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ABSTRACT

The asymptotically precise estimation of the generalization of kernel methods has
recently received attention due to the parallels between neural networks and their
associated kernels. However, prior works derive such estimates for training by
kernel ridge regression (KRR), whereas neural networks are typically trained with
gradient descent (GD). In the present work, we consider the training of kernels
with a family of spectral algorithms specified by profile h(λ), and including KRR
and GD as special cases. Then, we derive the generalization error as a func-
tional of learning profile h(λ) for two data models: high-dimensional Gaussian
and low-dimensional translation-invariant model. Under power-law assumptions
on the spectrum of the kernel and target, we use our framework to (i) give full loss
asymptotics for both noisy and noiseless observations (ii) show that the loss lo-
calizes on certain spectral scales, giving a new perspective on the KRR saturation
phenomenon (iii) conjecture, and demonstrate for the considered data models, the
universality of the loss w.r.t. non-spectral details of the problem, but only in case
of noisy observation.

1 INTRODUCTION

Quantitative description of various aspects of neural networks, most notably, generalization perfor-
mance after training, is an important but challenging question of deep learning theory. One of the
central approaches to this question is built on the connection between neural networks and its neural
tangent kernel, first established for infinitely wide networks (Jacot et al., 2018; Lee et al., 2020;
Chizat et al., 2019), and then further taken to the rich realm of finite practical networks (Fort et al.,
2020; Maddox et al., 2021; Long, 2021; Kopitkov & Indelman, 2020; Vyas et al., 2023).

Consider a task of learning target function f∗(x) from training datasetDN = {xi}Ni=1 and (possibly)
noisy observation yi = f∗(xi) + σεi, εi ∼ N (0, 1), using given kernel K(x,x′). Then, many
authors (Bordelon et al., 2020; Jacot et al., 2020a; Wei et al., 2022) derive asymptotic N → ∞
generalization error for kernel ridge regression (KRR) algorithm with regularization η:

LKRR(η) =
1

2

∂ηeff
∂η

∑
l

(ηeffcl)
2 + λ2l

σ2

N

(ηeff + λl)2
, 1 =

η

ηeff
+

1

N

∑
l

λl
λl + ηeff

, (1)

where λl are population eigenvalues of K(x,x′) and cl are respective eigencoefficients of f∗(x)
(see definition in (4)). The main motivation of our work is what happens with (1) when, as required
by association with neural networks, KRR is replaced with GD or an even more general learning
algorithm.

Importantly, a result of the type (1) may give precise insights for the family of power-law spectral
distributions, closely related to capacity and source assumptions of non-parametric statistics:

λl ∼ l−ν (with ν > 1), c2l ∼ l−κ−1 (with κ > 0). (2)

Power-law conditions (2) exhibit a rich picture of convergence rates. For the case of noisy observa-
tions σ2 > 0, (Caponnetto & De Vito, 2007) gives minimax rate O(N− κ

κ+1 ). For noiseless obser-
vations σ2 = 0, the optimal estimation rate significantly improves (Bordelon et al., 2020; Cui et al.,
2021) becoming O(N−κ). However, the optimal rates are not always achievable for some classical
algorithms. For example, in the case when κ

ν > 2 in the noisy case the rate of the KRR becomes

1



Published as a conference paper at ICLR 2024

Noisy observations σ2 > 0 Noiseless observations

KRR GF & Optimal KRR & GF & Optimal

Exponent in L = O(N−#) κ
κ+1

∣∣∣ 2ν
2ν+1

κ
κ+1 κ

∣∣ 2ν
Spectral localization scale s ν

κ+1

∣∣∣ {0, ν
2ν+1

}
ν

κ+1 ν
∣∣ 0

Universality yes yes no

Table 1: Our results for power-law spectral distributions (2) and three algorithms: optimally regu-
larized KRR, optimally stopped Gradient Flow (GF), and the optimal algorithm (see Section 3). For
quantities exhibiting saturation at κ

ν = 2, the vertical line ·
∣∣· separates saturated and non-saturated

values. The spectral localization at scale s means that the error is accumulated at eigenvalues λ of
the order N−s (see Section 5.1). In the last line, by universality, we mean the asymptotic equality
of the errors for different problems with the same population spectrum λl, cl. While we show the
universality only for our two data models, we would expect it to hold for a broader class of data
models.

O(N− 2ν
2ν+1 ), i.e. KRR doesn’t attain the minimax lower bound (Li et al., 2023). Such an effect

is usually called saturation and is well-known in various non-parametric problems (Mathé, 2004;
Bauer et al., 2007). However, the saturation effect can be removed with algorithms other than KRR,
for example spectral cut-off (Bauer et al., 2007) or gradient descent (Pillaud-Vivien et al., 2018). In
noiseless case, (Bordelon et al., 2020; Cui et al., 2021) show saturation at the same point κ

ν > 2,
with the rate changing to O(N−2ν). Whether noiseless saturation can be removed by algorithms
other than KRR, to the best of our knowledge, was not studied in the literature.

Our contribution. In this work, we augment the above picture in several directions, as summarized
in Table 1 and the following three blocks

Loss functional. In Section 3, we introduce a new kernel learning framework by specifying the
learning algorithm with a spectral profile h(λ) and expressing the generalization error as a quadratic
functional of this profile. While specific choices of h(λ) can give KRR, Gradient Flow (GF), or
any iterative first-order algorithm, we go beyond these classical examples and consider the optimal
learning algorithm as the minimizer of the loss functional for a given problem.

The models. As the loss functional is problem-specific, we consider two different models: a
Wishart-type model with Gaussian features and a translational-invariant model on a circle. In Sec-
tion 4, we derive loss functionals for these models. In addition, we introduce a simple Naive Model
for Noisy Observations (NMNO). In the presence of observations noise, for reasonable learning al-
gorithms, and at least for power-law spectrum, NMNO model gives asymptotically exact loss values
for both Wishart and Circle models despite their differences. This suggests a possible universality
property for a larger family of problems, including our Wishart and Circle models as special cases.

Results for power-law spectrum. In Section 5, we reach specific conclusions by restricting both
kernel eigenvalues and the target function eigencoefficients to be described by power-laws (2).

• For both noisy and noiseless observations, we derive full loss asymptotics. While the re-
sulting rates are indeed consistent with the prior works, precise characterization of leading
order asymptotic term gives access to finer details, such as the shape h∗(λ) of the optimal
learning algorithm.

• We introduce the notion of spectral localization - the scale of kernel eigenvalues over which
the loss is accumulated - and quantify it for algorithms under consideration. In particular,
this perspective provides a simple explanation of KRR saturation phenomenon as the in-
ability to sufficiently fit the main features of the target function.

• By characterizing the shape of the optimal algorithm, we point to the cases where it is
optimal to overlearn the training data, akin to KRR with negative regularization. Moreover,
we specify the values of power-law exponents at which overlearning is beneficial.

2



Published as a conference paper at ICLR 2024

2 SETTING

Generalization error. We evaluate the estimator f̂(x) with its squared prediction error |f̂(x) −
f∗(x)|2, averaged over inputs x drawn from a population density p(x), and then all the randomness
in training dataset DN :

Lf̂ =
1

2
EDN ,ε

∥∥f̂ − f∗∥∥2 =
1

2

∫
EDN ,ε

[(
f̂(x)− f∗(x)

)2]
p(x)dx, (3)

where ε = (ε1, . . . , εN ) ∼ N (0, I), ∥f∥2 ≡ ⟨f, f⟩, and angle brackets denote the scalar product
⟨f, g⟩ ≡

∫
f(x)g(x)p(x)dx.

Population spectrum. Central to our approach is the connection between generalization error Lf̂

and spectral distributions λl, cl of the problem, defined by Mercer theorem as

K(x,x′) =
∑

λlϕl(x)ϕl(x
′), f∗(x) =

∑
clϕl(x), ⟨ϕl, ϕl′⟩ = δll′ . (4)

Here, λl are the kernel eigenvalues, cl are the target function coefficients, and ϕl(x) are the eigen-
features of the kernel. In the most interesting scenarios, the number P of features ϕl is infinite, and
the respective eigenvalues λl → 0 as l→∞.

In this work, we aim at two levels of results w.r.t. the population spectrum λl, cl. First, we want to
obtain a characterization of Lf̂ for a general λl, cl, similar to what is done in the classic result (1).
Second, we will assume the power-laws (2) to obtain a more detailed description of the generaliza-
tion error Lf̂ .

An important object is the empirical kernel matrix K ∈ RN×N composed of evaluation of the
kernel on training points (K)ij = K(xi,xj). Let us additionally denote by y = f∗ + ε ∈ RN

the observation vector with components (y)i = f∗(xi) + εi; by Λ ∈ RP×P the diagonal matrix
with (Λ)ll = λl; and by Φ ∈ RP×N the matrix of kernel features evaluated at training points,(
Φ
)
li
= ϕl(xi). Then, spectral decomposition (4) allows to write empirical kernel matrix as

K = ΦTΛΦ. (5)

Data models. A standard approach to analyzing the generalization error consists in considering
general families of kernels K(x,x′) and targets f∗(x), typically defined by regularity assumptions,
and deriving upper and lower generalization bounds (e.g., see (Caponnetto & De Vito, 2007)). We
adopt a different approach that allows us to go beyond just the bounds and describe generalization
error Lf̂ with more quantitative detail. To this end, we consider two particular models, Circle and
Wishart, that represent extreme low- and high-dimensional cases of the kernel learning setting.

Wishart model. This model is a common choice for our setting: it was explicitly assumed in (Cui
et al., 2021; Jacot et al., 2020b; Simon et al., 2023) and is closely related to settings of (Jacot et al.,
2020a; Bordelon et al., 2020; Canatar et al., 2021; Wei et al., 2022). Specifically, assume that the
kernel features ϕl(x) and data distribution p(x) are such that feature matrix Φ has i.i.d. Gaussian
entries: ϕl(xi) ∼ N (0, 1). Then, the resulting empirical kernel matrix in (5) is called Wishart
matrix in Random Matrix Theory (RMT) context. Intuitively, we can think about Wishart model as
a model of some high-dimensional data with all the structural information about data distribution
and kernel being wiped out by high-dimensional fluctuations.

Circle model. To describe the generalization of a kernel estimator trained by completely fitting
(i.e. interpolating) training data, Spigler et al. (2020) and Beaglehole et al. (2023) used a model
with translations-invariant kernel and training inputs forming a regular lattice in a hypercube. In
this work, we consider, for transparency, a one-dimensional version of this model. Yet, the one-
dimensional version will display all the important phenomena we plan to discuss. Specifically, let
inputs come from the circle x ∈ S = R mod 2π, and the training set DN = {u + 2πi

N }
N−1
i=0 .

Here, u is an overall shift of the training data lattice, which we sample uniformly u ∼ U([0, 2π])
to introduce some randomness in otherwise deterministic training set DN . Then, the kernel and the
target are defined in the basis of Fourier harmonics as

K(x, x′) =

∞∑
l=−∞

λle
il(x−x′), f∗(x) =

∞∑
l=−∞

cle
ilx. (6)

We assume λl = λ−l ∈ R and c−l = cl to ensure that both the kernel and the target are real-valued.

3



Published as a conference paper at ICLR 2024

3 SPECTRAL ALGORITHMS AND THEIR GENERALIZATION ERROR

Several authors, e.g. Bauer et al. (2007); Rastogi & Sampath (2017); Lin et al. (2020), considered
Spectral Algorithms to generalize and extend the type of regularization performed by classical meth-
ods such as KRR and GD. Indeed, both KRR and GD fit observation vector y to a different extent
in different spectral subspaces of the empirical kernel matrix K. For spectral algorithms, this fitting
degree is specified by a profile h(λ) so that the estimator is given by

f̂(x) = k(x)TK−1h
(

1
NK

)
y. (7)

Here k(x) ∈ RN has components
(
k(x)

)
i
= K(x,xi). Function h(λ) is applied to the kernel

matrix 1
NK in the operator sense: h(·) acts element-wise on diagonal matrices, and for an arbitrary

positive semi-definite matrix with eigendecomposition A = UTDU we have h(A) = UTh(D)U.

Let us show how classical algorithms can be written in the form (7) with a specific choice of h(λ):

1. Kernel Ridge Regression with regularization η is obtained with hη(λ) = λ
λ+η . Then, (7)

transforms into the classical formula for KRR predictor: f̂(x) = k(x)T
(
K+NηI

)−1
y.

2. Gradient Flow by time t is obtained with ht(λ) = 1−e−tλ. (For this and the next example,
we provide the respective derivations in Section B.1.)

3. For an arbitrary general first-order iterative algorithm at iteration t, ht(λ) is given by the
associated degree-t polynomial with ht(λ = 0) = 0 (see Section B.1). For example, GD
with a learning rate α is given by ht(λ) = 1− (1− αλ)t.

Now, we make a simple observation that is crucial to the current work. Note that generalization
error (3) is quadratic in the estimator f̂ , while f̂ is linear in h according to (7). Thus, for any
problem, the generalization error is quadratic in the profile h. This observation is formalized (see
the proof in Section A) in
Proposition 1. There exist signed measures ρ(2)(dλ1, dλ2), ρ(1)(dλ) and ρ(ε)(dλ) (given in equa-
tions (37)-(39)) such that the map h 7→ f̂ 7→ Lf̂ given by (7), (3) is expressed as the quadratic
functional

L[h] =
1

2

[∫ ∫
h(λ1)h(λ2)ρ

(2)(dλ1, dλ2)− 2

∫
h(λ)ρ(1)(dλ) + ∥f∗(x)∥2

]
+

1

2

σ2

N

∫
h2(λ)ρ(ε)(dλ).

(8)

We will refer to the measures ρ(1), ρ(2) and ρ(ε) as the learning measures. Proposition 1 shows
that the loss functional is completely specified by these measures. The first line in (8) describes
the estimation of the target function from the signal part f∗ of the observation vector y, which is
hindered by insufficiency of N observations to capture fine details of f∗(x). Similarly, the second
line in (8) describes the effect of (unwanted) learning of the noise part ε of observations y.

The functional (8) makes the relation between the learning algorithm h(λ) and the generalization
error maximally explicit. However, properties of the underlying kernel and data are reflected in the
learning measures ρ(2)(dλ1, dλ2), ρ(1)(dλ) and ρ(ε)(dλ) in a fairly complicated way. In Section A,
we show some general connections between the kernel eigenvalues λl, the features ϕl(x), and the
learning measures. Yet, the explicit characterization of learning measures is challenging even for
our two data models, and constitutes the main technical step of our work.

Optimal algorithm. Consider a regression problem and its associated loss functional (8). Since
the loss functional is positive semi-definite, under suitable regularity assumptions it has a (possibly
non-unique) minimizer

h∗(λ) = argminL[h] (9)
that achieves the minimal possible generalization error in a given problem. We refer to the spectral
algorithm with profile h∗(λ) as optimal. In the context of models with power-law spectra, we will
also speak of optimal algorithms in a broader sense, as those providing the optimal error scaling with
N . We will analyze the conditions of optimality in the Circle and Wishart models and show that in
the noisy setting they have the same structure, easily understood using a simplified loss model.
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4 EXPLICIT FORMS OF THE LOSS FUNCTIONAL

Circle model. The main advantage of this model is that it admits an exact and explicit solution.
Below, we describe its main properties, with derivations and proofs given in Section D.

Due to the fact that training inputs xi form a regular lattice, the eigenvalues λ̂k of empirical kernel
matrix K become deterministic: λ̂k =

∑∞
n=−∞ λl+Nn. Behind this relation is the learning picture

based on aliasing. For a given k ∈ 0, N − 1, the information about the target function contained
in all Fourier harmonics with frequencies l = k + Nn, n ∈ Z is compressed into the single k-th
harmonic, and then projected back to the original l = k + Nn harmonics of the estimator f̂ . This
leads to a transformation of population quantities λal |cl|2b that we call N -deformation:[

λal |cl|2b
]
N
≡

∞∑
n=−∞

λal+Nn|cl+Nn|2b. (10)

It is periodic:
[
λal |cl|2b

]
N

=
[
λal+N |cl+N |2b

]
N

. Also, λ̂k =
[
λk
]
N

. Then, we have
Theorem 1. Loss functional of the Circle model is given by

L[h] =
1

2

N−1∑
k=0

[(
σ2

N +
[
|ck|2

]
N

)[λ2k]N[
λk
]2
N

h2(λ̂k)− 2

[
λk|ck|2

]
N[

λk
]
N

h(λ̂k) +
[
|ck|2

]
N

]
. (11)

The special feature of the loss functional (11) compared to the general form (8) in that there are no
off-diagonal λ1 ̸= λ2 contributions to the loss. Then, the optimal algorithm is found by a simple
point-wise minimization:

h∗(λ̂k) =
[λk|ck|2]N [λk]N(

σ2

N +
[
|ck|2

]
N

)
[λ2k]N

. (12)

Wishart model. This model, although more common in the literature, does not enjoy an exact
solution like the Circle model. However, using two approximations, in Section E we derive an
explicit form of the measures ρ(2), ρ(1), ρ(ε) describing the loss by equation (8). We give now an
outline of our derivation.

First, we point out that the learning measures from (8) can be reduced to the first and second moment
of the imaginary part of the resolvent R̂(z) = (KN − zI)

−1 computed at the points z = λ+ i0+ near
the real line. Then, we make standard RMT assumptions to describe the resolvent in terms of the
Stieltjes transform r(z) of spectral measure of K, which satisfies the fixed-point equation

1 = −zr(z) + 1

N

∑
l

r(z)λl
r(z)λl + 1

. (13)

The first resolvent moment is computed straightforwardly and the second moment at the same point
z1 = z2 can be computed with differentiation trick (Simon et al., 2023), but for the second moment
at z1 ̸= z2 a new tool is required. For that, we employ Wick’s theorem of computing averages over
Gaussian fields, where we take into account leading order pairings and neglect subleading O(N−1)

terms. The above procedure expresses the moments of R̂(z) in terms of three auxiliary functions

v(z) =
∑
l

c2l
λl + r−1(z)

, u(z) =
∑
l

λlc
2
l

λl + r−1(z)
, w(z) =

∑
l

λ2l
λl + r−1(z)

. (14)

Finally, we obtain loss functional (8) by specifying each of the learning measures. Using the notation
ℑ{z} for imaginary part of z, we find first moment of signal measure and the noise measure to be

ρ(1)(dλ)

dλ
=
ℑu(λ)
πλ

,
ρ(ε)(dλ)

dλ
=
ℑw(λ)
πλ2

. (15)

The second moment of signal measure has diagonal λ1 = λ2 and off-diagonal λ1 ̸= λ2 parts
ρ(2)(dλ1, dλ2)

dλ1dλ2
=
|r−1(λ1)|2

πλ21
ℑ{v(λ1)}δ(λ1 − λ2)

+
1

π2λ1λ2

ℑ
{
u(λ2)

}
ℑ
{
r−1(λ1)

}
−ℑ

{
u(λ1)

}
ℑ
{
r−1(λ2)

}
λ1 − λ2

.

(16)
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Figure 1: Generalization error of different data models in presence of observation noise converges to
our NMNO model (solid) as N →∞, which in turn converges to itsO(N−#) asymptotic (dashed).
All plots have ν = 1.5. Cosine Wishart is an additional data model not covered by our theory yet
converging to NMNO. The difference between Circle and Wishart asymptotic on the plot 3 is due to
localization of the error on scale s = 0 at saturation. For details and extended discussion see Sec. F.
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Figure 2: Scale diagrams of different KRR regimes for noisy observations. All plots have ν = 1.2,
while κ = 1.0 in the non-saturated case (left and center) and κ = 5.0 in the saturated case (right).
The dotted lines represent the noise 1− s

ν and signal κ
ν s terms in equation (18). The solid lines show

the same terms with added components 2S(h) and 2S(1−h). Left: the sub-optimal (sh > s∗) non-
saturated case. Center: the optimal (sh = s∗) non-saturated case. Right: the saturated (κ > 2ν)
case with the choice sη = ν

2ν+1 optimal for KRR, but sub-optimal among general algorithms h.

Naive Model of Noisy Observations. As we can see from our results for Circle and Wishart model
above, the loss functional of a given model can be quite complicated. We will see, however, that
in the presence of observation noise σ2 > 0 the asymptotic (N → ∞) generalization properties of
both these models are well described by a simple artificial model (NMNO), introduced below. We
conjecture this match to be a universal phenomenon, valid for a wide range of models.

For a large dataset sizes N , we expect all the complex details of the problem to be concentrated
at eigendirections l with small λl, whose features ϕl(x) can not be well captured by the empirical
kernel matrix K of size N . On the contrary, K should succeed in capturing ϕl(x) with moderate λl,
and empirical and population eigendecompositions should be close to each other.

