with respect to. As the mutual information scores3 are the169

same for any graphs that P is Markov with respect to, the choice of G∗ does not matter here.170

3The mutual information score is the sum of the mutual information terms as in Eq. (1).
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(b) skel(G∗)

Figure 1: Running polytree example with d∗ = 3 where I(a; b, c) = I(b; a, c) = I(c; a, b) = 0 due to
the deg-3 v-structure centered at d. Since I(a; f | d) = 0, Corollary 4 tells us that Î(a; f | d) ≤ C · ε.
Thus, we will not detect a→ d→ f erroneously as a strong deg-2 v-structure a→ d← f .

3.1 Algorithm171

At any point in the algorithm, let us define the following sets. Let N(v) be the set of all neighbors of v172

in skel(G∗). Let N in(v) ⊆ N(v) be the current set of incoming neighbors of v. Let Nout(v) ⊆ N(v)173

be the current set of outgoing neighbors of v. Let Nun(v) ⊆ N(v) be the current set of unoriented174

neighbors of v. That is,175

N(v) = N in(v) ∪̇ Nout(v) ∪̇ Nun(v)

Algorithm 1 Algorithm for known skeleton and max in-degree.

Input: Skeleton skel(G∗) = (V,E), max in-degree d∗, threshold ε > 0, universal constant C
Output: A complete orientation of skel(G∗)

1: Run Phase 1: Orient strong v-structures (Algorithm 3) ▷ O(nd∗
) time

2: Run Phase 2: Local search and Meek R1(d∗) (Algorithm 4) ▷ O(n3) time
3: Run Phase 3: Freely orient remaining unoriented edges (Algorithm 5) ▷ O(n) time via DFS
4: return Ĝ

There are three phases to our algorithm. In Phase 1, we orient strong v-structures. In Phase 2, we176

locally check if an edge is forced to orient one way or another to avoid incurring too much error. In177

Phase 3, we orient the remaining unoriented edges as a 1-polytree. Since the remaining edges were178

not forced, we may orient the remaining edges in an arbitrary direction (while not incurring “too179

much error”) as long as the final incoming degrees of any vertex does not increase by more than 1.180

Subroutine Orient (Algorithm 2) performs the necessary updates when we orient u− v to u→ v.181

Algorithm 2 Orient: Subroutine to orient edges

Input: Vertices u and v where u− v is currently unoriented
1: Orient u− v as u→ v.
2: Update N in(v) to N in(v) ∪ {u} and Nun(v) to Nun(v) \ {u}.
3: Update Nout(u) to Nout(u) ∪ {v} and Nun(u) to Nun(u) \ {v}.

3.2 Analysis182

Observe that we performO(nd∗
) (conditional) mutual information tests in Algorithm 1. The following183

lemma (Lemma 5) ensures us that all our tests will behave as expected with sufficient samples. As184

such, in the rest of our analysis, we analyze under the assumption that our tests are correct.185

Lemma 5. Suppose all variables in the Bayesian network has alphabet Σ. For ε′ > 0, with186

m ∈ O
(
|Σ|d∗+1

ε′
· log |Σ|

d∗+1 · nd∗

δ
· log |Σ|

d∗+1 · log(nd∗
/δ)

ε′

)
empirical samples, O(nd∗

) statements of the following forms, where X and Y are variable sets of187

size |X ∪̇ Y| ≤ d and Z is possibly ∅, all succeed with probability at least 1− δ:188
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(1) If I(X;Y | Z) = 0, then Î(X;Y | Z) < C · ε′,189

(2) If Î(X;Y | Z) ≥ C · ε′, then I(X;Y | Z) > 0,190

(3) If Î(X;Y | Z) ≤ C · ε′, then I(X;Y | Z) < ε′.191

Proof. Use Corollary 4 and apply union bound over O(nd) tests.192

Recall that π(v) is the set of true parents of v in G∗. Let H be the forest induced by the remaining193

unoriented edges after phase 2. Let Ĝ be returned graph of the algorithm 1. Let us denote the final194

N in(v) as πin(v) at the end of Phase 2, just before freely orienting, i.e. the vertices pointing into v195

in Ĝ \H . Let πun(v) = π(v) \ πin(v) be the set of ground truth parents that are not identified in196