Let us therefore assume that we can ignore the small eigenvalues and determine the generalization
error only using components l with moderate λl (later, we will explain this by loss localization
at moderate spectral scales). Then, the contribution of the l-th component to the generalization
error can be approximated by (1 − h(λl))2c2l for signal fitting part, and σ2

N h2(λl) for the learned
observation noise. This completely determines the associated loss functional. Let us describe the
population spectral data λl, cl by the spectral eigenvalue measure µλ(dλ) =

∑
l δλl

(dλ) and the
coefficient measure µc(dλ) =

∑
l c

2
l δλl

(dλ). Then, we define the NMNO model by the functional

L(nmno)[h] =
σ2

2N

1∫
λmin

h2(λ)µλ(dλ) +
1

2

1∫
λmin

(
1− h(λ)

)2
µc(dλ). (17)

Here, λmin is a reference minimal population eigenvalue defined by the condition µλ([λmin, 1]) = N
(i.e., such that the segment [λmin, 1] contains exactly N population eigenvalues).
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5 RESULTS UNDER POWER-LAW SPECTRAL DISTRIBUTIONS

In this section we perform a deeper study of the Circle, Wishart and NMNO models of Section 4 in
the setting of power-law distributions (2). Prioritizing transparency over generality, we assume λl, cl
to be exact power-laws in the form convenient for a given model. Specifically, for Circle model we
take λl = (|l| + 1)−ν and |cl|2 = (|l| + 1)−κ−1, while for Wishart model we assume continuous
analogs of these spectral distributions, namely assume them to have smooth densities supported on
[0, 1]: µλ(dλ) =

1
νλ

−1− 1
ν dλ and µc(dλ) =

1
νλ

κ
ν −1dλ.

5.1 SCALING ANALYSIS AND ITS APPLICATION TO THE NMNO MODEL

Under power-law spectral assumptions, it is key to observe that various important quantities scale as
suitable powers of the training set size N . In general, given a sequence aN , we will say that it has
scale s if for any ϵ > 0 we have |aN | = o(N−s+ϵ) and |aN | = ω(N−s−ϵ). If only the first or the
second condition holds, we say that the scale of aN is not less or not greater than s (respectively).

Suppose that gN (λ) is a sequence of functions on the spectral interval (0, 1]. We say that this
sequence has a scaling profile S(g)(s), s ≥ 0, if for any sequence λN ∈ (0, 1] that has scale s
the sequence |gN (λN )| has scale S(g)(s). It is easy to check that the scaling profile, if exists, is a
continuous function of s (see Lemma 1). The basic example of a sequence of functions having a
scaling profile is the sequence gN (λ) = Naλb with constant a, b; in this case S(g)(s) = bs− a.
Integrals of functions with a scaling profile also have a specific scaling:
Proposition 2 (see proof in Section C). Let gN (λ) be a sequence of functions with a scaling pro-
file S(g)(s), and let aN > 0 be a sequence of scale a > 0. Then, the sequence of integrals∫ 1

aN
|gN (λ)|dλ has scale s∗ = min0≤s≤a(S

(g)(s) + s).

When prop. 2 can be applied to the functional (8), we call the set Sloc = argmin0≤s≤a(S
(g)(s)+s)

of scales which dominate the loss integral as spectral localization scales of the generalization error.
In the rest of the paper, we reserve the letter s to denote the scale of eigenvalues λ.

Application to NMNO. Now we apply the scaling arguments to the NMNO model (17), for which
it will be easy to find explicit optimality conditions. Suppose that the problem has either discrete or
continuous power-law spectrum with exponents ν, κ as described above for the Circle and Wishart
model. Then, λmin in equation (17) has finite scale ν. Suppose that the functions h and 1− h have
scaling profiles S(h) and S(1−h). Then, applying Proposition 2 in the continuous case or analogous
Proposition 5 in the discrete case, we obtain
Proposition 3. The NMNO loss L(nmno)[h] has scaling

Snmno[h] = min
0≤s≤ν

[(
1− s

ν + 2S(h)(s)
)
∧
(
κ
ν s+ 2S(1−h)(s)

)]
. (18)

Here, ∧ = min; the first and second arguments in ∧ come from the noise and signal terms in (17),
respectively. In the continuous case we use the fact that N−1λ−1−1/νh(λ)2 has scaling profile
1− s(1 + 1

ν ) + 2S(h) while λκ/ν−1(1− h(λ))2 has scaling profile s(κν − 1) + 2S(1−h).

Clearly, for any particular s only one of the values S(h)(s) and S(1−h)(s) can be strictly positive.
This implies a bound on feasible loss scalings:

Snmno[h] ≤ min
0≤s≤ν

((
1− s

ν

)
∨ κ

ν s
)
= κ

κ+1 . (19)

The minimum here is attained at the scale s∗ = ν
κ+1 . Moreover, an algorithm h attains the optimal

scale κ
κ+1 exactly when for each s ∈ [0, ν] we have

(
1− s

ν +2S(h)(s)
)
∧
(
κ
ν s+2S(1−h)(s)

)
≥ κ

κ+1 :

Proposition 4. Snmno[h] ≤ κ
κ+1 , and the equality occurs when 1) S(h)(s) ≥ 1

2

(
s
ν −

1
κ+1

)
for

s ≥ s∗ = ν
κ+1 and 2) S(1−h)(s) ≥ 1

2

(
κ

κ+1 −
κ
ν s
)

for s ≤ s∗.

These results provide a simple picture of spectral algorithms close to optimality for the NMNO

model: one should choose the spectral function h so that |h(λ)| ≲ N
1

2(κ+1)λ
1
2ν for λ ≲ N

− ν
κ+1

7
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and so that |1− h(λ)| ≤ N− κ
2(κ+1)λ−

κ
2ν for λ ≳ N

− ν
κ+1 . The value s∗ = ν

κ+1 can be referred to
as the loss localization scale for the optimal algorithm.

Let us apply the obtained conditions to KRR and GF. KRR with regularization η has hη(λ) = λ
λ+η .

Suppose that η has scale sη, then hη has the scaling profile S(h)(s) = (s − sη) ∨ 0, while 1 − hη
equals η

λ+η and has the scaling profile S(1−h)(s) = (sη − s) ∨ 0. Recalling that ν > 1, we see that
condition 1) in Proposition 4 is satisfied iff sη ≤ s∗ = ν

κ+1 . Condition 2) is more subtle: if κ
2ν ≤ 1,

then it is satisfied iff sη ≥ s∗, but in the case κ
2ν > 1 it is rather satisfied iff sη ≥ κ

2(κ+1) . We see,
in particular, that in the case κ

2ν ≤ 1 conditions 1) and 2) are simultaneously satisfied iff sη = s∗,
while in the case κ

2ν > 1 they cannot be simultaneously satisfied (and so KRR cannot achieve the
optimal scaling κ

κ+1 ) – an effect called saturation (Mathé, 2004; Bauer et al., 2007). See Figure 2
for an illustration. In contrast, GF ht(λ) = 1 − e−tλ has no saturation: choosing t to be of scale
−s∗ satisfies both conditions of Proposition 4 for all ν > 1 and κ > 0.

5.2 NOISY OBSERVATIONS AND MODEL EQUIVALENCE

For our two data models, Circle and Wishart, the intuition behind the NMNO ansatz can be rigor-
ously justified by showing that this ansatz represents the leading contribution to the true loss. For
instance, consider the circle model with loss functional[(11) specified by (10). The empirical eigen-
values λ̂k = [λk]N = λk + O(N−ν) for |k| < N/2, so the scale ν of the correction |λ̂k − λk| is
higher than the scale s of the eigenvalues λk except for the eigenvalues of the highest scale s = ν.
This shows that the empirical and population quantities are significantly different only on the highest
spectral scale s = ν. Continuing this line of arguments, we get
Theorem 2. Assume that the learning algorithm h(λ) is such that h(λ) and 1− h(λ) have scaling
profiles S(h)(s) and S(1−h)(s). Assume that the maps log λ 7→ log |h(λ)| and log λ 7→ log |1−h(λ)|
are globally Lipschitz, uniformly inN . Then, if ν = s is not a localization point of NMNO functional
L(nmno)[h], Circle model specified by (11) and Wishart model specified by (16),(15) are equivalent
to the NMNO model in the limit N →∞:

L(nmno)[h] = L(circle)[h]
(
1 + o(1)

)
= L(wishart)[h]

(
1 + o(1)

)
. (20)

We prove the theorem separately for Circle and Wishart models in Sections D.2 and E.3.3. Note
that the condition of equivalence is specified using only NMNO model. Thus, if satisfied, it allows
analyzing the simple functional (17) instead of the more complicated ones (16), (15) and (11). The
requirement that s = ν is not a localization point is reasonable as the heuristic derivation of the
NMNO model in Section 4 included an assumption that the loss is localized at moderate scales.

5.3 NOISELESS OBSERVATIONS

We focus on Circle model to describe main observations, with derivation deferred to Section D and
Wishart model results deferred to Section E. Let us write the loss functional perturbatively

L[h] =

N
2∑

k=−N
2

[ |ck|2
2

(
1 + o(τ)

)(
h(λ̂k)− h∗(λ̂k)

)2
+N−κ−1

(
O(1) +O(τ2ν−κ−1)

)]
(21)

with τ ≡ |k|+1
N as a small parameter. From this, we make several observations. First, take h = h∗.

Then, if κ < 2ν, the loss localizes on s = ν (i.e. the sum is accumulated at |k| ∼ N ) and has the rate
O(N−κ). This rate is natural and reflects that we are able to learn target function everywhere except
at inaccessible scales λ≪ N−ν . Moreover, by examining the first term in (21), we see that this rate
is not destroyed by learning algorithms sufficiently close to the optimal: |h(λ̂k)−h∗(λ̂k)|2 = o(τκ).

The situation changes dramatically for κ > 2ν: the optimal loss L[h∗] becomes dominated by
O(τ2ν−κ−1) term in (21) and localizes at s = 0 (i.e. the sum is accumulated at |k| ∼ 1), changing
the rate toO(N−2ν). We call this behavior saturation since it has features similar to KRR saturation
effect for noisy observations: transition at κ = 2ν; change of error rate; localization at s = 0.
However, noisy KRR saturation is algorithm-driven and can be removed by replacing KRR with
GF, while saturation in (21) persists even for optimal algorithm h∗(λ). Interestingly, the optimal

8
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Figure 3: Generalization error (left) and profiles h(λ) (right) of various algorithms applied to the
Circle model with ν = 1.5 and noiseless observations with different κ. Before overlearning transi-
tion κ = ν − 1 optimal algorithms underlearn observations (h(λ) < 1) while starting to overlearn
them (h(λ) > 1) after the transition. For details and extended discussion see Section F.

loss in the saturated phase can be achieved (asymptotically) by KRR with a negative regularization:
L[h∗] = L[hη∗ ](1 + o(1)), η∗ < 0. Denoting Riemann zeta function as ζ(α), we have

L[hη] =
1

2

(
(ηNν + 2ζ(ν))2 + 2ζ(2ν)

)[ ∞∑
l=−∞

|cl|2

λ2l

]
N−2ν

(
1 + o(1)

)
, (22)

with minimum at η∗ = −2ζ(ν)N−ν . The benefit of negative regularization was empirically ob-
served in (Kobak et al., 2020) and theoretically approached in (Tsigler & Bartlett, 2023). Within our
framework, KRR with negative regularization can be thought of as a special case of overlearning
the observations.

In fact, overlearning also occurs in the κ < 2ν phase. In Section D.3 we show that the loss functional
can be asymptotically written (see (138)) using τ = |k|+1

N for (continuous) eigenspace indexing, for
example λ̂τ ← λ̂k. Then, denoting Hurwitz zeta function as ζ(α, x), the optimal algorithm becomes

h∗(λ̂τ ) =
ζ
(ν+κ+1)
τ ζ

(ν)
τ

ζ
(κ+1)
τ ζ

(2ν)
τ

, ζ(α)x ≡ ζ(α, x) + ζ(α, 1− x). (23)

The optimal algorithm (23) has an intriguing property (see also Figure 3): it interpolates the data
h∗(λ) = 1 when κ = ν − 1, and, otherwise, the sign of 1 − h∗(λ) coincides with the sign of
ν − 1 − κ. In other words, for hard targets with κ < ν − 1, classical regularization by underfitting
the observation is required for optimal performance. But, for easier targets with κ > ν − 1 it
becomes optimal to overlearn the training data in contrast to conventional wisdom. The same holds
for Wishart model (see Sec. E.3.4). Thus, we identify the point κ = ν−1 as overlearning transition.

6 DISCUSSION

We have extended results of type (1) to general spectral algorithms, as given by our loss functional
(11) for Circle model and (15),(16) for Wishart model. It allows to address questions that require
going beyond specific (KRR,GF) algorithms. For example, we show that the nature of saturation at
κ = 2ν is different for noisy and noiseless observations, with the latter being an intrinsic property
of the given kernel and data model, and can not be removed by any choice of the learning algorithm.

Our formalism of spectral localization and scaling, while being compact, provides a simple and
transparent picture of the variety of convergence rates under power-law spectra distributions. Also,
the equivalence result between our two data models and naive model of noisy observations (17)
relies on the straightforward estimation of the scale of perturbation of population quantities by finite
size N of the training dataset. Thus, an interesting direction for future research would be to check
whether the equivalence holds for other data and kernel models.

Finally, let us mention the advantage of full loss asymptotic L = CN−#(1 + o(1)) compared to
the rates L = O(N−#). In this work, we used the full asymptotic to obtain the shape of optimal
algorithm h∗(λ). In the noiseless case, the knowledge of h∗(λ) allowed us to characterize the
overlearning transition at κ = ν − 1, which otherwise would be invisible on the level of the rate
O(N−κ). Investigating whether κ = ν − 1 remains the point of overlearning phase transition for
more general data models is an interesting direction for future research.
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A SPECTRAL PERSPECTIVES

In this section, we show general relations between generalization error (3), population spectra λl, cl,
and learning algorithms h(λ). Recall that profile h(λ) is applied to the eigenvalues of the kernel
matrix K (i.e. values of the kernel function evaluated on the training dataset DN ). Therefore,
relating generalization error and h(λ) involves the properties of the empirical spectrum: eigenvalues
of K and the related eigendecomposition of the observation vector y.

With these remarks in mind, we may say that we are dealing with population and empirical per-
spectives on generalization error (3). We start with population perspective in Section A.1, which
is behind the classical result (1). Then, we proceed with the empirical perspective in Section A.2,
which basically amounts to proving Proposition 1 and introducing learning measures ρ(2), ρ(1), ρ(ε).
Finally, In Section A.3, we combine population and empirical perspectives. While probably less
conceptual than the first two perspectives, the joint population-empirical perspective is an essential
step in our derivation of the loss functional for the Wishart model.

A.1 POPULATION PERSPECTIVE: TRANSFER MATRIX

A central object for the population perspective is the transfer matrix T̂ll′ introduced explicitly, for
example, in (Simon et al., 2023) in the context of KRR. Specifically, let us decompose the predic-
tion (7) over kernel eigenfunctions ϕl(x) as f̂(x) =

∑
l ĉlϕl(x). Then, the prediction coefficients

ĉl can be written as

ĉl =
∑
l′

T̂ll′cl′ + σε̂l, T̂ll′ = λlϕ
T
l K

−1h
(

1
NK

)
ϕl′ , ε̂l = λlϕ

T
l K

−1h
(

1
NK

)
ε, (24)

where ϕl is the vector of eigenfunctions computed at the dataset inputs (ϕl)i = ϕl(xi), and (ε)i =

εi is the vector of observation noise. Note that the transfer matrix T̂ll′ has a clear interpretation of
the rate at which the information cl′ contained in spectral component l′ is transferred to spectral
component l. The population noise component ε̂l describes how much of the of the observation
noise ε was learned in the l-th population spectral component.

The population loss (3) (sometimes we use this term as a synonym to generalization error) is straight-
forwardly expressed through the first and second moments of the transfer matrix, and the variance
of population noise components

Lf̂ =
1

2
EDN ,ε

∑
l

(
ĉl − cl

)2
=

1

2

∑
l1,l2

cl1
(∑

l′

T
(2)
l1l′l′l2

− 2T
(1)
l1l2

+ δl1l2
)
cl2 +

σ2

2N

∑
l

ε
(2)
l , (25)
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where

T
(1)
ll′ = EDN

[
T̂ll′
]
, (26)

T
(2)
l1l′1l

′
2l2

= EDN

[
T̂l′1l1 T̂l′2l2

]
, (27)

ε
(2)
l = NEDN ,ε[(ε̂l)

2] = EDN

[
λ2l

1

N
ϕT

l

((
1
NK

)−1
h
(

1
NK

))2
ϕl

]
. (28)

The representation (25) makes the most explicit dependence of the loss on population coefficients
cl, while the dependence on the learning algorithm h(λ) and population eigenvalues λl is hidden
inside moments T (1)

ll′ , T
(2)
l1l′1l

′
2l2

of the transfer matrix and noise variance ε(2)l . Yet, for the case of
KRR the results (1) shows that the dependence on λl can be made fairly explicit.

A.2 EMPIRICAL PERSPECTIVE: LEARNING MEASURE

As this perspective focuses on empirical spectrum of kernel matrix and observation vector, we start
with writing eigendecomposition of K, f∗ = y − σε and ε as

1

N
K =

N∑
k=1

λ̂kuku
T
k , uT

k uk′ = δkk′ , (29)

1√
N

f∗ =

N∑
k=1

ĉkuk, (30)

ε =

N∑
k=1

ε̂kuk, (31)

where in the last line ε̂k are i.i.d. normal Gaussian because orthogonal transformation to empirical
eigenbasis {uk}Nk=1 leaves the distribution of isotropic Gaussian vectors ε ∼ N (0, I) unchanged.

Then, inserting spectral decomposition (29) of the empirical kernel matrix into the prediction (7)
gives

f̂h(x) =
(
k(x)

)T [ 1

N

N∑
k=1

uku
T
k

h(λ̂k)

λ̂k

]
f∗ +

σ

N

N∑
k=1

ε̂k
h(λ̂k)

λ̂k

(
k(x)

)T
uk

=

∫
h(λ)ρ̂(f)(x, dλ) +

σ√
N

∫
h(λ)ρ̂(ε)(x, dλ),

(32)

where ρ̂(f)N (x, dλ) and ρ̂(ε)N (x, dλ) are target and noise learning measures:

ρ̂(f)(x, dλ) =
(
k(x)

)T [ 1

N

N∑
k=1

uku
T
k

λ
δλ̂k

]
f∗, (33)

ρ̂(ε)(x, dλ) =
1√
N

N∑
k=1

ε̂k

(
k(x)

)T
uk

λ
δλ̂k

. (34)

The target learning measure defines what pattern is learned from the target function at the neigh-
borhood dλ of the empirical spectral position λ. Similarly, the noise learning measure defines the
patterns of the noise learned in the neighborhood of λ.
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As for the population perspective, we substitute the expression of prediction in terms of learning
measures (32) into the population loss (3)

Lf̂ =
1

2
EDN ,ε

[∥∥∥∥∫ h(λ)ρ̂(f)(x, dλ) +
σ√
N

∫
h(λ)ρ̂(ε)(x, dλ)− f∗(x)

∥∥∥∥2
]

=
1

2

[∫ ∫
h(λ1)h(λ2)EDN

〈
ρ̂(f)(x, dλ1), ρ̂

(f)(x, dλ2)
〉

− 2

∫
h(λ)EDN

〈
f∗(x), ρ̂(f)(x, dλ)

〉
+ ⟨f∗(x), f∗(x)⟩

+ 2
σ√
N

EDN

〈
f∗(x)−

∫
h(λ)ρ(f)(x, dλ),

∫
h(λ)Eερ

(ε)(x, dλ)

〉
+
σ2

N

∫ ∫
h(λ1)h(λ2)EDN ,ε

〈
ρ̂(ε)(x, dλ1), ρ̂

(ε)(x, dλ2)
〉]
.

(35)

Now, observe that the term in the second-to-last line in (35) is linear in noise learning measure

averaged over εwhich is zero: Eερ
(ε)(x, dλ) = 1√

N

∑N
k=1

(
k(x)
)T

uk

λ δλ̂k
Eεε̂k = 0 since Eεε̂k = 0.

Similarly, taking the expectation over observation noise ε helps to simplify the last term

Eε

〈
ρ̂(ε)(x, dλ1), ρ̂

(ε)(x, dλ2)
〉
=
∑
k1,k2

δλ̂k1
(dλ1)δλ̂k2

(dλ2)
⟨uT

k1
k(x),uT

k2
k(x)⟩

Nλ1λ2
Eεε̂k1 ε̂k2

= δλ1(dλ2)
1

N

∑
k

δλ̂k
(dλ2)

∥uT
k k(x)∥2

λ2
,

(36)

where we have used Eε̂k1
ε̂k2

= δk1k2
. Now, one can recognize the loss functional stated in Propo-

sition 1: the first 3 terms and the last term of (35) correspond to the respective terms of (8). In other
words, the learning measures announced in Proposition 1 are given by

ρ(1)(dλ) = EDN

[〈
f∗(x), ρ̂(f)(x, dλ)

〉]
, (37)

ρ(2)(dλ1, dλ2) = EDN

[〈
ρ̂(f)(x, dλ1), ρ̂

(f)(x, dλ2)
〉]
, (38)

ρ(ε)(dλ) = EDN

[
1

N

N∑
k=1

∥∥uT
k k(x)

∥∥2
λ2

δλ̂k

]
, (39)

Again, the loss functional (8) represents the empirical perspective on the generalization error, mak-
ing the dependence on the learning algorithm h(λ) very explicit. But, the dependence on the prob-
lem’s kernel structure and target function is hidden inside measures ρ(1)(dλ) and ρ(2)(dλ1, dλ2).