Phase 1. Since the algorithm does not make mistakes for orientations in Ĝ \H (Lemma 6), all edges197

of in πun(v) will be unoriented.198

Lemma 6. Any oriented arc in Ĝ \H is a ground truth orientation. That is, any vertex parent set199

in Ĝ \H is a subset of π(v), i.e. πin(v) ⊆ π(v), and N in(v) at any time during the algorithm will200

have N in(v) ⊆ πin(v).201

db

a

c

f

e

g

h

i

j

Figure 2: Suppose we have the following partially oriented graph in the execution of Algorithm 4
(after Phase 1). Since N in(d) = {a, b}, we will check the edge orientations of c−d and f −d. Since
I(f ; {a, b} | d) = 0, we will have Î(f ; {a, b} | d) ≤ ε, so we will not erroneously orient f → d.
Meanwhile, I(c; {a, b}) = 0, we will have Î(c; {a, b}) ≤ ε, so we will not erroneously orient d→ c.

Let π̂(v) be the proposed parents of v output by Algorithm 1. The KL divergence between the true202

distribution and our output distribution is essentially
∑

v∈V I(v;π(v)) −
∑

v∈V I(v; π̂(v)) as the203

structure independent terms will cancel out.204

To get a bound on the KL divergence, we will upper bound
∑

v∈V I(v;π(v)) and lower bound205 ∑
v∈V I(v; π̂(v)). To upper bound I(v;π(v)) in terms of πin(v) ⊆ π(v) and I(v;u) for u ∈206

πun(v), we use Lemma 8 which relies on repeated applications of Lemma 7. To lower bound207 ∑
v∈V I(v; π̂(v)), we use Lemma 9.208

Lemma 7. Fix any vertex v, any S ⊆ πun(v), and any S′ ⊆ πin(v). If S ̸= ∅, then there exists a209

vertex u ∈ S ∪ S′ with210

I(v;S ∪ S′) ≤ I(v;S ∪ S′ \ {u}) + I(v;u) + ε . (2)

Lemma 8. For any vertex v with πin(v), we can show that211

I(v;π(v)) ≤ ε · |π(v)|+ I(v;πin(v)) +
∑

u∈πun(v)

I(v;u) .

Algorithm 3 Phase 1: Orient strong v-structures

1: d← d∗

2: while d ≥ 2 do
3: for v ∈ V do ▷ Arbitrary order
4: Let Nd ⊆ 2N(v) be the set of d neighbors of v ▷ |Nd| =

(|N(v)|
d

)
5: for S ∈ Nd s.t. |S| = d, |S ∪N in(v)| ≤ d∗, and Î(u;S \ {u} | v) ≥ C · ε, ∀u ∈ S do
6: for u ∈ S do ▷ Strong deg-d v-structure
7: ORIENT(u, v)
8: d← d− 1 ▷ Decrement degree bound
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Algorithm 4 Phase 2: Local search and Meek R1(d∗)

1: do ▷ O(n) iterations, O(n2) time per iteration
2: if ∃v ∈ V such that |N in(v)| = d∗ and Nun(v) ̸= ∅ then ▷ Meek R1(d∗)
3: Orient all unoriented arcs away from v
4: Update Nout(v)← Nout(v) ∪Nun(v); Nun(v)← ∅
5: for every node v ∈ V do
6: if 1 ≤ |N in(v)| < d∗ then
7: for every u ∈ Nun(v) do
8: if Î(u;N in(v) | v) > C · ε then ORIENT(u, v)
9: else if Î(u;N in(v)) > C · ε then ORIENT(v, u)

10: while new edges are being oriented

Algorithm 5 Phase 3: Freely orient remaining unoriented edges

1: Let H be the forest induced by the remaining unoriented edges.
2: Freely orient H as a 1-polytree (i.e. maximum in-degree in H is 1).
3: Let Ĝ be the combination of the oriented H and the previously oriented arcs.
4: return Ĝ

In Phase 3, we increase the incoming edges to any vertex by at most one. The following lemma tells212

us that we lose at most4 an additive ε error per vertex.213

Lemma 9. Consider an arbitrary vertex v with πin(v) at the start of Phase 3. If Phase 3 orients214

u→ v for some u− v ∈ H , then215

I(v;πin(v) ∪ {u}) ≥ I(v;πin(v)) + I(v;u)− ε.