A.3 JOINT POPULATION-EMPIRICAL PERSPECTIVE: TRANSFER MEASURE

To combine to perspective described above, consider a l-th spectral component of learning measure
ρ̂
(f)
l (dλ) ≡ ⟨ϕl(x), ρ̂(f)(x, dλ)⟩. Then, inserting decomposition (4) of the target function into target

learning measure (33) allows to write

ρ̂
(f)
l (dλ) ≡ ⟨ϕl(x), ρ̂(f)(x, dλ)⟩ =

∑
l′

cl′ ρ̂
(f)
ll′ (dλ), (40)

where

ρ̂
(f)
ll′ (dλ) =

λl
λ

1

N

N∑
k=1

(
ϕT

l uk

)(
uT
kϕl′

)
δλ̂k

(41)

can be naturally called a transfer measure. Now, we insert decomposition (40) into (37) and (38), as
well as population eigendecomposition (4) into (39). The scalar products in (37) and (38) become〈

f∗(x), ρ̂(f)(x, dλ)
〉
=
∑
l

clρ̂
(f)
l (dλ) =

∑
l,l′

clcl′ ρ̂
(f)
ll′ (dλ),

⟨ρ̂(f)(x, dλ1), ρ̂(f)(x, dλ2)
〉
=
∑
l

ρ̂
(f)
l (dλ1)ρ̂

(f)
l (dλ2) =

∑
l,l1,l2

cl1cl2 ρ̂
(f)
ll1

(dλ1)ρ̂
(f)
ll2

(dλ2).
(42)
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As for the norm
∥∥uT

k k(x)
∥∥2 in (39), we can use〈

k(x),
(
k(x)

)T〉
=
∑
l

λ2lϕlϕ
T
l . (43)

Combining the expressions above and noting that ∥f∗(x)∥2 =
∑

l c
2
l gives yet another represen-

tation of the population loss in terms of the first and second moment of the transfer measure and
population decomposition of noise variance measure.

L[h] =
1

2

∑
l1,l2

cl1

(∫
h(λ1)h(λ2)

∑
l′

ρ
(2)
l1l′l′l2

(dλ1, dλ2)− 2

∫
h(λ)ρ

(1)
l1l2

(dλ) + δl1l2

)
cl2 (44)

+
σ2

2N

∑
l

∫
h(λ)2ρ

(ε)
l (dλ), (45)

where

ρ
(1)
ll′ (dλ) = EDN

[
ρ̂
(f)
ll′ (dλ)

]
, (46)

ρ
(2)
l1l′1l

′
2l2

(dλ1, dλ2) = EDN

[
ρ̂
(f)
l′1l1

(dλ1)ρ̂
(f)
l′2l2

(dλ2)
]
, (47)

ρ
(ε)
l (dλ) = EDN

[
λ2l
λ2

1

N

N∑
k=1

(
ϕT

l uk

)2
δλ̂k

]
. (48)

If the moments of transfer measure ρ
(1)
ll′ (dλ), ρ

(2)
l1l′1l

′
2l2

(dλ1, dλ2) and noise variance measure

ρ
(ε)
l (dλ) are known, the representation (44) connects spectral distribution λl, cl of the problem and

learning algorithm h(λ) with the population loss, thus justifying the name joint population-empirical
spectral perspective.

B GRADIENT-BASED ALGORITHMS

The purpose of this section is two-fold. First, in Section B.1, we support our examples of h(λ)
provided in Section 3 with the respective derivations. This amounts to show that for linear models
trained with a gradient-based algorithm, the predictor during optimization can be written in the
form (7) with a specific choice of h(λ). Second, in Section B.2 try to connect general spectral
algorithms specified by some profile h(λ) with gradient-based optimization, which was not included
in the main paper due to the space constraints. For that, we provide a simple construction based on
a pair of GF processes.

B.1 KERNEL FORM OF PREDICTORS

To consider gradient-based optimization for the kernel method setting discussed in the main paper,
we need to introduce a linear parametric model f̂(w,x) whose parameters w will be updated during
the optimization process. Starting with a kernel K(x,x′) with population decomposition (4), let us
define the model features ψl(x) =

√
λlϕl(x). Then, combining the features in a vector ψ(x) ∈

RP ,
(
ψ(x)

)
l
= ψl(x), the linear model is defined as

f̂(w,x) = ⟨w,ψ(x)⟩, w ∈ RP . (49)

For positive definite kernels P = ∞, and both model’s features and parameters belong to RKHS
HK of the kernel K: w,ψ(x) ∈ HK .

The (neural) tangent kernel (Jacot et al., 2018) of the model (49) is given by NTKf̂ (x,x
′) =

⟨ψ(x),ψ(x′)⟩ =
∑

l λlϕl(x)ϕl(x
′) = K(x,x′), thus reproducing our original kernel we have

started with. Note that one can go in the opposite direction: start from the linear (49) and then
define a kernel method specified by the tangent kernel (NTK) of the linear model. An especially
interesting example of the latter direction is a (non-linear) neural network f(θ,x) linearized at θ0
resulting in flin(θ,x) = f(θ0,x) + ⟨θ − θ0,∇θf(θ0,x)⟩. If constant prediction f(θ0,x) is ig-
nored, the linearized neural network is also described by (49) with gradients as the model features
ψ(x) = ∇θf(θ0,x) and the displacement from θ0 as model parameters w = θ − θ0.
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To finalize the connection between the parameter-based setting and kernel-based setting from the
main paper, linear model (49) needs to be trained by minimizing quadratic loss on train dataset DN

LDN
(w) ≡ 1

2N

N∑
i=1

(
f̂(w,xi)− yi

)2
=

1

2N

N∑
i=1

(
⟨w,ψ(xi)⟩ − ⟨w∗,ψ(xi)⟩

)2
=

1

2
(w −w∗)TH(w −w∗),

(50)

where H = 1
N

∑N
i=1ψ(xi) ⊗ ψ(xi) is the Hessian of the train loss. In the following, it will be

convenient to denote Ψ the matrix of features calculated on the training dataset
(
Ψ
)
li
= ψl(xi), and

use finite-dimensional notation for inner and outer product in the parameter space: i.e. the Hessian
H = 1

NΨΨT and empirical kernel matrix K = ΨTΨ. In (50), we have assumed that there exists a
parameter value w∗ so that the model (49) completely fits the observations ΨTw∗ = y. Considering
the typical case P > N , this amounts to a feature matrix having full rank rank(Ψ) = N 1.

Now, let us proceed with showing how gradient-based optimization fits into the family of spectral
algorithms given by (7). We start with the basic example of vanilla Gradient Descent with learning
rate α, having parameter update rule wt+1 = wt −α∇wLDN

(wt). For the quadratic loss (50), this
reduces to wt+1 = wt − αH(wt −w∗) = w∗ + (I− αH)(wt −w∗), or, equivalently,

wt+1 −w∗ = (I− αH)t(w0 −w∗) = pt(H)(w0 −w∗). (51)
Here we introduced the polynomial pt(λ) = (1 − αλ)t that will prove a useful notation in the
following and is related to the profile ht(λ) as pt(λ) = 1 − ht(λ). To obtain the representation (7)
for the learned prediction f̂t(x) = ⟨wt,ψ(x)⟩ we additionally need to set w0 = 0. Then,

f̂t(x) = ⟨w∗ + pt(H)(w0 −w∗),ψ(x)⟩ =
〈(
I− pt(H)

)
w∗,ψ(x)

〉
= ⟨ht(H)w∗,ψ(x)⟩ (52)

Next, note that polynomial pt(λ) is often called residual polynomial due to its normalization at
λ = 0 as pt(0) = 1, or equivalently ht(0) = 0. The latter implies that we can write ht(λ) = λqt(λ)
with some polynomial qt(λ) of degree t−1. Using an algebraic identity JTJq(JTJ) = JT q(JJT )J
for arbitrary matrix J and polynomial q allows us to finally obtain (7)

f̂t(x) = ⟨Hqt(H)w∗,ψ(x)⟩ = 1

N
⟨ΨΨT qt(

1
NΨΨT )w∗,ψ(x)⟩

=
1

N
⟨Ψqt( 1

NΨTΨ)ΨTw∗,ψ(x)⟩

(1)
= k(x)T

1

N
qt(

K
N )y = k(x)TK−1 1

NKqt(
1
NK)y = k(x)TK−1ht(

1
NK)y,

(53)

where in (1) we have used that ΨTw∗ = y and ⟨Ψ,ψ(x)⟩ = k(x)T . Thus, we have shown that for
GD with learning rate α representation (7) holds with h(λ) = 1− (1− αλ)t.
The argument above can be easily extended to the case of Gradient Flow (GF). First note that un-
der GF dynamics d

dtwt = −∇LDN
(wt) the parameters are wt − w∗ = e−Ht(w0 − w∗), thus

implying pt(λ) = e−λt and ht(λ) = 1 − e−λt. Then, for qt(λ) = ht(λ)
λ = 1−e−λt

λ we also
have JTJq(JTJ) = JT q(JJT )J, which can be seen, for example, by from the Taylor expansion
qt(λ) = t

∑∞
n=0

(−tλ)n

(n+1)! . The rest of the argument is unchanged.

Gradient descent is also easily extended to arbitrary first-order iterative optimization algorithms.
For all such algorithms, the parameter change wt −w0 on iteration t belongs to an order t Krylov
subspace: wt−w0 ∈ span{H(w0−w∗),H2(w0−w∗), . . . ,Ht(w0−w∗)} (see, e.g. (Nesterov,
2003), page 42). This is equivalent to saying that wt+1 −w∗ = pt(H)(w0 −w∗) with pt(λ) being
an arbitrary residual polynomial (i.e. normalized as pt(0) = 1). Since in our GD argument we did
not use any property of its pt(λ) except for residual normalization, the argument continues to hold,
making the representation (7) for all first-order iterative optimization algorithms.

1A similar assumption was implicitly made in the main paper in the definition of the spectral algorithm (7).
Indeed, the existence of inverse K−1 also requires rank(Ψ) = N . This is a natural assumption for positive
definite kernels K: empirical kernel matrix has full rank if evaluated on a set of distinct inputs xi, which in
turn happens almost surely for typical generation processes of DN such as i.i.d. drawn xi. In principle, one
can also consider the case of non-full rank of K, or alternatively non-existence of w∗ completely fitting the
observations, and replace K−1 in (7) with pseudoinverse. For simplicity, we leave such cases to future work.
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B.2 IMPLEMENTING SPECTRAL ALGORITHMS WITH A PAIR OF GRADIENT FLOWS

Recall that in the section above we get GD residual pt(λ) = 1− ht(λ) = e−λt. An alternative way
to get this would be to declare wt−w∗ = pt(H)(w0−w∗) and then rewrite original Gradient Flow
ODE d

dtwt = −∇wLDN
(wt) in terms of the residual pt(λ) as

∂tpt(λ) = −λpt(λ), p0(λ) = 1, (54)

with an immediate solution pt(λ) = e−λt.

Now, suppose we are given some target profile h̃(λ) with respective residual p̃(λ) = 1− h̃(λ) ̸= 0
that needs to be implemented. Our strategy is to design such GF process with residual qt(λ) that
converge to the desired profile at long training times q∞(λ) ≡ limt→∞ qt(λ) = p̃(λ). The basic GF
process given by (54) always converges to full interpolation of the training data: limt→∞ pt(λ) =
limt→∞ e−λt = 0. We propose to overcome this interpolation property by using two optimization
processes – the first process is standard GF (54) converging to 0, and the second GF process will use
gradients of the first GF to converge to p̃(λ) ̸= 0. These two process are defined by a pair of ODEs{

d
dtwt = −∇wLDN

(wt),
d
dtut = −

(
1 + g(t)

)
∇wLDN

(wt),
(55)

where wt and ut are the parameters of the first and the second process respectively, and the initial
conditions are assumed to be identical w0 = u0. Associating residuals pt(λ), qt(λ) to parameters
w,u, ODE system (55) is rewritten as{

∂tpt(λ) = −λpt(λ),
∂tqt(λ) = −

(
1 + g(t)

)
λpt(λ),

p0(λ) = q0(λ) = 1. (56)

Here g(t) is a function controlling the final solution q∞(λ), and therefore needs to be chosen based
on the desired solution p̃(λ). At a given control function g(t) the final solution q∞(λ) can be easily
found by integrating the second equation as

∫∞
0
∂tqt(λ) = q∞(λ) − q0(λ) and substituting the

solution of the basic GF pt(λ) = e−λt into ∂tqt(λ). Then, setting the final solution to the desired
value q∞(λ) = p̃(λ) leads to an integral equation on the control g(t)∫ ∞

0

(
1 + g(t)

)
λe−λtdt = 1− p̃(λ). (57)

Since
∫∞
0
λe−λtdt = 1, we cancel 1 from both sides, arriving at Laplace transform of g(t) on the

left-hand side ∫ ∞

0

g(t)e−λtdt = − p̃(λ)
λ

. (58)

Thus, choosing g(t) as an inverse Laplace transform of − p̃(λ)
λ implements the desired spectral algo-

rithm h̃(λ).

C SCALING STATEMENTS

In the section, we give rigorous versions of the scaling statements outlined in Section 5.1. In the
end of the section we also provide Proposition 5 as a discrete analog of Proposition 2, which will be
required for the Circle model.

Intuitive derivation. Before proceeding with rigorous proofs, let us give a simple intuition behind
the scale of sums and integrals stated in Propositions 2 and 5.

We start with the integral case, following notations and assumptions from Proposition 2. To find
the scale of the integral

∫ 1

aN
|gN (λ)|dλ, let us divide the range of scales s ∈ [0, a] into many small

segments and look at the contribution from a single segment [s0, s0+ε], corresponding to the interval
of eigenvalues Λs0 = [N−ελ0, λ0], λ0 = N−s0 . Due to the continuity of scaling profile Sg(s) (see
Lemma 1 below), we can neglect the change of the gN (λ) on Λs0 . Approximating the length of
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eigenvalues interval as |Λs0 | ≈ λ0, we can estimate the contribution to the integral from [s0, s0 + ε]
as

|gN (λ)| × |Λs0 | ∼ |gN (λ)| × λ0 ∼ N−Sg(s0)−s0 , (59)
which is exactly the expression under the minimum in Proposition 2. To see that only the scales
which minimize G(s) = Sg(s) + s give a non-vanishing contribution to the final result, take two
scales s1, s2 such that G(s2)−G(s1) = δ > 0. Then, according to (59), the contribution from scale
segment [s2, s2+ ε] will be Nδ times smaller than from the scale segment [s1, s1+ ε], and therefore
will vanish in the limit N →∞.

We can summarize the above with the following simple heuristic: replace dλ with λ under the
integral and maximize the resulting expression to get an estimation of the integral scale. The case
of a discrete sum goes along the same lines, leading to the heuristic of replacing the sum

∑
kwith

current index k:
∑

k |gN (λ
(N)
k )| → k × |gN (λ

(N)
k )|, and then maximizing the resulting expression.

Continuity of scaling profiles.
Lemma 1. The scaling profile Sg(s), if exists, is a continuous function of s.

Proof. Suppose that Sg exists but is not continuous. Then there exists s∗ ≥ 0 and a sequence
sm → s∗ such that |Sg(sm)− Sg(s∗)| > c for all m and some positive constant c. Suppose w.l.o.g.
that Sg(sm) < Sg(s∗) − c for all m. Consider some fixed m and choose some sequence λ(m)

N of
scale sm. In particular, we then have

λ
(m)
N < N−sm+1/m and λ(m)

N > N−sm−1/m (60)

for N > Nm with some Nm. By definition of the scaling profile, we also have

|gN (λ
(m)
N )| > N−S(g)(sm)−c/2 > N−S(g)(s∗)+c/2 (61)

for N large enough; say for N > Nm with the same Nm as before. We can assume w.l.o.g. that Nm

is monotone increasing. Now define the sequence λN by

λN = λ
(m)
N , Nm < N ≤ Nm+1. (62)

This sequence has scale s∗, but |gN (λN )| > N−S(g)(s∗)+c/2 for all sufficiently large N , contradict-
ing the fact that that gN (λN ) must have scale S(g)(s∗).

Proof of Proposition 2. Part 1. Let us first show the part of the statement that says that for any
ϵ > 0 ∫ 1

aN

|gN (λ)|dλ = o(N−s∗+ϵ). (63)

Suppose that this is not the case, and there is ϵ > 0 and a subsequence Nm such that∫ 1

aN

|gN (λ)|dλ > N−s∗+ϵ
m . (64)

Divide the interval [0, a] into finitely many subintervals Ir = [br, br+1] of length less than ϵ/2. For
each subinterval Ir, define

λm,r = argmax
λ:− logNm

λ∈Ir

|gNm(λ)|. (65)

Note that for each r the sequence m 7→ − logNm
λm,r takes values in the compact interval Ir, so it

has a limit point s∗r ∈ Ir. By going to a subsequence, we can assume w.l.o.g. that the limit point is
unique, i.e. is the limit. Then we can define for each r the sequence λ(r)N by setting λ(r)N = λm,r if
N = Nm and somehow complementing it for N ̸= Nm so that the sequence λ(r)N has scale s∗r . By
scaling assumption, we then have

gN (λ
(r)
N ) = o(N−S(g)(s∗r)+ϵ/2) (66)

and in particular

gNm(λm,r) = o(N
−S(g)(s∗r)+ϵ/2
m ). (67)
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By definition of λm,r,∫ 1

aNm

|gNm(λ)|dλ =

∫ 0

− logNm
aNm

|gNm(N−q
m )|dN

−q
m

dq
dq ≤

∑
r

gNm(λm,r)N
−br
m . (68)

It follows that ∫ 1

aN

|gNm(λ)|dλ = o
(∑

r

N
−S(g)(s∗r)+ϵ/2
m N−br

m

)
(69)

= o
(∑

r

N
−(S(g)(s∗r)+s∗r)+ϵ
m

)
(70)

= o(N−s∗+ϵ
m ) (71)

contradicting assumption (64).

Part 2. Now we prove the opposite inequality:∫ 1

aN

|gN (λ)|dλ = ω(N−s∗−ϵ). (72)

Let q∗ = argmin0≤s≤a(S
(g)(s) + s). By continuity of S(g), there exists an interval I = [q∗ −

δ, q∗ + δ] where S(g)(s) < S(g)(q∗) + ϵ/2. Arguing as in Part 1, we then deduce from the scaling
assumption on S(g) that

min
λ:− logN λ∈I

|gN (λ)| = ω(N−S(g)(q∗)−ϵ). (73)

It follows that ∫ 1

aN

|gN (λ)|dλ ≥ (N−q∗+δ −N−q∗−δ) min
λ:− logNm

λ∈I
|gN (λ)| (74)

= ω(N−S(g)(q∗)−ϵN−(q∗−δ)) (75)

= ω(N−S(g)(q∗)−q∗−ϵ) (76)

= ω(N−s∗−ϵ) (77)

as desired. This completes the proof of Proposition 2.

Discrete spectrum. Suppose that {λ(N)
k ∈ (0, 1]}Nk=1 is a N -dependent, size-N multiset (with

possibly repeated elements) such that the sequence of the respective distribution functions FN (λ) =
|{k ∈ 1, N : λ < λk ≤ 1}| has a scaling profile S(F )(s). Observe, in particular, that in the Circle
model with the population eigenvalues λl = (|l|+1)−ν the distribution of the empirical eigenvalues
λ̂k (as well as of the population eigenvalues λk for k restricted to the interval (−N/2, N/2]) has the
scaling profile S(F )(s) = − s

ν .

Proposition 5. Assuming that min{(λ(N)
k )Nk=1} = ω(N−a) with some a > 0 and S(F )(s) is strictly

monotone decreasing, the sequence of sums
∑N

k=1 |gN (λ
(N)
k )| has scale s∗ = min0≤s≤a(S

(g)(s)+

S(F )(s)).

The proof of this proposition is analogous to the proof of Proposition 2.

D CIRCLE MODEL

Here, we give all our derivations related to Circle model.

D.1 LOSS FUNCTIONAL

In this section we provide the proof of Theorem 1.
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The main technical motivation behind our Circle model is to simplify the empirical kernel matrix
K. Indeed, K becomes a symmetric circulant matrix

(K)ij =

∞∑
l=−∞

λle
i
2πl(i−j)

N . (78)

To establish the relationship between the (complex) eigendecomposition of empirical kernel ma-
trix (29) and observation vector (y)i = yion one side, and the population spectra λl, c+,l, c−,l on
the other side, we write

(K)ij =

N−1∑
k=0

∞∑
n=−∞

λk+Nne
i
2π(k+Nn)(i−j)

N =

N−1∑
k=0

λ̂ke
i
2πk(i−j)

N . (79)

This leads to empirical eigenvalues

λ̂k =

∞∑
n=−∞

λk+Nn, (uk)i =
1√
N
ei

2πki
N . (80)

Note that empirical eigenvalues λ̂k turned out to be non-random, which is a consequence of the
regularity of training dataset DN . Observe that each empirical eigenvalue except λ̂0 is twice degen-
erate: λ̂k = λ̂N−k for 0 < k < N/2. This is the consequence of the fact that we took the kernel
function K(x− x′) to be even.

Turning to the target function, we have

yi = σεi +
∑
l

cle
il(u+

2πi
N ). (81)

The respective empirical coefficients in the decomposition 1√
N
y =

∑
k ŷkuk are

ŷk =
1

N

N−1∑
i=0

yie
−i

2πki
N =

σεk√
N

+

∞∑
n=−∞

ck+Nse
i(k+Nn)u. (82)

Here εk = 1√
N

∑
i εie

−i
2πki
N ∈ C are complex Gaussian random variables. They are i.i.d. up

to a few dependencies, for example, εk = εN−k (overline denotes complex conjugation here).
Therefore, later we will use the definition of εk in terms of εi to avoid accurate formulation of its
statistics.

Finally, let us use the obtained eigendecomposition of the empirical kernel and target to write an
expression for the prediction components ĉl

ĉl =
1

2π

∫ 2π

0

f̂(x)e−ilxdx = λl

N−1∑
k=0

h(λ̂k)

λ̂k
ŷk

[
1

N

N−1∑
i=0

eik
2πi
N e−il(u+ 2πi

N )

]

=
λl

λ̂kl

h(λ̂kl
)e−iluŷkl

,

(83)

where kl = l mod N . Note that representations (83) and (82) define transfer measure ρ̂(f)ll′ (dλ)
introduced in Section A.3. Due to the regular structure of the training dataset in our setting, the
transfer measure also has a specific regular structure.

1. In the basis of Fourier harmonics {eilx}∞l=−∞, the information is transferred from l′ to l
only if l − l′ is divisible by N (we can say that such l, l′ are compatible).

2. If l, l′ are compatible, the information is transferred only through a single empirical eigen-
value λN,kl

.

Now, we start to derive the specific form of (44) for our translation-invariant setting. It will be
convenient to divide the contribution to the final loss LN [h] into a bias term and two variance terms
responsible for randomness w.r.t. to u and εi:

L[h] = LBias[h] + LVar,u[h] + LVar,ε[h]. (84)

21



Published as a conference paper at ICLR 2024

Bias term. This term is the loss of the mean prediction with population coefficients

Eu,ε[ĉl] =
λl

λ̂kl

h(λ̂kl
)

∫ 2π

0

e−ilu
∞∑

n=−∞
cl+Nne

i(l+Nn)u du

2π
=

λl

λ̂kl

h(λ̂kl
)cl, (85)

whose substitution into ∥f∗(x)− Eu,ε[f̂(x)]∥2 gives

LBias
N [h] =

1

2

∞∑
l=−∞

(
1− λl

λ̂kl

h(λ̂kl
)

)2

|cl|2. (86)

Here we see that how well the component l can be learned depends on the closeness between λl and
λ̂kl

: for l≪ N we have kl = l and typically λl ≈ λ̂l (assuming that λl decay fast with l). Thus, the
target function can be learned well by setting h(λ) = 1.

Noise variance term. Since the prediction is linear in the noise εi, its contribution to the loss
comes only from the terms which are quadratic in εi. Then, we define the noise variance by the
contribution of such terms to the loss. Denoting the contribution of the noise to the prediction as
f̂ (ε), we calculate its second moment

Eu,ε

[
f̂ (ε)f̂ (ε)

]
=

(
λlh(λ̂kl

)

λ̂kl

)2
1

N2

∑
i1,i2

e−ikl
2π(i1−i2)

N Eε[εi1εi2 ] =

(
λlh(λ̂kl

)

λ̂kl

)2
σ2

N
, (87)

where we used that |f̂ (ε)|2 is independent of u making expectation Eu trivial. The respective contri-
bution to the loss is

LVar,ε[h] =
1

2

∞∑
l=−∞

(
λlh(λ̂kl

)

λ̂kl

)2
σ2

N
. (88)

Dataset variance term. This part is simply the contribution of the rest of the variance prediction.
The respective second moment is

Eu,ε

[
(ĉl − ĉ(ε)l )(ĉl − ĉ(ε)l )

]
=

(
λlh(λ̂kl

)

λ̂kl

)2 ∫ ∞∑
n1,n2=−∞

cl+Nn1
cl+Nn2

eiN(n1−n2)u
du

2π

=

(
λlh(λ̂kl

)

λ̂kl

)2 ∞∑
n=−∞

|cl+Nn|2.

(89)

Subtracting the mean (85) from the second moment, we get the dataset variance loss term

LVar,u[h] =
1

2

∞∑
l=−∞

(
λlh(λ̂kl

)

λ̂kl

)2∑
n ̸=0

|cl+Nn|2. (90)

Final expression. Let us First combine bias and dataset variance terms.

LVar,u[h] + LBias
N [h] =

1

2

∞∑
l=−∞

[
|cl|2 − 2|cl|2

h(λ̂kl
)

λ̂kl

λl +
(
λl
h(λ̂kl

)

λ̂kl

)2 ∞∑
n=−∞

|cl+Nn|2
]

=
1

2

∞∑
l=−∞

[
(|cl|2 − 2|cl|2

h(λ̂kl
)

λ̂kl

λl + |cl|2
(h(λ̂kl

)

λ̂kl

)2 ∞∑
n=−∞

λ2l+Nn

]
,

(91)

where we have rearranged the sum over l with fixed kl in the quadratic term.

Adding the noise variance term, we are now able to write the final expression for the generalization
error

L[h] =
1

2

∞∑
l=−∞

|cl|2
1− 2

h(λ̂kl
)

λ̂kl

λl +

(
h(λ̂kl

)

λ̂kl

)2 [
λ2l
]
N

+
σ2

N

(
λlh(λ̂kl

)

λ̂kl

)2
 . (92)
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where we have used N-deformations (10) notation for the sum
∑∞

n=−∞ λ2l+Nn

[
λ2l
]
N

. As a
last step, we observe that the sum over indices l the same fixed kl = k mod N again leads
to N-deformations (10), allowing to rewrite the full sum over l ∈ Z into the sum over kl ∈
0, 1, . . . , N − 1. Then, denoting kl simply as k, we have

L[h] =
1

2

N−1∑
k=0

[(
σ2

N +
[
|ck|2

]
N

)[λ2k]N[
λk
]2
N

h2(λ̂k)− 2

[
λk|ck|2

]
N[

λk
]
N

h(λ̂k) +
[
|ck|2

]
N

]
, (93)

which proves Theorem 1.

Let us now describe the optimal learning algorithm (9). Note that the functional (93) is fully local,
and therefore the optimal algorithm is well defined and is given by pointwise minimization at each
λ̂k. The resulting optimal algorithm h∗(λ̂k) is

h∗(λ̂k) =
[λk|ck|2]N [λk]N(

σ2

N +
[
|ck|2

]
N

)
[λ2k]N

. (94)

It may also be convenient to give a “completed square” form of the loss functional L[h] = δL[h −
h∗] + L[h∗], δL[h′] ≥ 0 that separates the minimal possible error L[h∗] with an excess positive
error if the algorithm is non-optimal h− h∗ ̸= 0

L[h] =
1

2

N−1∑
k=0

[(
σ2

N +
[
|ck|2

]
N

)[λ2k]N[
λk
]2
N

(
h(λ̂k)− h∗(λ̂k)

)2
+ [|ck|2]N −

[λk|ck|2]2N(
σ2

N +
[
|ck|2

]
N

)
[λ2k]N

]
.

(95)

Finally, we note that one can use translation symmetry k → k +N of N-deformations (10) in order
to shift the summation in (93) to values −N

2 ≤ k ≤ N
2 , for example, k ∈ {−⌊N2 ⌋, . . . , ⌈

N
2 ⌉ − 1}.

Like in (21), we denote such summation range simply as
∑N

2

k=−N
2

. The purpose of this shift is to

put all high empirical spectral quantities
[
λak|ck|2b

]
N

in the region |k| ≪ N , allowing to write, for
example, λ̂k = O

(
(|k|+ 1)−ν

)
.

D.2 POWER-LAW ANSATZ: NOISY OBSERVATIONS

Now, we turn to a more detailed analysis of the Circle model. As in the main paper, we separately
consider the noisy σ2 > 0 case in this section and the noiseless σ2 = 0 case in the next Section D.3.
Recall that we adapt basic power-law spectrum λl = l−ν , c2l = l−κ−1, l ≥ 1 since for the circle
model the population is naturally indexed by the whole integer set Z, leading to

λl = (|l|+ 1)−ν , c2l = (|l|+ 1)−κ−1, l ∈ Z. (96)

The purpose of the current section is to show the equivalence of circle model and NMNO models,
thus proving the respective part of Theorem 2. The intuition behind NMNO relies on the close-
ness of population and empirical spectral distributions in the eigenspaces distant from the spectrum
edge |l| ≪ N . Thus, we need to compare N-deformations [λak|ck|2b]N with their population coun-
terparts λak|ck|2b, considering the values |k| ≤ N

2 relevant for the loss functional (11). From the
definition (10) we get[

λak|ck|2b
]
N

= λak|ck|2b +
∑
n ̸=0

λak+Nn|ck+Nn|2b

= λak|ck|2b +
∞∑

n1=1

N−aν−b(κ+1)(
n1 +

1+k
N

)aν+b(κ+1)
+

∞∑
n2=1

N−aν−b(κ+1)(
n2 +

1−k
N

)aν+b(κ+1)

= λak|ck|2b +O(N−aν−b(κ+1)) = λak|ck|2b
(
1 +O(τaν+b(κ+1))

)
,

(97)

where, in the last line, we have assumed that aν + b(κ + 1) > 1 so that both n1 and n2 series are
converging. Also, we have recalled the notation τ = |k|+1

N introduced in Section 5.3.
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It turns out that the relation
[
λak|ck|2b

]
N

= λak|ck|2b + O(N−aν−b(κ+1)) is sufficient to establish
equivalence to NMNO model. For that, write the Circle model loss functional (11) as NMNO
functional L(nmno)[h], defined in (17), plus two corrections terms

L[h] = L(nmno)[h] + δLalg[h] + δLcoeff [h], (98)
where the correction due to the displacements between the population and empirical eigenvalues in
the argument of the learning algorithm is

δLalg[h] =
1

2

N
2∑

k=−N
2

[
σ2

N

(
h2(λ̂k)− h2(λk)

)
+ c2l

((
1− h(λ̂k)

)2 − (1− h(λk))2)], (99)

and the correction due to difference between population λak|ck|2b and empirical
[
λak|ck|2b

]
N

coeffi-
cients in the loss functional

δLcoeff [h] =
1

2

N
2∑

k=−N
2

[
σ2

N

[
λ2k
]
N
−
[
λk
]2
N[

λk
]2
N

h2(λ̂k) +
([
|ck|2

]
N

[
λ2k
]
N[

λk
]2
N

− |ck|2
)
h2(λ̂k)

− 2
([λk|ck|2]N[

λk
]
N

− |ck|2
)
h(λ̂k) +

[
|ck|2

]
N
− |ck|2

]
.

(100)

From this point, our strategy is to specify the scales of all the terms of NMNO functional L(nmno)[h],
and of the two corrections δLalg[h], δLcoeff [h]. Then, we can invoke the scaling argument of Propo-
sition 2 (actually its discrete version in Proposition 5) to show that all the correction terms give
negligible contribution to the loss.

First, recall from Section 5.1 that the scaling of NMNO terms is given by

S
[
σ2

N h2(λk)
]
= 1 + 2S(h)(s), (101)

S
[
c2k
(
1− h(λk)

)2]
= κ+1

ν s+ 2S(1−h)(s). (102)

Next, we proceed to the δLalg[h] correction. To bound its terms one needs a certain smoothness
assumption on h(λ). Currently, in Theorem 2, we require that the maps log λ 7→ log |h(λ)|
and log λ 7→ log |1 − h(λ)| are globally Lipschitz, but maybe a weaker smoothness condition
is possible. To understand the application of this condition, take some function g(x) such that
a mapping log x → log g(x) is Lipschitz with constant C, i.e.

∣∣ log g(x+∆x)
g(x)

∣∣ ≤ C
∣∣ log x+∆x

x

∣∣.
Then, taking any constant C ′ > C, there is δ > 0 such that for all |∆x

x | < δ we have∣∣g(x+∆x)−g(x)
∣∣ < C ′g(x)

∣∣∆x
x

∣∣. Coming back to the difference between empirical and population

eigenvalues and using (97) gives λ̂k−λk

λk
= O(τν), and therefore |h2(λ̂k)−h2(λk)| = O

(
h2(λk)τ

ν
)

(and similar estimate for (1 − h(λ))2). Recalling the scale S[τ ] = S
[ |k|+1

N

]
= 1 − s

ν , we get a
bound on the scale of the respective correction terms

S

[
σ2

N

(
h2(λ̂k)− h2(λk)

)]
≥ 1 + ν − s+ 2S(h)(s), (103)

S
[
c2k

((
1− h(λ̂k)

)2 − (1− h(λk))2)] ≥ ν + κ+1−ν
ν s+ 2S(1−h)(s). (104)

Finally, repetitive application of (97) to all the terms of δLcoeff [h] gives the remaining scales

S

[
σ2

N

[
λ2k
]
N
−
[
λk
]2
N[

λk
]2
N

h2(λ̂k)

]
≥ 1 + (ν − s) + 2S(h)(s), (105)

S

[([
|ck|2

]
N

[
λ2k
]
N[

λk
]2
N

− |ck|2
)
h2(λ̂k)

]
≥ (κ+ 1) ∧

(
ν + κ+1−ν

ν s
)
+ 2S(h)(s), (106)

S

[([λk|ck|2]N[
λk
]
N

− |ck|2
)
h(λ̂k)

]
≥ ν + κ+1−ν

ν s+ S(h)(s), (107)

S
[[
|ck|2

]
N
− |ck|2

]
≥ κ+ 1. (108)
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Here, all the estimations are relatively straightforward, except for, possibly, the bound (106) that
involves two values depending on whether κ+ 1 > ν or the opposite (a reminiscent of overlearning
transition of Section 5.3 here!). We demonstrate the bounding of this term in detail[

|ck|2
]
N

[
λ2k
]
N[

λk
]2
N

= |ck|2
(
1 +O(τκ+1)

) λ2k
(
1 +O(τ2ν)

)(
λk
(
1 +O(τν)

))2
= |ck|2

(
1 +O(τκ+1) +O(τν)

)
= |ck|2

(
1 +O

(
τ (κ+1)∧ν

))
= |ck|2 +O

( (|k|+ 1)0∧(ν−κ−1)

N (κ+1)∧ν

)
.

(109)

This immediately implies the bound on the scale of [|ck|2]N [λ2
k]N

[λk]2N
− |ck|2 used in (106).

Now, having specified the scale of all the corrections, our task is to show that they contribute neg-
ligibly to the loss. In other words, the scale of the total contribution of all the corrections has to be
strictly lower than that of NMNO loss. Using Proposition 5 this is written as

min
0≤s≤ν

[(
1− s

ν + 2S(h)(s)
)
∧
(
κ
ν s+ 2S(1−h)(s)

)]
(110)

< min
0≤s≤ν

[(
1 + (ν − s) + 2S(h)(s)

)
(111)

∧
(
(κ+ 1) ∧

(
ν + κ+1−ν

ν s
)
+ 2S(h)(s)

)
(112)

∧
(
ν + κ+1−ν

ν s+ S(h)(s)
)

(113)

∧
(
ν + κ+1−ν

ν s+ 2S(h)(s)
)

(114)

∧ (κ+ 1)− s
ν

]
. (115)

It is easy to see that this strict inequality can only be violated (by becoming equality) when the
mins are attained at s = ν so that the r.h.s. of (105) is equal to the r.h.s. of (101)). However, this
possibility is excluded by hypothesis of the theorem. This completes the proof of Theorem 2 for the
Circle model.

We remark that the Lipschitz condition in Theorem 2, used to compare algorithm h(λ) evaluated at
the population and empirical eigenvalues, is required only for the discrete (Circle) problem. It is easy
to check that this condition holds for the KRR algorithm with hη(λ) = λ

λ+η . However, it is violated
for GF with ht(λ) = 1 − e−λt: for time t ∼ Nst the mapping log λ → log(1 − ht(λ)) = −λt is
not Lipschitz on the scales s < st. Fortunately, (1− ht(λ))2 on such scales is exponentially small,
and the contribution to the loss from corresponding terms, both NMNO and its corrections, can be
ignored. Thus, the equivalence between Circle and NMNO models still holds for GF algorithm. We
expect that the Lipschitz condition of Theorem 2 can be weakened to take into account GF algorithm
but leave it for future work.

D.3 POWER-LAW ANSATZ: NOISELESS OBSERVATIONS

In this section, we derive the results presented in Section 5.3, while also giving full versions of the
results that were discussed only partially in the main paper. For the convenience of exposition, the
order in this section repeats that of Section 5.3.

D.3.1 PERTURBATIVE EXPANSION OF THE LOSS FUNCTIONAL

In the main paper, we relied on equation (21) as a starting point to quite easily conclude that the loss
localizes on the smallest spectral scale s = 0 in the saturated phase κ > 2ν while localizing on the
highest scale s = ν in the non-saturated phase κ < 2ν. Essentially, equation (21) ignores the details
of the problem at subspaces corresponding to small eigenvalues λ̂k ∼ λ̂N/2 (and |k| ∼ N ), while
providing a simple estimation of different loss functional terms for large eigenvalue subspaces with
λ̂k ≫ λ̂N/2 (and |k| ≪ N ). Alternatively, if one starts from exact loss functional (11), there seems
to be no clear path to deducing the existence of saturated and non-saturated phases, and obtaining
their convergence rates.
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The above discussion illuminates the importance of perturbative expansion of the loss functional in
the small parameter τ = |k|+1

N , or, in other words, perturbative corrections λ̂k − λk and ĉk − ck
of population spectral distributions in the presence of finite dataset size N . For the circle model,
the effect of finite dataset size N is captured by deviation of N-deformations [λak|ck|2b]N from
their population counterparts λak|ck|2b. The simplest form of this deviation was already obtained in
equation (97), which we will use below to derive equation (21).

Let us start by writing down the loss functional in “completed square” from (95) and in the absence
of observation noise

L[h] =
1

2

N
2∑

k=−N
2

[[
|ck|2

]
N

[
λ2k
]
N([

λk
]
N

)2 (
h(λ̂k)− h∗(λ̂k)

)2
+ [|ck|2]N −

(
[λk|ck|2]N

)2[
|ck|2

]
N
[λ2k]N

]
. (116)

Note that the first term here, i.e. the factor in front of
(
h(λ̂k)− h∗(λ̂k)

)2
, was already estimated in

the second line of (109): it agrees with the factor |ck|2
2

(
1+o(τ)

)
appearing in (21) up to replacement

O(τ (κ+1)∧ν) = o(τ) valid due to (κ+1)∧ ν > 1. We use this simplification in (21) because we do
not need a more accurate estimation of the correction term at this moment.

The second term of (21) corresponds to the generalization error of the optimal algorithm, which
allows to denote it as Lk[h

∗] since L[h∗] =
∑N/2

k=−N/2 Lk[h
∗]. This term is estimated as follows

Lk[h
∗] = [|ck|2]N −

(
[λk|ck|2]N

)2[
|ck|2

]
N
[λ2k]N

= |ck|2
(
1 +O(τκ+1)

)
−

|ck|4λ2k
(
1 +O(τκ+1+ν)

)
|ck|2λ2k

(
1 +O(τκ+1) +O(τ2ν)

)
= |ck|2

(
O(τκ+1) +O(τκ+1+ν) +O(τ2ν)

)
= (τN)−κ−1

(
O(τκ+1) +O(τ2ν)

)
= N−κ−1

(
O(1) +O(τ2ν−κ−1)

)
.

(117)

D.3.2 OPTIMALLY SCALED LEARNING ALGORITHMS

In Section 5.3 we mentioned that the rate O(N−κ) of the optimal algorithm h∗(λ) in the non-
saturated phase also holds for learning algorithms h(λ) within a suitable neighbourhood of h∗(λ),
characterized by a condition |h(λ̂k)− h∗(λ̂k)|2 = o(τκ). In this section, we derive this result while
also providing a more systematic discussion of learning algorithms that do not destroy the rate of
the optimal algorithm.

Let us call an algorithm h(λ) optimally scaled if the scale S
[
L[h]

]
of associated generalization error

L[h] is the same as that of the optimal algorithm h∗(λ)

S
[
L[h]

]
= S

[
L[h∗]

]
. (118)

While one might try to find all algorithms satisfying (118), here we take a less ambitious approach
by considering a simple family of conditions on |h(λ) − h∗(λ)| and then choosing the weakest
condition within the family. Specifically, for any two constants a, b, consider the following bound
on the scale of deviation of an algorithm h(λ) from the optimal one:

S
[
|h(λ)− h∗(λ)|2

]
≥ as+ b, s ∈ [0, ν], (119)

which is a slightly weaker (e.g. up to a logN factors) version of |h(λ) − h∗(λ)|2 = O(λ−aN−b).
Here we limited the scale of λ to s ∈ [0, ν] because this is precisely the interval of scales occupied
by the set of empirical eigenvalues {λ̂k}N−1

k=0 passed as an input to algorithms h, h∗.

It is easy to check whether all algorithms satisfying condition (119) are optimally scaled. First, we
can equivalently rewrite (118) as S

[
L[h]−L[h∗]

]
≥ S

[
L[h∗]

]
. Then, applying Proposition 5 to (21)

yields
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S
[
L[h]− L[h∗]

]
= min

0≤s≤ν

(
S
[
|ck|2

]
+ S

[
|h(λ̂k)− h∗(λ̂k)|2

]
− s

ν

)
≥ min

0≤s≤ν

(
(κ+ 1)

s

ν
+ as+ b− s

ν

)
=

{
b, a ≥ −κ

ν

b+ κ+ aν, a < −κ
ν .

(120)

According to the above calculation, the set of all pairs a, b that guarantee algorithms under condi-
tion (119) to be optimally scaled is given by A = {(a, b) ∈ R2 | b + 0 ∧ (κ + aν) ≥ S

[
L[h∗]

]
}.