By using Lemma 8 and Lemma 9, we can show our desired KL divergence bound (Lemma 10).216

Lemma 10. Let π(v) be the true parents of v. Let π̂(v) be the proposed parents of v output by our217

algorithm. Then,218 ∑
v∈V

I(v;π(v))−
∑
v∈V

I(v; π̂(v)) ≤ n · (d∗ + 1) · ε .

With these results in hand, we are ready to establish our main theorem:219

Proof of Theorem 1. We first combine Lemma 10 and Lemma 5 with ε′ = ε
2n·(d∗+1) in order to220

obtain an orientation Ĝ which is close to G∗. Now, recall that there exist efficient algorithms for221

estimating the parameters of a Bayes net with in-degree-d (note that this includes d-polytrees) P222

once a close-enough graph Ĝ is recovered [Dasgupta, 1997, Bhattacharyya et al., 2020], with sample223

complexity Õ(|Σ|dn/ε). Denote the final output P̂Ĝ, a distribution that is estimated using the224

conditional probabilities implied by Ĝ. One can bound the KL divergences as follows:225

dKL(P ∥ PĜ)− dKL(P ∥ PG∗) ≤ ε/2 and dKL(P ∥ P̂Ĝ)− dKL(P ∥ PĜ) ≤ ε/2 .

Thus, we see that226

dKL(P ∥ P̂Ĝ) ≤ ε+ dKL(P ∥ PG∗) = ε .

227

4 Skeleton assumption228

In this section, we present a set of sufficient assumptions (Assumption 11) under which the Chow-Liu229

algorithm will recover the true skeleton even while with finite samples.230

4Orienting “freely” could also increase the mutual information score and this is considering the worst case.
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(b) Ĝ under an arbitrary orienta-
tion of H; see Fig. 4 for more.
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(c) Ĝ \H

Figure 3: Consider the partially oriented graph before the final phase, where H is the edge-induced
subgraph on the unoriented edges in red. Since d∗ = 3 is known, we can conclude that g → i was
oriented due to a local search step and not due to Meek R1(3). We have the following sets before
the final phase: πin(c) = {a, b}, πin(g) = {f, j}, πi = {g}, πun(d) = {c}, πun(f) = {d, e}, and
πun(e) = {h}. With respect to the chosen orientation of H and the notation in Lemma 10, we have
A = {c, d, f, e, h}, ac = d, ad = f , af = e, and ae = h. Observe that the πun’s and a’s are two
different ways to refer to the set of red edges of H .

db

a

c

f

e

g

h

i

j

(a) c as the root

db

a

c

f

e

g

h

i

j

(b) d as the root

db

a

c

f

e

g

h

i

j

(c) f as the root

db

a

c

f

e

g

h

i

j

(d) e as the root

db

a

c

f

e

g

h

i

j

(e) h as the root

Figure 4: The five different possible orientations of H . Observe that the ground truth orientation of
these edges is inconsistent with all five orientations shown here.

Assumption 11. For any given distribution P , there exists a constant εP > 0 such that:231

(1) For every pair of nodes u and v, if there exists a path u− · · · − v of length greater than 2 in G∗,232

then then I(u; v) + 3 · εP ≤ I(a; b) for every pair of adjacent vertices a− b in the path.233

(2) For every pair of directly connected nodes a− b in G∗, I(a; b) ≥ 3 · εP .234

Suppose there is a large enough gap of εP between edges in G∗ and edges outside of G∗. Then, with235

O(1/ε2P ) samples, each estimated mutual information Î(a; b) will be sufficiently close to the true236

mutual information I(a; b). Thus, running the Chow-Liu algorithm (which is essentially maximum237

spanning tree on the estimated mutual information on each pair of vertices) recovers skel(G∗).238

Lemma 12. Under Assumption 11, running the Chow-Liu algorithm on the m-sample empirical239

estimates {Î(u; v)}u,v∈V recovers a ground truth skeleton with high probability when m ≥ Ω( logn
ε2P