Now, if we wish to pick a pair (a, b) ∈ A such that condition (119) is the weakest at a spectral scale
s, we have to minimize as+ b. Fortunately, there is a unique pair (a∗, b∗) that provides the weakest
condition across all relevant spectral scales

(a∗, b∗) =
(
− κ

ν
, S
[
L[h∗]

])
= argmin

(a,b)∈A

as+ b ∀s ∈ [0, ν]. (121)

Applying this result to saturated and non-saturated phases, with respective convergence rates
O(N−2ν) and O(N−κ), gives the desired conditions for optimally scaled algorithms

S
[
|h(λ)− h∗(λ)|2

]
≥ −κ

ν
s+ κ in the non-saturated phase κ < 2ν, (122)

S
[
|h(λ)− h∗(λ)|2

]
≥ −κ

ν
s+ 2ν in the saturated phase κ > 2ν. (123)

A stronger version of optimally scaled algorithm condition. Recall that the loss of the opti-
mal algorithm h∗ in saturated and non-saturated phases localize at s = 0 and s = ν respectively.
However, conditions (122), (123) do not provide the same localization property for the excess error
L[h] − L[h∗]. To see this, take |h(λ) − h∗(λ)|2 = O(λ−

κ
νN−κ∧2ν), which corresponds to values

(a∗, b∗) given in (121). Substituting these values in excess error scale calculation (120) makes the
function under the minimum s-independent, implying that the excess loss localizes on all spectral
scales s ∈ [0, ν]. Such spread of localization scales introduces a logarithmic factor in the error rate.
Taking, for simplicity, |h(λ̂k)− h∗(λ̂k)|2 = (|k|+ 1)−κN−κ∧2ν , and using (21) gives

L[h]− L[h∗] =
N
2∑

k=−N
2

c2k(1 + o(τ))|h(λ̂k)− h∗(λ̂k)|2

= N−κ∧2ν

N
2∑

k=−N
2

1 + o(τ)

|k|+ 1
= O(N−κ∧2ν logN).

(124)

To avoid these issues, let us introduce a slightly stronger version of conditions (122),(123), specified
by picking a small parameter ε > 0:

|h(λ)− h∗(λ)|2 = O
(
(λ

1
νN)−κ−ε

)
in the non-saturated phase κ < 2ν, (125)

|h(λ)− h∗(λ)|2 = O
(
λ−

κ
ν +εN−2ν

)
in the saturated phase κ > 2ν. (126)

For any ε > 0, the above conditions guarantee localization of the excess error either at s = 0
(saturated phase) or s = ν (non-saturated phase), as can be seen from (120). Also, using these
conditions in computation like (124) produces the rate of the optimal algorithm without logN factor
L[h]− L[h∗] = O(N−κ∧2ν).

Finally, let us comment on |h(λ̂k)−h∗(λ̂k)|2 = o(τκ) condition for non-saturated phase, mentioned

in the main paper. Since τ = (λ
1
ν

k N)−1, in many cases one can replace o(τκ) with O(τκ+ε) with
some ε and thus satisfy condition (125). When no ε > 0 can provide such replacement, it is possible
to show that the rate of the excess error remains L[h] − L[h∗] = O(N−κ), although with a more
technically involved version of computation (124).
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D.3.3 SATURATED PHASE κ > 2ν

When discussing the saturated phase in Section 5.3, we first deduced from O(τ#) terms in equa-
tion (21) that the loss will localize on the scale s = 0 (corresponding to |k| ∼ 1), and then stated that
the loss of the optimal algorithm can be achieved by optimally regularized KRR. In this section, we
derive an asymptotic expression of the loss functional in the saturated phase, which both explains
the statements made in the main paper and gives a more systematic picture of the loss-algorithm
relations in the saturated phase.

Generalization error of optimal algorithm L[h∗]. The asymptotic of L[h∗] originates from
O(τ2ν−κ−1) term in equation (21), which dominates the whole loss functional for κ > 2ν. To
verify that this is indeed the case, we need a more accurate characterization of N-deformation cor-
rection terms than in (97). For that, we recognize that the sums over n1, n2 in the second line of (97)
are Hurwitz zeta functions ζ(α, x) ≡

∑∞
n=0(n + x)−α evaluated at α = aν + b(κ + 1) and two

specific values of x:[
λak|ck|2b

]
N

α=aν+b(κ+1)
= λak|ck|2b +N−α

(
ζ
(
α, 1 + 1+k

N

)
+ ζ
(
α, 1 + 1−k

N

))
. (127)

Substituting Taylor expansion ζ(α, 1 + ϵ) = ζ(α)− αζ(α+ 1)ϵ+O(ϵ2) of Hurwitz zeta function
at x = 1 into (127) we get a more detailed version of (97)[

λak|ck|2b
]
N

= λak|ck|2b + 2ζ(α)N−α +O(N−α−1) +O(τ2N−α). (128)

Equipped with (128), we turn to derivation of the leading asymptotic of O(τ2ν−κ−1) term dominat-
ing the loss. By looking at (117), we can see that the term of interest comes from finiteN corrections
of
[
λ2k
]
N

. Then, mimicking the derivation (117) and using (128) for
[
λ2k
]
N

, we have

Lk[h
∗] = |ck|2

(
1 +O(τκ+1)

)
−

|ck|2λ2k
(
1 +O(τκ+1)

)
λ2k + 2ζ(2ν)N−2ν

(
1 +O(N−1) +O(τ2)

)
= 2ζ(2ν)

|ck|2

λ2k
N−2ν

(
1 +O(N−1) +O(τ2)

)
+O(N−κ−1).

(129)

Substituting the above in the loss functional sum results gives

L[h∗] =
1

2

N
2∑

k=−N
2

[
2ζ(2ν)

|ck|2

λ2k
N−2ν

(
1 +O(N−1) +O(τ2)

)
+O(N−κ−1)

]

=
1

2
2ζ(2ν)N−2ν

(
1 + o(1)

) N
2∑

k=−N
2

|cl|2

λ2l

=
1

2
2ζ(2ν)N−2ν

(
1 + o(1)

) ∞∑
l=−∞

|cl|2

λ2l
.

(130)

Here in the last equality we extended the summation to all population eigenspaces due to conver-
gence of the series

∑∞
l=−∞

|cl|2
λ2
l

at κ > 2ν, which reflects localization of the error on scale s = 0,
corresponding to |l| ∼ 1.

Note that in (130) we could have evaluated the sum over the population spectra as
∞∑

l=−∞

|cl|2

λ2l
=

∞∑
l=−∞

(|l|+ 1)2ν−κ−1 = 2ζ(κ+ 1− 2ν)− 1. (131)

However, we view the version with the sum as being more general. Intuitively, it stays valid in
the case of population spectra having power-law form only asymptotically: λl = (|l| + 1)−ν(1 +
o(1)) and |cl|2 = (|l| + 1)−κ−1(1 + o(1)). In that case, the value of the sum is not fixed by the
asymptotics of λl, |cl|2 and may vary substantially. In contrast, we can see from computation (129)
and corrections to N-deformations (97) and (128) that the factor 2ζ(2ν) is determined by population
spectrum λl with indices l near the values l = N,−N, 2N,−2N, . . .. Therefore, the factor 2ζ(2ν)
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in the loss is determined purely by asymptotic behavior of λl. Overall, this creates an interesting
situation where the loss (130) is localized on the smallest scale s = 0, but the asymptotic shape of the
population spectrum almost fully specifies the generalization error asymptotic L[h∗] = CN−2ν(1+

o(1)), with only the constant factor
∑

l
|cl|2
λ2
l

determined by the details living on the localization scale
s = 0.

Full generalization error L[h]. The full generalization error is obtained by combining L[h∗] with
the part of (116) associated with deviation from the optimal algorithm h(λ) − h∗(λ). We will con-
sider only the algorithms h(λ) with mild deviation from the optimal, as given by condition (125). As
demonstrated in Section D.3.2, this condition guarantees the rate not worse than the rate O(N−2ν)
of the optimal algorithm, and also localization of the excess error on the same scale s = 0.

Having ensured localization of the excess error on the scale s = 0, let us first look at the perturbative
expression of the optimal algorithm h∗(λ) at this scale. Substituting (128) into (12), we get

h∗(λ̂k) = 1 + 2ζ(ν)
N−ν

λk

(
1 +O(N−1) +O(τ)

)
. (132)

Using the above expression of the optimal algorithm, we compute the full loss functional as follows

L[h] =
1

2

N
2∑

k=−N
2

|ck|2
(
1 + o(τ)

)(
h(λ̂k)− 1− 2ζ(ν)

N−ν

λ̂k

(
1 +O(

1

N
) +O(τ)

))2

+
1

2

N
2∑

k=−N
2

|ck|2

λ2k
2ζ(2ν)N−2ν(1 + o(1))

=
1

2
N−2ν(1 + o(1))

N
2∑

k=−N
2

|ck|2

λ2k

[(
λkN

ν
(
h(λk)− 1

)
− 2ζ(ν)

)2
+ 2ζ(2ν)

]
(133)

While the above expression for L[h] is already a valid asymptotic for the loss in the saturated phase,
we make a few further refinements.

First, note that (133) relies on condition (125) for the algorithm h(λ). This condition might be quite
difficult to verify in practice, as it requires the knowledge of the optimal algorithm h(λ). However,
perturbative expansion (132) shows that optimal algorithm satisfies |h∗(λ) − 1|2 = O(λ−2N−2ν).
Since in saturated phase κ

ν > 2, we can always make λ−2N−2ν smaller than λ−
κ
ν +εN−2ν by

choosing ε < κ
ν − 2. Thus, employing triangular inequality shows that the original condition (125)

is equivalent to

|h(λ)− 1|2 = O(λ−
κ
ν +εN−2ν), 0 < ε <

κ

ν
− 2. (134)

The main advantage of condition (134) compared to (126) is that it is easily verifiable. For instance,
KRR has 1−hη(λ) = η

λ+η which satisfies (134) for |η| = O(N−ν). Similarly, for gradient flow we

have 1 − ht(λ) = e−tλ which satisfies (134) with t = Ω(N
2ν2

κ + ε′) and some ε′ > 0 depending
on ε.

Note that KRR and GF examples of h(λ) considered above satisfy (134) not only on the scales
s ∈ [0, ν] but for all s ≥ 0, or equivalently λ ≤ 1. Based on this observation, let us impose
condition (134) on all λ ≤ 1. Then, the summation indices in (133) to all population values l ∈ Z,
similarly to how it was done for optimal algorithm loss in (130).

To summarize, through the derivations and discussions above we have proved

Theorem 3. Consider the Circle model in saturated phase κ > 2ν. Then, if an algorithm h(λ)
satisfies (134) for all λ ≤ 1, the loss functional is given by

L[h] =
1

2
N−2ν(1 + o(1))

∞∑
l=−∞

|cl|2

λ2l

[(
λlN

ν
(
h(λl)− 1

)
− 2ζ(ν)

)2
+ 2ζ(2ν)

]
. (135)

29



Published as a conference paper at ICLR 2024

Finally, let us comment on the KRR result (22) presented in the main paper. Observe that the
combination λ(h(λ)− 1) entering the loss functional (135) is given, in case of KRR, by

λ(hη(λ)− 1) = − η

1 + η
λ

= −η
(
1 +O(

η

λ
)
)
. (136)

Substitution of the above into loss functional (135) leads to the KRR expression (22). According to
condition (134), this expression is applicable only for small enough regularization strengths |η| =
O(N−ν).

D.3.4 NON-SATURATED PHASE κ < 2ν

In this section, we obtain a limiting form of loss functional in the non-saturated phase. While this
form was not discussed explicitly in the main text, it was used to produce the first two plots in
Figure 3.

An important feature of the non-saturated phase is the localization of the loss on the highest spectral
scale s = ν, which is ensured for algorithms h(λ) satisfying (125). Such localization corresponds
to values τ ∼ 1, so we can not rely on perturbative expansion in small parameter τ → 0, as we did
in the sections above. Instead, for all terms of the loss functional (116) we need to take into account
their limitingN →∞ form at fixed τ . For N-deformations, such limit leads to symmetrized Hurwitz
zeta function ζ(α)τ = ζ(α, τ) + ζ(α, 1 − τ) introduced in equation (23) of the main text. Indeed,
slightly rearranging (127), we get[

λak|ck|2b
]
N

= N−α
(
ζ
(
α, τ

)
+ ζ
(
α, 1− τ + 2

N

)) N→∞,
τ=const−−−−−→ N−αζ(α)τ . (137)

Next, observe that on the scale s = ν the density of eigenvalues λk is very high, in a sense that

|λk+1−λk|
λk

= O(τ−1N−1)
N→∞,
τ=const−−−−−→ 0. Thus, in the limit N → ∞ the summation over spectral

index k in the loss functional (116) translates into an integral:
∑N

2

k=−N
2

→
∫ N

2

−N
2

dk → 2N−1
∫ 1

2

0
dτ ,

where for the last transition recall that τ = |k|+1
N and N-deformations [λak|ck|2b]N are even functions

of k. This leads to the following continuous form of the loss functional (116)

L(cont)[h] = N−κ

1
2∫

0

[
ζ
(κ+1)
τ ζ

(2ν)
τ(

ζ
(ν)
τ

)2 (
h(λ̂τ )− h∗(λ̂τ )

)2
+ ζ(κ+1)

τ −
(
ζ
(ν+κ+1)
τ

)2
ζ
(κ+1)
τ ζ

(2ν)
τ

]
dτ

= N−κ

1
2∫

0

[
ζ
(κ+1)
τ ζ

(2ν)
τ(

ζ
(ν)
τ

)2 h2(λ̂τ )− 2
ζ
(ν+κ+1)
τ

ζ
(ν)
τ

h(λ̂τ ) + ζ(κ+1)
τ

]
dτ,

(138)

where λ̂τ = N−νζ
(ν)
τ and the optimal algorithm h∗(λ̂τ ) is given by (23).

D.3.5 THE OVERLEARNING TRANSITION POINT

Observe that if κ = ν− 1, then in the case of zero noise σ2 = 0 the optimal algorithm (12) becomes
h∗(λ̂k) ≡ 1, and the same holds for the limiting (N → ∞) version (23). We prove now that for
larger (smaller) κ the optimal algorithm becomes overlearning (underlearning). We give the proof
for the limiting (N →∞) version, but it is easy to see that the proof extends without change to the
original discrete version as well.
Lemma 2. Consider the N →∞ limit of the optimal algorithm given by (23):

h∗(λ̂τ ) =
ζ
(ν+κ+1)
τ ζ

(ν)
τ

ζ
(κ+1)
τ ζ

(2ν)
τ

, ζ(α)x ≡ ζ(α, x) + ζ(α, 1− x). (139)

Then for any τ ∈ (0, 1)

h∗(λ̂τ )


< 1, κ+ 1 < ν,

= 1, κ+ 1 = ν,

> 1, κ+ 1 > ν.

(140)
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Proof. We have

lnh∗(λ̂τ ) = (ln ζ(ν+κ+1)
τ − ln ζ(κ+1)

τ )− (ln ζ(2ν)τ − ln ζ(ν)τ ) =

∫ κ+1

ν

dα

∫ α+ν

α

dβ d2

dβ2 ln ζ
(β)
τ .

(141)
To prove the lemma, it suffices to show that the function f(α) = ζ

(α)
τ is strictly log-convex for

α > 1, i.e. ff ′′ > (f ′)2. Note that

dm

dαm f(α) =

∞∑
n=0

(− ln(n+ τ))m(n+ τ)−α +

∞∑
n=0

(ln(n+ 1− τ))m(n+ 1− τ)−α. (142)

Then, the inequality ff ′′ > (f ′)2 is just the Cauchy inequality for the vectors

(. . . , (n+ τ)−α/2, . . . , (n+ 1− τ)−α/2, . . . ) (143)

and
(. . . ,− ln(n+ τ)(n+ τ)−α/2, . . . , ln(n+ 1− τ)(n+ 1− τ)−α/2, . . . ). (144)

The inequality is strict because the vectors are not collinear.

The over/under-learning property h∗(λτ ) ≷ 1 is clearly visible in the right two subfigures of
Figure 3. At κ > ν − 1, the optimal regularized KRR is also overlearning (with a nega-
tive regularization). The optimally stopped GF in this regime is GF continued to infinity, i.e.
h(λ) = limt→∞(1− e−tλ) = 1.

E WISHART MODEL

As for the circle model, in this section we collect all our derivations for the Wishart model.

Our strategy in computing loss functional (8) relies on the resolvent R̂(z) of empirical kernel matrix
K = ΦTΛΦ:

R̂(z) =

(
1

N
ΦTΛΦ− zI

)−1

=

(
1

N

∑
l

λlϕlϕ
T
l − zI

)−1

, z ∈ C, (145)

where ϕl are the columns of feature matrix Φ.

We note that the projections on empirical eigenvalues and eigenvectors, appearing in empirical trans-
fer measure (41) are related to the resolvent via the limit in the complex plane

N∑
k=1

δλ̂k
(dλ)uku

T
k =

1

π
lim

y→0+
ℑ
(∑

k

λ̂kuku
T
k − (λ+ iy)I

)−1

dλ

=
1

π
lim

y→0+
ℑR̂(λ+ iy)dλ,

(146)

where ℑz denotes the imaginary part of z ∈ C.

Now, denote the resolvent projected on features ϕl as

R̂ll′(z) =
1

N
ϕT

l R̂(z)ϕl′ , (147)

and the first two moments of the latter

Rll′(z) = EΦ

[
R̂ll′(z)

]
, (148)

Rl1l′1l
′
2l2

(z1, z2) = EΦ

[
R̂l1l′1

(z1)R̂l′2l2
(z2)

]
. (149)

Then, substituting (146) into the transfer measure (41) immediately connects it to the projected
resolvent
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ρ̂
(f)
ll′ (dλ) =

λl
πλ

lim
y→0+

ℑ
{
R̂ll′(λ+ iy)

}
dλ. (150)

Carrying the relation (150) over to the first and second moments of the transfer measure gives

ρ
(1)
ll′ (dλ) =

λl
πλ

lim
y→0+

R
(im)
ll′ (λ+ iy)dλ, (151)

ρ
(2)
l1l′1l

′
2l2

(dλ1, dλ2) =
λl′1λl′2
π2λ1λ2

lim
y1→0+
y2→0+

R
(im)
l1l′1l

′
2l2

(λ1 + iy1, λ2 + iy2)dλ1dλ2, (152)

ρ
(ε)
l (dλ) =

λ2l
πλ2

lim
y→0+

R
(im)
ll (λ+ iy)dλ, (153)

where R(im))
ll′ and R(im)

l1l′1l
′
2l2

are the moments of the imaginary part of the resolvent projections

R
(im)
ll′ (z) = EDN

[
ℑ
{
R̂ll′(z)

}]
, (154)

R
(im)
l1l′1l

′
2l2

(z1, z2) = EDN

[
ℑ
{
R̂l1l′1

(z1)
}
ℑ
{
R̂l′2l2

(z2)
}]
. (155)

Then, the learning measures defining the loss functional (8) are obtained by summation over popu-
lation indices as in (44).

E.1 RESOLVENT

Given the connection between resolvent and learning measures ρ(2), ρ(1), ρ(ε) described above, we
see that the resolvent moments (148) and (149) are fundamental building blocks for the loss func-
tional (8). In this section, we try to calculate these moments and simplify the result as much as
possible.

To start, recall that the 1
N Tr[R̂(z)] gives the Stieltjes transform of the empirical spectral measure

µ̂ = 1
N

∑N
k=1 δλ̂k

. A central quantity in our calculations will be Stieltjes transform of the average
spectral measure µ = E [µ̂]

r(z) ≡
∫ ∞

−∞

µ(dt)

z − t
=

1

N
E
[
Tr[R̂(z)]

]
. (156)

Next, denote resolvents of kernel matrices with one or two spectral components removed as

R̂−l(z) =

(
R̂−1(z)− 1

N
λlϕlϕ

T
l

)−1

=

 1

N

∑
m̸=l

λmϕmϕ
T
m − zI

−1

, (157)

R̂−l−l′(z) =

(
R̂−1

−l (z)−
1

N
λl′ϕl′ϕ

T
l′

)−1

=

 1

N

∑
m ̸=l,l′

λmϕmϕ
T
m − zI

−1

, (158)

and the respective Stieltjes transforms as r−l(z), r−l−l′(z).

In our calculations, we will use two assumptions
Assumption 1. (Self-averaging property). For a random Gaussian vector ϕ ∼ N (0, I) indepen-
dent from Φ

1

N
ϕT R̂(z)ϕ ≈ 1

N
E
[
ϕT R̂(z)ϕ

]
= r(z).

Assumption 2. (Stability under eigenvalue removal)

r−l−l′(z) ≈ r−l(z) ≈ r(z).

In classical RMT settings, e.g. that of Marchenko-Pastur law, both of these assumptions can be
rigorously shown. Specifically, both the statistical fluctuations of 1

Nϕ
T R̂(z)ϕ and the change of
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r(z) after eigenvalue removal give no contribution to the limiting spectral measure as N →∞. We
leave for the future work the validity of these assumptions in our settings.

As a final preparation step, let us write down a quick way of deriving the self-consistent (fixed-point)
equation for r(z) using the above assumptions. Starting with the trivial relation 1 = 1

N Tr[I], we get

1 =
1

N
E

[
Tr
[
R̂(z)

(
1
N

∑
l

λlϕlϕ
T
l − zI

)]]
=

1

N

∑
l

λlE
[

1
Nϕ

T
l R̂(z)ϕl

]
− zr(z). (159)

Next, we relate ϕT
l R̂(z)ϕl to ϕT

l R̂−l(z)ϕl via Sherman-Morrison formula in order to break the
dependence between ϕl and the matrix inside.