).240

Combining Lemma 12 with our algorithm Algorithm 1, one can learn a polytree that is ε-close in KL241

with Õ
(
max

{
log(n)
ε2P

, 2d·n
ε

})
samples, where εP depends on the distribution P .242

5 Lower bound243

In this section, we show that Ω(n/ε) samples are necessary even when a known skeleton is provided.244

For constant in-degree d, this shows that our proposed algorithm in Section 3 is sample-optimal up to245

logarithmic factors.246

We first begin by showing a lower bound of Ω(1/ε) on a graph with three vertices, even when the247

skeleton is given. Let G1 be X → Z → Y and G2 be X → Z ← Y , such that skel(G1) = skel(G2)248

is X − Z − Y . Now define P1 and P2 as follows:249
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P1 :



X ∼ Bern(1/2)

Z =

{
X w.p. 1/2
Bern(1/2) w.p. 1/2

Y =

{
Z w.p.

√
ε

Bern(1/2) w.p. 1−
√
ε

P2 :



X ∼ Bern(1/2)

Y ∼ Bern(1/2)

Z =


X w.p. 1/2
Y w.p.

√
ε

Bern(1/2) w.p. 1/2−
√
ε

(3)

The intuition is that we keep the edge X → Z “roughly the same” and tweak the edge Y −Z between250

the distributions. We define Pi,G as projecting Pi onto G. One can check that the following holds251

(see Supplemental for the detailed calculations):252

Lemma 13. Let G1 be X → Z → Y and G2 be X → Z ← Y , such that skel(G1) = skel(G2) is253

X − Z − Y . With respect to Eq. (3), we have the following:254

1. d2H(P1, P2) ∈ O(ε)255

2. dKL(P1 ∥ P1,G1
) = 0 and dKL(P1 ∥ P1,G2

) ∈ Ω(ε)256

3. dKL(P2 ∥ P2,G2) = 0 and dKL(P2 ∥ P2,G1) ∈ Ω(ε)257

Our hardness result (Lemma 14) is obtained by reducing the problem of finding an ε-close graph258

orientation of X −Z−Y to the problem of testing whether the samples are drawn from P1 or P2: To259

ensure ε-closeness in the graph orientation, one has to correctly determine whether the samples come260

from P1 or P2 and then pick G1 or G2 respectively. However, it is well-known that distinguishing two261

distributions whose squared Hellinger distance is ε requires Ω(1/ε) samples (see, e.g., [Bar-Yossef,262

2002, Theorem 4.7]).263

Lemma 14. Even when given skel(G∗), it takes Ω(1/ε) samples to learn an ε-close graph orientation264

of G∗ for distributions on {0, 1}3.265

Using the above construction as a gadget, we can obtain a dependency on n in our lower bound by266

constructing n/3 independent copies of the above gadget, à la proof strategy of Bhattacharyya et al.267

[2021, Theorem 7.6]. For some constant c > 0, we know that a constant 1/c fraction of the gadgets268

will incur an error or more than ε/n if less than cn/ε samples are used. The desired result then269

follows from the tensorization of KL divergence, i.e., dKL (
∏

i Pi ∥
∏

i Qi) =
∑

i dKL(Pi ∥ Qi).270

Theorem 15. Even when given skel(G∗), it takes Ω(n/ε) samples to learn an ε-close graph orienta-271

tion of G∗ for distributions on {0, 1}n.272

6 Conclusion273

In this work, we studied the problem of estimating a distribution defined on a d-polytree P with graph274

structure G∗ using finite observational samples. We designed and analyzed an efficient algorithm that275

produces an estimate P̂ such that dKL(P ∥ P̂ ) ≤ ε assuming access to skel(G∗) and d. The skeleton276

skel(G∗) is recoverable under Assumption 11 and we show that there is an inherent hardness in the277

learning problem even under the assumption that skel(G∗) is given. For constant d, our hardness278

result shows that our proposed algorithm is sample-optimal up to logarithmic factors.279

An interesting open question is whether one can extend the hardness result to arbitrary d ≥ 1, or280

design more efficient learning algorithms for d-polytrees.281
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