1
Nϕ

T
l R̂(z)ϕl =

1
Nϕ

T
l R̂−l(z)ϕl −

λl

(
1
Nϕ

T
l R̂−l(z)ϕl

)2
1 + λl

1
Nϕ

T
l R̂−l(z)ϕl

=
1
Nϕ

T
l R̂−l(z)ϕl

1 + λl
1
Nϕ

T
l R̂−l(z)ϕl

(1)
=

r−l(z)

1 + λlr−l(z)

(2)
=

r(z)

1 + λlr(z)
,

(160)

where in (1) and (2) we used the assumptions 1 and 2 respectively. Substituting this into (159) gives
the self-consistent equation

1 = −zr(z) + 1

N

∑
l

r(z)λl
1 + r(z)λl

, (161)

which is often written in a fixed-point form as

r(z) = 1

/(
−z + 1

N

∑
l

λl
1 + r(z)λl

)
. (162)

For z = −η < 0, we have r(z) = η−1
eff,N for effective regularization ηeff,N defined in (1).

E.1.1 COMPUTING THE RESOLVENT MOMENTS

Reflection symmetry. Here, we mainly repeat Simon et al. (2023) to establish useful exact rela-
tions for resolvent expectations. Recall that distribution of a Gaussian random vector z ∼ N (0, I)
remains invariant under orthogonal transformations: Uz ∼ N (0, I), where U is an arbitrary orthog-
onal matrix. Now, we notice that our averages of interest (154) and (155) have a form EΦ

[
f(K,Φ)

]
for some function f(·, ·) of empirical kernel matrix K = ΦΛΦT and “features” Φ. Applying
transformation Φ→ UΦ to perturbed kernel matrix ΦTUΛUTΦ gives

E
[
f(ΦTUΛUTΦ,Φ)

]
= E

[
f(ΦTΛΦ,UΦ)

]
. (163)

If we take U to be a reflection along one of the basis axes, e.g. (U(m))ll′ = δll′(1 − 2δlm) for
reflection along axis m, then U(m)Λ(U(m))T = Λ. This implies

E
[
f(ΦTΛΦ,Φ)

]
= E

[
f(ΦTΛΦ,U(m)Φ)

]
. (164)

Applying (164) to (154) and (155) gives their non-zero elements are only those with paired indices:
Rll(z) for the first moment andRlll′l′(z1, z2), Rll′ll′(z1, z2), Rll′l′l(z1, z2) for the second moment.
Moreover, note that we are interested only in those components of the resolvent second moment that
contribute to the loss (44). This leaves Rll′l′l(z1, z2) to be the only relevant components.

First moment. Here, all the necessary computations were already done in (160), leading to

Rll(z) =
r(z)

1 + λlr(z)
. (165)
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Second moment at z1 = z2. In this case, the second moment is connected to the derivative of
the first moment, which was utilized by Simon et al. (2023) and Bordelon et al. (2020) to obtain the
generalization error of KRR. Indeed,

Rll′l′l(z, z) = E
[
1

N
ϕT

l R̂(z)
ϕl′ϕ

T
l′

N R̂(z)ϕl

]

= −E

 1

N
ϕT

l

∂
(∑

m λm
ϕmϕT

m

N − zI
)−1

∂λl′
ϕl

 = −∂λl′Rll(z).

(166)

As prerequisite for computing the derivative ∂λl′Rll(z), we compute similar derivative of inverse
Stieltjes transform r−1(z). Differentiating the fixed point equation (161) in the form r−1 + z =
1
N

∑
l

λlr
−1

λl+r−1 w.r.t. to either z or λl′ gives

∂r−1

∂z

[
1− 1

N

∑
l

λl
λl + r−1

+
1

N

∑
l

λlr
−1

(λl + r−1)2

]
= −1, (167)

∂r−1

∂λl′

[
1− 1

N

∑
l

λl
λl + r−1

+
1

N

∑
l

λlr
−1

(λl + r−1)2

]
=

1

N

r−2

(λl′ + r−1)2
, (168)

leading to

∂r−1

∂λl′
= −∂r

−1

∂z

1

N

r−2

(λl′ + r−1)2
, (169)

∂r−1

∂z
=

r−1

z − 1
N

∑
l

λlr−2

(λl+r−1)2

. (170)

Using this, we second moment becomes

Rll′l′l(z, z) = −∂λl′Rll(z) =
δll′

(λl + r−1)2
− 1

N

r−2∂zr
−1

(λl + r−1)2(λl′ + r−1)2
. (171)

Second moment at z1 ̸= z2 with l = l′. Here and in the next case l ̸= l′ we will again ap-
ply Sherman-Morrison formula, including two subsequent applications to break dependence with
ϕl,ϕl′ . Denoting R̂#(z) the resolvent with, possibly, removed eigenvalue, removing an extra eigen-
value can be written in a simplified form under assumptions 1 and 2

R̂#(z) = R̂#−l(z)−
λl

1 + λlr(z)
R̂#−l(z)

ϕlϕ
T
l

N R̂#−l(z) = q
(
R̂#−l(z),

ϕlϕ
T
l

N , al(z)
)
, (172)

where q(X,Y, a) = X−aXYX is a polynomial in two matrices X,Y and a scalar variable a, and
al(z) is a shorthand notation for λl/(1 + λlr(z)).

Using representation (172) we can write our second moment element as
Rllll(z1, z2) = E [Tr [Yq(X1,Y, a1)Yq(X2,Y, a2)]] , (173)

where we have denoted

X1 = R̂−l(z1), X2 = R̂−l(z2), Y =
ϕlϕ

T
l

N , a1 = al(z1), a2 = al(z2). (174)
Now we exploit the independence between X1,X2 and Y by first taking the expectations w.r.t. Y.
Since Y is product of two Gaussian random variables and (173) is polynomial in Y containing
monomials of degree from 2 to 4, we need to compute Gaussian moments of the order from 4 to 8.
This can be conveniently done using Wick’s theorem for computing moments of Gaussian random
variables, which equates 2m-th moment to the sum over all pairings of 2m variables of the products
of m intra-pair covariances. Specifically, for normal vector x ∼ N (0, I), it reduces to the products
of Dirac deltas

E
[
xi1xi2 . . . xi2m−1

xi2m
]
=

1

2m

∑
σ∈S2m

m∏
j=1

E
[
xiσ(2j−1)

xiσ(2j)

]
=

1

2m

∑
σ∈S2m

m∏
j=1

δiσ(2j−1)iσ(2j)
,

(175)
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where S2m denotes the group of permutations of the index set {1, 2, . . . , 2m−1, 2m}. Now we apply
Wick’s theorem separately to each monomial from (173). For the simplest order-two monomial, we
have

EY [Tr[YX1YX2]] = N−2
∑

i+i−j+j−

Eϕ∼N (0,I)

[
ϕi+ϕi−(X1)i−j+ϕj+ϕj−(X2)j−i+

]
= N−2 (Tr[X1] Tr[X2] + 2Tr[X1X2])

= N−2

(
Tr[X1] Tr[X2] + 2

Tr[X1]− Tr[X2]

z1 − z2

)
= r(z1)r(z2) +

2

N

r(z1)− r(z2)
z1 − z2

= r1r2 +O(N−1),

(176)

where r1, r2 is a shorthand for r(z1), r(z2). Here we first applied Wick’s theorem, then transformed
the product X1X2 = (X1−X2)/(z1−z2). Then, we wrote the resolvent traces in terms of Stieltjes
transform Tr[X1,2] = r(z1,2) using assumption (1), thus removing the need to take expectation with
respect X1,X2 in the remaining calculation of the second moment Rllll(z1, z2). An important ob-
servation is that when computing the moment of order n, the leading term in 1

N has to be the product
of traces Tr[X1],Tr[X2], while all the other terms (containing at least one trace of a product) will
give O(N−1) contribution. Using the above observation, we can easily compute leading terms for
all the other averages:

EY [Tr[YX1YX1YX2]] = N−3 Tr[X1]
2 Tr[X2] +O(N−1) = r21r2 +O(N−1),

EY [Tr[YX1YX2YX2]] = N−3 Tr[X1] Tr[X2]
2 +O(N−1) = r1r

2
2 +O(N−1),

EY [Tr[YX1YX1YX2YX2]] = N−4 Tr[X1]
2 Tr[X2]

2 +O(N−1) = r21r
2
2 +O(N−1).

(177)

Combining all the monomials, we can summarize the whole computation as follows

Rllll(z1, z2) = q
(
r1, 1, a1

)
q
(
r2, 1, a2

)
+O(N−1) =

1

(λl + r−1
1 )(λl + r−1

2 )
+O(N−1), (178)

where in the last equality we used q(r(z), 1, al(z)) = 1
λl+r−1(z) . Note that in the limit z1 → z2, the

expressions above coincide with previously derived (171) up to subleading O(N−1) terms.

Second moment at z1 ̸= z2 with l ̸= l′. Here we need to remove two eigenvalues λl and λl′ . The
respective resolvent expression is

R̂(z) =q(R̂−l(z),
ϕlϕ

T
l

N , al(z)) = q(q(R̂−l−l′(z),
ϕl′ϕ

T
l′

N , al′(z)),
ϕlϕ

T
l

N , al(z)))

=q̃(R̂−l−l′(z),
ϕlϕ

T
l

N ,
ϕl′ϕ

T
l′

N , al(z), al′(z)),
(179)

where

q̃(X,Y,Y′, a, a′) = q(q(X,Y′, a′),Y, a)

= X− aXYX− a′XY′X+ aa′
(
XYXY′X+XY′XYX

)
.

(180)

Substituting (179) into (149) will produce an expression of the form

Rll′l′l(z1, z2) = E [Tr [Y′q̃(X1,Y,Y
′, a1, a

′
1)Yq̃(X2,Y,Y

′, a2, a
′
2)]] , (181)

where in addition to (174) we have denoted Y′ =
ϕl′ϕ

T
l′

N , a′1 = al′(z1), and a′2 = al′(z2).

Now, let us again calculate the expectations over Y,Y′ using Wick’s theorem. The difference with
the l = l′ case is that the pairings between ϕl and ϕl′ produce zeros due to their independence. For
example, the expectation for the simplest monomial is

EY,Y′ [Tr[Y′X1YX2]] =
1

N2

∑
i+i−j+j−

Eϕ,ϕ′∼N (0,I)

[
ϕ′i+ϕ

′
i−(X1)i−j+ϕj+ϕj−(X2)j−i+

]
= N−2 Tr[X1X2] = −

1

N

r(z1)− r(z2)
z1 − z2

.

(182)
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Observe that the monomial above has 1
N magnitude. This is the consequence that N0 terms from

the l = l′ case arose from pairings between Y′ and Y, which are zero in the l ̸= l′ case. Taking
into account the symmetry Rll′ll′(z1, z2) = Rll′ll′(z2, z1), we proceed similarly and calculate the
leading terms for all the other independent monomials.

Terms with X2:

EY,Y′ [Tr[Y′X1Y
′X1YX2]] =N

−3 Tr[X1X2] Tr[X1] +O(N−2),

EY,Y′ [Tr[Y′X1YX1YX2]] =N
−3 Tr[X1X2] Tr[X1] +O(N−2),

EY,Y′ [Tr[Y′X1Y
′X1YX1YX2]] =N

−4 Tr[X1X2] Tr[X1] Tr[X2] +O(N−2),

EY,Y′ [Tr[Y′X1YX1Y
′X1YX2]] =3N−43Tr[X1X2] Tr[X

2
1] +O(N−3) = O(N−2).

(183)

New terms with X2YX2:

EY,Y′ [Tr[Y′X1Y
′X1YX2YX2]] = N−4 Tr[X1X2] Tr[X1] Tr[X2] +O(N−2),

EY,Y′ [Tr[Y′X1YX1YX2YX2]] = N−4 Tr[X1X2] Tr[X1] Tr[X2] +O(N−2),

EY,Y′ [Tr[Y′X1Y
′X1YX1YX2YX2]] = N−5 Tr[X1X2] Tr[X1]

2 Tr[X2] +O(N−2),

EY,Y′ [Tr[Y′X1YX1Y
′X1YX2YX2]] =

= 3N−5 Tr[X1X2] Tr[X
2
1] Tr[X2] +O(N−3) = O(N−2).

(184)

New terms with X2Y
′X2:

EY,Y′ [Tr[Y′X1YX1YX2Y
′X2]] = N−4 Tr[X1X2] Tr[X1] Tr[X2] +O(N−2),

EY,Y′ [Tr[Y′X1Y
′X1YX1YX2Y

′X2]] = N−5 Tr[X1X2] Tr[X1]
2 Tr[X2] +O(N−2),

EY,Y′ [Tr[Y′X1YX1Y
′X1YX2Y

′X2]] =

= 3N−5 Tr[X1X2] Tr[X
2
1] Tr[X2] +O(N−3) = O(N−2).

(185)

New terms with X2YX2Y
′X2:

EY,Y′ [Tr[Y′X1Y
′X1YX1YX2YX2Y

′X2]] =

= N−6 Tr[X1X2] Tr[X1]
2 Tr[X2]

2 +O(N−2),

EY,Y′ [Tr[Y′X1YX1Y
′X1YX2YX2Y

′X2]] =

= 3N−6 Tr[X1X2] Tr[X1]
2 Tr[X2]

2 +O(N−3) = O(N−2).

(186)

A new term with X2Y
′X2YX2:

EY,Y′ [Tr[Y′X1YX1Y
′X1YX2Y

′X2YX2]] =

= N−6
(
6Tr[X1X2]

3 + 9Tr[X1X2] Tr[X1]
2 Tr[X2]

2
)
+O(N−4) = O(N−3).

(187)

To summarize, we observe two types of monomials. The first type has the order O(N−2) and
is composed of those monomials which take X1YX1Y

′X1 from q̃(X1,Y,Y
′, a1, a

′
1) and/or

X2Y
′X2YX2 from q̃(X2,Y,Y

′, a2, a
′
2). The rest of the monomials g(·, ·, ·, ·), contain exactly

one factor Tr[X1X2] = N r1−r2
z1−z2

, have the order O(N−1), and satisfy

EY,Y′
[
g
(
X1,X2,Y,Y

′)] = 1

N

r1 − r2
z1 − z2

g
(
r1, r2, 1, 1

)
r1r2

+O(N−2)

= − 1

N

r−1
1 − r

−1
2

z1 − z2
g
(
r1, r2, 1, 1

)
+O(N−2).

(188)

Thus, the leading O(N−1) term for the second moment with l ̸= l′ is given by

Rll′l′l(z1, z2) = −
1

N

r−1
1 − r

−1
2

z1 − z2

∏
s=1,2

[
rs − (as + a′s)r

2
s + asa

′
sr

3
s

]
+O(N−2)

= − 1

N

r−1
1 − r

−1
2

z1 − z2
r−1
1 r−1

2

(λl + r−1
1 )(λl′ + r−1

1 )(λl + r−1
2 )(λl′ + r−1

2 )
+O(N−2).

(189)

Again, in the limit z1 → z2, the result above coincides with previously derived (171) up to sublead-
ing O(N−2) terms.
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Summations over l′ and l in (44). For the loss functional we will need not the bare second mo-
ment Rll′l′l(z1, z2) but the sum

∑
l′ λ

2
l′Rll′l′l(z1, z2). First, let us start with the case z1 = z2 where

the second moment is given by (171). The essential sum to compute is
∑

l′
λ2
l′

(λl′+r−1)2 . Using the
fixed-point equation (161) gives

1

N

∑
l′

∂zr
−1λ2l′

(λl′ + r−1)2
=

1

N

∑
l′

∂

∂z

r−1λl′

λl′ + r−1
=

∂

∂z
(r−1 + z) = 1 + ∂zr

−1. (190)

We can substitute this result into the second moment to get the desired second moment sum.∑
l′

λ2l′Rll′l′l(z, z) =
λ2l − (1 + ∂zr

−1)r−2

(λl + r−1)2
. (191)

Now, we proceed to the case z1 ̸= z2. Similarly, from (189) we see that the essential sum to compute
is

1

N

r−1
1 − r

−1
2

z1 − z2

∑
l′

λ2l′

(λl′ + r−1
1 )(λl′ + r−1

1 )
=

1

N

1

z1 − z2

∑
l′

(
λl′r

−1
1

λl′ + r−1
1

− λl′r
−1
2

λl′ + r−1
2

)

= 1 +
r−1
1 − r

−1
2

z1 − z2
,

(192)

which is basically a finite difference version of the sum for z1 = z2. Again, we substitute this result
into second moment sum to get

∑
l′

λ2l′Rll′l′l(z1, z2) =
λ2l − r

−1
1 r−1

2

(
1 +

r−1
1 −r−1

2

z1−z2

)
(λl + r−1

1 )(λl + r−1
2 )

+O(N−1). (193)

Now let us consider the sum over l in (44). First, observe that the first-moment term from (44) enters
in the form ∑

l

c2l λlRll(z) =
∑
l

λlc
2
l

λl + r−1(z)
= u(z). (194)

Here we encountered the first auxiliary function u(z) introduced (14). However, directly performing
the respective sum for the second-moment term does not automatically reduce it to an expression
with “decoupled” factors (depending only on z1 or z2 but not jointly on z1, z2). Yet, we can perform
an additional transformation to express the result in terms of decoupled factors. Representation of
fractions product as a difference, similar to (192), gives for two parts of

∑
l,l′ c

2
l λ

2
l′Rll′l′l(z1, z2)∑

l

c2l (λ
2
l − r

−1
1 r−1

2 )

(λl + r−1
1 )(λl + r−1

2 )
=
∑
l

( λlc
2
l

λl + r−1
1

+
λlc

2
l

λl + r−1
2

− c2l
)
= u1 + u2 −

∑
l

c2l , (195)

∑
l

−c2l r
−1
1 r−1

2
r−1
1 −r−1

2

z1−z2

(λl + r−1
1 )(λl + r−1

2 )
= r−1

1 r−1
2

∑
l

c2l
λl+r−1

1

−
∑

l
c2l

λl+r−1
2

z1 − z2
= r−1

1 r−1
2

v1 − v2
z1 − z2

, (196)

where we have encountered second auxiliary function v(z) defined in (14). Summarizing our com-
putation of the second moment, we have obtained∑

l,l′

c2l λ
2
l′Rll′l′l(z1, z2) = u(z1) + u(z2) + r−1(z1)r

−1(z2)
v(z1)− v(z2)
z1 − z2

−
∑
l

c2l . (197)

Thus, we fully expressed the population sums of resolvent moments in terms of two auxiliary func-
tions v(z) and u(z), which would later define our final result for the loss functional.

E.2 LOSS FUNCTIONAL

In this section, we using the resolvent moments derived in Section E.1.1 to compute the loss func-
tional (44).
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KRR case. As a sanity check, let’s first compute the loss for the case of KRR learning algorithm
hη(z) =

z
z+η , with the expectation to recover the original expression (1). In the absence of target

noise σ2 = 0, we have

Ll[hη]
σ2=0
=

∑
l′

λ2l′Rll′l′l(−η,−η)− 2λlRll(−η) + 1

=
λ2l − η2eff(1− ∂ηηeff)

(λl + ηeff)2
− 2

λl
λl + ηeff

+ 1 =
η2eff∂ηηeff
(λl + ηeff)2

.

(198)

For the contribution of noise term we have

ε
(2)
l = λ2l

1

N
E
[
ϕT

l R̂
2(−η)ϕl

]
= −λ2l ∂η

1

N
E
[
ϕT

l R̂(−η)ϕl

]
= −λ2l ∂ηRll(−η) =

λ2l ∂ηηeff
(λl + ηeff)2

.
(199)

Combining noiseless and noise contributions, we obtain

LKRR(η) =
1

2

η2eff∂ηηeff
(λl + ηeff)2

+
σ2

2N

λ2l ∂ηηeff
(λl + ηeff)2

, (200)

which is the same as (1).

General case. Now we turn to our main goal of describing learning measures ρ(2), ρ(1), ρ(ε). De-
note, u(λ) = limy→0+ u(λ+ iy) and v(λ) = limy→0+ v(λ+ iy). Then, for the first moment of the
learning measure, we have

ρ(1)(dλ) =
∑
l,l′

clcl′ρ
(1)
ll′ (dλ) =

1

πλ
lim

y→0+

∑
l

c2l λlℑRll(λ+ iy)dλ =
ℑu(λ)
πλ

dλ. (201)

For noise measure ρ(ε)l (dλ) we similarly obtain

ρ(ε)(dλ) =
1

πλ2
lim

y→0+

∑
l

λ2lℑRll(λ+ iy)dλ =
ℑw(λ)
πλ2

dλ, (202)

where w(λ) = limy→0+ w(λ+ iy) for the last auxiliary function w(z) defined in (14).

Now we proceed to the computation for the second moment of the learning measure ρ(2)(dλ1, dλ2)
using the relation (152). We have

ρ(2)(dλ1, dλ2) =
1

π2λ1λ2
lim

y1→0+
y2→0+

∑
l,l′

c2l λ
2
l′R

(im)
l1l′1l

′
2l2

(λ1 + iy1, λ2 + iy2)dλ1dλ2. (203)

Note that while for the first moment we simply have R(im)
ll′ (z) = ℑRll′(z), the relation between

R
(im)
l1l′1l

′
2l2

(z1, z2), and previously computed Rl1l′1l
′
2l2

(z1, z2) is less straightforward since the product
of two imaginary parts has to be taken out of expectation. This can be done with the following trick:
for two random variables w1, w2 we have

E [ℑw1ℑw2] = E
[
ℜw1w2 − w1w2

2

]
= ℜE [w1w2]− E [w1w2]

2
. (204)

Taking w1 = R̂ll′(z1), w2 = R̂l′l(z2), and noting that R̂(z) = R̂(z), we get the desired second
moment of imaginary parts

R
(im)
ll′l′l(z1, z2) = E

[
ℑR̂ll′(z1)ℑR̂l′l(z2)

]
= ℜ

[
Rll′l′l(z1, z2)−Rll′l′l(z1, z2)

2

]
. (205)

Observe that the part u(z1)+u(z2)−
∑

l c
2
l of

∑
l,l′ c

2
l λ

2
l′Rl′ll′l(z1, z2) gives no contribution when

substituted into (205):

ℜ

[(
u(z1) + u(z2)−

∑
l

c2l
)
−
(
u(z1) + u(z2)−

∑
l

c2l
)]

= ℜ
[
u(z2)− u(z2)

]
= 0. (206)
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Indeed, the remaining part has a non-trivial contribution that we will compute below in the limit
z1 → λ1 + i0, z2 → λ2 + i0.

lim
y1→0+
y2→0+

∑
l,l′

c2l λ
2
l′R

(im)
l1l′1l

′
2l2

(λ1 + iy1, λ2 + iy2)

=− 1

2
ℜ lim

y1→0+
y2→0+

r−1(λ1 + iy1)r
−1(λ2 + iy2)

v(λ1 + iy1)− v(λ2 + iy2)

λ1 − λ2 + i(y1 − y2)

+
1

2
ℜ lim

y1→0+
y2→0+

r−1(λ1 + iy1)r
−1(λ2 − iy2)

v(λ1 + iy1)− v(λ2 − iy2)

λ1 − λ2 + i(y1 + y2)
.

(207)

The first limit here can be easily taken in joint way y1 = y2 = y → 0+, leading to

lim
y1→0+
y2→0+

r−1(λ1 + iy1)r
−1(λ2 + iy2)

v(λ1 + iy1)− v(λ2 + iy2)

λ1 − λ2 + i(y1 − y2)
=

v(λ1)− v(λ2)
r(λ1)r(λ2)(λ1 − λ2)

. (208)

Note that this expression is regular at λ1 = λ2 since we assume v(λ) to be differentiable.

The second limit might have a non-vanishing singularity at λ1 = λ2, for which we will need to use
Sokhotski–Plemelj formula limε→0+

1
x−iε = iπδ(x)+P( 1x ), where P denotes the Cauchy principal

value.

lim
y1→0+
y2→0+

r−1(λ1 + iy1)r
−1(λ2 − iy2)

v(λ1 + iy1)− v(λ2 − iy2)

λ1 − λ2 + i(y1 + y2)

= lim
y1→0+

r−1(λ1 + iy1)r−1(λ2)
v(λ1 + iy1)− v(λ2)
λ1 − λ2 + iy1

=|r−1(λ1)|22πℑ{v(λ1)}δ(λ1 − λ2) + r−1(λ1)r−1(λ2)P

(
v(λ1)− v(λ2)
λ1 − λ2

)
.

(209)

Note that the singularity at λ1 = λ2 under the Cauchy principal value is purely imaginary and,
therefore, will disappear after taking the real part in (207). Next, let us combine (208) with the
second term from (209)

1

2
ℜ
{r−1(λ1)r−1(λ2)

(
v(λ1)− v(λ2)

)
− r−1(λ1)r

−1(λ2)
(
v(λ1)− v(λ2)

)
λ1 − λ2

}
=
ℑ
{
r−1(λ2)

}
ℑ
{
r−1(λ1)v(λ1)

}
−ℑ

{
r−1(λ1)

}
ℑ
{
r−1(λ2)v(λ2)

}
λ1 − λ2

=
ℑ
{
u(λ2)

}
ℑ
{
r−1(λ1)

}
−ℑ

{
u(λ1)

}
ℑ
{
r−1(λ2)

}
λ1 − λ2

,

(210)

where in the last line we have used the relation r−1v =
∑

l c
2
l −u. Finally, we combine all the terms

into the learning measure second moment

ρ(2)(dλ1, dλ2)

dλ1dλ2
=
|r−1(λ1)|2

πλ21
ℑ{v(λ1)}δ(λ1 − λ2)

+
1

π2λ1λ2

ℑ
{
u(λ2)

}
ℑ
{
r−1(λ1)

}
−ℑ

{
u(λ1)

}
ℑ
{
r−1(λ2)

}
λ1 − λ2

.

(211)

Thus, we have derived the expressions (15) and (16) of the main paper.

E.3 POWER-LAW ANSATZ

The analysis of the loss functional given by (15) and (16) is much more tractable for continuous
approximation of our basic power distributions (2)∑

l

δλl
(dλ)→ 1

ν
λ−

1
ν −1dλ = µλ(dλ),

∑
l

c2l δλl
(dλ)→ 1

ν
λ

κ
ν −1dλ = µc(dλ). (212)
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In particular, the fixed-point equation (161) for Stieltjes transform r(z) becomes

z = −r−1(z) +
1

N

∫ 1

0

r−1(z) 1νλ
− 1

ν dλ

λ+ r−1(z)
. (213)

We will encounter many integrals similar to the one above, with the general form

Fa(x) ≡
∫ 1

0

λadλ

λ+ x
, a > −1, x /∈ [−1, 0]. (214)

Such integral can be expressed in terms of Hypergeometric function 2F1. This can be immediately
used to get asymptotic x→ 0 expansion, which will be very useful later

Fa(x) =
2F1

(
1, 1 + a, 2 + a,− 1

x

)
(1 + a)x

= − π

sin(πa)
xa +

1

a
+

x

1− a
+O(x2). (215)

For this asymptotic expansion, we assume that x has a cut along R− and a /∈ Z.

Below we describe the essential steps in computing the loss functional for the Wishart model.

E.3.1 SOLVING FIXED POINT EQUATION

In this section, we will analyze asymptotic N → ∞ solutions of fixed-point equation (213). Note
that we are interested in the solution of this equation when z approaches the real line from above:

r(λ) = lim
ε→0+

r(λ+ iε). (216)

First, let us find values of λ when ℑr(λ) = πµ(λ) > 0, which corresponds to support of the
empirical spectral density µ(λ) of K. For this, let us write r−1(λ) = −τ − iυ, and rewrite (213) in
the limit ε→ 0 as a pair of real equations

λ = τ +
1

N

∫
λ′(τ2 + υ2)− (λ′)2τ

(λ′ − τ)2 + υ2
µλ(dλ

′)

0 = υ − 1

N

∫
(λ′)2υ

(λ′ − τ)2 + υ2
µλ(dλ

′)

= υ

(
1− 1

N

∫
(λ′)2

(λ′ − τ)2 + υ2
µλ(dλ

′)

)
.

(217)

Now, let us fix value of r corresponding to the point outside of the support of µ, where υ = 0,
and therefore τ /∈ supp(µλ) = [0, 1] to ensure convergence of the integral. Since the solution
of the fixed point equation for z ∈ C+ is unique, there should be no value of λ and υ satisfying
equations (217). But since λ can be defined for any value of τ, υ, the second equation should have
no solutions with υ ̸= 0. Due to the monotonicity of the expression in the brackets, this gives a
necessary condition for τ corresponding to the point outside the support:

1

N

∫
(λ′)2

(λ′ − τ)2
µλ(dλ

′) < 1. (218)

Additionally, it is easy to see that for the values of τ not satisfying the inequality above, there is a
solution of the second equation in (217) with υ < 0, which induces the solution of the first equation
with some λ, meaning that the triple (λ, τ, υ) corresponds the point inside of the support of µ.

The argument above fully characterizes the support of µ: there two support edges λ−, λ+ with the
respective values τ− < 0, τ+ > 1 given by the equality version of (218). The right edge τ+ should
be at a distance ∼ N−1 from λ = 1, where we have

1

N

∫
(λ′)2

(λ′ − τ+)2
µλ(dλ

′) =
1 + o(1)

N

∫ 1

0

µλ(1)

(λ′ − τ+)2
dλ′

=
µλ(1)

N

( 1

τ+ − 1
− 1

τ+

)
(1 + o(1)) = 1.

(219)
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From the calculation above and the first equation in (217), the right edge is given by

τ+ = 1 +
µλ(1)

N
(1 + o(1))

λ+ = τ+ −
µλ(1)

N
log
(
τ+ − 1

)
(1 + o(1)) = 1 + µλ(1)

logN

N
(1 + o(1)).

(220)

Turning to the left edge of the support, we note that it has the order τ− ∼ N−ν . Thus, we can use
asymptotic expansion of Hypergeometric function (215) with a = − 1

ν . leading to asymptotic form
of fixed point equation

z = −r−1(z) +
Cν

N
r−1+ 1

ν (z), Cν =
π/ν

sin(π/ν)
, (221)

where we, for simplicity, do not write (1 + o(1)) correction factors in the asymptotic.

Then, for the left edge of the support we have

1 = − 1

N

1

ν

∂F− 1
ν
(−τ− − iυ)

i∂υ

∣∣∣∣
υ=0

= −Cν

N

∂(−τ− − iυ)1−
1
ν

i∂υ

∣∣∣∣
υ=0

=
Cν

N

ν − 1

ν
(−τ−)−

1
ν , (222)

which gives the respective left edge values

τ− = −
(
ν−1
ν Cν

)ν
N−ν ,

λ− =
1

ν − 1
(−τ−) =

(ν − 1)ν−1
(
Cν

)ν
νν

N−ν .
(223)

Now, let us give more explicit solutions of fixed-point equation in different scenarios.

To the left of the support (λ < λ−). In this region the solution of fixed point equation is real,
and will in fact has a lot of parallels with KRR applied to the Wishart model. Thus, we translate
λ and r(λ) to their KRR notations: η = −λ is the KRR regularization and ηeff = r−1 is the
effective implicit regularization, appearing in (1). In these notations, the asymptotic form of fixed
point equation becomes

1 =
η

ηeff
+
Cν

N
η
− 1

ν

eff . (224)

When ηeff has the scaling s ≥ ν, we can write ηeff = η̃effN
−ν and η = η̃N−ν , which satisfies

N -independent equation

1 =
η̃

η̃eff
+ Cν η̃

− 1
ν

eff . (225)

The equation above gives a nontrivial relations between η̃ and η̃eff . However, when N−ν ≪ ηeff ≪
1, or in other words it has the scaling 0 < s < ν, the relation simplify to an explicit one:

ηeff = η +
Cν

N
η1−

1
ν . (226)

Inside the support (λ− < λ < λ+). In this region it is convenient to write r(λ) = r0(λ)e
iϕ(λ),

with the phase taking values in the upper half-circle: 0 < ϕ < π. Substituting r0(λ)eiϕ(λ) into the
limit form (221) of fixed point equation we get a pair of real equations

λ = r−1
0

(
− cosϕ+

Cν

N
(r0)

1
ν cos

(
(1− 1

ν )ϕ
))

(227)

0 = r−1
0 sinϕ− Cν

N
r
−1+ 1

ν
0 sin

(
(1− 1

ν )ϕ
)
. (228)

Let us rewrite the second equation here using the left edge value r− = (−τ−)−1

r−1
0 = r−1

−

(
(1− 1

ν ) sinϕ

sin
(
(1− 1

ν )ϕ
))−ν

= N−ν

(
sinϕ

Cν sin
(
(1− 1

ν )ϕ
))−ν

. (229)
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Thus, we see that the solution of fixed point inside the support is mostly conveniently described
by using the phase ϕ as a free variable, and then specify the rest of the variables by the mappings
ϕ 7→ r0 and (r0, ϕ) 7→ λ given by equations (229) and (227) respectively. In this representation,
ϕ = 0 corresponds to the left edge λ− of the support, while ϕ→ π corresponds to the right edge of
the support.

As for outside of the support case, we see that on the scale N−ν the fixed-point equation admits N -
independent form. Specifically, set λ = λ̃N−ν and r0 = r̃0N

ν . Then, the triplet r̃0, ϕ, λ̃ satisfies

λ̃ = −(r̃0)−1 cosϕ+ Cν(r̃0)
−1+

1
ν cos

(
(1− 1

ν )ϕ
)
,

r̃−1
0 =

(
sinϕ

Cν sin
(
(1− 1

ν )ϕ
))−ν

.
(230)

Finally, we turn to the values N−ν ≪ λ≪ 1, corresponding to the scaling 0 < s < ν. In this case,
the pair of equations (227), (229) becomes

λ = r−1
0 −

Cν

N
r
−1+ 1

ν
0 cos(πν ) =

(
π/ν

N(π − ϕ)

)ν (
1 + (π − ϕ) cot(πν )

)
,

r−1
0 =

(
π/ν

N(π − ϕ)

)ν

.

(231)

Noting that in the leading asymptotic order r0 = λ−1, the second equation can be rewritten as

π − ϕ =
λ−

1
ν

N

π

ν
. (232)

We can summarize the above equations in a single complex equation

r(λ) = −λ−1

(
1− Cν cos(π/ν)

λ−
1
ν

N

)
+ i

π

ν

λ−1− 1
ν

N
. (233)

In particular, taking the imaginary part of Stieltjes transform above gives ℑr(λ) = 1
N πµλ(λ). This

implies that for N−ν ≪ λ ≪ 1 the (normalized) empirical eigenvalue density Nµ(λ) coincides
with population density µλ(λ) as expected.

E.3.2 LEARNING MEASURES

In this section, we specify the form of empirical learning measures ρ(2)(dλ1, dλ2), ρ(1)(dλ) and
ρ(ε)(dλ), derived in (201),(202) and (16) respectively, for the case of power-law distributions (212).
Note that all three learning measures are expressed in terms of r(λ) and imaginary parts of 3 aux-
iliary functions v(λ), u(λ), w(λ), whose asymptotic form we will now analyze. In the continuous
approximation (212) these functions are given by

v(λ) = 1
ν

∫ 1

0

(λ′)
κ
ν −1dλ′

λ′ + r−1(λ)
, u(λ) = 1

ν

∫ 1

0

(λ′)
κ
ν dλ′

λ′ + r−1(λ)
, w(λ) = 1

ν

∫ 1

0

(λ′)1−
1
ν dλ′

λ′ + r−1(λ)
. (234)

Since all of these functions have the same functional form
∫ (λ′)adλ′

λ′+r−1(λ) , let us write an asymptotic
expansion of the imaginary part of this integral, using (215) as a basis. First, we consider λ ≪ 1
and use the leading term of asymptotic expansion (215) together with asymptotic formulas (227)
and (229).

ℑ
∫ 1

0

(λ′)adλ′

λ′ + r−1(λ)
= Γ(1 + a)Γ(−a)ℑ

{
r−a
0 e−iaϕ

}
= π

sin(aϕ)

sin(aπ)

(
N sinϕ

Cν sin
(
(1− 1

ν )ϕ
))−aν

.

(235)
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Importantly, away from left edge λ ≫ λ−, or equivalently π − ϕ ≪ 1, the above expression
significantly simplifies

ℑ
∫ 1

0

(λ′)adλ′

λ′ + r−1(λ)
= π

(
N(π − ϕ)
π/ν

)−aν (
1 +O(π − ϕ)

)
= πλa

(
1 +O

(
λ− 1

ν

N

))
.

(236)

The the leading term above is expected: since ℑr−1(λ) ≪ λ for λ ≫ λ−, the fraction can be
approximated with Sokhotski formula ℑ 1

λ′+r−1(λ) ≈ πδλ(λ
′). However, our approach with asymp-

totic expansion of Hypergeometric function in (215) also provides an estimation of correction term
to the Sokhotski formula, which would be difficult to obtain directly.

Let us now take into account the omitted subleading terms in the asymptotic expansion (215). These
terms make a regular power series in x, and therefore their imaginary part can be estimatedO(ℑx) =
O(r−1(λ)) = O

(
λ1− 1

ν

N

)
. Thus, we can summarize our computation for λ− ≪ λ≪ 1 as

ℑ
∫ 1

0

(λ′)adλ′

λ′ + r−1(λ)
= πλa +O

(
λa− 1

ν

N

)
+O

(
λ1− 1

ν

N

)
. (237)

Note that while the asymptotic form above is mostly meaningful for λ ≫ λ− when the corrections
as small, we can formally use at for λ ∼ λ− but the corrections become of the same order as the
leading terms.

The values of functions ℑv(λ), ℑu(λ), ℑw(λ), can be obtained by using either (235) or (237)
depending on the scale of λ. In particular, when λ− ≪ λ≪ 1 we have

ℑv(λ) = πµc(λ) +O
(λ1∧(κ

ν −1)− 1
ν

N

)
,

ℑu(λ) = πλµc(λ) +O
(λ1∧κ

ν − 1
ν

N

)
,

ℑw(λ) = πλ2µλ(λ) +O
(λ1− 2

ν

N

)
.

(238)

As an important application of the expressions above, let us estimate the scale of the off-diagonal
part ρ(2)off (λ1, λ2) of the learning measure ρ(2)(λ1, λ2) given in (16). Using (238) and (233) we get

ρ
(2)
off (λ1, λ2) =

λ
1− 1

ν
2 λ

κ
ν
1

(
1 +O(

λ
− 1

ν
2

N ) +O(
λ
− 1

ν
1

N )
)
− λ1−

1
ν

1 λ
κ
ν
2

(
1 +O(

λ
− 1

ν
2

N ) +O(
λ
− 1

ν
1

N )
)

π2λ1λ2N(λ1 − λ2)
.

(239)
Now we will estimate the scale S[ρ(2)off ] of ρ(2)off (λ1, λ2) assuming that λ1 and λ2 have the scales
s1 and s2 respectively. First, assume that λ1 − λ2 has the same scale as their maximum λ1 ∨ λ2.
Then, the corrections to the leading terms in the numerator can be neglected, and the scales of both
denominator and numerator are given by minimal scale of two subtracted terms. Specifically,

S[ρ
(2)
off ](s1, s2) =

(
(ν−1

ν s1 +
κ
ν s2) ∧ (κν s1 +

ν−1
ν s2)

)
− (s1 + s2 − 1 + s1 ∧ s2)

≥ 1− s1 − s2.
(240)

Yet, the scale derived above may not be valid when λ1 and λ2 are to close to each other. This does not
happen, which can be seen, for example, by writing the difference in the enumerator of ρ(2)off (λ1, λ2)
and observing that the whole expression behaves regularly as λ1 → λ2. Then, similar argumentation
together with (235) shows that the scale derived in (201) holds when both s1 = s2 = ν. Thus, for
all λ1, λ2 inside the support of µ we have S[ρ(2)off ](s1, s2) ≥ 1− s1 − s2.

Finally, we estimate the contribution of off-diagonal part of the second moment to the loss Loff [h] =
1
2

∫
h(λ1)h(λ2)ρ

(2)
off (dλ1, dλ2). For that, we can use a two-dimensional analog of proposition 2,

which can be proven similarly.
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Proposition 6. Let gN (λ1, λ2) be a sequence of functions with a scaling profile S(g)(s1, s2), and let
aN > 0 be a sequence of scale a > 0. Then, the sequence of integrals

∫ 1

aN

∫ 1

aN
|gN (λ1, λ2)|dλ1dλ2

has the scale

S
[ ∫ 1

aN

∫ 1

aN

|gN (λ1, λ2)|dλ1dλ2
]
= min

0≤s1,s2≤a

(
S(g)(s1, s2) + s1 + s2

)
. (241)

Applying this statement to Loff [h] =
1
2

∫
h(λ1)h(λ2)ρ

(2)
off (dλ1, dλ2), we get

S [Loff ] ≥ min
0≤s≤ν

[
1− s1 − s2 + S(h)(s1) + S(h)(s2) + s1 + s2

]
≥ 1. (242)

In other words, we have shown that∫
h(λ1)h(λ2)ρ

(2)
off (dλ1, dλ2) = O(N−1). (243)

Actually, the estimation above is tight, which can be shown, for example, by taking h(λ) = 1
computing the leading order term above, which will be exactly ∼ N−1. Note the presence of N−1

term in the loss, regardless of the value of κ, ν is unnatural for our problem because we expect
the rate of the optimal algorithm to be N−κ∧2ν , which can be smaller than N−1. The reason for
this unnatural term can be traced back to our calculation of the resolvent second moment in (189)
and (178), where in the application of the Wick theorem we took into account only the pairings
producing leading order terms in N . Thus, we might expect that taking into account subleading
order pairings in Wick theorem would lift the (243) from O(N−1) to O(N−2). What would be the
role of the off-diagonal ρ(2)off if we took into account all pairings (i.e. performed non-perturbative
computation) is not clear at the moment and is an interesting direction for future work.

E.3.3 NOISY OBSERVATIONS

For noisy observations, our goal is to show the equivalence between full loss functional and the
NMNO functional (Theorem 2). In terms of the population densities µλ(λ) and µc(λ), the NMNO
is written as

L(nmno)[h] =
1

2

1∫
N−ν

[
σ2

N
h2(λ)µλ(λ) +

(
1− h(λ)

)2
µc(λ)

]
dλ. (244)

Let us decompose the difference between two functionals as

L[h]− L(nmno)[h] =
1

2

1∫
λ−

[
σ2

N

(ℑw(λ)
πλ2

− µλ(λ)
)
h2(λ)

+
( |r−1(λ)|2ℑv(λ)

πλ2
− µc(λ)

)
h2(λ)

− 2
(ℑu(λ)

πλ
− µc(λ)

)
h(λ)

]
dλ

+
1

2

N−ν∫
λ−

[
σ2

N
h2(λ)µλ(λ) +

(
1− h(λ)

)2
µc(λ)

]
dλ+O(N−1).

(245)

Now, similarly to the translation-invariant model on a circle, we write down the scales of all terms in
the difference between two functionals, assuming that λ has the scale s. For that, we use asymptotic
expressions (238) for functions v, u, w, and also expression (233) for r−1(λ).
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S

[
σ2

N

(ℑw(λ)
πλ2

− µλ(λ)
)
h2(λ)

]
≥ 1− s− s

ν + (1− s
ν ) + 2S(h)(s), (246)

S

[( |r−1(λ)|2ℑv(λ)
πλ2

− µc(λ)
)
h2(λ)

]
≥ κ

ν s− s+ (1− s
ν ) + 0 ∧ ( 2ν−κ

ν s) + 2S(h)(s), (247)

S

[(ℑu(λ)
πλ

− µc(λ)
)
h(λ)

]
≥ κ

ν s− s+ (1− s
ν ) + 0 ∧ (ν−κ

ν s) + S(h)(s), (248)

S

[
σ2

N
h2(λ)µλ(λ)

]
= 1− s− s

ν + 2S(h)(s), (249)

S
[(
1− h(λ)

)2
µc(λ)

]
= κ

ν s− s+ 2S(1−h)(s). (250)

For the last two terms, we do it on the level of the whole integral, which is taken over a single scale
s = ν.

S

 N−ν∫
λ−

σ2

N
h2(λ)µλ(λ)dλ

 = 2S(h)(ν), (251)

S

 N−ν∫
λ−

(
1− h(λ)

)2
µc(λ)dλ

 = κ+ 2S(1−h)(ν). (252)

Using the scales derived above, we need to obtain the conditions on the learning algorithm scales
S(1−h), S(h) for which the scale of all corrections to the loss is greater than the scale of NMNO loss
given, as usual, by

S
[
L(nmno)[h]

]
= min

0≤s≤ν

[(
κ
ν s+ 2S(1−h)

)
∧
(
1− s

ν + 2S(1−h)(s)
)]
≤ κ

κ+ 1
. (253)

Again, this means that we can neglect all corrections whose scale (after integration with dλ) is
greater than κ

κ+1 . In particular, we can neglect O(N−1) correction coming from off-diagonal part
of the second moment (243).

First, note that the terms (251) and (252) exactly equal the contribution of noise (249) and sig-
nal (250) parts at scale s = ν. Thus, if these terms are to be neglected, s = ν should not be a
localization scale of L(nmno)[h].

Second, observe that the right parts of 0∧( 2ν−κ
ν s) and 0∧(ν−κ

ν s) in (247) and (248), when activated,
give at most O(N−1) contribution to the total loss, and therefore can also be neglected. Then, after
choosing the left 0 option, we see that (248) is never less than (247). Thus, the total contribution of
these two terms can be effectively described by the scale κ

ν s− s+ (1− s
ν ) + S(h)(s).

Lastly, we can see that (246) is always larger than corresponding NMNO noise scale (249), except
for s = ν where they are equal. But since we already require s = ν not being a localization scale of
L(nmno)[h], the term (246) can be neglected.

Thus, all requirements in addition to s = ν not being a localization scale of L(nmno)[h] can be
summarized as

min
0≤s≤ν

[
κ
ν s+ (1− s

ν ) + S(h)(s)
]
> min

0≤s≤ν

[(
κ
ν s+ 2S(1−h)

)
∧
(
1− s

ν + 2S(1−h)(s)
)]
. (254)

However, we have

min
0≤s≤ν

[
κ
ν s+ (1− s

ν ) + S(h)(s)
]
≥ 1 ∧ κ > κ

κ+ 1
, (255)

therefore, the requirement (254) is satisfied automatically. Summarizing, the corrections to the
NMNO functional are asymptotically vanishing when s = ν is not a localization scale ofL(nmno)[h].
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E.3.4 NOISELESS OBSERVATIONS

Now, we take σ2 = 0 and analyze the respective loss functional. Recall that our current calculations
are accurate up to O(N−1), as we discussed before. Therefore, we will neglect all the terms that
give contributions of the order O(N−1), since they are beyond our current level of accuracy. This
means several things:

1. We ignore the contribution to the loss of the off-diagonal part
∫
h(λ1)h(λ2)ρ

(2)
off (dλ1, dλ2)

of the functional.

2. We ignore the O(λ
1− 1

ν

N ) correction to ℑv(λ) and ℑu(λ) in (238): in the previous section
we have shown that they have at most O(N−1) contribution to the loss.

3. We restrict ourselves with the values of signal exponent κ < 1. Since the optimal scaling
of the loss in the noiseless case is expected to be N−κ, we will not be able to capture it for
κ ≥ 1.

4. The previous point also implies that we cannot access values κ > 2ν > 2 corresponding to
the noiseless saturation phase since eigenvalue exponent values are confined to the physical
region ν > 1.

With the above remarks taken into account, we start deriving the loss functional and, for compact-
ness, ignore all the O(N−1) terms. First, due to the diagonality of the remaining part of the learning
measure ρ(2)(dλ1, dλ2), we can immediately specify the optimal algorithm and the respective de-
composition of the functional

L[h] =
1

2

1∫
λ−

[
|r−1(λ)|2ℑv(λ)

πλ2
(
h(λ)− h∗(λ)

)2
+
(
µc(λ)−

(
ℑu(λ)

)2
π|r−1(λ)|2ℑv(λ)

)]
dλ, (256)

h∗(λ) =
λℑu(λ)

|r−1(λ)|2ℑv(λ)
= 1 +O(λ

− 1
ν

N ), (257)

where we have used asymptotics (238) to estimate the deviation of the optimal algorithm from

h(λ) = 1. Again using (238), we see that the free term in (256) has the order O(λ
κ−1
ν

−1

N ), which,
given κ < 1, always localizes on the maximal scale s = ν. If we additionally assume that the

learning algorithms fits higher eigenvalues well enough: |1 − h(λ)| = O(

√
λ− 1

ν

N ), the first term
in (256) will also always localize on the maximal scale s = ν.

Now, relying on the fact that the loss localizes on s = ν, we can use expressions of all the terms in
the functional through the phase ϕ. Eigenvalue λ is defined by an explicit form of (227)

λ = N−ν

(
sinϕ

Cν sin(ϕ− ϕ
ν )

)−ν

sinϕ
(
cot(ν−1

ν ϕ)− cotϕ
)
. (258)

Using (235) and (229), the terms of the functional become

|r−1(λ)|2ℑv(λ)
πλ2

=
1

ν

(
sinϕ

Cν sin(ϕ− ϕ
ν )

)−κ+ν
sin(ϕ− κ

νϕ)

sin(κν π) sin
2 ϕ
(
cot(ν−1

ν ϕ)− cotϕ
)2 (259)

µc(λ) =
1

ν

(
sinϕ

Cν sin(ϕ− ϕ
ν )

)−κ+ν (
sinϕ

(
cot(ν−1

ν ϕ)− cotϕ
))κ

ν −1

(260)

(
ℑu(λ)

)2
π|r−1(λ)|2ℑv(λ)

=
1

ν

(
sinϕ

Cν sin(ϕ− ϕ
ν )

)−κ+ν
sin2(κνϕ)

sin(ϕ− κ
νϕ) sin(

κ
ν π)

, (261)

The optimal algorithm is

h∗(λ) =
cot(ν−1

ν ϕ)− cotϕ

cot(κνϕ)− cotϕ
. (262)
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Substituting everything in the loss functional gives

L[h] =
N−κ

2

π− π
νN∫

0

(
sinϕ

Cν sin(ϕ− ϕ
ν )

)−κ+ν [
sin(ϕ− κ

νϕ)
(
h(λ)− h∗(λ)

)2
ν sin(κν π) sin

2 ϕ
(
cot(ν−1

ν ϕ)− cotϕ
)2

+
1

ν

(
sinϕ

(
cot(ν−1

ν ϕ)− cotϕ
))κ

ν −1

−
sin2(κνϕ)

ν sin(ϕ− κ
νϕ) sin(

κ
ν π)

]
d(Nνλ)

dϕ
dϕ,

(263)

Finally, we note that the ϕ → π asymptotic of the expressions under the integral above can be

inferred from the respective λ− 1
ν

N → 0 asymptotic of the original functional, since

π − ϕ = π
ν

λ− 1
ν

N (1 + o(π − ϕ)). Thus, we can write

L[h] =
N−κ

2

π− π
νN∫

0

[
O
(
(π − ϕ)−κ+ν

)(
h(λϕ)− h∗(λϕ)

)2
+O

(
(π − ϕ)−κ+ν+1

)]
dϕ. (264)

From the above expression we see that, if |h(λϕ)− h∗(λϕ)| = O(|h(λϕ)− 1|) = O(
√
π − ϕ), the

expression under the integral is integrable at ϕ = π. Therefore, the upper integration limit can be
shifted to π without changing leading order asymptotic of the loss.

Overlearning transition. As we discussed above, our analysis of Wishart model in the noiseless
case is restricted to the values of target exponent κ < 1 due to O(N−1) accuracy of calculations.
Thus, if ν < 2, we can access overlearning transition point κ = ν − 1 < 1 and verify whether the
transition holds for the Wishart model. Proceeding similarly to respective Lemma 2 for the circle
model, we have
Lemma 3. Consider the optimal algorithm (262):

h∗(λ) =
cot(ν−1

ν ϕ)− cotϕ

cot(κνϕ)− cotϕ
(265)

with eigenvalue λ = λ(ϕ), ϕ ∈ (0, π) parameterized according to (258). Then, assuming κ < 1, for
any ϕ ∈ (0, π)

h∗(λ)


< 1, κ+ 1 < ν,

= 1, κ+ 1 = ν,

> 1, κ+ 1 > ν.

(266)

Proof. Observe that both the nominator and denominator of (265) have the form g(a, ϕ) ≡
cot(aϕ) − cot(ϕ) with a ∈ (0, 1), ϕ ∈ (0, π). Since cot(ϕ) is strictly decreasing on (0, π),
the function g(a, ϕ) is 1) positive 2) at fixed ϕ is strictly decreasing in a. Thus, for the ratio of such
functions, we have

g(a, ϕ)

g(b, ϕ)


< 1, a > b,

= 1, a = b,

> 1, a < b.

(267)

The above is equivalent to the statement of the lemma once a = ν−1
ν , b = κ

ν .

The above result shows that the behavior of the sign of h(λ) − 1, which indicates overlearn-
ing/underlearning, is exactly the same in the Wishart and Circle models. This makes us believe
that overlearning transition can be a quite general phenomenon going beyond two data models con-
sidered in the current work.

F EXPERIMENTS

F.1 FIGURE 1: DETAILS AND DISCUSSION.

Let us start by describing the experiment setting and details. Both KRR and GF plots use optimally
scaled regularization η and time t, as derived in Section C. For all three data models, we consider
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ideal power-law population spectrum: λl = l−ν , c2l = l−κ−1 (truncated at P = 4 × 104 due to
computational limitations), and an adapted version λl = (2(|l|+1))−ν , |cl|2 = (2(|l|+1))−κ−1, l ∈
Z for Circle model. The extra factor of 2 here is needed to asymptotically align population spectrum
at small λ: for all three models we have µc([0, λ])→ 1

κλ
κ
ν and µλ([λ,∞))→ λ−

1
ν as λ→ 0.

The figure contains 3 types of data that are computed in different ways. The first type is scatter plot
markers and corresponds to the estimation of generalization loss via direct simulation. For Wishart
and Cosine Wishart (see Section F.3) models, this amounts to sampling empirical kernel matrix K
and observation vector y, calculating the generalization error for the resulting sampled realization,
and finally averaging the result over n = 100 repetitions of the above procedure to estimate the
expectation over training dataset DN in (3). Due to computational limitations, we were able to
execute this procedure for sizes of empirical kernel matrix only up to N = 4 × 103. For Circle
model, Theorem 1 gives an exact value of the expected loss (3) (i.e. no approximations are made
during the derivation). Since for the considered type of population spectra the N-perturbations (10)
can be expressed in terms of Hurwitz zeta function (see (127)), we compute analytically all the terms
in (11). This way, we are able to reach much larger values of N for the circle model.

Let us also comment on the estimation of the generalization error (3) of a given realization of Wishart
or Cosine Wishart models. The expectation over x requires scalar products

⟨K(xi,x),K(x,xj)⟩ =
∑
l

λ2l ϕl(xi)ϕl(xj), ⟨f∗(x),K(x,xj)⟩ =
∑
l

λlclϕl(xj) (268)

for points xi,xj from sampled dataset DN . The expressions above can be used to calculate these
scalar products experimentally since we have access to λl, cl and already sampled feature values
ϕl(xi).

The second type of data is depicted with solid lines and corresponds to the direct calculation of
NMNO loss (17), which becomes a sum for discrete population spectrum. Assuming λl are sorted
in descending order, NMNO loss becomes

L(nmno)[h] =
1

2

N∑
l=1

[
c2l (1− h(λl))2 +

σ2

N
h(λl)

2

]
, (269)

which we can easily compute for quite large values of N .

Finally, the third type of data is N → ∞ loss asymptotic L = CN−#(1 + o(1)) depicted with
dashed lines. The constant C we compute analytically, similarly to limiting expressions (138), (135)
for noiseless Circle model and (263) for Wishart model. For that, we 1) recall (see Section C) the
loss localization scale sloc for the considered algorithms: sloc = ν

κ+1 for GD and non-saturated
KRR, and sloc ∈ {0, ν

2ν+1} for saturated KRR 2) and then get the limiting expressions of NMNO
loss functional (17).

For GF, we have algorithm profile ht(λ) = 1−e−tλ and loss localization scale is sloc = ν
κ+1 . Thus,

we make a change of variables λ = λ′N− ν
κ+1 and t = t′N

ν
κ+1 , leading to the following limiting

loss

L(nmno)[ht] =
1

2
N− κ

κ+1
1

ν

∫ ∞

0

[
e−2t′λ′

(λ′)
κ
ν + σ2(1− e−t′λ′

)2(λ′)−
1
ν

] dλ′
λ′
. (270)

Note that the integral above converges both at λ′ → 0 and λ′ → ∞, which reflects that our change
of variables has used the correct loss localization scale. The integral in (270) can be computed either
numerically or analytically by reducing it to Gamma functions.

For KRR algorithm profile is hη(λ) = λ
λ+η and loss localization changes between saturated and

non-saturated phases. In the non-saturated phase, we make a change of variables λ = λ′N− ν
κ+1 and

η = η′N− ν
κ+1 , leading to

L(nmno)[hη] =
1

2
N− κ

κ+1
1

ν

∫ ∞

0

(η′)2(λ′)
κ
ν + σ2(λ′)2−

1
ν

(λ′ + η′)2
dλ′

λ′
, κ < 2ν. (271)

In the saturated phase, the noise part localize at sloc = ν
2ν+1 , which coincides with the scale of

regularization η = η′N− ν
2ν+1 . The signal part localizes at sloc = 0 where the loss functional
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remains discrete, and we can use a perturbative expression for the learning algorithm hη(λ) ≈ λ
η .

This leads to

L(nmno)[hη] =
1

2
N− 2ν

2ν+1

[
1

ν

∫ ∞

0

σ2 (λ′)2−
1
ν

(λ′ + η′)2
dλ′

λ′
+ (η′)2

∑
l

|cl|2

λ2l

]
, κ > 2ν. (272)

As for the GF, the integrals in (271) and (272) can be computed either numerically or analytically
by reducing them to Beta function integrals with a change of integration variable z = η′

λ′+η′ .

Discussion. The main conclusion of the figure is, indeed, the match between the actual values of
the loss for a given model (scatter markers) and NMNO values (solid lines) for large enough N .
This validates experimentally the statement of Theorem 2. Importantly, the Cosine Wishart model
is not covered by our theory but still demonstrates the equivalence. We interpret it as an indication
that the equivalence holds for a broader class of models. At the moment, we are not ready to give
any potential candidates for such class of models since it requires a different set of tools than the
one used in this work.

Observe that the match between the actual loss of a data model and its NMNO analog happens at
quite small N for big value of target exponent κ = 5 (two right subfigures) whereas much larger
N are required for small κ = 0.5. This is a general manifestation of the fact that slower power-
laws require much larger sizes N for asymptotic N → ∞ behavior to start working. For instance,
NMNO loss (17) ignores the error associated with unlearned signal at eigenvalues λ < λmin. The
contribution of this part can be roughly estimated as µc([0, λN ])/µc([0, 1]) ≈ N−κ = e− logNκ

which becomes negligible at exponentially large values of dataset size N ≫ e
1
κ .

Finally, we note that only the third subplot of the figure (corresponding to saturated KRR) has
different loss asymptotics for the Circle model on one side and Wishart and Cosine Wishart on the
other side. This difference is due to the respective population spectra which, although matching
asymptotically at λ → 0, are different at the head of the spectrum λ ∼ 1. Then, since the loss for
saturated KRR localizes at the scale s = 0 (i.e. λ ∼ 1) as demonstrated in Figure 2, the difference
between population spectra at λ ∼ 1 start to affect the loss values. On the contrary, when there is no
saturation (the rest of the plots on the figure), the loss localizes on some scale s > 0 where the two
population spectra become (asymptotically) the same. This is the reason why 1,2,4 subplots have a
single common loss asymptotic colored in grey.

F.2 FIGURE 3: DETAILS AND DISCUSSION.

This figure’s primary focus is the comparison of different algorithms. Profiles of each of 4 consid-
ered algorithms were obtained as follows: interpolation is simply h(λ) = 1, the optimal algorithm
was calculated from (23), optimally stopped GF was obtained by first evaluating the asymptotic
loss (138) on a wide and dense grid of t values subsequently picking t∗ as the optimal among those
values, and for optimally regularized KRR the same procedure (including both negative and positive
regularization values) was used.

On the first plot, we validate the asymptotic loss value L(asym) = CN−κ (dashed lines) computed
from (138) with exact loss value at finite N given by (11) (scatter markers) computed similar to the
respective values from Figure 1. On the remaining 3 plots we already exclusively use asymptotic
expression (138).

Discussion. The first plot indeed confirms that asymptotic expression L(asym) = CN−κ given
by (138) can accurately describe the loss values with the correct constant C.

The second plot examines the behavior of the constant C across the range of target exponent values
κ ∈ (0, 2ν), while saturated values κ > 2ν have different rate N−2ν and thus not considered on the
figure. In particular, in the vicinity of the saturation transition the constant starts to blow up C →∞
as κ → 2ν − 0. The overlearning transition at κ = ν − 1 is also quite visible: for κ < ν − 1
all the considered algorithms have very close loss values, while for κ > ν − 1 a significant gap
appears between optimal KRR and the optimal algorithm on one side and interpolation and optimal
GF on the other side. This demonstrates that significant overlearning h(λ) > 1 is required for strong
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performance. Note that GF profile ht(λ) = 1− e−tλ ≤ 1 which forces t∗ =∞ for κ > ν − 1, thus
explaining exact match between green and grey lines for κ < ν − 1.

Actually, it is quite difficult to distinguish loss curves of different algorithms (except for the over-
learning gap discussed above) on the two left plots. However, there is a well-defined (i.e. not due to
numerical errors) difference between the algorithms (high zoom is required to see it!). Such a small
difference seems to be an intrinsic property of the Circle model: we have tried wide ranges of κ and
ν and observed that in all of them, the relative difference between different algorithms was of the
order of 1% or smaller.

F.3 COSINE WISHART MODEL

The model is constructed as follows. Given a population spectrum λl, cl ∈ R, l = 0, 1, 2, 3, . . ., the
features ϕl(x) with x ∈ S are defined as

ϕl(x) =

{
1, l = 0,√
2 cos(lx), l ≥ 1,

(273)

and the training dataset inputs xi ∈ DN are sampled i.i.d. from a uniform distribution on the circle
S. In particular, (273) ensures that Ex[ϕl(x)ϕl′(x)] = δll′ .

The Cosine Wishart model can be thought as something intermediate between our main Wishart
and Circle models. On the one side, the population quantities of Cosine Wishart models are the
same as those for the Circle given in (6), except for the presence of eil(x+x′) terms in the kernel
K(x, x′) making it non-translation invariant. This last aspect does not move Cosine Wishart model
too much from Circle, as the respective empirical kernel matrix K would still be almost diagonalized
by discrete Fourier harmonics ei

2πki
N if the inputs were forming a regular lattice. The more impor-

tant difference is that inputs xi of the Cosine Wishart model are sampled i.i.d., which completely
eliminates the possibility to analytically diagonalize K, which is a core step of the Circle model
solution.

On the other side, for a given population spectrum λl, cl, the structure of Cosine Wishart model and
Wishart model are similar in the sense that in both cases, random realizations of empirical kernel
matrix K are obtained by sampling components of the feature matrix Φ with first to moments being
EΦli = 0 and EΦ2

li = 1, except for EΦ0i = 1 for Cosine Wishart which only amounts to a single
spike in K. However, the most important difference is that for Wishart model, all entries of Φ are
independent, while for Cosine Wishart there is a very strong correlation of entries Φli =

√
2 cos(lxi)

with different l but the same i. This correlation turns out to be crucial and makes the Stieltjes
transform r(z) = Tr

[(
K− zI

)−1
]

no longer deterministic, which was the core assumption for our
analysis of Wishart model based on the fixed-point equation (13).
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